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We investigate the influence of vortices remote from the boundary on the near-wall flow
dynamics in wall-bounded flows. A vortex ring with precisely controlled local twist is
introduced into the outer layer of a channel flow at a moderate Reynolds number. We find
that the minimum vorticity flux for triggering the transition to turbulence is significantly
reduced from the initial disturbance of an untwisted vortex ring to that of a twisted ring. In
particular, the latter disturbance can cause vortex bursting in the early transitional stage.
The impact of vortex bursting on the transition process is characterised by the near-wall,
wall-normal velocity with the rapid distortion theory. The wall-normal velocity grows
during vortex bursting, and leads to streak formation and then the transition to turbulence.
The notable wall-normal velocity is induced by the large di-vorticity generated in vortex
bursting. We model the growing radial component of the di-vorticity in terms of the local
twist, and demonstrate that its surge is due to the generation of highly twisted vortex lines
in vortex bursting. Then, we derive that the generation of the di-vorticity in the outer layer
enhances the wall-normal velocity in the inner layer via the Poisson equation with the
image method and the multipole expansion. Thus, we elucidate that the vortex bursting
can have an effect on the transition process.

Key words: vortex dynamics, transition to turbulence, topological fluid dynamics

1. Introduction

Vortex dynamics has been extensively studied in various wall-bounded flows (Adrian
2007; Wu, Ma & Zhou 2007; Farrell & Ioannou 2012; He et al. 2017; Luckring 2019).
In particular, the hairpin vortex, consisting of a ring-like head and quasi-streamwise legs,
was observed in the transition and boundary-layer turbulence (Hussain 1986; Haidari &
Smith 1994; Zhou, Adrian & Balachandar 1996; Schoppa & Hussain 2002; Zhao, Yang
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& Chen 2016; Zhao et al. 2018). However, the exact role of the vortex in the transition is
still not clear. Since the vortex is usually generated from the mean shear, it is difficult to
distinguish its contributions. In the present study, we introduce a vortex ring, the properties
of which can be controlled precisely (Shen et al. 2023), into a channel flow, to elucidate
its effect on the transition.

Different types of disturbances were introduced near the boundary to trigger transition
to turbulence, e.g. the sinusoidal velocity disturbance (Brandt & Henningson 2002), wake
(Wu et al. 1999), puff (Rubin, Wygnanski & Haritonidis 1980; Peixinho & Mullin 2006),
free-stream turbulence (Jacobs & Durbin 2001; Fransson, Matsubara & Alfredsson 2005)
and various disturbances generated in experiments (Hof, Juel & Mullin 2003; Mullin
2011). Most of these methods introduce the disturbance directly into the near-wall region.
However, in many transition scenarios, we only know the condition in the outer layer (with
the wall unit larger than 50). For instance, the turbine blade is influenced by the vortex
detached from the preceding blade. Therefore, understanding how the external vortex
disturbances penetrate into the boundary (Hunt & Durbin 1999) and their induction effect
near the boundary remains an open problem.

The mechanisms of the induction and penetration of external vortices jointly introduce
near-wall disturbances to trigger transition (Hunt & Durbin 1999; Zaki & Durbin 2005).
In the receptivity stage, external disturbances, e.g. sound waves or turbulence, stimulate
instability waves within the boundary layer (Saric, Reed & Kerschen 2002; Zhong & Wang
2012). Subsequently, the instability of streaks (Ricco, Luo & Wu 2011; Wu 2019; Xu et al.
2023), Tollmien–Schlichting (TS) waves (Sandham & Kleiser 1992; Schlatter, Stolz &
Kleiser 2004) and Λ- and hairpin-like vortices (Sandham & Kleiser 1992; Zhao et al.
2016) promote the transition process. Finally, the emergence of turbulent spots (Wu 2023)
signals the onset of turbulence.

Distinguished from the current methods of introducing external disturbances, we employ
a controllable vortex ring to induce transition. The vortex ring has been widely used as an
elemental vortical structure to understand various vortical flows (Saffman 1981; Shariff
& Leonard 1992; Olsthoorn & Dalziel 2015). The instability (Dazin, Dupont & Stanislas
2006), dissipation (Archer, Thomas & Coleman 2008) and axial-flow effect (Cheng, Lou
& Lim 2010) of the vortex ring have been studied. However, these studies on the vortex
ring are limited to the free domain without boundary conditions.

By extending the paradigm of vortex dynamics to wall flows, we analytically construct
various vortex rings in the outer layer of a channel flow using the method in Shen et al.
(2023). The construction method can precisely adjust the vorticity flux and local twist,
enabling us to examine the effect of various vortex-ring properties on the transition. In
particular, we construct a vortex ring with opposite chiralities to mimic the hairpin-vortex
head consisting of twisted vortex lines. The collision of twist vortex waves in this vortex
ring causes vortex bursting (Melander & Hussain 1994; Arendt, Fritts & Andreassen 1997;
Cuypers, Maurel & Petitjeans 2003; Ji & Van Rees 2022; Shen et al. 2023), which can have
an effect on the transition process. Furthermore, studying the vortical disturbance from the
outer layer can be of importance in the control of transition.

The outline of this paper is organised as follows. Section 2 provides an overview of
the initial flow set-up and numerical method. Section 3 discusses the important stages in
the vortex-ring-induced transition, and characterises the effect of vortex evolution on the
transition using the wall-normal velocity. Section 4 introduces the di-vorticity to explain
the induction effect of the vortex ring on the wall-normal velocity. Conclusions are drawn
in § 5.
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2. Flow set-up and numerical overview

2.1. Initial flow set-up
The direct numerical simulation (DNS) is performed in a three-dimensional (3-D) channel
domain V with coordinates x = (x, y, z) ∈ V and in the streamwise x-, the wall-normal y-
and spanwise z-directions, respectively. The streamwise length of the channel is Lx = 5.61,
wall-normal height is Ly = 2H with H = 1 and spanwise width is Lz = 2.99, consistent
with those in the DNS in Zhao et al. (2016). The dimensionless 3-D incompressible
Navier–Stokes (NS) equations of the velocity u = (u, v, w) scaled by H and the bulk
velocity Ub read

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + f ,

∇ · u = 0,

⎫⎬
⎭ (2.1)

where t denotes the time, p the pressure, ν the kinematic viscosity and Re = UbH/ν the
Reynolds number. The flow is driven by a constant flux rate with Ub = 1 by exerting a
homogeneous time-dependent body force f = (τw, 0, 0), where

τw ≡ 1
Re

d〈u〉
dy

(2.2)

denotes the wall shear stress and 〈·〉 the volume average.
As sketched in figure 1(a), periodic boundary conditions are applied in x- and

z-directions, and the no-slip boundary conditions are applied at the upper boundary
y = −1 and lower boundary y = 1. The initial flow field contains a vortex ring embedded
in the laminar Poiseuille flow. The vortex ring serves as a controllable initial disturbance
to trigger transition. The Poiseuille base flow has a velocity profile

ul = U0(1 − y2) (2.3)

with the centreline velocity U0 = 1.5. If not otherwise specified, the Reynolds number is
set as Re = 3333 (Kim, Moin & Moser 1987). If the flow undergoes a transition, this Re
is equivalent to the friction Reynolds number Reτ = Re

√
τw = 207, where τw is obtained

in the fully developed turbulent stage. The vorticity ω = ∇ × u of the base flow only has
a spanwise component

ωl = 3y. (2.4)

The vortex ring, represented by the light blue surface in figure 1(a), is placed at the
centre of the computation domain, the farthest position from the wall. Note that the vortex
ring can be placed anywhere in the outer layer. In general, the induction effect of the vortex
ring on flow transition grows with the initial distance between the vortex-ring centre and
the nearest wall.

The embedded vortex ring is set up using the method in Shen et al. (2023). The geometry
of vortex lines attached on the vortex tube is sketched in figure 1(b). The vorticity of the
vortex ring is specified as

ω(s, ρ, θ) = Γ f (ρ)

(
ρη

1 − κρcosθ
eθ + es

)
, (2.5)

where (s, ρ, θ) are curved cylindrical coordinates, (es, eρ, eθ ) denote axial, radial and
azimuthal basis, respectively, κ is the constant curvature of the centreline C of the vortex
ring, Γ is the vorticity flux of the vortex ring and f (ρ) = exp(−ρ2/2σ 2)/(2πσ 2) is a
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Induction effect
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x(s, ρ, θ)
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(xbr, ybr, zbr)

ω

(b)(a)

Figure 1. (a) Schematic of the initial flow set-up for the vortex-ring-induced transition. The grey plane denotes
the solid-wall boundary of the channel flow. The vortex ring (light blue surface) is placed at the centre of the
computation domain. The possible vortex bursting is located at (xbr, ybr, zbr), and it has a strong induction
effect near the upper boundary (marked by dark grey patch). (b) Schematic of the vortex ring. The dash-dotted
line denotes the centreline C of the vortex tube (light blue surface), and the red line denotes a typical twisted
vortex line attached on the vortex tube. Local cylindrical coordinates (s, ρ, θ) inside the vortex tube are marked
in a cross section.

Gaussian function parameterised by the standard deviation σ . Moreover, the local twist
rate η measures the twisting number of vortex lines along the vortex centreline inside the
vortex ring.

In the numerical construction, ω(s, ρ, θ) in (2.5) in curved cylindrical coordinates is
mapped to ω(x, y, z) in Cartesian coordinates using the algorithm in appendix A of Shen
et al. (2023). Various closed vortex tubes (Shen et al. 2022) can be constructed with a
given parametric equation for the centreline and the function f (ρ) for the vorticity-flux
distribution.

2.2. Internal structures of the vortex ring
The configuration parameters of the vortex ring are set based on the DNS result of the same
channel flow in Zhao et al. (2016). As illustrated by the isosurface of the swirling strength
λci (Zhou et al. 1999) in figure 2, the head of the hairpin-like vortex tube forms a ring-like
structure consisting of helical vortex lines in the late stage of the natural transition. In
particular, the twist rate of vortex lines is not uniformly distributed on the vortex ring. The
chiralities of the helical lines are opposite on the two halves of the ring.

Thus, we set the differential twist, i.e. the non-uniform local twist rate η = A cos(s/R)

along C, with the constant A = 120 (Shen et al. 2023). For comparison, we also set cases
with the uniform twist η = 2A/π and zero twist η = 0. The initial twist is crucial in
determining whether the vortex ring will burst during its evolution (Shen et al. 2023). In
addition, the vorticity flux Γ , vortex ring radius R = 0.25 and ring thickness σ = 0.0125
are comparable to the DNS result in Zhao et al. (2016) at t = 110 in the late transition.
Note that the induction effect of the vortex ring on flow transition strongly depends on
A, which plays a similar role as Re, whereas it weakly depends on R and σ (Shen et al.
2022, 2023).

2.3. DNS
The NS equations (2.1) are solved by DNS using the same spectral method in Kim
et al. (1987). The velocity in the x- and z-directions is decomposed into Fourier modes,
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Figure 2. Modelling an external vortex in flow transition using a vortex ring. (a) Isosurface of the swirling
strength λci = 2 (Zhou et al. 1999) at t = 110 in the late stage of the natural transition in channel flow reported
in Zhao et al. (2016). The isosurface is colour-coded by the helicity density h = ω · u. The hairpin head
consisting of helical vortex lines is sketched in the closed-up view on the left. The orange arrows denote
axial flows inside the vortex tube induced by the helical vortex lines with opposite chiralities. (b) Isosurface
of the λci = 2 (colour-coded by h) in the present vortex-ring-induced transition. The helical vortex lines with
opposite chiralities near the vortex ring are plotted in the closed-up view on the left. The possible bursting
location is marked by the asterisk at s = πR/2 in the local cylindrical coordinates.

and u in the y-direction is solved by the Helmholtz equations for each mode. The time
stepping is varied to ensure the Courant–Friedrichs–Lewy number less than 0.6. The
initial vorticity field, the superposition of laminar background (2.4) and vortex ring (2.5),
is decomposed into Fourier–Chebyshev modes. To satisfy the boundary conditions for
a channel, the initial velocity field is calculated from the vorticity via the Helmholtz
equation in the Fourier–Chebyshev space. A boundary correction is then applied under
the divergence-free constraint, which is detailed in Appendix A. In the calculation of
flow evolution, the two-thirds truncation method is applied for dealiasing (Canuto et al.
1988). The low-storage third-order semi-implicit Runge–Kutta method (Philippe, Robert
& Michael 1991; Yang & Pullin 2011) is used for time marching.

We performed convergence tests on four grids with Nx × Ny × Nz = 768 × 769 × 768,
576 × 577 × 576, 384 × 385 × 384 and 192 × 193 × 192 grid points. After examining the
convergence of the maximal vorticity magnitude for vortex evolution at t � 1.5 and Reτ for
flow transition at t � 70, we chose the grid of 384 × 385 × 384 for the simulation at Re =
3333. We conducted an additional DNS at Re = 8090 on the grid of 768 × 769 × 768 to
study the effect of Re.
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Case η Γ Γ ∗ Γ ∗/Γ ∗
η=0 Et Transition

1 A cos(s/R) 0.047 0.0394 17.1 % 7.829 × 10−5 Yes
2 2A/π 0.047 0.0812 35.2 % 7.294 × 10−5 No
3 2A/π 0.097 0.0812 35.2 % 2.879 × 10−4 Yes
4 0 0.278 0.2310 100 % 3.879 × 10−4 Yes

Table 1. Parameters η and Γ of the vortex ring in four representative cases of the vortex-ring-induced
transition of channel flow. The threshold vorticity flux Γ ∗ for triggering transition, Γ ∗ normalised by Γ ∗

η=0
(Γ ∗ in Case 4) and the volume-averaged disturbance energy Et are listed. Note that Cases 1, 3 and 4 have the
transition with Γ ≈ 1.2Γ ∗.

3. Transition induced by a vortex ring

3.1. Stages in transition process
In this section, we demonstrate that the initially embedded vortex ring can induce transition
in wall flows at moderate Re, and the critical magnitude of the initial disturbance is highly
dependent on the initial twist of the vortex ring. For the vortex rings with three different
η, we first examine the critical vorticity flux Γ = Γ ∗ to induce transition. Here, Γ ∗ is
determined by assessing whether the flow will undergo a transition through a series of
simulations conducted for various values of Γ .

As listed in table 1, we set up four DNS cases for the vortex-ring-induced transition
to illustrate the influence of the internal structure inside the vortex ring. In Case 1, the
initial vortex ring with chirality-opposite helical structures mimics the hairpin head in the
natural transition, and it has the minimum Γ ∗. As shown in figure 2, the isosurface of λci
colour-coded by the helicity density h = u · ω shows positive and negative h in the two
halves of the vortex ring. In this case, we set Γ ≈ 1.2Γ ∗ to quickly trigger transition.

In Case 2, the vortex ring is the same except that the twist is uniform, and Γ ∗ is more
than twice of that in Case 1. Thus, Case 2 has no transition with Γ < Γ ∗. Note that Cases
1 and 2 have roughly the same disturbance energy

Et = 1
V

∫
V

1
2
((u − ul)

2 + v2 + w2) dV, (3.1)

where V denotes the volume of the channel. Therefore, the different twist distributions in
Cases 1 and 2 only have a minor effect on Et, but they have an effect on the transition
process. Case 3 is the same as Case 2 except Γ > Γ ∗, so it has transition. In Case 4, the
vortex ring with η = 0 and Γ > Γ ∗ also induces transition.

The evolution of Reτ , indicating the variation of the wall friction, in the four cases is
plotted in figure 3. It can be roughly divided into three stages. Before a characteristic time
t1 = 1, the major dynamics is only within the vortex ring, including the vortex bursting in
Case 1. From t1 to t2 = 10, the vortex ring breaks up, and Reτ grows mildly. From t2 to
t3 = 40, Reτ starts to surge and the transition occurs in the cases with Γ > Γ ∗, whereas
Reτ remains at the laminar value for Γ < Γ ∗. The flow evolution in the three stages is
elaborated on in the following.

3.1.1. Stage 1: dynamics inside the vortex ring
Figure 4 shows the main dynamics inside the vortex ring around t1. In Case 1, an initially
helical vortex ring with differential twist has the azimuthal vorticity ωθ , which generates
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Reτ

Case 1: Γ = 0.047, η = cos(ζ)

Case 2: Γ = 0.047, η = 2A/π

Case 3: Γ = 0.097, η = 2A/π

Case 4: Γ = 0.278, η = 0

↓            ↓

↑

Figure 3. Temporal evolution of the wall-friction Reynolds number in various cases (listed in table 1).

h
8

−8

x z

yRe = 3333

Re = 8090

(b)(a) (c)

Figure 4. Evolution of the isosurface of λci during the vortex bursting in Case 1 with two Reynolds numbers.
The surface is colour-coded by the helicity density: (a) t = 0.3 and λci = 2.4; (b) t = 0.9 and λci = 2.4;
(c) t = 1.5 and λci = 2.1.

the axial velocity

us(s, ρ, θ) = 1
1 − κρ cos θ

Γ

2π
exp

(
− ρ2

2σ 2

)
η (3.2)

along the vortex-ring centreline (see Appendix B for a detailed derivation). The two twist
vortex waves with opposite chiralities collide at the symmetrical plane at s = πR/2. This
leads to vortex bursting (Shen et al. 2023): a part of the vortex tube is flattened on the
symmetrical plane, forming a disc-like structure with highly spiral vortex lines.

Using the vortex-ring model in Shen et al. (2023), the starting and ending times of the
vortex bursting in Case 1 are defined as

tbs = 2πR
Γ A

≈ 0.3 (3.3)
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and

tbe = 10π2R
3Γ A

≈ 1.5, (3.4)

respectively. Figure 4(a,c) shows the vortical structures at tbs and tbe.
Moreover, the vortices for Re = 3333 and 8090 are nearly identical in figure 4(a),

because the viscosity dependence is weak at early times, consistent with the model in (3.2).
In figure 4(c), the Re-effect becomes noticeable because the model in (3.2) breaks down
near the bursting site with strong viscous vortex reconnection. As discussed in Shen et al.
(2023), increasing Re is equivalent to increasing an effective η. A larger η in (3.2) suggests
a larger us, leading to stronger vortex bursting with generating larger disc-like structures.
By contrast, there is no bursting in Cases 2–4 for initial vortex rings with uniform or zero
twist.

3.1.2. Stage 2: breakup of the vortex ring
Figure 5(a–c) illustrate the breakup dynamics of the vortex ring from t1 to t2 in Cases 1–3,
respectively. At t = t1, the initially helical vortex ring splits into primary and secondary
rings due to the axial flow (Cheng et al. 2010). The primary vortex ring undergoes further
transition, and the secondary rings dissipate before t2. By contrast, the vortex with η = 0
in Case 4 retains its ring shape at t = t1 in figure 5(d).

From t1 to t2, the vortex rings with and without the initial twist evolve very differently.
For η > 0, the vortex rings experience dramatic deformation in figure 5(a–c). The
uniformly twisted vortex ring folds and elongates under the mean shear in figure 5(b,c).
This process from t = 1 to t = 5 in Case 2 is further illustrated in the side view in figure 6.
The vortex ring is persistently stretched along the streamwise direction until t = 9, and
eventually breaks up into several pairs of streamwise vortices. Although the evolutions of
the vortices are similar in Cases 2 and 3, the larger Γ in Case 3 induces a transition whereas
the flow relaminarises in Case 2. The ring with differential twist has a similar evolution in
figure 5(a). Since its internal structure is already unstable at t = t1, the breakup process in
Case 1 is faster than in Cases 2 and 3, which agrees with the different growth rates of Reτ

in figure 3.
The vortex ring with η = 0 does not break up in stage 2. Its aspect ratio oscillates in

figure 5(d) due to the elliptic instability (Kerswell 2002) with the ring deformation in the
x-direction and the curvature instability (Fukumoto & Hattori 2005; Blanco-Rodríguez &
Dizès 2017) with the variation of the ring curvature.

3.1.3. Stage 3: late transition
Cases 1–3 at t3 in stage 3 of late transition are very similar. In figure 7 for Case 1, the
inverse hairpin-like structure in figure 7(a) evolves into streamwise vortices in figure 7(b),
which characterise a quasi-stable TS wave (Boiko et al. 1994). Then the flow evolves
as in the natural transition (Zaki 2013; Zhao et al. 2016), i.e. from streaks to the Λ-
or hairpin-like structure in figure 7(c), and finally it breaks down into turbulence in
figure 7(d). Moreover, the transition follows an almost identical route at a larger Re =
8090, whereas the rise of Reτ occurs much earlier than that at Re = 3333 (not shown).

In particular, the evolution and generation of the hairpin vortices are depicted in figure 8.
The signature of hairpin vortices aligns with that in Adrian, Meinhart & Tomkins (2000)
in terms of the streamwise length, wall-normal location and angle between hairpin head
and neck. From t = 31 to t = 34, the primary hairpin vortex elongates streamwise, and the
secondary hairpin vortex forms at the ridge of the primary one (Zhou et al. 1999). Then,
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t = 1 t = 5 t = 9

h
–4 –2 0 2 4

x z

y

(b)

(a)

(c)

(d )

Figure 5. Evolution of the isosurface of λci in the second stage of transition in (a) Case 1 with η = A cos ξ

and Γ = 0.047, (b) Case 2 with η = 2A/π and Γ = 0.047, (c) Case 3 with η = 2A/π and Γ = 0.097 and
(d) Case 4 with η = 0 and Γ = 0.278. The isocontour values in each row are λci = 2.1 at t = 1 and λci = 1 at
t = 5 and 9. The isosurface is colour-coded by the helicity density. The blue arrows in (a) denote the direction
of the mean flow. Black lines denote vortex lines.
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x

y

h
–4 –2 0 2 4

(a) (b) (c) (d) (e)

Figure 6. Evolution of the isosurface of λci from t = 1 to t = 5 in Case 2 with η = 2A/π and Γ = 0.047
(side view). The isosurface is colour-coded by the helicity density.

(a) (b)

(c) (d )

x
z

y

−0.5

1.0

y

Figure 7. Evolution of the isosurface of λci after the dissipation of the vortex ring in Case 1. The surface is
colour-coded by the wall distance. Note that the channel is flipped in the y-direction for clearly showing the
vortical structure: (a) t = 10 and λci = 1.3; (b) t = 20 and λci = 0.5; (c) t = 30 and λci = 1; (d) t = 40 and
λci = 1.3.

more hairpin-like structures emerge at the ridges of the primary and secondary hairpins at
t = 35, forming a coherent packet of hairpins. These observations are consistent with the
auto-generation mechanism (Zhou et al. 1999; Adrian 2007; Kim et al. 2008).

Note that the route of late transition induced by the vortex ring with large vorticity flux
and zero-twist in Case 4 is distinguished from the others induced by the twisted vortex ring.
The initial vortex ring gradually dissipates and disappears in Case 4, without forming any
other vortical structures at t = 10 in figure 9(a). It evolves into streamwise vortices near
the outer layer at very late times in figure 9(b,c) and finally breaks down into turbulence
in figure 9(d).
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h
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x
z

–4 –2 0 2 4

(a) (b) (c) t = 35t = 34t = 31

Figure 8. Evolution of the isosurface of λci = 1 during the generation and evolution of hairpin vortices in
Case 1. The isosurface is colour-coded by the helicity density. Note that the channel is flipped in the y-direction
for clearly showing the vortical structure.

(a) (b)

(c) (d )

x
z

y

−0.5

1.0

y

Figure 9. Evolution of the isosurface of λci in Case 4: (a) t = 10 and λci = 1; (b) t = 20 and λci = 0.7;
(c) t = 30 and λci = 0.5; (d) t = 50 and λci = 2. The surface is colour-coded by the wall distance.

3.2. Transition induced by vortex bursting
The internal dynamics of the vortex ring around t1 = 1 is much faster than the disturbance
growth in the boundary layer around t3 = 40, so these two processes can be decoupled.
The initial amplitude of the disturbance is determined by the dynamics of the vortex ring
before t1, whereas the subsequent linear amplification mechanism is mainly influenced by
the background shear.

According to the rapid distortion theory (Sreenivasan & Narasimha 1978; Savill 1987;
Nazarenko, Kevlahan & Dubrulle 1999; Deissler 2004), the amplitude of the disturbance
is low in the early stage of transition, so the disturbance growth can be treated as inviscid.
Moffatt (1967) applied the rapid distortion theory to the viscous sublayer (Saric et al.
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2002) at y+ < 5, where
y+ = (1 − y)Reτ (3.5)

is the normalised distance from the upper wall at y = 1, and the wall-normal length scale
is much smaller than the streamwise one.

We consider the near-wall velocity uB = (uB, vB, wB) with

uB = u(x, y+, z), vB = v(x, y+, z), wB = w(x, y+, z), y+ < 5. (3.6a–c)

Moffatt (1967) showed that when the disturbance amplitude is small, the streamwise
disturbance mode ûB grows linearly with the wall-normal disturbance mode v̂B as

ûB(kx, kz) = ûB0(kx, kz) − S v̂B(kx, kz)t, (3.7)

where ·̂ denotes the Fourier transform of a quantity in the x–z plane with wavenumbers
kx and kz, subscript 0 denotes the initial value and S = −2U0y is the shear rate of the
Poiseuille flow. From (3.7), v̂B is determined by the state around t = t1, S is constant for a
given y and ûB depends on v̂B, e.g. ûB increases with t for positive −S v̂B.

We examine the evolution of v̂B(kxz, y+) during the period of vortex bursting from tbs to

tbe, with kxz =
√

k2
x + k2

z . Based on the Parseval identity, we use

v2
B( y+) = 1

Axz

∫∫
v2

B(x, y+, z) dx dz =
∑
kxz

v̂2
B(kxz, y+) (3.8)

to quantify the averaged amplitude of v̂B, where Axz denotes the area of the x–z plane.
Figure 10 plots the evolution of v2

B( y+ = 1) in Cases 1–3 in the very early stage when (3.7)

is valid. Note that the evolution of v2
B( y+ = 5) is qualitatively the same (not shown). Case

2 has the lowest amplitude, and it has no transition. Cases 1 and 3 have larger amplitudes,
suggesting the higher disturbance growth rate from (3.7), and both cases have transition.
At early times, v2

B( y+ = 1) decays in Cases 2 and 3 due to the viscous effect, and its decay

rate depends on the initial Γ . By contrast, v2
B( y+ = 1) grows by 15 % from tbs to tbe in

Case 1. The growth of vB during the vortex bursting will be further discussed in § 4.
The transition is induced by the growth of vB. According to (3.7), the streamwise

disturbance of uB grows with the vortex-ring induced vB (Landahl 1975, 1980). The streaks
are lifted by vB in figure 7(a) and then elongated by the mean shear in figure 7(b), resulting
in streamwise streaks downstream (Brandt & Henningson 2002). A hairpin vortex (Zhou
et al. 1999) emerges from the streaks in figure 7(c), and then it evolves into a hairpin packet
by the auto-generation mechanism (Adrian et al. 2000; Adrian 2007; Kim et al. 2008). The
vortices break down and form a turbulent spot in figure 7(d), which eventually leads to a
fully developed turbulent state (Wu 2023).

In summary, the threshold vorticity flux Γ ∗ is reduced from 0.231 in Case 4 to 0.0394
in Case 1 (see table 1) due to the induction of vB in the vortex-ring evolution. In particular,
the vortex bursting in Case 1 produces strong vB near the boundary, enhancing the growth
of uB and then triggering a transition.

4. Induction of the wall-normal velocity in vortex bursting

4.1. Introduction of the di-vorticity
Next we elucidate the induction mechanism of vB in the near-wall region by the large
di-vorticity generated in the outer layer during the vortex bursting. The di-vorticity � =
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0.3 0.6 0.9

t
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0
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5
(×10–5)

Case 1: Γ = 0.047, η = cos(ζ)

Case 2: Γ = 0.047, η = 2A/π

Case 3: Γ = 0.097, η = 2A/π

v
2 B 

(y
+
 =

 1
)

Figure 10. Evolution of v2
B( y+ = 1), as metric for the averaged amplitude of v̂B(kxz, y+ = 1), from tbs to tbe

during the vortex bursting in Cases 1–3.

x z
y

(b)(a)

Figure 11. Reconstruction of the flow field using a small potion of the di-vorticity in Case 1 at t = 0.9.
(a) Isosurface of λci = 2 (blue) in the DNS, and isosurface of |�| = 1000 (red). (b) Isosurface of λci = 2
in the flow field reconstructed from the di-vorticity in the region enclosed by the isosurface of |�| = 1000 (red
surface in (a)). Note that this subdomain occupies only 0.2 % of V .

∇ × ω measures the local rotational intensity of the vorticity, and large � may correspond
to the local helical geometry of vortex lines. The identity ∇2u = ∇(∇ · u) − � suggests
the Poisson equation

∇2u = −� (4.1)

for the incompressible flow.
The di-vorticity has a very intermittent distribution in the transition. In Case 1, the

maximum |�| can be hundreds of times the volume-averaged |�| during the vortex bursting.
For example, at t = 0.9 in Case 1, the region with |�| � 1000 enclosed by the isosurface of
|�| = 1000 occupies only 0.2 % of the volume of the entire channel in figure 11(a), but � in
this negligibly small region can reconstruct the vortical structure very close to the original
in figure 11(b). Therefore, the highly concentrated � near the site of vortex bursting can
drive the near-wall flow dynamics in a finite time period after vortex bursting.
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With higher-order velocity derivatives, � has conservation constraints under given
boundary conditions. The solid-wall boundary conditions are

u = 0, u ∈ ∂V,

∂v

∂y
= 0, v ∈ ∂V,

⎫⎬
⎭ (4.2)

which imposes the constraint ∫
V

yn�ydV = 0, n ∈ N (4.3)

on the di-vorticity. This constraint implies that the wall can have a response near the
boundary to counter � generated in a vortex-dynamics event remote from the wall. For
n = 0, (4.3) suggests that the flow evolution only redistributes �y rather than changing the
volume integration of �y. The implication of (4.3) will be further discussed in § 4.3.

4.2. Generation of the di-vorticity during vortex bursting
We demonstrate that large � can be generated during the bursting of a vortex ring. The
governing equation of � is

D�

Dt
= ∇ × ∇ × a + ω · ∇ω + L, (4.4)

where a = −∇p + ∇2u/Re denotes the acceleration of a fluid particle, and

L ≡ (∇ω · ∇u − ∇u · ∇ω) : ε (4.5)

has a form similar to the Lamb vector ω × u, with the Levi–Civita symbol ε. On the
right-hand side, the term ∇ × ∇ × a for the viscous effect can be neglected for very large
Re, and then ω · ∇ω and L dominate the evolution of �.

Given the initial vortex ring in (2.5), the evolution of � is estimated in curved
cylindrical coordinates (s, ρ, θ). The vorticity-stretching and Lamb-like terms become
(see Appendix B for a detailed derivation)

ω · ∇ω =
(

0, 0, ωs
1
hs

∂ωθ

∂s
+ ωθ

1
ρ

∂ωθ

∂θ

)
(4.6)

and

L =
(

1
ρ

∂ωθ

∂ρ

∂uθ

∂θ
− 1

hs

∂us

∂ρ

∂ωθ

∂s
− 1

ρ

∂uθ

∂ρ

∂ωθ

∂θ
,

1
ρ2

∂ωθ

∂θ

∂us

∂θ
− 1

hsρ

∂ωθ

∂s
∂uθ

∂θ
+ 1

h2
s

∂us

∂s
∂ωθ

∂s
,

− 1
hs

∂ωs

∂ρ

∂us

∂s
− 1

ρ

∂ωθ

∂ρ

∂us

∂θ

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

respectively, where hs = 1 − κρ cos θ is the Lamé coefficient in the s-direction.
We analyse the variation of � using (4.4) before t1 when the vortex bursting occurs (see

figure 4). In the model of η for a bursting vortex ring (Shen et al. 2023), the initial twist
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distribution η(s, t = 0) = A cos(s/R) evolves into

η(s, ρ, t) = A cos
(

s − B(ρ)η(s, ρ, t)t
R

)
(4.8)

with A = 120 and B = Γ exp(−ρ2/2σ 2)/(2πhs), and (4.8) can be solved numerically
using the explicit Newton method. Substituting (2.5) and (B2) into (4.8), we find that

∂ωθ

∂s
∼ ∂η

∂s
and

∂us

∂s
∼ ∂η

∂s
(4.9a,b)

are dominant terms, where ∼ denotes an estimate of the order of magnitude. Other
derivatives of u and ω only depend on the initial configuration and remain constant during
vortex bursting. With ∂η/∂s � ∂η/∂θ and ∂η/∂s � ∂η/∂ρ, we rank the magnitude
of terms in (4.6) and (4.7) by ∂η/∂s. By only keeping the dominant terms, (4.4) is
approximated by

D�

Dt
≈ 1

hs

(
−∂us

∂ρ

∂ωθ

∂s
, − 1

ρ

∂ωθ

∂s
∂uθ

∂θ
+ 1

hs

∂us

∂s
∂ωθ

∂s
, ωs

∂ωθ

∂s
− ∂ωs

∂ρ

∂us

∂s

)
. (4.10)

Here, the most influential term

I = 1
h2

s

∂us

∂s
∂ωθ

∂s
∼
(

∂η

∂s

)2

(4.11)

contains the product of two dominant terms. Finally, substituting (4.8) into (4.11), we
estimate the order of (4.4) in terms of η as

D�

Dt
≈ Ieρ ∼

(
∂η

∂s

)2

eρ. (4.12)

In figure 12, the distribution of (∂η/∂s)2 along the s-direction shows that large |�|
is generated during vortex bursting and the di-vorticity is concentrated near the vortex
bursting site at s = πR/2. The extremely twisted vortex lines, with the surge of ∂η/∂s in
(4.12), manifest as the disc structure with large |�| at s = πR/2 in figure 11(a).

4.3. Induction of vB

From (3.7), we investigate the effect of �y, the most important component in �, on inducing
vB in the early transition. The Poisson equation (4.1) implies that although the large �
generated from vortex bursting is remote from the wall, it can have a strong induction
effect in the entire domain, especially in the near-wall region.

To analyse vB, we focus on (4.1) in the wall-normal direction

∇2v = −�y, v ∈ V,

v = 0 and
∂v

∂y
= 0, v ∈ ∂V .

⎫⎪⎬
⎪⎭ (4.13)

This Poisson equation has a redundant boundary condition. We first consider only the
Dirichlet boundary condition as

∇2v = −�y, v ∈ V,

v = 0, v ∈ ∂V,

}
(4.14)

and then treat the Neumann boundary condition as a boundary response to the vortices
remote from the wall.
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η
/
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Figure 12. Evolution of (∂η/∂s)2 in terms of the axial coordinate s along the centreline of the vortex ring
during vortex bursting in Case 1.

We express the solution (see details in Appendix C)

v(x) =
∫

R3
�y(x̃)Φ(x − x̃) dx̃ (4.15)

to (4.14) in terms of the fundamental solution

Φ(x) = 1
4π|x| , (4.16)

where x̃ and �y(x̃) are extended quantities in R
3 (see their definitions in Appendix C). As

sketched in figure 13, (4.15) extends the integration region from the channel domain V to
the entire 3-D space R

3. As discussed in § 3, the vortex bursting triggers transition near
the upper wall by inducing finite vB. Without loss of generality, we consider the induction
effect of �y near the upper wall at xB = (x, y → 1, z) based on (4.15).

The solution (4.15) to the Poisson equation can be simplified. The fundamental solution
(4.16) decays at the rate of |xB − x̃|−1, so the induction effect can be neglected remote from
the upper boundary except for the vortex-bursting disc Vbr (marked in figure 13) where �y
is concentrated. We approximate that only domains V and V1 in figure 13 contribute to the
induction near xB as

vB(x) ≈
∫
V∪V1

�y(x̃)Φ(x − x̃) dx̃, x → xB and x̃ ∈ V ∪ V1, (4.17)

where V1 is the image domain adjacent to the upper boundary of V .
Thus, the induction (4.15) from �y can be divided into two parts as

vB ≈ vB
B + vbr

B (4.18)

with

vbr
B =

∫
Vbr∪V1,br

�y(x̃)Φ(x − x̃) dx̃ = 2
∫
Vbr

�y(x̃)Φ(x − x̃) dx̃ (4.19)
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V

V1

VB

V1,B

Vbr

V1,br

xbr

x1,br

V

V−1

V−2

V1

V2

Upper boundary

Lower boundary

zx

y

Figure 13. Schematic for extending the integration region of the Green function from the channel domain to
the entire 3-D space. The extended domain consists of the original channel domain V and its mirror domains
Vi. The induction effect of �y in V ∪ V1 is shown on the left. The region with concentrated �y is coloured in
green, including Vbr near the site of vortex bursting and VB near the upper boundary. The red and blue arrows
denote twist vortex waves with opposite chiralities within the vortex ring in Case 1. The vortex bursts around
xbr ∈ Vbr and generates large � in the direction eρ .

contributed from the bursting site and

vB
B =

∫
VB∪V1,B

�y(x̃)Φ(x − x̃) dx̃ = 2
∫
VB

�y(x̃)Φ(x − x̃) dx̃, (4.20)

from the near-wall region VB. The two regions are coloured in green in figure 13.
First, we consider the induction effect in region Vbr with the centre of vortex bursting

at xbr = (xbr, ybr, zbr). The multipole expansion (John 1998) is applied to (4.17), which
is detailed in Appendix D. The approximation (x̃ − xbr)/(xB − xbr) → 0 holds in Vbr,
satisfying the multipole assumption.

With the multipole expansion, the induction of

vbr
B = 2

∫
Vbr

�y(x̃)Φ(x, x̃) dx̃ = 1
2π

(
qy

|x − xbr| + (x − xbr) · py

|x − xbr|3 + · · ·
)

(4.21)

from �y in (4.19) is decomposed into the monopole

qy =
∫
Vbr

�y(x̃) dx̃, (4.22)

the dipole

py =
∫
Vbr

(x̃ − xbr)�y(x̃) dx̃ (4.23)

and high-order terms. Since qy is concentrated in Vbr and conserved in (4.3),

qy ≈
∫
V

�y(x̃) dx̃ = 0 (4.24)
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vanishes in (4.21). Then, (4.21) is simplified into

vbr
B ( y, d) = 1

2π

(x − xbr) · py

|x − xbr|3 = 1
2π

( y − ybr)py,y

(d2 + ( y − ybr)2)3/2 (4.25)

with the only non-vanishing component py = (0, py,y, 0) and the distance d = ((x −
xbr)

2 + (z − zbr)
2)1/2 from the vortex-bursting site.

In the near-wall region VB, we re-express (4.25) in terms of y+ as

vbr
B ( y+, d) = 1

2π

(1 − y+/Reτ − ybr)py,y

(d2 + (1 − y+/Reτ − ybr)2)3/2 . (4.26)

In the inner layer with y+ � Reτ , (4.26) can be expanded around y+ = 0 and linearised
into

vbr
B ( y+, d) = 1

2πReτ

ybrpy,y

( y2
br + d2)3/2

(
3ybr

d2 + y2
br

− 1
ybr

)
y+. (4.27)

Thus, the value of vbr
B in (4.27) grows when the vortex bursts more closely to the upper

wall, and it grows with y+ linearly in the inner layer. The location (xbr, ybr, zbr) in (4.27) is
determined by the initial vortex-ring disturbance, and the dipole strength py,y is determined
by the vortex evolution, which is discussed in § 4.2. Our DNS results show that larger Reτ

leads to smaller vB (not shown), consistent with (4.27), and larger py,y, as implied by the
larger disc in figure 4(c).

In addition to vbr
B , the wall-induced velocity vB

B in (4.18) also contributes to vB. In the
evaluation of vB

B in (4.20), the DNS result exhibits a very thin layer of �y in VB as a
response to the Neumann boundary condition (4.2). The averaged vB

B is around a quarter
of the averaged vbr

B .
The contours of vB from the DNS and vbr

B from the model (4.27) are compared in
figure 14. The approximation of vbr

B using (4.27) agrees with the DNS result of vB, except
that the averaged amplitude of vbr

B is 30 % smaller than vB in the DNS. This discrepancy
is primarily attributed to neglecting vB

B in the model, with a minor contribution from
neglecting the high-order terms in the multipole decomposition in (4.21). Therefore, (4.27)
captures the dominant induction effect near the wall from the vortex evolution remote from
the wall.

5. Conclusions

To study the influence of vortices remote from the boundary on the near-wall flow
dynamics in wall-bounded flows, we have added a vortex ring with or without twist into
the outer layer in a channel flow at Re = 3333. By elucidating the near-wall response to
the vortex evolution, the vortex dynamics can shed light on the transition process of wall
flows.

We have found that the initial twist of the vortex ring has an effect on the transition.
By varying the vorticity flux and the local twist rate of the closed vortex tube, the
minimum vorticity flux Γ ∗ for triggering transition is reduced by over 80 % from the
initial disturbance of a vortex ring without twist (η = 0) to that with the differential twist
(η = A cos(s/R)). The flow evolution with the latter disturbance is featured by the vortex
bursting in the early transitional stage.

The vortex-ring-induced transition in the channel flow is divided into three stages.
Before t1 = 1, the dynamics inside the vortex ring dominates. The vortex ring with
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x

z

vB

0
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Figure 14. Contour of (a) vB in the DNS and (b) vbr
B from the model in (4.27) in Case 1 in the x–z plane at

y+ = 1 and at t = 1 in Case 1. The asterisk marks the position of vortex bursting projected on the x–z plane.

differential twist in Case 1 undergoes the vortex bursting, whereas the vortex ring without
twist in Case 4 only slightly deforms due to elliptic and curvature instabilities. From t1
to t2 = 10, the twisted vortex ring breaks up rapidly and evolves into the reversed hairpin
vortex towards the inner layer; the untwisted vortex ring stays in the outer layer, preserves
its shape and gradually dissipates. From t2 to t3 = 40, streamwise vortices form, and then
break down into turbulence as in the classical route of transition.

We have characterised the influence of vortex evolution on transition using the near-wall,
wall-normal velocity vB with the rapid distortion theory. In the first stage around t = t1,
vB grows by 15 % during the vortex-ring bursting in Case 1, whereas it remains constant or
slightly decays in the absence of the vortex bursting. The enhanced vB induces the higher
growth rate of streamwise disturbances, leading to the streak formation followed by the
transition.

We have introduced the di-vorticity � to elucidate the interaction between inner and
outer layers, and estimated the effect of large � generated in vortex bursting on inducing vB.
During the vortex bursting, � is concentrated within a compact, disc-like region near the
vortex bursting site, and the large � occupying a negligibility small volume can reconstruct
the entire vortex structure with a satisfactory accuracy.

From the evolution equation of � in the curved cylindrical coordinates, we have
modelled the growing radial component of � in terms of the local twist in (4.12), and
demonstrate that the significant growth of � is due to the generation of highly twisted
vortex lines during vortex bursting. Then, we have derived that the generation of � in
the outer layer enhances vB in the inner layer via the Poisson equation (4.13) with the
image method and the multipole expansion. The estimation of vB from our model in (4.27)
qualitatively agrees with the DNS result.

In the future work, various vortex models which are more complex than the vortex
ring can be applied to wall flows, and their induction effects on the near-wall dynamics
can be studied via the di-vorticity. These studies can extend the vortex dynamics to the
boundary-layer transition and flow control.

Acknowledgements. The authors thank W. Shen for helpful comments. Numerical simulations were carried
out on the TH-2A supercomputer in Guangzhou, China.
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Appendix A. Boundary correction on the initial vorticity

We impose the given ω in (2.5) for a vortex ring into the background wall flow to generate
the initial DNS field. However, the given vorticity can be incompatible with the boundary
condition (4.2), so a boundary correction is applied.

The incompatibility is shown by the Biot–Savart law. The generalised Biot–Savart
equation (Serrin 1959; Wu et al. 2007)

u(x) = 1
4π

(∫
V

ω × (x − x′)
|x − x′|3 dx′ + P

)
, x′ ∈ V (A1)

has rotational and irrotational parts, where the irrotational part P(x) depends on the
boundary velocity. Applying the solid-wall boundary condition (4.2) to (A1), only the
rotational part

∫
V

ω × (x − x′)
|x − x′|3 dx′ = 0, x′ ∈ V (A2)

remains at the boundary. Since the vorticity in (2.5) does not satisfy (A2), so a correction
on (2.5) is necessary before the DNS.

In this appendix, we denote the vorticities before and after the boundary correction as
ω and ω′, respectively. To meet the Dirichlet boundary condition in (4.2), we consider the
di-vorticity � = (�x, �y, �z) instead of ω. Note that � can uniquely determine ω with (4.2)
via the Poisson equation (4.1). According to the well-posedness of the Poisson equation,
the boundary condition of u = 0 is sufficient to solve (4.1), and an extra Neumann
boundary condition introduces the correction on �.

The boundary correction is based on the numerical method of Kim et al. (1987). It
begins from the Poisson equation

∇2�′
y = �y, x ∈ V,

�′
y = g, x ∈ ∂V

}
(A3)

for the y-component of �, where g denotes the boundary correction function to be
determined, and �′ = ∇ × ω′ = (�′

x, �
′
y, �

′
z) the corrected di-vorticity. The correction in
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Transition induced by vortex bursting

(A3) is equivalent to the bi-harmonic equation

∇4v = 0, x ∈ V,

∇2v = −�′
y, x ∈ V,

v = 0, x ∈ ∂V,

∂v

∂y
= 0, x ∈ ∂V,

∇2v = −g, x ∈ ∂V .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

Subsequently, other two velocity components are solved from the incompressible condition

∂u
∂x

+ ∂w
∂z

= −∂v

∂y
, (A5)

and then ω′ is calculated from u.
To determine g, we first decompose

v =
(1/2)Nx∑

m=1−(1/2)Nx

(1/2)Nz∑
n=1−(1/2)Nz

v̂(m, n, y) exp(iαmx + iβnz),

�y =
(1/2)Nx∑

m=1−(1/2)Nx

(1/2)Nz∑
n=1−(1/2)Nz

�̂y(m, n, y) exp(iαmx + iβnz),

�′
y =

(1/2)Nx∑
m=1−(1/2)Nx

(1/2)Nz∑
n=1−(1/2)Nz

�̂′
y(m, n, y) exp(iαmx + iβnz),

g =
(1/2)Nx∑

m=1−(1/2)Nx

(1/2)Nz∑
n=1−(1/2)Nz

ĝ(m, n, ±1) exp(iαmx + iβnz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A6)

into Fourier modes in x- and z-directions with (m, n) ∈ Z
2 and Nx = Nz = 256. Then,

(A3) is presented in the spectral form as the one-dimensional Helmholtz equations

[
−(α2

m + β2
n ) + d2

dy2

]
�̂′

y(m, n, y) = �̂y(m, n, y),

�̂′
y(m, n, ±1) = g(m, n, ±1),[

−(α2
m + β2

n ) + d2

dy2

]
v̂(m, n, y) = �̂′

y(m, n, y),

v̂(m, n, ±1) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A7)

with the Dirichlet boundary conditions.
According to Kim et al. (1987), solutions to (A7) can be decomposed into the

particular solution (with the subscript ‘p’) and the Neumann correction term (with the
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subscript ‘N’) as

�̂y = �p + �N,

v̂ = vp + vN,

}
(A8)

where �p denotes the solution to the inhomogeneous equation with the homogeneous
boundary condition as[

−(α2
m + β2

n ) + d2

dy2

]
�p(m, n, y) = �̂y(m, n, y),

�p(m, n, ±1) = 0,[
−(α2

m + β2
n ) + d2

dy2

]
vp(m, n, y) = �p(m, n, y),

vp(m, n, ±1) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)

and �N denotes solution to the homogeneous equation with the inhomogeneous boundary
condition as [

−(α2
m + β2

n ) + d2

dy2

]
�N(m, n, y) = 0,

�N(m, n, ±1) = ĝ(m, n, ±1),[
−(α2

m + β2
n ) + d2

dy2

]
vN(m, n, y) = �N(m, n, y),

vN(m, n, ±1) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A10)

For the bi-harmonic equations with the Dirichlet boundary conditions, (A9) can be
solved numerically (Omrane, Ghedamsi & Khenissy 2016), and (A10) has the analytic
solution

�N = csch(2λ)(g(1) sinh(λ( y + 1)) + g(−1) sinh(λ(1 − y))),

vN = csch2(2λ)
4λ

(g(1)( y − 1) sinh(λ( y + 3)) + g(1)( y + 3) sinh(λ− λy)
+g(−1)( y + 1) sinh(λ( y − 3)) − g(−1)( y − 3) sinh(λ( y + 1)),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A11)

with shorthands λ2 = α2
m + β2

n and g(±1) = ĝ(m, n, ±1). Given v, the Neumann
boundary condition of (A10)

dvN( y = 1)

dy
= csch2(2λ)

4λ
(g(1)(sinh(4λ) − 4λ) − 2g(−1) sinh(2λ)

+ 4g(−1)λ cosh(2λ)),

dvN( y = −1)

dy
= −csch2(2λ)

4λ
(−2g(1) sinh(2λ) + 4g(1)λ cosh(2λ)

+ g(−1)(sinh(4λ) − 4λ))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A12)

is expressed in terms of g(±1), so ĝ(m, n, ±1) can be solved from dvN/dy(±1)

analytically.
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ωy


ωy

z

4

–4

y

0.125

0.25

Figure 15. Contour of ωy and contour lines of �ωy in the y–z plane at x = Lx/2 in Case 1 at t = 0.

From the Neumann boundary condition in (A4) and decomposition in (A8), the relation
between dvp/dy(±1) and g(±1) at the boundary is

dv(±1)

dy
= dvN(±1)

dy
+ dvp(±1)

dy
= 0. (A13)

With vp solved in (A9), we obtain the boundary condition of vN from (A13), and further g
from (A12). With g, (A7) is then solved to obtain vN . Finally, v̂ is obtained from (A8), and
then the corrected velocity for the DNS initial condition is obtained from (A6) and (A5).

We remark that the boundary correction has a negligible modification on the initial
vorticity ω in (2.5). For the most important vorticity component ωy, we plot the distribution
of the deviation �ωy = ω′

y − ωy and ω′
y in the y–z plane at x = Lx/2 in figure 15. The

largest deviation 0.329 is 4.75 % of the largest ωy. The volume average of deviation |ω′ −
ω|/|ω| is less than 0.1 %.

Appendix B. Di-vorticity generation inside the vortex ring

We analyse the axial velocity us and generation of the di-vorticity inside the vortex
ring in the early stage. As sketched in figure 1, Xiong & Yang (2019) established a
curved cylindrical frame (es, eρ, eθ ) along a given curve C for the vortex centreline, with
well-defined derivatives under the Frenet frame.

We focus on us inside the vortex ring. Under the axisymmetry of ω, only the azimuthal
component ωθ induces us. In (s, ρ, θ), the matrix form of ω is

ωθ = 1
ρ(1 − κρ cos θ)

⎡
⎢⎢⎣

(1 − κρ cos θ)es eρ ρeθ

∂

∂s
∂

∂ρ

∂

∂θ

(1 − κρ cos θ)us 0 0

⎤
⎥⎥⎦ · eθ . (B1)

Solving (B1) yields

us = Γ η

2π

1
1 − κρ cos θ

exp
(

− ρ2

2σ 2

)
. (B2)

The evolution equation (4.4) of � is derived by taking curl of the vorticity equation
Dω

Dt
= ∇ × a + ω · ∇u (B3)
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and using vector identities. Then, the generation of � during vortex bursting is analysed.
We rewrite velocity and vorticity gradient tensors in (4.5) in (es, eρ, eθ ) as

∇u =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1 − κρ cos θ

∂us

∂s
0 0

∂us

∂ρ
0

∂uθ

∂ρ

1
ρ

∂us

∂θ
0

1
ρ

∂uθ

∂θ

⎤
⎥⎥⎥⎥⎥⎥⎦

(B4)

and

∇ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
1

1 − κρ cos θ

∂ωθ

∂s
∂ωs

∂ρ
0

∂ωθ

∂ρ

0 0
1
ρ

∂ωθ

∂θ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B5)

respectively, where ∂uθ /∂s = 0, ∂ωs/∂s = 0 and ∂ωs/∂θ = 0 are applied under
symmetries. Substituting (B4) and (B5) into (4.5), we have (4.6) and (4.7).

Appendix C. Green function for channel flow

We derive (4.15) from the Poisson equation with the Dirichlet boundary condition (4.14)
by extending the channel domain V to the entire 3-D space R

3. This extension removes
the boundary effect and simplifies the mathematical representation.

First, we establish the Green function for a channel domain. Start from the general Green
function in V

G(x, x′) ≡ Φ(x − x′) − φ(x, x′), x, x′ ∈ V, x /= x′, (C1)

where Φ is the fundamental solution of the Poisson equation (4.16), and φ(x, x′) is a
corrector for the boundary condition as

∇′2φ(x, x′) = 0, x ∈ V, ∀x ∈ V,

φ(x, x′) = Φ(x′ − x), x ∈ ∂V, ∀x ∈ V,

}
(C2)

where ∇ and ∇′ are the derivatives with respect to x and x′, respectively. The Green
function (C2) can be rewritten in the equivalent differential form

∇2G(x, x′) = −δ(x − x′), x ∈ V,

G(x, x′) = 0, x ∈ ∂V .

}
(C3)

For a channel bounded by planes y = 1 and y = −1, we define the reflection point

x̃1 = (x, 2 − y, z) ∈ V1 (C4)

of x ∈ V with respect to y = 1, and the reflection point

x̃−1 = (x, −2 − y, z) ∈ V−1 (C5)
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V

V−2

V−1

V1

V2

z

y

x̃–2

x̃–1

x

x̃1

x̃2

y = −3

y = −1

y = 1

y = 3

Figure 16. Schematic for reflection points in image domains with respect to x in the channel.

with respect to y = −1. Reflecting points x̃1 and x̃−1 again with respect to planes y = ∓1
yields

x̃2 = (x, y + 4, z) ∈ V2 and x̃−2 = (x, y − 4, z) ∈ V−2, (C6a,b)

respectively. As sketched in figure 16, the subscript of x̃ denotes the image domain where
the refection point is located. In this way, we generate a set of reflection points

x̃k = (x, −y + 2k, z), for odd k,

x̃k = (x, y + 2k, z), for even k.

}
(C7)

Then, we define the Green function

G(x, x′) = 1
4π

∑
k∈Z

(−1)k

|x′ − x̃k| (C8)

for a channel from (C1) and (C7) with the image method (Roach 1982). It suggests that the
effect of the wall is equal to a set of image points. The Green function (C8) is well-defined,
because substituting (C7) into (C8) satisfies (C3).

The solution

v(x) = −
∫

∂V
v
∂G
∂y

dS +
∫
V

�y(x′)G(x, x′) dx′, x, x′ ∈ V (C9)

to (4.14) can be written in terms of the Green function G(x, x′) of (4.14). Applying the
solid-wall boundary condition to (C9) yields

v(x) =
∫
V

�y(x′)G(x, x′) dx′. (C10)
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Next, we extend v in V to R
3 by setting a map of � from V to R

3. Define the projection
between V and Vk

∀k ∈ Z, fk : V −→ Vk, x �→ x̃k. (C11a,b)

Then, define each reflected �(x̃) in Vk,

∀k ∈ Z, �k : Vk −→ R
3, x̃k �→ (−1)k�( f −1

k (x̃k)). (C12a,b)

Finally, unite all Vk into R
3 as

⋃
k∈Z

Vk = R
3, and define �(x̃) in R

3 by �k(x̃) in Vk as

∀k ∈ Z, �(x̃) = �k(x̃), x̃ ∈ Vk. (C13)

With the extended field �(x̃) in (C13), the solution (4.15) to the Poisson equation (4.13)
can be written in the integral form in R

3.

Appendix D. Multipole expansion

We provide the detailed derivation of (4.21). Consider a compact field �(x) in V ⊆ R
3

with �(x) → 0 and |x| > dc, where dc is a constant. The induced field

u(x) = 1
4π

∫
V

�(x̃)
1

|x − x̃|dx̃ (D1)

via the Poisson equation ∇2u = −�(x) is the superposition of the fundamental solution
(4.16). For |x̃ − x| � dc, u can be expanded into a Taylor series.

The canonical Taylor expansion for a vector function f (x̃) around x̃ = x0 is

f (x̃) = f (x0) + (x̃ − x0) · ∇f (x̃)|x0 + 1
2 ((x̃ − x0) · ∇)2f (x̃)|x0 + · · · . (D2)

Setting f (x̃) = 1/|x̃ − x| and x0 = xbr and ignoring the second- and higher-order terms,
(D2) becomes

1
|x̃ − x| = 1

|xbr − x| + (x̃ − xbr) ·
(

− xbr − x
|x − xbr|3

)
+ · · · . (D3)

Then, multiplying (D3) by �(x̃) and then integrating by x̃ in V , we have∫
V

�(x̃)
1

|x − x̃|dx̃ =
∫
V

�(x̃)

|x − xbr|dx̃ +
∫
V

�(x̃)(x̃ − xbr) ·
(

x − xbr

|x − xbr|3
)

dx̃ + · · · .

(D4)
Finally, taking the y-component of �, setting V = Vbr and multiplying (D4) by 1/4π yields
(4.21).
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