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Abstract Accurate characterization of high-power laser parameters, especially the near-

field and far-field distributions, is crucial for inertial confinement fusion (ICF) 

experiments. In this manuscript, we propose a method for computationally reconstructing 

the complex amplitude of high-power laser beams using modified coherent modulation 

imaging (MCMI). This method has the advantage of being able to simultaneously calculate 

both the near-field (intensity and wavefront/phase) and far-field (focal spot) distributions 

using the reconstructed complex amplitude. More importantly, the focal spot distributions 

at different focal planes can also be calculated. To verify the feasibility, the complex 

amplitude optical field of the high-power pulsed laser was measured after static aberrations 

___________________________________________________________________________ 
Correspondence to: Hua Tao, Shanghai Institute of Optics and Fine Mechanics, Qinghe Road 
390, Jiading District, Shanghai 201800, China. Email: taohua@siom.ac.cn; Jianqiang Zhu, 
Shanghai Institute of Optics and Fine Mechanics, Qinghe Road 390, Jiading District, Shanghai 
201800, China. Email: jqzhu@siom.ac.cn 

Downloaded from https://www.cambridge.org/core. 23 Feb 2025 at 04:18:57, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Accepted Manuscript 

 2

 

calibration. Experimental results also indicate that the near-field wavefront resolution of 

this method is higher than that of the Hartmann measurement. Additionally, the far-field 

focal spot exhibits a higher dynamic range (176 dB) than that of traditional direct imaging 

(62 dB).  

Key words: high-power pulsed lasers, complex amplitude, near-field intensity, wavefront, 

focal spot, modified coherent modulation imaging 

I. INTRODUCTION 

High-power lasers provide a significant approach for cutting-edge scientific research in topics 

such as laser inertial-confinement fusion, condensed matter physics [1-4]. The high-power laser 

parameters, including the near-field shape, fill factor, wavefront and the far-field energy 

concentration, are important for evaluating the performance of the entire laser facility [5]. As a 

vast and intricate optical system, a high-power laser system comprises several thousand optical 

elements, some of which have a diameter greater than 0.5 m [6]. Numerous factors, including 

irregular in material uniformity and surface profiles, as well as thermal distortion of the gain 

medium, significantly impair the quality of the transmitted beam, resulting in substantial 

degradation of the focal spot [7,8]. Therefore, accurate online measurement of pulsed laser 

parameters is of paramount importance for ensuring the optimal output performance of high-

power laser systems [9]. Under high-energy conditions, the irradiation focal spot can have a 

power density higher than 1020–1021W/cm2. Nevertheless, due to the detector's restricted 

dynamic range, accurately recording the focal spot distribution by positioning it directly on the 

exact focal plane is challenging [10,11]. An ingenious approach to diagnosing the focal spot is to 
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assess the complex amplitude (intensity and phase at the same position) of the laser beam on an 

out-of-focus plane, and subsequently numerically propagate it to the exact focal plane [12–14]. 

In theory, an optical system based on interferometry can realize accurate laser beam detection by 

measuring the complex amplitude; however, its complex structure, large space requirements, and 

need for high environmental stability restrict its installation in the limited space of a high-power 

laser facility [15]. The Shack–Hartmann sensor, another widely utilized wavefront detection 

device, has its resolution constrained by the number and size of its sub-apertures. Consequently, 

it is primarily capable of measuring low-frequency information on the laser beam. Moreover, its 

applicability is restricted by the fact that it can measure only nearly parallel laser beams [16]. An 

optimal device for real-time monitoring of high-power laser beam parameters should provide the 

accuracy of an interferometer while remaining simple and compact like a Shack–Hartmann 

sensor. Achieving all these requirements with a single device using traditional techniques is 

difficult, thereby rendering online diagnostics of high-power beams a formidable challenge.  

Coherent diffractive imaging (CDI) emerges as a promising solution for determining the 

parameters of high-power lasers. Its ability to extract the complex amplitude directly from the 

intensity of the diffraction pattern provides advantages such as high imaging resolution and a 

compact design [17]. In 1972, R. W. Gerchberg and W. O. Saxton et al. first introduced the CDI 

method, which was later developed by J. R. Fienup [18–20]. S. Matsuoka et al. utilized CDI to 

measure the wavefront of terawatt-class laser pulses. They reconstructed the complex amplitude 

by capturing the intensity of the laser pulses at different planes and using the standard 

Gerchberg-Saxton (G-S) algorithm [21]. By using the intensity recorded at multiple focal spot 

planes, S.-W. Bahk and colleagues were able to ascertain the phase of the multiterawatt laser 

beam by phase-retrieval [22]. At the University of Rochester, CDI was effectively utilized for 
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focal-spot diagnostics on OMEGA EP laser facility [23]. However, the adoption of a multiple-

plane recording scheme elevates the demand for precision and stability in the experimental setup. 

Moreover, these methods can become highly complex when measuring high-power pulsed laser 

beams. 

Professor Rodenburg's team at Sheffield University has devised an innovative CDI 

technique known as Coherent Modulation Imaging (CMI), which necessitates only a single-shot 

measurement for the reconstruction of complex amplitudes [24–28]. A random phase plate (RPP) 

is utilized to modify the wavefront of the incident laser, and a charge-coupled device (CCD) 

captures the diffraction patterns, resulting in a highly compact setup for CMI. In 2015, 

researchers conducted verification measurements on a He-Ne laser beam using CMI [29]. Then, 

it began to attempt using the new CMI technology to conduct practical measurements of near- 

and far-field parameters for high-power lasers [30]. But in actual experimental studies, it has 

been found that while CMI technology reconstruct the complex amplitude with a single-shot, 

there is some obvious speckle noise present in the calculated near-field distribution. 

Consequently, the actual measurement results pose challenges in accurately characterizing a 

high-power laser beam [31,32]. 

In this paper, to reduce speckle noise in the measurement, we proposed modified coherent 

modulation imaging (MCMI) method. Compared to the traditional CMI algorithm, it enhances 

the constraint conditions by recording a second image with a CCD camera. By calibrating the 

static aberrations of the laser system with an offline point laser source, we obtained the complex 

amplitude optical field of nanosecond high-power pulsed lasers. The focal spot distributions at 

different planes were calculated with the reconstructed complex amplitude. Experimental near-

field and far-field parameter measurement results were compared with those obtained using 
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traditional direct imaging and the Shack-Hartmann wavefront sensor under different energy 

conditions. 

II. MCMI ALGORITHM 

The schematic illustration of the MCMI method can be seen in Figure 1. The laser beam to be 

measured is focused by a converging lens L1, and subsequently split into two identical beams 

using a beam splitter prism. Each of these two beams has an optical axis that is perpendicular to 

the other. The transmitted beam illuminates a random phase plate (RPP), which is situated at a 

certain distance behind the focal plane of the lens L1. A CCD camera (CCD1) is used to record a 

formed diffraction spot. Another CCD camera (CCD2) is placed in the reflection path to 

simultaneously collect another intensity pattern. The purpose of adding CCD2 is to enhance the 

constraint conditions in the reconstruction algorithm, thereby improving the signal-to-noise ratio 

of the measurement.  

Given a random initial guess for the complex amplitude ( , )n x y  of the laser beam at the 

focal plane, where n represents the number of iterations. Computational reconstruction of the 

incident laser's optical field is performed iteratively through the following steps: 

 
Fig. 1. The schematic illustration of the MCMI method. 
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(1) Suppose that the constraint function for a circular aperture in the focal plane is defined 

as 1, 0

0,
n

n
n

a a
C

a a

  
   

, where a  is the radius, na  (when n=1) is a small constant which typically set 

at the micrometer scale. The optical field at the focal plane upon the nth iteration is denoted as 

, ( , ) ( , )e n n nx y x y C   . 

(2) Propagate , ( , )e n x y  to the RPP plane. The optical field is denoted as 

, , 2( , ) ( , ),m n e nR x y FDF x y z    , where FDF  defines the propagation calculated through the 

Fresnel diffraction formula as     2 2exp ( ) ( )
( , ), ( , ) exp[ ]
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  , here 

2k   , z  is propagate distance, and   is the wavelength of the laser. 

(3) Due to the modulation of RPP, the RPP plane's exit optical field can be denoted as 

, ,( , ) ( , ) ( , )m n m nx y R x y M x y   , where ( , )M x y represents the pre-characterized modulation function 

of the RPP. 

(4) Propagate , ( , )m n x y  to the CCD1 plane. The optical field can be calculated as 

, , 3( , ) ( , ),m n m nx y FDF x y z     . 

(5) Substitute the amplitude of  , ( , )m n x y  with the square root of the intensity I1 captured by 

CCD1. The corrected optical field function is , ( , )m n x y  1 ,exp arg ( , )m nI i x y    , where 

,arg ( , )m n x y  denotes the phase of , ( , )m n x y .  

(6) Propagate back , ( , )m n x y   to the RPP plane, the optical field can be determined as 

, ( , )c n x y  , 3( , ),m nFDF x y z    . 

(7) Remove the effect of the RPP by the following function 

, , ,2
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in which,   is a constant aimed at efficiently mitigating noise [33]. Here, we set  = 1. 

(8) Propagate ( , )newR x y  to the focus plane. The optical field can be calculated as 

, ( , )e n x y    2( , ),newFDF R x y z . 

(9) Propagate , ( , )e n x y   to the CCD2 plane. The optical field can be calculated as 

, , 4( , ) ( , ),m n e nx y FDF x y z      . 

(10) Substitute the amplitude of , ( , )m n x y  with the square root of the intensity I2 captured by 

CCD2. The revised optical field function is denoted as , ( , )m n x y 2 ,exp arg ( , )m nI i x y    .  

(11) Propagate , ( , )m n x y  backward to the focus plane. The optical field can be calculated as 

, ( , )e n x y   , 4( , ),m nFDF x y z   . 

(12) Gradually increase the value of 1na  , and correspondingly update the optical field at the 

focus plane as , 1 , 1( , ) ( , )e n e n nx y x y C    . 

Persist in executing steps (1)–(12) until the discrepancy between successive iterations of 

, ( , )e n x y  decreases to an extremely low level. This accurately reconstructed complex amplitude 

optical field , ( , )e n x y can be used to calculate the laser distribution at different positions. 

The optical field at the plane behind the convergent lens L1 can be determined as 

, 1( , ) ( , ),e nE x y FDF x y z      . The transmission function L(x, y) of the convergent lens L1 can be 

pre-calibrated with a point source laser. Following this, we can ascertain the optical field of the 

incident laser prior to lens L1, represented as ( , )= ( , ) ( , )E x y E x y L x y     . The intensity can be 

calculated as   2
, ( , )I x y E x y     . 
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The efficacy of the proposed MCMI method can be evaluated by computing the error 

function on the CCD1 plane, as detailed below, while the iterative process continues until a 

desired level of precision is obtained. 

2

, 1

1

( , )m n x y I
Error

I

  
  

III. EXPERIMENTS AND RESULTS 

Optical path configuration 

 

  
Fig. 2. (a) Optical path schematic diagram of MCMI method. (b) MCMI measurement package 

in Shenguang-II laser device. (c) Location of components in MCMI measurement package. 
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Figure 2(a) illustrates the optical pathway of computational near-field and far-field parameters 

measurement within the Shenguang-II laser device. The high-power laser featuring the 

wavelength of 1053 nm and a substantial aperture of 310 mm×310 mm, is sampled by a wedge-

shaped plate, then downsized to 23.5 mm×23.5 mm through the use of a beam reducer. The 

sampling beam passes through the adjustable attenuators A1 and A2 to further decrease its 

intensity. Based on the principles of geometric optical imaging and the parameters of the beam 

reduction system components, the imaging position of the laser beam's near-field can be 

calculated. As shown in Figure 2(a), the imaging plane is behind A2 and the distance to L1 is 

1300 mm. For the measurement optical path of MCMI, the beam continues to pass through the 

splitters M4, M3, and M2, and reflector M1 and finally enters the measurement package. The 

incident parallel beam is focused by the focusing lens L1 (focal length f=330 mm), and 

subsequently split into two beams by a beam splitter prism. One of the beams passes through 

RPP and forms a diffraction pattern, which is recorded by CCD1. The other beam enters CCD2, 

where another diffraction pattern is captured. The CCD1 and CCD2 used are PIKE-F1100B 

(Allied Vision Technologies, AVT, 4008 × 2672 pixels, pixel size 9 μm, bit depth 8 bit). CCD2 

can be placed on an optional plane in the reflection path. Coincidentally, in experiments, CCD2 

is placed on the imaging plane of lens L1, thus the image recorded is exactly the near-field 

intensity of the laser to be measured, which also can be used for real-time laser beam monitoring 

when offline debugging of the laser device.  

The value of z1 is the focal length of lens L1. The selected distance of z2 and z3 is to form a 

diffraction pattern at suitable planes, thus the size of the entire diffraction pattern matches the 

size of the CCD camera. The distance from the focal plane to the CCD2 detector is z4. The 

parameters are z1 = 330 mm, z2 = 27.2 mm, z3 = 83.3 mm, and z4 = 110.2 mm. By utilizing the 
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patterns recorded by CCD1 and CCD2, the optical field can be reconstructed through iterative 

calculations. In part Ⅱ, with the MCMI algorithm, the complex amplitude ( , )E x y    before the 

convergent lens L1 can be calculated. Using the Fresnel propagation formula to propagate 

( , )E x y    to the near-field imaging plane with a distance of 1300 mm, the near-field intensity and 

wavefront also can be calculated. The far-field focal spot can be obtained by propagating ( , )E x y   

to the focal spot plane. Figure 2(b) depicts the actual measurement package that we positioned 

within Shenguang-II laser device. Figure 2(c) illustrates the arrangement of the components 

within the MCMI measurement package. 

In Figure 2(a), CCD3 is used for traditional direct imaging through far-field intensity 

recording. The focal spot is formed by L2 focusing, and the objective lens is used to magnify the 

focal spot for display. CCD4 is used for traditional direct near-field imaging. The system 

composed of L3 and L4 is used for further reduction of the sampling beam. The final beam size 

matches the size of the CCD4 detector. A Shack-Hartmann sensor is utilized for measuring near-

field wavefronts. This Shack–Hartmann sensor is a customized model mainly used in 

Shenguang-II laser device to cooperate with a large aperture deformable mirror for active 

wavefront correction. It has a central transmission wavelength of 1053 nm, a sub-aperture array 

of 22×22, and an aperture size of 5.5mm×5.5mm. The dynamic range of defocus aberrations 

measurement is better than 16μm, and the measurement accuracy reaches 0.1 μm. Similarly, the 

system composed of L5 and L6 is used for further reduction of the sampling beam. The final 

beam size matches the detector size of the Shack-Hartmann sensor. These above configurations 

can be used to compare the accuracy of computational measurement with traditional 

measurement methods. 

Downloaded from https://www.cambridge.org/core. 23 Feb 2025 at 04:18:57, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Accepted Manuscript 

 11

 
Fig. 3. Pre-characterized modulation function of the RPP. (a) Intensity distribution and (b) Phase 

distribution. 

The intensity and phase of the RPP, which was pre-characterized by ePIE algorithm [31], 

are shown in Figure 3.  The RPP is designed for the wavelength of 1053 nm. It consists of a 

series of 0 or π phase modulation units, which are randomly distributed, and the smallest 

modulation unit is 9 μm in size. 

Static aberrations calibration 

Effective wavefront quality control is crucial for high-power laser devices, as it directly impacts 

the safety of laser operation and the success of physics experiments. Static aberrations are 

defined as wavefront aberrations occurring under the static conditions of the high-power laser 

device itself. Static wavefront aberrations mainly arise from material non-uniformity, processing 

errors, clamping stress, and optical path installation errors of optical components, while dynamic 

output wavefront distortion primarily stems from amplifier thermal gradients and non-uniform 

pumping, air disturbances, and mechanical vibrations. 

At the focal point of the Transmission Spatial Filter (TSF) within the main amplification 

system of Shenguang-II laser device, a large-aperture calibration laser is generated by a 1053 nm 

continuous fiber laser (point laser source) passing through a spatial filter output lens. The 

calibration laser enters the MCMI measurement package after traversing several optical 
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components. The calculated near-field wavefront at this point represents the static aberrations of 

Shenguang-II main amplification system. 

Assuming the static aberrations is Ws, when a high-power pulsed laser is emitted, the 

measured wavefront of the laser beam is We, then we can obtain the actual dynamic wavefront of 

the high-power laser by calculating Wd= We-Ws. 

 

 
Fig. 4. Static aberrations calibration with a point laser source using traditional CMI algorithm. 

(a) The intensity image was recorded by CCD1. (b) The retrieved intensity on the RPP plane. (c) 
The retrieved phase on the RPP plane. (d) Calculated near-field intensity. (e) Calculated near-

field wavefront. 

To demonstrate the benefits of adding a second pattern to enhance the constraints in MCMI 

algorithm during the static aberrations calibration of the laser system, we first investigated the 

complex amplitude reconstruction only using a pattern recorded by CCD1 with the traditional 

CMI algorithm. Utilizing a Tesla K40c graphics processing unit (GPU) from NVIDIA, the 

reconstruction process was completed in 500 iterations, resulting in a total calculation time of 

approximately 200 seconds. 

The images involved in data acquisition and computational reconstruction include: (a) the 

diffraction pattern recorded by one CCD after passing through the modulator RPP, and (b) the 
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intensity pattern directly recorded by another CCD. Using the patterns captured by these CCDs, 

we reconstructed the complex amplitude images on the RPP plane, which encompass (c) the 

intensity and (d) the phase. Based on this reconstructed complex amplitude, we calculated the (e) 

intensity and (f) phase images of the near-field of the laser beam. 

The intensity pattern captured by CCD1 is shown in Figure 4(a). It can be seen that the laser 

beam becomes speckled after modulation by the RPP. Employing the intensity pattern, the 

MCMI algorithm was used to reconstruct the optical field of the incident laser. Figures 3(b) and 

3(c) depict the reconstructed intensity and phase distributions on the RPP, respectively. The 

near-field intensity calculated is displayed in Figure 3(d), which clearly shows some speckle 

noise inside. Figure 3(e) shows the calculated near-field wavefront, where Peak-to-Valley (PV) 

is 27.51 rad (4.38λ) and Root-Mean-Square (RMS) is 6.41 rad (1.02λ). 

 
Fig. 5. Static aberrations calibration with a point laser source using MCMI algorithm. (a) 
Intensity image was recorded by CCD1. (b) Intensity image was recorded by CCD2. (c) 

Retrieved intensity on the RPP plane. (d) Retrieved phase on the RPP plane. (e) Calculated near-
field intensity. (f) Calculated near-field wavefront. 

Here, we investigated the complex amplitude reconstruction using two patterns recorded by 

CCD1 and CCD2 with the proposed MCMI algorithm. The reconstruction was accomplished in 
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similar conditions using the previous computer hardware configuration, and the computation 

time also remained similar. 

Figure 5(a) illustrates the intensity pattern captured by CCD1, while Figure 5(b) depicts the 

intensity pattern recorded by CCD2. The reconstructed intensity and phase distributions on the 

RPP plane are presented in Figure 5(c) and 5(d), respectively. Here we introduce the ratio of 

beam intensity variance to background noise variance as a method to calculate the signal-to-

noise ratio (SNR) of the reconstructed intensity. The calculation expression is 

SNR=10log10(Intensity variance/Noise variance). The calculated SNR for Figure 5(c) is 31.9 dB 

and for Figure 4(b) it is 30.5 dB. By comparing these two values, we can conclude that the 

proposed MCMI algorithm has reduced the noise. The computed near-field intensity is presented 

in Figure 5(e). It is worth noting that CCD2 is placed exactly on the near-field imaging plane, 

ensuring that the computed near-field intensity is consistent with the image captured by CCD2, 

as shown in Figure 5(b). By comparing Figure 5(e) and Figure 4(d), it is clear that the addition of 

constraints effectively reduces speckle noise. Figure 5(f) shows the calculated near-field 

wavefront, where Peak-to-Valley (PV) is 24.74 rad (3.94λ) and Root-Mean-Square (RMS) is 

6.70 rad (0.85λ). Comparing Figure 5(f) and Figure 4(e), it is intuitive to see the diffraction ring 

in the upper right corner, which is shown in Figure 5(f). It can be observed that the measurement 

spatial resolution has been improved by using the MCMI algorithm. 
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Fig. 6. The error convergence curves observed during the iterative calculation process. 

To demonstrate the reconstruction process of the traditional CMI algorithm and MCMI 

algorithm more clearly, the two convergence curves are shown in Figure 6. Following 500 

iterations of calculation, we found that the reconstruction errors are less than 10%. However, 

MCMI has a faster convergence speed and smaller errors due to the addition of constraints 

imposed by CCD2's pattern. 

High energy experimental measurements 

In inertial confinement fusion (ICF) experiments, the seed laser initially originates from the 

front-end system. It is then amplified by a pre-amplification system to reach an energy level in 

Joules. Ultimately, it is converted into a 351 nm laser via frequency doubling within the target 

system for laser-matter interaction. For varying materials and target shapes, laser devices must 

deliver different output energies and pulse widths, while maintaining high-quality laser beam 

characteristics to ensure optimal physical experimental results. The measurement system offers 

precise characterization of laser parameters, serving as a crucial technical foundation for both 

physical experiments and the evaluation of laser operational status. 
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Fig. 7. Computational measurement of a high-power laser of energy 3272 J and pulse width 3 ns. 
(a) Intensity image recorded by CCD1. (b) Intensity image recorded by CCD2. (c) Retrieved 
intensity on the RPP plane. (d) Retrieved phase on the RPP plane. (e) Calculated near-field 

wavefront including static aberrations. 

The computed measurement results of a high-power laser of energy 3272 J and pulse width 

3 ns are displayed in Figure 7. Figure 7(a) presents the intensity pattern recorded by CCD1. After 

modulation by the RPP, the laser beam becomes speckled, as can be observed. Figure 7(b) shows 

the intensity pattern recorded by CCD2; it displays a regular square beam with only a few small 

modulation points. Figure 7(c) illustrates the reconstructed irregular intensity distribution on the 

RPP plane, which is a consequence of the free propagation in space. The corresponding phase 

distribution is shown in Figure 7(d). Figure 7(e) displays the computed near-field wavefront, 

which includes static aberrations. 
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Fig. 8. Comparison measurement results for a high-power laser of energy 3272 J and pulse width 

3 ns. (a) The near-field intensity calculated using MCMI. (b) The near-field phase calculated 
using MCMI. (c) The far-field focal spot calculated using the MCMI method. (d) Encircled 

energy corresponding to the focal spot shown in (c). (e) The near-field intensity directly 
measured and captured by CCD4. (f) The near-field phase directly recorded by a Shack-

Hartmann wavefront sensor. (g) The far-field intensity directly captured by CCD3. (h) Encircled 
energy corresponding to the focal spot shown in (g). 

The MCMI method can calculate the near-field intensity and wavefront, as well as the focal 

spot distribution in the far-field, and it can also derive the far-field encircled energy curve. 

Traditional measurement methods, on the other hand, directly image and record the near-field 

intensity and the far-field focal spot distribution using different CCDs, and they can also 

calculate the far-field encircled energy curve. However, the wavefront is measured separately 

using a Shack-Hartmann wavefront sensor. We have compared these measurement results in 

Figure 8. Figures 8(a) and 8(e) illustrate the near-field intensity distributions: the former is 

reconstructed using the MCMI method, while the latter is captured directly using CCD4. These 

two distributions are almost indistinguishable, and the upper right region in both figures clearly 

shows modulation caused by specific defects. When evaluating the near-field beam quality, the 

near-field F factor is a key parameter to consider. The near-field F factor is typically represented 

as    ave maxF I D I D ,  maxI D  represents the maximum laser beam intensity within the 
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diameter D, while ( )aveI D  denotes the average intensity within the same diameter. A higher F 

factor indicates better near-field beam quality for the actual high-energy laser. Following 

calculations and processing, the near-field F factors for the two methods have been determined to 

be 0.650 and 0.663, respectively. By subtracting the static aberrations presented in Figure 5(f) 

from the computed near-field wavefront displayed in Figure 7(e), the actual dynamic, high-

energy near-field wavefront can be derived, as illustrated in Figure 8(b). The Peak-to-Valley 

(PV) is 13.56 rad (2.16λ) and Root-Mean-Square (RMS) is 2.13 rad (0.34λ). Figure 8(f) presents 

the near-field wavefront measurement obtained using the Shack-Hartmann wavefront sensor, 

where PV is 12.75 rad (2.03λ) and RMS is 2.32 rad (0.37λ). The wavefront distribution 

measured by these two methods is almost identical. In the upper right corner of Figure 8(b), the 

phase modulation induced by defects in the wavefront is clearly visible, indicating an 

enhancement of spatial resolution achieved through the MCMI method. Figure 8(c) shows the 

focal spot which was obtained by propagating the reconstructed complex amplitude. The 

numerical value 3.725×106 on the scale represents the maximum gray value of the intensity. The 

scale is converted into pseudocolor during display. According to the formula for calculating the 

dynamic range    10 max min20logD SR SdB  , where Smax and Smin represent the maximum and 

minimum values of the recorded intensity, respectively. The calculated dynamic range of the 

focal spot in Figure 8(c) is 176 dB. Due to the focus spot not being directly recorded through a 

CCD on the focal plane, numerical calculations can be used to obtain a high dynamic range focus 

distribution based on the reconstructed complex amplitude at the other plane. Figure 8(g) shows 

the focal spot with the maximum gray value of 1.341×103, and the calculated dynamic range is 

62 dB, as measured by direct imaging through the 16-bit CCD3. Figure 8(c) exhibits a focal spot 

distribution that is more representative of reality, owing to the large dynamic range achieved 
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through computational reconstruction. Encircled energy refers to the fraction of the total energy 

of the focal spot that is contained within a specific radius. The encircled energy can be calculated 

as 
2 2 2

(x, y)dxdy (x, y)dxd
x y r

EE E E y


 

    , where r  is the radius of the circle centered on the 

centroid of the focal spot's energy distribution. Figure 8(d) depicts the encircled energy 

corresponding to the far-field focal spot presented in Figure 8(c). The DL in the Figure stands for 

the diffraction limit of the focal spot. The mathematical representation of the diffraction limit is 

given by 1 2.44 f 1.414DL D , where λ is the wavelength, f and D are the focal length and the 

diameter of the converging lens, respectively. Here, 

-31 2.44 1053 10 330 1.414 23.5=25.52DL      μm. Far-field spot size control is crucial for 

inertial confinement fusion (ICF) physics and represents one of the key parameters of high-

power laser facility performance. The encircled energy reflects the energy concentration within 

the focal spot. A smaller multiple of the diffraction limit corresponding to the 80% or 95% 

encircled energy indicates a stronger laser focusing capability. The selection of 80% and 95% 

encircled energy is based on the standards in the field of high-power laser [34]. Figure 8(h) 

shows the encircled energy of the far-field focal spot depicted in Figure 8(g). The comparison 

suggests that the computational method yields a better focal spot energy concentration, due to the 

large dynamic range offered by the proposed approach. 
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Fig. 9. Computational evolution of the focal spot in proximity to the focal plane. These images 
were obtained through the computational propagation of the reconstructed complex amplitude 

along the optical axis. These images share the same scale bar. 

The traditional far-field direct imaging method, which is shown in Fig. 2(a), uses the CCD3 

to image the focal spot of a certain plane and obtain the intensity distribution at that plane. The 

focal spot of a high-energy laser exhibits a complex distribution of side lobes, exerting 

substantial influence on physical experiments. However, measuring the focal spot of a pulsed 

laser with a high dynamic range in a single exposure is challenging due to the limited dynamic 

range of CCD cameras. By employing the proposed MCMI method, the reconstructed complex 

amplitude can be numerically propagated near the focal plane, enabling observation of the focal 

spot's evolution. The propagation algorithm we used is based on the Fresnel diffraction integral 

formula shown in step (2) of the MCMI algorithm. Figure 9 illustrates the focal spot intensity at 

various distances along the focal plane, revealing a rich distribution of focal side lobes and 

demonstrating a high dynamic range. 
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Fig. 10. Computational measurement of a high-power laser of energy 8558 J and pulse width 5 

ns. (a) Intensity pattern recorded by CCD1. (b) Intensity pattern recorded by CCD2. (c) 
Retrieved intensity on the RPP plane. (d) Retrieved phase on the RPP plane. (e) Calculated near-

field wavefront including static aberrations. 

The reliability of the proposed method was further corroborated by increasing the output 

laser energy and adjusting the pulse width. The computed measurement results of a high-power 

laser of energy 8558 J and pulse width 5 ns are displayed in Figure 10. By utilizing the intensity 

patterns captured by CCD1 and CCD2, as illustrated in Figures 10(a) and 10(b), the complex 

amplitude was successfully reconstructed. Figure 10(c) illustrates the reconstructed intensity 

profile on the RPP plane, while Figure 10(d) displays the reconstructed phase distribution on the 

same plane. Figure 10(e) presents the calculated near-field wavefront, including static 

aberrations. 
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Fig. 11. Comparison measurement results for a high-power laser of energy 8558 J and pulse 

width 5 ns. (a) Near-field intensity calculated using MCMI. (b) Near-field phase calculated using 
MCMI. (c) The far-field focal spot calculated using the MCMI method. (d) Encircled energy 

corresponding to the focal spot shown in (c). (e) The near-field intensity directly measured and 
captured by CCD4. (f) Near-field phase directly recorded by a Shack-Hartmann wavefront 

sensor. (g) The far-field intensity directly measured and captured by CCD3. (h) Encircled energy 
corresponding to the focal spot shown in (g). 

Figure 11 shows the comparison of measurement results for the laser of energy 8558 J and 

pulse width 5 ns. Figure 11(a) presents the near-field intensity reconstructed using the MCMI 

method, whereas Figure 11(e) displays the near-field intensity directly imaged by CCD4. The 

near-field F factors for these two methods are 0.723 and 0.702, respectively, as calculated using 

mathematical analysis. Figure 11(b) shows the actual high-energy near-field wavefront obtained 

by subtracting the static aberrations in Figure 5(f) from the calculated near-field wavefront in 

Figure 10(e), where the PV value is 10.55 rad (1.68λ) and the RMS value is 1.63 rad (0.26λ). 

Figure 11(f) depicts the near-field wavefront as measured by the Shack-Hartmann sensor. The 

PV value is 11.30 rad (1.80λ) and RMS value is 2.01 rad (0.32λ). The phase modulation resulting 

from wavefront defects is evident in the computational measurement results. The MCMI method 

reconstructs the focal spot with the maximum gray value of 4.632×106, as depicted in Figure 

11(c). The calculated dynamic range is 167 dB. Figure 11(g) displays the focal spot with the 

Downloaded from https://www.cambridge.org/core. 23 Feb 2025 at 04:18:57, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Accepted Manuscript 

 23

maximum gray value of 2.145×103, as measured by direct imaging, and the calculated dynamic 

range is 66 dB. It is apparent from Figure 11(c) that the focal spot distribution appears more 

accurate and detailed due to the significantly larger dynamic range achieved by the 

computational method. Figure 11(d) depicts the encircled energy of the far-field focal spot 

featured in Figure 11(c). Similarly, Figure 11(h) illustrates the encircled energy of the far-field 

focal spot displayed in Figure 11(g). Upon comparing the diffraction limit multiples 

corresponding to the 80% or 95% encircled energy between Figure 11(d) and 11(h), it has been 

discovered that the focal spot determined by the computational method exhibits superior energy 

concentration, attributed to the large dynamic range of the proposed method. 

 
Fig. 12. Computational evolution of the focal spot in proximity to the focal plane. These images 
were obtained through the computational propagation of the reconstructed complex amplitude 

along the optical axis. These images share the same scale bar. 

Figure 12 also shows the focal spot intensity at different positions along the focal plane. A 

high dynamic range of the focal side lobes is displayed, which can aid in the analysis of laser-

matter interaction in ICF experiments. 
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Fig. 13. PSD curves of focal spots from the above two experimental shots. 

The calculation of spatial Power Spectral Density (PSD) involves the transformation 

between the spatial domain and frequency domain of the far-field focal spot. The PSD can be 

calculated as  PSD( , ) ( , )x y ff frequencyf f I x y S F , where ( , )ffI x y  represents the focal spot 

intensity, frequencyS  denotes the calculation area in the frequency domain, and ( , )x yf f  are the 

coordinates in the frequency domain [35–37]. Figure 13 shows the spatial frequency analysis on 

the focus with a defocus amount of 0 μm for the above two shots with different energy levels. 

The results show that the proportion of the focal spot in the mid-frequency range of 10 μm to 100 

μm is relatively lower in the 8558 J/5 ns shot. We attribute this to the relatively uniform spatial 

intensity distribution of the focal spot in this shot. 
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Fig. 14. The near-field (intensity and wavefront) spatial resolution. (a) Reconstructed near-field 
intensity using MCMI. (b) Magnified images emphasized in Figure (a). (c) Reconstructed near-

field wavefront using MCMI. 

To assess the spatial resolution of the computational measurement for both near-field 

intensity and wavefront, we placed a USAF 1951 target on the imaging plane. Figure 14 displays 

the reconstruction results for intensity and wavefront, which were obtained using an offline point 

laser source for illumination. Figure 14(a) depicts the reconstructed near-field intensity, while 

Figure 14(b) presents magnified images highlighted in Figure 14(a). Additionally, Figure 14(c) 

showcases the reconstructed near-field wavefront corresponding to the laser beam displayed in 

Figure 14(a). By examining Figure 14(b), it is feasible to ascertain that the achieved resolution is 

approximately 70.15 μm (Group 2, Element 6). Considering the reduction of the beam aperture 

from 310 mm×310 mm to 23.5mm×23.5 mm on the near-field imaging plane, the reduction ratio 

can be calculated as 310mm 23.5mm=13.19 . For the high-power laser beam with a diameter of 

310 mm across the full field, the separated resolve points can be obtained by 

13.19=70.15 925.28m m  . Using the data measured by the Shack-Hartmann sensor in these 

experiments, which corresponds to a 22×22 array point data of the wavefront for a laser beam 

with a 310 mm diameter, it is possible to estimate the spatial resolution of the near-field 

wavefront as 310mm 22=14.09mm . When compared to the measurement results obtained with 
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the Shack-Hartmann sensor, the spatial resolution of the near-field wavefront measurement is 

notably improved when utilizing the computational MCMI method. 

IV. CONCLUSION 

In conclusion, we have introduced a computational approach for measuring near-field and far-

field parameters of high-power lasers using the MCMI method across various output energy 

experiments. The near-field and focal spot distributions were simultaneously calculated by 

reconstructing the complex amplitude. More importantly, by computing the complex amplitude, 

we can calculate the near-field wavefront and focal spot distributions at different planes. During 

high-power pulsed laser experiments, a notable dynamic range of 176 dB was achieved for the 

characterization of the far-field focal spot. Additionally, the spatial resolution of the wavefront 

measurement was considerably improved when compared to that of a Shack-Hartmann 

wavefront sensor. Accurate computational measurements of high-power laser parameters can 

substantially boost the overall performance of high-power laser facilities and enable more precise 

laser diagnostics in physical experiments. The proposed method simply involves recording two 

patterns using two CCDs, which feature a straightforward structure. By employing MCMI 

algorithms, it obtains the near-field (intensity and wavefront/phase) and far-field (focal spot) 

distributions of the laser beam. It is also suitable for parameter measurement of ultra-short 

femtosecond high-power lasers. 
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