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Although insulin, amino acids and exercise individually activate multiple signal transduction
pathways in skeletal muscle, one pathway, the phosphatidylinositol 3-kinase (PI3K)–mamma-
lian target of rapamycin (mTOR) signalling pathway, is a target of all three. Activation of the
PI3K–mTOR signal transduction pathway results in both acute (i.e. occurring in minutes to
hours) and long-term (i.e. occurring in hours to days) up-regulation of protein synthesis through
modulation of multiple steps involved in mediating the initiation of mRNA translation and
ribosome biogenesis respectively. In addition, changes in gene expression through altered patterns
of mRNA translation promote cell growth, which in turn promotes muscle hypertrophy. The
focus of the present discussion is to review current knowledge concerning the mechanism(s)
through which insulin, amino acids and resistance exercise act to activate the PI3K–mTOR
signal transduction pathway and thereby enhance the rate of protein synthesis in muscle.

Resistance exercise: Phosphatidylinositol 3-kinase: Mammalian target of rapamycin:
mRNA translation

A vast array of pathways within mammalian cells serves to
transduce signals from external stimuli to processes such
as nutrient uptake and metabolism, gene transcription and
mRNA translation. In most cases the transduction network
consists of a group of protein kinases that serve to direct a
signal, or signals, to the appropriate end point(s). However,
signal transduction pathways are seldom linear and instead
often have many branch points and multiple places at
which signalling events can activate the kinase cascade.
An example of this type of complexity is exhibited by a
common pathway that is activated by the signals induced
by insulin, amino acids and resistance exercise, i.e. the
phosphatidylinositol 3-kinase (PI3K)–mammalian target
of rapamycin (mTOR) signalling pathway. The purpose
of the present article is to review current knowledge of
how these disparate signals activate this pathway and how
signals from the individual stimuli are integrated, with
the focus being on how insulin, amino acids and exercise
promote muscle hypertrophy through activation of this
pathway. As the present article is only a brief overview,
the work cited herein is selective. For further discussion
on this topic the reader is referred to other recent review
articles (for example, see Kimball et al. 2002; Bolster
et al. 2003).

The phosphatidylinositol 3-kinase–mammalian target
of rapamycin signalling pathway

PI3K is a lipid kinase that phosphorylates the hydroxyl
group at the D3 position on phosphatidylinositol-4,
5-diphosphate leading to the production of phosphatidyl-
inositol-3,4,5-triphosphate at the plasma membrane (for
review, see Cantley, 2002). Production of phosphatidyl-
inositol-3,4,5-triphosphate is countered by the action of
the lipid phosphatase, phosphatase and tensin homologue
(Fig. 1). Phosphatidylinositol-3,4,5-triphosphate recruits
proteins containing pleckstrin homology domains, such
as phosphatidylinositol-dependent protein kinase and Akt/
protein kinase B (PKB), to the plasma membrane where
they are activated. Akt/PKB serves as a branch point in the
PI3K–mTOR signalling pathway and has been reported
to phosphorylate glycogen synthase kinase (GSK) 3b at
Ser9 (Ser23 on GSK-3a; for review, see Coffer et al. 1998),
mTOR at Ser2448 (Nave et al. 1999) and tuberous sclerosis
complex (TSC) 2 on multiple residues including Ser939,
Ser1130 and Thr1462 (for review, see Manning & Cantley,
2003). Phosphorylation of GSK-3b on Ser9 results in its
inactivation, an event that leads to dephosphorylation, and
thereby activation, of eukaryotic initiation factor (eIF) 2B
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(Welsh et al. 1998). TSC2, in a complex with TSC1,
normally represses signalling through mTOR, and phos-
phorylation by Akt/PKB inhibits this function of TSC2 (for
review, see Manning & Cantley, 2003). Although the
mechanism through which the TSC1–TSC2 complex
represses mTOR signalling is incompletely defined, recent
studies (Garami et al. 2003; Zhang et al. 2003) have
suggested that, in part, TSC2 may act through the small
GTPase ras homologue enriched in brain (Rheb) in
regulating mTOR. Here, TSC2 is a GTPase-activating
protein for Rheb that normally represses Rheb function
(Garami et al. 2003; Zhang et al. 2003). How Rheb
modulates mTOR-dependent signalling is unknown. In
contrast to the effect of phosphorylation by Akt/PKB on
most of its substrates, phosphorylation of mTOR on
Ser2448 reportedly promotes mTOR-dependent signalling
(Nave et al. 1999). Activation of mTOR results in

phosphorylation of a variety of substrates, including the
eIF4E-binding protein (4E-BP1), and the ribosomal protein
S6 protein kinase (S6K1; for review, see Gingras et al.
2001). Phosphorylation of both substrates requires the
interaction of mTOR with two other proteins, the regu-
latory associated protein of target of rapamycin (raptor)
and GbL (Kim et al. 2003).

Regulation of mRNA translation through activation
of the phosphatidylinositol 3-kinase–mammalian

target of rapamycin signalling pathway

The mechanisms involved in the stimulation of protein
synthesis that occurs in response to activation of the
PI3K–mTOR signalling pathway can be temporally
separated into two categories. Rapid changes, i.e. those
occurring in <1 h, can be traced to enhanced rates of

PI 3-kinase

PDK1(P)

Akt/PKB(P)

TSC2(P)
TSC1

GβL–raptor–mTOR(P)

4E-BP1(P) p70S6k(P)

Rheb

PTEN

Amino
acids

?

?
?

?

Increased translation
of mRNA encoding

specific proteins
Cell growth

Insulin

Exercise
?

GSK3(P) eIF2B(P)

Increased
protein

synthesis

?

Amino
acids

?

?

Fig. 1. Components of the phosphatidylinositol (PI) 3-kinase–mammalian target of rapamycin

(mTOR) signalling pathway. Insulin, amino acids and exercise have been shown to activate

various components of the PI 3-kinase–mTOR signal transduction pathway leading to

enhanced muscle protein synthesis and hypertrophy, as described in detail on pp. 351–355.

, , Activating steps; , , inhibitory steps in the pathway. – –, Incomple-

tely-defined links. PDK1, phosphatidylinositol-dependent protein kinase 1; P, phosphate; PKB,

protein kinase B; GSK3, glycogen synthase kinase 3; elF2B, eukaryotic initiation factor 2B;

TSC, tuberous sclerosis complex; raptor, regulatory associated protein of target of rapamycin;

Rheb, ras homologue enriched in brain; mTOR, mammalian target of rapamycin protein

kinase; 4E-BP1, eIF4E-binding protein 1; p70S6k, 70 kDa ribosomal protein S6 protein kinase;

PTEN, phosphatase and tensin homologue.
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mRNA translation mediated by activation of translation
initiation factors. In contrast, longer-term changes, i.e.
those occurring after several hours, are typically a result
of an increase in the number of ribosomes available
to translate mRNA (i.e. an increase in the capacity to
synthesize protein).

One translation initiation factor that is rapidly acti-
vated through the PI3K–mTOR signalling pathway is
eIF2B, a guanine nucleotide exchange factor for a second
initiation factor, eIF2 (for review, see Hershey & Merrick,
2000). During the first step in the initiation of mRNA
translation, eIF2 binds to the 40S ribosomal subunit as
a ternary complex with GTP and initiator methionyl-
tRNA. Subsequently, the GTP bound to eIF2 is hydro-
lysed and eIF2–GDP is released from the ribosome.
eIF2B mediates exchange of GDP bound to eIF2 for free
GTP, allowing the ternary complex to reform. As the
synthesis of all proteins begins with initiator methionyl-
tRNA, activation of eIF2B globally stimulates protein
synthesis.

Activation of the PI3K–mTOR signalling pathway also
results in the rapid phosphorylation of 4E-BP1 and S6K1.
4E-BP1 binds to the mRNA cap-binding protein eIF4E and
prevents it from binding to a second initiation factor eIF4G
(for review, see Hershey & Merrick, 2000). Phosphoryla-
tion of 4E-BP1 results in its release from eIF4E, allowing
eIF4E to bind to eIF4G to form the active eIF4F complex
that mediates binding of mRNA to the 40S ribosomal
subunit. Enhanced eIF4F assembly results in a preferential
increase in the translation of mRNA with long highly-
structured 5k-untranslated regions, such as those encoding
ornithine decarboxylase and cyclin D1. Overexpression of
eIF4E increases cell size, presumably through enhanced
assembly of the active eIF4F complex, whereas exogenous
expression of a non-phosphorylatable form of 4E-BP1
results in a small cell phenotype (Fingar et al. 2002), demon-
strating the importance of these two proteins in controlling
cell growth.

Activation of S6K1 also occurs within minutes of
initiation of signalling through mTOR. S6K1 phospho-
rylates ribosomal protein S6, which reportedly enhances
the translation of mRNA with an uninterrupted string
of pyrimidine residues adjacent to the 5k-cap structure
(terminal oligopyrimidine mRNA; Meyuhas, 2000).
Proteins encoded by such mRNA include ribosomal
proteins, translation elongation factors and poly(A)
binding protein. Thus, activation of S6K1 results in a
rapid increase in the synthesis of a subset of proteins.
In addition, mTOR signalling enhances the transcription
of ribosomal DNA. Together, increased translation of
mRNA encoding ribosomal proteins and enhanced tran-
scription of ribosomal DNA promotes ribosome bio-
genesis. An increase in the cellular content of ribosomes
is one mechanism for increasing the long-term capacity
of the cell to synthesize protein. Similar to the effect of
eIF4E overexpression, exogenous expression of S6K1
increases cell size (Fingar et al. 2002). Interestingly, co-
expression of eIF4E and S6K1 cooperatively increases
cell size, suggesting that the events controlled by the
two proteins function independently to modulate cell
growth.

Activation of the phosphatidylinositol
3-kinase–mammalian target of rapamycin

signalling pathway by insulin

The first step in the activation of the PI3K–mTOR signal-
ling pathway by insulin is binding of the hormone to its
receptor, resulting in activation of the receptor’s intrinsic
tyrosine protein kinase activity (for review, see Alessi
& Downes, 1998). The activated insulin receptor sub-
sequently phosphorylates the insulin receptor substrates 1
and 2. The phosphorylated insulin receptor substrates
bind to the 85 kDa subunit of PI3K, thereby activating
the kinase and the PI3K–mTOR signalling pathway. An
intermediate in the pathway, PKB (or Akt) acts as a branch
point and phosphorylates both mTOR and GSK-3. Phospho-
rylation of GSK-3 by PKB results in its inactivation.
GSK-3 phosphorylates the e subunit of eIF2B, which is
associated with decreased guanine nucleotide exchange
activity in cells in culture (Welsh et al. 1998) and therefore
represents one potential mechanism through which insulin
regulates protein synthesis. Activation of mTOR by insulin
results in phosphorylation of downstream targets, e.g.
4E-BP1, S6K1 and ribosomal protein S6, resulting in acti-
vation of the mRNA-binding steps in translation initiation.

Activation of the phosphatidylinositol
3-kinase–mammalian target of rapamycin

signalling pathway by amino acids

Although it is clear that amino acids, and in particular
leucine, enhance phosphorylation of proteins downstream
of mTOR, e.g. 4E-BP1 and S6K1, and indeed require
mTOR to be active in order to be effective, whether or not
they directly regulate mTOR activity is undecided. This
point is particularly important because, unlike insulin,
amino acids do not activate PI3K or PKB (for example, see
Hara et al. 1998; Patti et al. 1998). Instead of signalling
through Akt, recent studies suggested that amino acids
may indirectly modulate mTOR-dependent signalling
through TSC1–TSC2, GbL–raptor and/or Rheb. For
example, repressed expression of TSC2 (Gao et al. 2002)
yields cells that are resistant to the effects of amino acid
deprivation on signalling events downstream of mTOR.
In contrast, overexpression of the TSC1–TSC2 complex
(Tee et al. 2002) or reduced expression of Rheb (Saucedo
et al. 2003) repress signalling downstream of mTOR even
in the presence of amino acids. Finally, amino acids
promote the association of raptor with mTOR, an effect
that requires GbL, thereby enhancing phosphorylation of
4E-BP1 and S6K1 (Kim et al. 2003).

Activation of the phosphatidylinositol
3-kinase–mammalian target of rapamycin
signalling pathway by resistance exercise

Unlike changes noted with intracellular signalling in
response to insulin stimulation, skeletal muscle loading
does not always lead to comparable alterations in the
PI3K–mTOR signalling pathway. For example, no studies
to date have reported upstream changes in PI3K activity
with resistance exercise during the early phases of recovery,
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although one report has suggested a delayed response
whereby increases are revealed 6 h post exercise (Hernandez
et al. 2000). Moreover, the immediate downstream effector
of PI3K, phosphatidylinositol-dependent protein kinase 1,
has not been examined following muscle contraction or
loading conditions. A study by Bodine et al. (2001) has
provided the most convincing data supporting a direct role
for Akt/mTOR signalling in regulating mRNA translation
and promoting skeletal muscle hypertrophy. The study
showed that chronic overloading of the plantaris (through
synergistic ablation of the soleus and gastrocnemius) leads
to increased phosphorylation of Akt/PKB and proteins
downstream of mTOR, such as 4E-BP1 and S6K1. The
central role of mTOR in mediating the hypertrophic
response under these loading conditions has been verified
through in vivo treatment with rapamycin (a specific
inhibitor of mTOR), which almost completely blocks the
muscle hypertrophy associated with synergistic ablation.
A second study using the synergistic ablation model has
reported that overload promotes phosphorylation of Ser2448

on mTOR (Reynolds et al. 2002), a result that is consistent
with activation of Akt/PKB. Recently published data have
revealed rapid up-regulation of Akt activity in isolated
skeletal muscle subjected to passive stretch, which appears
specific to fast-twitch muscle (Sakamoto et al. 2003). The
stretch-induced activation of Akt is completely blocked
through pretreatment with wortmannin, an inhibitor of
PI3K. In other studies phosphorylation of both 4E-BP1 and
S6K1 has been shown to be enhanced in response to
muscle loading (Baar & Esser, 1999; Bodine et al. 2001;
Nader & Esser, 2001; Rommel et al. 2001) and positively
contributes to the up-regulation of select gene expression
necessary to elicit long-term increases in skeletal muscle
accretion. Indeed, each of these select proteins is indis-
pensable in mediating skeletal muscle growth and, whereas
proposing the up-regulation of distinct proteins as potential
markers of hypertrophy is tempting, a coordinated response
from multiple signal transduction pathways is essential to
the overall process.

Integration of signalling by insulin, amino acids
and resistance exercise

A thorough review of amino acids and insulin and their
contribution to regulating skeletal muscle protein synthesis
is beyond the scope of the present paper. Thus, the intent
of the present brief overview will be to focus exclusively
on the impact of amino acids or insulin on protein syn-
thesis in the context of resistance exercise. Without
question, investigating the singular role of amino acids or
insulin in promoting changes in skeletal muscle protein
synthesis with resistance exercise is crucial to elucidating
mechanisms regulating muscle hypertrophy. However, in
a physiological state the concept is essentially irrelevant,
as insulin and amino acids do not function in isolation
because both participate to optimize the anabolic response
in skeletal muscle. Nonetheless, key findings in both areas
will be briefly highlighted to emphasize their contribution
with resistance exercise.

Although insulin concentrations remain relatively un-
changed in the recovery period following resistance

exercise (Kraemer et al. 1998; Biolo et al. 1999; Hernandez
et al. 2000), a permissive amount of insulin is required
to mediate increases in skeletal-muscle protein synthesis.
This concept is illustrated by the results of studies utilizing
diabetic rats in which animals engaged in resistance
exercise (Farrell et al. 1999; Fedele et al. 2000; Kostyak
et al. 2001). In such studies rats are operantly conditioned
to touch an illuminated bar high on a Plexiglas exercise
cage while wearing a weighted vest strapped over the
scapulae (Fluckey et al. 1995). The movement performed
during the exercise requires the animals to complete
concentric and eccentric muscle contractions of the hind-
limb musculature (Fluckey et al. 1995). While moderately-
diabetic animals (fed arterial insulin, approximately 180
pM) exhibit an increase in protein synthesis rate as well as
augmented eIF2B activity post-exercise, severely-diabetic
(fed arterial insulin, approximately 72 pM) animals exhibit
depressed protein synthesis rates and eIF2B activity at rest,
which fails to change with subsequent exercise (Farrell
et al. 1999; Fedele et al. 2000; Kostyak et al. 2001). In
contrast with the results of studies using rodents, elevated
insulin concentrations induced through local infusions in
human subjects have been shown to stimulate skeletal
muscle protein synthesis at rest, but hyperinsulinaemia
fails to further augment synthesis after resistance exercise
(Biolo et al. 1999). Collectively, this body of evidence
suggests an endocrine threshold for insulin when coupled
with resistance exercise, whereby protein synthesis remains
refractory when plasma levels above or below this range
are achieved.

The kinetics of amino acid metabolism with resistance
exercise has been extensively examined. The incorporation
of stable-isotope methodology along with skeletal muscle
biopsies has greatly improved the understanding of the
in vivo effects of alterations in amino acid transport and
amino acid availability on skeletal muscle protein syn-
thesis with resistance exercise. Biolo et al. (1995a) have
impressively demonstrated marked increases in the deliv-
ery of amino acids to the leg 3 h after resistance exercise in
a post-absorptive state. The influx of amino acids from the
artery to the muscle is preferentially enhanced for lysine,
leucine and alanine. Furthermore, these studies provide
evidence for the unique synergy between amino acid avail-
ability, blood flow and the stimulus of physical exercise
to maximize increases in protein synthesis (Biolo et al.
1997).

The issue of nutrient availability is worth noting, given
the tremendous interest in dietary supplementation among
exercising individuals. The issue of timing nutrient intake
has received intense scrutiny, and data suggest that supply-
ing amino acids plus glucose either before exercise or at
various intervals during recovery enhances skeletal-muscle
protein synthesis (Rasmussen et al. 2000; Tipton et al.
2001). However, the magnitude of the protein synthetic
response is greatest when nutrients are received imme-
diately before exercise. The basic tenet of consuming
adequate nutrients with resistance exercise is reinforced
with this area of research, such that a positive net balance
is achieved only when exogenous nutrients are available.
This positive balance in turn enhances protein syn-
thesis, attenuates breakdown and promotes an anabolic
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environment during the recovery period (Biolo et al.
1995b).

Conclusions

Insulin, amino acids and resistance exercise all lead to
enhancements in protein synthesis in skeletal muscle. A
common end point in signalling by each stimulus is the
protein kinase mTOR. Inhibition of mTOR by rapamycin
or through genetic means (e.g. using RNA interference in
cells in culture) prevents the increase in protein synthesis
caused by any of the three stimuli. Moreover, rapamycin
dramatically attenuates the hypertrophy observed in the
synergistic ablation model of resistance exercise. In fact,
both in cells in culture and in animals in vivo, inhibition
of mTOR results in a small cell phenotype. Overall, the
available evidence strongly suggests a central role for
mTOR in controlling cell growth. Now that the important
role played by mTOR in hypertrophy has been identified,
future studies should soon provide more details concerning
the mechanism through which amino acids and resistance
exercise promote signalling through this kinase. In addition,
linking downstream events induced by mTOR activation
to subsequent changes in gene expression will need to be
addressed in future studies. Together, studies focusing both
upstream and downstream of mTOR will lead to a better
understanding of how insulin, amino acids and resistance
exercise enhance protein synthesis and hypertrophy in
skeletal muscle.
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