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Abstract

This article describes a general framework for designing purely functional datatypes that

automatically satisfy given size or structural constraints. Using the framework we develop

implementations of different matrix types (for example, square matrices) and implementations

of several tree types (for example, Braun trees and 2-3 trees). Consider representing square n×n
matrices. The usual representation using lists of lists fails to meet the structural constraints:

there is no way to ensure that the outer list and the inner lists have the same length. The

main idea of our approach is to solve in a first step a related, but simpler problem, namely

to generate the multiset of all square numbers. To describe this multiset we employ recursion

equations involving finite multisets, multiset union, addition and multiplication lifted to

multisets. In a second step we mechanically derive from these recursion equations datatype

definitions that enforce the ‘squareness’ constraint. The transformation makes essential use of

parameterized types.

Die ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk.

— Leopold Kronecker

1 Introduction

Many information structures are defined by certain size or structural constraints.

Take, for instance, the class of perfectly balanced, binary leaf trees (Hinze, 2000a)

(perfect leaf trees for short): a perfect leaf tree of height 0 is a leaf and a perfect

leaf tree of height h+ 1 is a node with two children, each of which is a perfect leaf

tree of height h. How can we represent perfect leaf trees of arbitrary height such

that the structural constraints are enforced? The usual recursive representation of

binary leaf trees is apparently not very helpful since there is no way to ensure that

the children of a node have the same height. As another example, consider square

n× n matrices (Okasaki, 1999). How do we represent square matrices such that the

matrices are actually square? Again, the standard representation using lists of lists

fails to meet the constraints: the outer list and the inner lists are not necessarily of

the same length. In this article, we present a framework for designing representations

of perfect leaf trees, square matrices, and many other information structures that

automatically satisfy the given size or structural constraints.

Let us illustrate the main ideas by means of example. As a first example, we will

devise a representation of Toeplitz matrices (Cormen et al., 1991) where a Toeplitz
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494 R. Hinze

matrix is an n × n matrix (aij) such that aij = ai−1,j−1 for 1 < i, j 6 n. Clearly,

to represent a Toeplitz matrix of size (n + 1) ∗ (n + 1) it suffices to store 2 ∗ n + 1

elements. Now, instead of designing a representation from scratch we first solve

a related, but apparently simpler problem, namely, to generate the set of all odd

numbers. Actually, we will work with multisets instead of sets for reasons to be

explained later (see section 2). In order to describe multisets of natural numbers we

employ systems of recursion equations. The following system, for instance, specifies

the multiset of all odd numbers, that is, the multiset that contains one occurrence

of each odd number.

odd = H1I ] odd + H2I
Here, HnI denotes the singleton multiset that contains n exactly once, ‘]’ denotes

multiset union and ‘+’ is addition lifted to multisets:

A + B = Ha + b | a ← A; b ← BI.
We agree upon the convention that ‘+’ binds more tightly than ‘]’. Now, how can

we turn the equation into a sensible datatype definition for Toeplitz matrices? The

first thing to note is that we are actually looking for a datatype that is parameterized

by the type of matrix elements. Such a type is also known as a type constructor, as

a container type (Hoogendijk & de Moor, 2000), or as a functor1. An element of a

parameterized type is called a container. Now, the equation above has the following

counterpart in the world of functors:

Odd = Id | Odd × (Id × Id ).

Here, Id is the identity functor given by Id a = a . Furthermore, ‘|’ and ‘×’ denote

sums and products lifted to functors, that is, (F1 | F2) a = F1 a | F2 a and

(F1×F2) a = F1 a×F2 a . Comparing the two equations we see that H1I corresponds to

Id , the operation ‘]’ corresponds to ‘|’, and ‘+’ corresponds to ‘×’. This immediately

implies that Id × Id corresponds to H1I + H1I = H2I. The relationship between

multisets and functors is very tight: the functor corresponding to a multiset M

contains, for each member of M , a container of that size. For instance, Id × Id

corresponds to H1I + H1I = H2I as it contains one container of size 2; the functor

Id | Id × Id corresponds to H1I ] H1I + H1I = H1, 2I as it contains one container of

size 1 and another of size 2.

Functor equations are written in a compositional style. To derive a datatype

declaration from a functor equation we simply rewrite it into an applicative form—

additionally adding constructor names and possibly making cosmetic changes. For

concreteness, examples are given in the functional language Haskell 98 (Peyton Jones

& Hughes, 1999).

data Toeplitz a = Corner a | Extend (Toeplitz a) a a

The left upper corner of a Toeplitz matrix is represented by Corner a; using

1 Categorically speaking, a functor must satisfy additional conditions, see, for instance Bird and de Moor
(1997). All the type constructors listed in this article are functors in the category-theoretical sense.
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Extend m r c we extend the matrix m by an additional row and an additional

column, both of which are represented by single elements. For instance, the 4 × 4

Toeplitz matrix (aij) is represented by

Extend (Extend (Extend (Corner a11) a21 a12) a31 a13) a41 a14.

Of course, this is not the only conceivable implementation. Alternatively, we can

define odd in terms of the set of all even numbers.

odd = H1I + even

even = H0I ] H2I + even

As innocent as this variation may look, it has the advantage that the left upper

corner can be accessed in constant time as opposed to linear time with the first

representation.

data Toeplitz a = Toeplitz a (List2 a)

data List2 a = Nil2 | Cons2 a a (List2 a)

Note that we use the identifier Toeplitz both as a type constructor and as a value

constructor. The 4× 4 Toeplitz matrix (aij) is now represented by

Toeplitz a11 (Cons2 a21 a12 (Cons2 a31 a13 (Cons2 a41 a14 Nil2 ))).

Easier still, we may define odd in terms of the natural numbers using the fact that

each odd number is of the form 1 + n ∗ 2 for some n .

odd = H1I + nat ∗ H2I
nat = H0I ] H1I + nat

The first equation makes use of the multiplication operation, which is defined

analogously to ‘+’. To which operation on functors does multiplication correspond?

We will see that under certain conditions to be spelled out later ‘∗’ corresponds

to the composition of functors ‘·’ given by (F1 · F2) a = F1 (F2 a). The functor

equations derived from odd and nat are

Odd = Id ×Nat · (Id × Id )

Nat = K Unit | Id ×Nat .

Here, K t denotes the constant functor given by K t a = t and Unit is the unit type

containing a single element. Note that K Unit corresponds to H0I. Unsurprisingly,

Nat models the ubiquitous datatype of lists.

data Toeplitz a = Toeplitz a (List (a , a))

data List a = Nil | Cons a (List a)

Thus, to store an even number of elements we simply use a list of pairs. The 4× 4

Toeplitz matrix (aij) now reads

Toeplitz a11 (Cons (a21, a12) (Cons (a31, a13) (Cons (a41, a14) Nil ))).
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496 R. Hinze

The last representation has the advantage of being modular: we can easily replace

the list type by a more efficient sequence type.

Next, let us apply the technique to design a representation of perfect leaf trees.

The related problem is simple: we have to generate the multiset of all powers of 2.

power = H1I ] power ∗ H2I
The corresponding functor equation is

Power = Id | Power · (Id × Id ),

from which we can easily derive the following datatype definition:

data Perfect a = Zero a | Succ (Perfect (a , a)).

Thus, a perfect leaf tree of height 0 is a leaf and a perfect leaf tree of height h + 1

is a perfect leaf tree of height h , whose leaves contain pairs of elements. Note that

this definition proceeds bottom-up whereas the definition given in the beginning of

the introduction on page 493 proceeds top-down. The type Perfect is an example of

a so-called nested datatype (Bird & Meertens, 1998): the recursive call of Perfect

on the right-hand side is not a copy of the declared type on the left-hand side, that

is, the type recursion is nested. It is revealing to have a closer look at the types. The

table below illustrates the construction of an element of type Perfect Int ( $$ always

refers to the expression in the preceding row and I abbreviates Int).

(((1, 2), (3, 4)), ((5, 6), (7, 8))) :: (((I , I ), (I , I )), ((I , I ), (I , I )))

Zero $$ :: Perfect (((I , I ), (I , I )), ((I , I ), (I , I )))

Succ $$ :: Perfect ((I , I ), (I , I ))

Succ $$ :: Perfect (I , I )

Succ $$ :: Perfect I

We start with a pair of pairs of pairs of integers. Note that the type expression

has the same size as the value expression. Using the constructor Zero the nested

pair is turned into a leaf. Now, each application of Succ halves the size of the type

expression. In each case the typechecker ensures that the elements are pairs of the

same type. Note that the height of the perfect leaf tree is encoded in the prefix of

Succ and Zero constructors.

As the final example, let us tackle the problem of representing square matrices. We

soon find that the related problem of generating the multiset of all square numbers

is not as easy as before. It is tempting to define square = nat ∗ nat . However, this

does not work since the resulting multiset contains products of arbitrary numbers.

Incidentally, nat ∗ nat is related to List · List , the lists of lists implementation we

already rejected. We must somehow arrange that ‘∗’ is only applied to singleton

multisets. A trick to achieve this is to first rewrite the definition of nat into a

tail-recursive form.

nat = nat ′ H0I
nat ′ n = n ] nat ′ (H1I + n)

The definition of nat ′ closely resembles the function from :: Int → [Int ] given by
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from n = n : from (n + 1), which generates the infinite list of successive integers

beginning with n . Now, to obtain square numbers we simply replace n by n ∗ n in

the second equation.

square = square′ H0I
square ′ n = n ∗ n ] square′ (H1I + n)

To see how the multiset of square numbers is constructed, let us unfold the definition

of square a few steps:

square ′ H0I = H0I ] square′ H1I
= H0I ] (H1I ] square′ H2I)
= H0I ] (H1I ] (H4I ] square′ H3I))
= . . . .

Using this trick we are, in fact, able to enumerate the image of an arbitrary

polynomial (whose coefficients are natural numbers). Even more interesting, this

trick is not only applicable to lists but to other representations of sequences, as well.

But, we are skipping ahead. For now, let us determine the datatypes corresponding

to square and square ′. From the functor equations

Square = Square′ (K Unit)

Square′ f = f · f | Square′ (Id × f )

we can derive the following datatype declarations:

type Square a = Square′ Nil a

data Square ′ t a = Zero (t (t a)) | Succ (Square′ (Cons t) a)

data Nil a = Nil

data Cons t a = Cons a (t a).

The type constructors Nil and Cons t correspond to K Unit and Id × f . As an

aside, note that Nil and Cons are obtained by decomposing the List datatype into a

base and into a recursive case (see section 5). Furthermore, note that Square′ is not

a functor but a higher-order functor as it takes functors to functors, that is, Square′
is a type constructor of kind (∗ → ∗) → (∗ → ∗). Recall that the kind system of

Haskell specifies the ‘type’ of a type constructor (Jones, 1995). The ‘∗’ kind represents

manifest types like Bool or Int . The kind κ1 → κ2 represents type constructors that

map type constructors of kind κ1 to those of kind κ2. The order of a kind is given

by order(∗) = 0 and order(κ1 → κ2) = max{1 + order(κ1), order(κ2)}. Thus, Square′
has a kind of order 2. Though the type of square matrices looks daunting, it is

comparatively easy to construct elements of that type. Here is a square matrix of

size 3.

Succ (Succ (Succ (Zero (Cons (Cons a11 (Cons a12 (Cons a13 Nil )))

(Cons (Cons a21 (Cons a22 (Cons a23 Nil )))

(Cons (Cons a31 (Cons a32 (Cons a33 Nil )))

(Nil )))))))
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Perhaps surprisingly, we have essentially a list of lists! The only difference to the

standard representation is that the size of the matrix is additionally encoded into

a prefix of Zero and Succ constructors. It is this prefix that takes care of the size

constraints. The following table shows the construction of Succ3 (Zero m) in more

detail (f n a means f applied n times to a):

m :: Cons3 Nil (Cons3 Nil Int)

Zero $$ :: Square′ (Cons3 Nil ) Int

Succ $$ :: Square′ (Cons2 Nil ) Int

Succ $$ :: Square′ (Cons Nil ) Int

Succ $$ :: Square′ Nil Int = Square Int .

Roughly speaking, the outer applications of the value constructor Cons make sure

that the inner lists have the same length and Zero checks that the inner lists have

the same length as the outer list.

This completes the overview. The rest of the article is organized as follows.

Section 2 introduces multisets and operations on multisets. Furthermore, we show

how to transform equations into a tail-recursive form. Section 3 explains functors

and makes the relationship between multisets and functors precise. A multitude of

examples is presented in section 4: among other things we study random-access lists,

Braun trees, 2-3 trees, and square matrices. Section 5 shows how to adapt vector

and matrix operations to the new representations. Section 6 reviews related work

and points out a direction for future work. Finally, Appendix A lists the proofs of

the theorems.

2 Multisets

A multiset of type HTI is a collection of elements of type T that takes account of

their number but not of their order. A multiset M can be modelled as a function

into the natural numbers such that M x is the number of occurrences of x in M .

In order to give a meaning to recursion equations such as M = H1I ] M , we also

allow elements to occur infinitely often. Thus, the set of multisets over T is given byHTI = T → N∞ where N∞ = N ∪ {∞}. On HTI we can define the usual pointwise

order M F N ⇐⇒ ∀t ∈ T . M t 6 N t where (6) is the standard order on the

naturals additionally setting n 6 ∞. Then (HTI,F) forms a complete partial order.

In this article, we will only consider multisets formed according to the following

grammar:

M ::= ? | H0I | H1I | (M ] M ) | (M + M ) | (M ∗M ).

Here, ? denotes the empty multiset, HnI with n ∈ {0, 1} denotes the singleton multiset

that contains n exactly once, ‘]’ denotes multiset union, ‘+’ and ‘∗’ are addition and

multiplication lifted to multisets: A ⊗ B = Ha ⊗ b | a ← A; b ← BI for ⊗ ∈ {+, ∗}.
Note that the operations (]) :: HTI→ HTI→ HTI and (+), (∗) :: HNatI→ HNatI→HNatI are continuous with respect to ‘F’. If the meaning can be resolved from the

context, we abbreviate HnI by n , where HnI = H1I+ Hn − 1I for n > 1. Furthermore,
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Fig. 1. Laws of the operations.

we assume that multiplication takes precedence over addition, which in turn takes

precedence over multiset union.

Multisets are defined by higher-order recursion equations. Higher-order means

that the equations may involve not only multisets, but also functions over multisets,

functions over functions over multisets, etc. We will, however, only make use of

first-order equations. The exploration of higher-order kinds is the topic of future

research. The meaning of higher-order recursion equations is given by the usual

least-fixpoints semantics. As an example, consider the following equations:

M1 = H1I ] M1

M2 = H1I + M2

M3 = H1I ∗M3.

The first equation defines the multiset that contains 1 infinitely often. Since we take

the least fixpoint, M2 and M3 both define the empty multiset.

A multiset is called simple iff it contains exactly one element. Simple multisets are

denoted by lower case letters. A product A ∗ B is called admissible iff B denotes a

simple multiset. For instance, nat ∗ 2 is admissible while nat ∗ nat is not. We will see

in section 3 that only admissible products correspond to compositions of functors.

That is, nat ∗ 2 corresponds to Nat · (Id × Id ) but nat ∗ nat does not correspond

to Nat · Nat . For that reason, we restrict ourselves to admissible products when

defining multisets.

A multiset is called unique iff each element occurs at most once. For instance,

the multiset pos given by pos = 1 ] 1 + pos is unique whereas pos = 1 ] pos + pos

denotes a non-unique multiset. Note that the first definition corresponds to non-

empty lists and the second to leaf trees. The ability to distinguish between unique

and non-unique representations is the main reason for using multisets instead of

sets.

The multiset operations satisfy a variety of laws listed in figure 1. The laws

have been chosen so that they hold both for multisets and for the corresponding
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operations on functors. This explains why, for instance, a ∗ b = b ∗ a is restricted

to simple multisets: the corresponding property on functors, F · G = G · F , does

not hold in general. It is valid, however, if F and G each comprise only a single

container. Of course, for functors the equations state isomorphisms rather than

equalities.

In the introduction we have transformed the recursive definition of the multiset

of all natural numbers into a tail-recursive form. In the rest of this section we will

study this transformation in more detail. A continuous function h :: HTI→ HTI on

multisets is said to be a homomorphism iff h ? = ? and h (A ] B ) = h A ] h B .

For instance, h N = A + N ∗ b is a homomorphism while g N = N + N is not. Let

A be a multiset, let h1, . . . , hn be homomorphisms, and let X be given by

X = A ] h1 X ] · · · ] hn X .

The definition of X is not tail-recursive as the recursive occurrences of X are nested

inside function calls. Note that nat is an instance of this scheme with A = H0I, n = 1,

and h1 N = H1I + N . Now, the tail-recursive variant of X is f A with f given by

f Y = Y ] f (h1 Y ) ] · · · ] f (hn Y ).

The definition of f is called tail-recursive—think of ‘]’ as a conditional. Note that

nat ′ H0I is the tail-recursive variant of nat . The correctness of the transformation is

implied by the following theorem, whose proof is given in Appendix A.1.

Theorem 1

Let X :: HTI, A :: HTI, and f :: HTI→ HTI be given as above. Then X = f A.

3 Functors

In close analogy to multiset expressions we define the syntax of functor expressions

by the following grammar:

F ::= K Void | K Unit | Id | (F | F ) | (F × F ) | (F · F ).

Here, K t denotes the constant functor given by K t a = t , Void is the empty

type, and Unit is the unit type containing a single element. By Id we denote

the identity functor given by Id a = a and F1 · F2 denotes functor composition

given by (F1 · F2) a = F1 (F2 a). Sums and products are defined pointwise:

(F1 | F2) a = F1 a | F2 a and (F1 × F2) a = F1 a × F2 a .

All these constructs can be easily defined in Haskell. First of all, we require the

following type definitions:2

data Void

type Unit = ( )

data Either a1 a2 = Left a1 | Right a2

data (a1, a2) = (a1, a2).

2 Note that Void was defined in Haskell 1.4; it is, however, no longer part of Haskell 98.
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The predefined types Either a1 a2 and (a1, a2) implement sums and products. The

operations on functors are then defined by

newtype Id a = Id a

newtype K a b = K a

newtype Sum t1 t2 a = Sum (Either (t1 a) (t2 a))

newtype Prod t1 t2 a = Prod (t1 a , t2 a)

newtype Comp t1 t2 a = Comp (t1 (t2 a)).

Using these type constructors it is straightforward to translate a functor equation

into a Haskell datatype definition. For reasons of readability, we will often define

special instances of the general schemes, writing Nil instead of K Unit or Cons t

instead of Prod Id t .

Remark 1

We tacitly assume that we are working in a strict rather than in a lazy setting.

Otherwise, the datatypes additionally contain unwanted elements such as infinite

and partial elements. For example, in a lazy setting, Unit typically contains two

elements: the desired unit element and ⊥. In the case of sum and product types we

can avoid extra elements using strictness annotations

data Either a1 a2 = Left !a1 | Right !a2

data (a1, a2) = (!a1, !a2),

but we refrain from being that pedantic. As an aside, note that we do not use

Standard ML for the examples because Standard ML has only first-order kinded

datatypes. q

The translation of multisets into functors is given by the following table.

M1 M2 ? H0I H1I M1 ] M2 M1 + M2 M1 ∗M2

F1 F2 K Void K Unit Id F1 | F2 F1 × F2 F1 · F2

We say that F corresponds to M if F is obtained from M using this translation. In

the rest of this section we will sketch the correctness of the translation (the proof

can be found in Appendix A.2). Informally, the functor corresponding to a multiset

M contains, for each member of M , a container of that size. This statement can

be made precise using the framework of polytypic programming (Hinze, 2000b).

Briefly, a polytypic function is one that is defined by induction on the structure

of functor expressions. An example of such a function is sum〈F 〉 :: F Nat → Nat ,

which sums a structure of natural numbers. To make the relationship between

multisets and functors precise we furthermore require the function fan〈F 〉 :: a →HF aI, which generates the multiset of all structures of type F a from a given

seed of type a . For instance, fan〈List〉 1 generates the multiset of all finite lists

that contain the natural number 1 as the single element, that is, fan〈List〉 1 =HNil ,Cons 1 Nil ,Cons 1 (Cons 1 Nil ),Cons 1 (Cons 1 (Cons 1 Nil )), . . .I.
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Theorem 2
If the functor F corresponds to the multiset M and if M ’s definition only involves

admissible products, then M = Hsum〈F 〉 a | a ← fan〈F 〉 1I.
The following example shows that it is necessary to restrict products to admissible

products: if we compose the functors corresponding to H1, 2I and H1, 3I, we obtain

a functor that corresponds to H1, 3I ] (H1, 3I + H1, 3I) = H1, 2, 3, 4, 4, 6I. In general,

functor composition corresponds to the non-commutative multiset operation ‘�’

given by

A � B = Hb1 + · · ·+ ba | a ← A; b1 ← B ; . . . ; ba ← BI.
In words, we take a container of type A and fill each of its slots with a container of

type B . Summing the sizes of the B containers yields the overall size. The operations

‘∗’ and ‘�’ coincide only for admissible products, that is, if B contains only one

container so that b1 = · · · = ba .

4 Examples

In this section we apply the framework to generate efficient implementations of

vectors (also known as lists or sequences or arrays) and matrices.

4.1 Lists

A vector or sequence type comprises containers of arbitrary size. The problem related

to designing a sequence type is, of course, to generate the multiset of all natural

numbers. Different ways to describe this set correspond to different implementations

of vectors. Perhaps surprisingly, there is an abundance of ways to solve this problem.

In the introduction we already encountered the most direct solution:

nat0 = 0 ] 1 + nat0.

If we transform the corresponding functor equation

Nat0 = K Unit | Id ×Nat0

into a Haskell datatype, we obtain the ubiquitous datatype of lists.

data Vector a = Nil | Cons a (Vector a)

As an example, the list representation of the vector (0, 1, 2, 3, 4, 5) is

Cons 0 (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 Nil ))))).

The tail-recursive variant of nat0 is given by

nat1 = nat ′1 0

nat ′1 n = n ] nat ′1 (1 + n).

From the functor equations

Nat1 = Nat ′1 (K Unit)

Nat ′1 f = f | Nat ′1 (Id × f )
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we can derive the following datatype definitions:

type Vector = Vector ′ Nil

data Vector ′ t a = Zero (t a) | Succ (Vector ′ (Cons t) a).

Using this representation the vector (0, 1, 2, 3, 4, 5) is written somewhat lengthily as

Succ (Succ (Succ (Succ (Succ (Succ (Zero (

Cons 0 (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 Nil )))))))))))).

Fortunately, we can simplify the definitions slightly. Recall that Vector ′ is a type

constructor of kind (∗ → ∗)→ (∗ → ∗). However, in this case the ‘higher-orderness’

is not required. Noting that the first argument of Vector ′ is always applied to the

second, we can transform Vector ′ into a first-order functor of kind ∗ → ∗ → ∗.
type Vector = Vector ′ ()

data Vector ′ t a = Zero t | Succ (Vector ′ (a , t) a)

The two variants of Vector ′ are related by Vector ′ho t a = Vector ′fo (t a) a and

Vector ′fo t a = Vector ′ho (K t) a . Note that the type Square′ defined in the introduc-

tion is not amenable to this transformation since the first argument of Square′ is used

at different instances. Using the first-order definition (0, 1, 2, 3, 4, 5) is represented by

Succ (Succ (Succ (Succ (Succ (Succ (Zero (0, (1, (2, (3, (4, (5, ())))))))))))).

4.2 Random-access lists

The definition of nat0 is based on the unary representation of the natural numbers:

a natural number is either zero or the successor of a natural number. Of course,

we can also base the definition on the binary number system: a natural number is

either zero, even, or odd.

nat2 = 0 ] nat2 ∗ 2 ] 1 + nat2 ∗ 2

Transforming the corresponding functor equation

Nat2 = K Unit | Nat2 · (Id × Id ) | Id ×Nat2 · (Id × Id )

into a Haskell datatype yields

data Vector a = End | Zero (Vector (a , a)) | One a (Vector (a , a)).

Interestingly, this definition implements random-access lists (Okasaki, 1998), which

support logarithmic access to individual vector elements. A random-access list is ba-

sically a sequence of perfect leaf trees of increasing height. The vector (0, 1, 2, 3, 4, 5),

for instance, is represented by

Zero (One (0, 1) (One ((2, 3), (4, 5)) End )).

The sequence of Zero and One constructors encodes the size of the vector in

binary representation (with the least significant bit first). In this example we have

(011)2 = 6. The representation of a vector of size 11 is depicted in figure 2(a)—the
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remaining examples in figure 2 will be discussed in the following few sections. Note

that the representation is not unique because of trailing zeros: the empty sequence,

for example, can be represented by End , Zero End , Zero (Zero End ), etc. There are

at least two ways to repair this defect. The following definition ensures that the last

digit is always a one:

nat3 = 0 ] pos3

pos3 = 1 ] pos3 ∗ 2 ] 1 + pos3 ∗ 2.

More elegantly, one can define a zeroless representation (Okasaki, 1998), which

employs the digits 1 and 2 instead of 0 and 1. We call this variant of the binary

number system the 1-2 system.

nat4 = 0 ] 1 + nat4 ∗ 2 ] 2 + nat4 ∗ 2

This alternative has the further advantage that accessing the i -th element runs in

O(log i) time (Okasaki, 1998).

4.3 Fork-node trees

Now, let us transform nat3 into a tail-recursive form.

nat5 = 0 ] pos ′5 1

pos ′5 n = n ] pos ′5 (n ∗ 2) ] pos ′5 (1 + n ∗ 2)

The corresponding functor equations look puzzling.

Nat5 = K Unit | Pos ′5 Id

Pos ′5 f = f | Pos ′5 (f · (Id × Id )) | Pos ′5 (Id × f · (Id × Id ))

Note that we may replace n ∗ 2 by 2 ∗ n in the definition of pos ′5 if the function is

called with a simple multiset as in pos ′5 1. In order to improve the readability of the

derived datatypes let us define idioms for 2 ∗ n = n + n and 1 + 2 ∗ n = 1 + n + n:

data Fork t a = Fork (t a) (t a)

data Node t a = Node a (t a) (t a).

These definitions assume that t is a simple functor, that is, a functor which contains

exactly one container. The alternative definitions newtype Fork ′ t a = Fork ′ (t (a , a))

and data Node ′ t a = Node′ a (t (a , a)), which correspond to n ∗ 2 and 1 + n ∗ 2,

work for arbitrary functors but are more awkward to use. Building upon Fork and

Node, the Haskell datatypes read

data Vector a = Empty | NonEmpty (Vector ′ Id a)

data Vector ′ t a = Base (t a)

| Zero (Vector ′ (Fork t) a)

| One (Vector ′ (Node t) a).

A vector of size n is represented by a complete binary tree of height blog2 nc + 1.

A node in the i-th level of this tree is labelled with an element iff the i-th digit
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Fig. 2. Different representations of a vector with 11 elements. Note that ‘ ’ represents a leaf

(an element of Id ), ‘ ’ an unlabelled node (an element of Id × Id , Fork t , or Prod t1 t2), and

‘ ’ a labelled node (an element of Node t or Bin t1 t2).

in the binary decomposition of n is one. The lowest level, which corresponds to a

leading one, always contains elements. To the best of the author’s knowledge this

data structure, which we baptize fork-node trees for want of a better name, has

not been described elsewhere.3 Our running example, the vector (0, 1, 2, 3, 4, 5), is

represented by

NonEmpty (One (Zero (Base (

Fork (Node 0 (Id 1) (Id 2)) (Node 3 (Id 4) (Id 5)))))).

Again, the size of the vector is encoded into the prefix of constructors: replacing

NonEmpty and One by 1 and Zero by 0 yields the binary decomposition of the size

with the most significant bit first. Figure 2(b) shows a sample vector of 11 elements.

3 I have learned, however, that Hongwei Xi has independently discovered the same data structure.
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The vector elements are stored in left-to-right preorder in the example above: if

the tree has a root, it contains the first element; the elements in the left tree precede

the elements in the right tree. This layout is, however, by no means compelling.

Alternatively, one can interleave the elements of the left and the right subtree: if l

represents the vector (b1, . . . , bn ) and r represents (c1, . . . , cn ), then Fork l r represents

the vector (b1, c1, . . . , bn , cn ) and Node a l r represents (a , b1, c1, . . . , bn , cn ). This choice

facilitates the extension of a vector at the front and also slightly simplifies accessing

a vector element (see section 5.2).

As usual for vector types we can ‘firstify’ the type definitions.

data Vector a = Empty | NonEmpty (Vector ′ a a)

data Vector ′ t a = Base t

| Zero (Vector ′ (t , t) a)

| One (Vector ′ (a , t , t) a)

The representation of (0, 1, 2, 3, 4, 5) now consists of nested pairs and triples.

NonEmpty (One (Zero (Base ((0, 1, 2), (3, 4, 5)))))

Finally, let us remark that the tail-recursive variant of nat4, which is based on the

1-2 system, yields a similar tree shape: a node on the i-th level contains d elements

where d is the i-th digit in the 1-2 decomposition of the vector’s size.

4.4 Rightist right-perfect trees

The definition of nat2 is based on the fact that all natural numbers can be generated

by shifting (n ∗ 2) and setting the least significant bit (1 + n ∗ 2). The following

definition sets bits by repeatedly shifting a one:

nat6 = nat ′6 1

nat ′6 p = 0 ] nat ′6 (p ∗ 2) ] p + nat ′6 (p ∗ 2).

Of course, the two definitions are not unrelated, we have

nat2 ∗ p = nat ′6 p,

that is, nat ′6 p generates all multiples of p. In the i -th level of recursion the parameter

of nat ′6 equals p∗2i if the initial call was nat ′6 p. Now, transforming the corresponding

functor equations

Nat6 = Nat ′6 Id

Nat ′6 f = f | Nat ′6 (f × f ) | f ×Nat ′6 (f × f ),

which assume that f is simple, into Haskell datatypes yields

type Vector = Vector ′ Id

data Vector ′ t a = End

| Zero (Vector ′ (Fork t) a)

| One (t a) (Vector ′ (Fork t) a).
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This datatype implements higher-order random-access lists (Hinze, 1998). If we

‘firstify’ the type constructor Vector ′, we obtain the first-order variant as defined in

section 4.2. For a discussion of the tradeoffs we refer the interested reader to Hinze

(1998). The vector (0, 1, 2, 3, 4, 5) is represented by

Zero (One (Fork (Id 0) (Id 1))

(One (Fork (Fork (Id 2) (Id 3)) (Fork (Id 4) (Id 6))) End )).

Interestingly, using a slight generalization of Theorem 1 we can transform nat ′6
into a tail-recursive form, as well.

nat7 = nat ′7 0 1

nat ′7 n p = n ] nat ′7 n (p ∗ 2) ] nat ′7 (n + p) (p ∗ 2)

The function nat ′7 is related to nat2 by

n + nat2 ∗ p = nat ′7 n p.

Assuming that p is simple we get the following functor equations:

Nat7 = Nat ′7 (K Unit) Id

Nat ′7 f p = f | Nat ′7 f (p × p) | Nat ′7 (f × p) (p × p),

from which we can easily derive the datatype definitions below.

type Vector = Vector ′ (K Unit) Id

data Vector ′ t p a = Base (t a)

| Even (Vector ′ t (Prod p p) a)

| Odd (Vector ′ (Prod t p) (Prod p p) a)

This datatype implements rightist right-perfect trees or RR-trees (Dielissen & Kalde-

waij, 1995) where the offsprings of the nodes on the left spine form a sequence of

perfect leaf trees of increasing height (assuming that we traverse the spine top-down

starting at the root). Note that if we change Prod t p to Prod p t in the last line,

we obtain leftist left-perfect trees. Here is the vector (0, 1, 2, 3, 4, 5) written as an

RR-tree.

Even (Odd (Odd (Base (Prod (Prod (K (),Prod (Id 0, Id 1)),

Prod (Prod (Id 2, Id 3),Prod (Id 4, Id 5)))))))

Reading the constructors Even and Odd as digits (least significant bit first) gives

the size of the vector. A sample vector of size 11 is shown in figure 2(c). The

‘firstification’ of Vector ′ is left as an exercise to the reader.

4.5 Braun trees

Let us apply the framework to design a representation of Braun trees (Braun &

Rem, 1983). Braun trees are node-oriented trees, that is, the inner nodes are labelled

with elements. They are characterized by the following balance condition: for all

subtrees, the size of the left subtree is either exactly the size of the right subtree, or
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one element larger. In other words, a Braun tree of size 2 ∗ n + 1 has two children

of size n and a Braun tree of size 2 ∗ n + 2 has a left child of size n + 1 and a right

child of size n . This motivates the following definition:

braun = braun ′ 0 1

braun ′ n n ′ = n ] braun ′ (1 + n + n) (1 + n ′ + n)

] braun ′ (1 + n ′ + n) (1 + n ′ + n ′).

A similar decomposition is used in Okasaki (1997) to initialize a Braun tree. The

arguments of braun ′ are always two successive natural numbers. From the corre-

sponding functor equations

Braun = Braun ′ (K Unit) Id

Braun ′ f f ′ = f | Braun ′ (Id × f × f ) (Id × f ′ × f )

| Braun ′ (Id × f ′ × f ) (Id × f ′ × f ′)

we can derive the following datatype definitions:

data Bin t1 t2 a = Bin a (t1 a) (t2 a)

type Braun = Braun ′ (K Unit) Id

data Braun ′ t t ′ a = Base (t a)

| One (Braun ′ (Bin t t) (Bin t ′ t) a)

| Two (Braun ′ (Bin t ′ t) (Bin t ′ t ′) a).

Interestingly, Braun trees are based on the 1-2 number system (most significant bit

first). The vector (0, 1, 2, 3, 4, 5), for instance, is represented as follows:

Two (Two (Base (Bin 3 (Bin 1 (Id 0) (Id 2)) (Bin 5 (Id 4) (K ()))))).

Figure 2(d) displays the representation of a vector of 11 elements. Ross Paterson

has described a similar implementation (personal communication).

4.6 Left-complete trees

Braun trees are a popular data structure for implementing heaps (also known as

priority queues). Another common heap data structure is the left-complete tree (heap

for short), which has the leaves on the lowest level in the leftmost possible positions.

These trees underlie, for instance, heapsort (Williams, 1964).

The following characterization of heaps, which is due to Ross Paterson (personal

communication), proceeds by induction on the height: a heap of height 0 is an empty

tree, a heap of height h + 1 is either a node whose left subtree is a heap of height h

and whose right subtree is a perfect tree of height h−1 or a node whose left subtree

is a perfect tree of height h and whose right subtree is a heap of height h . Note that

both heaps and perfect trees like Braun trees are node-oriented. Furthermore, note

that by definition there are no perfect trees of height −1 (so there is only one heap

of height 1). The characterization suggests the following tail-recursive definition of
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heaps:

heap1 = heap ′1 0 ? 0

heap ′1 H p p ′ = H ] heap ′1 (1 + H + p ] 1 + p ′ + H ) p ′ (1 + p ′ ∗ 2).

The first argument of heap1 comprises heaps of height h , the second argument is

a perfect tree of height h − 1, and the third is a perfect tree of height h . In other

words, the n-th recursive call equals heap ′1 Ha +1, . . . , a ′I a a ′ where a = 2n−1−1 and

a′ = 2n − 1. Interestingly, this is the first definition where ‘]’ is used in an argument

position. It is worth noting, however, that though the first argument of heap ′1 is

not simple, heap1 denotes a unique multiset. Now, transforming the corresponding

functor equations

Heap1 = Heap ′1 (K Unit) (K Void ) (K Unit)

Heap ′1 h f f ′ = h | Heap ′1 (Id × h × f | Id × f ′ × h) f ′ (Id × f ′ · (Id × Id ))

into Haskell datatypes yields

type Heap = Heap ′ (K Unit) (K Void ) (K Unit)

data Heap ′ h t t ′ a = Zero (h a)

| Succ (Heap ′ (Sum (Bin h t) (Bin t ′ h)) t ′ (Node t ′) a).

The representation of the vector (0, 1, 2, 3, 4, 5) is rather lengthy.

Succ (Succ (Succ (Zero (right (Bin 3 (Node 0 (Node 1 (K ()) (K ()))

(Node 2 (K ()) (K ())))

(left (Bin 5 (right (Bin 4 (K ()) (K ())))

(K ()))))))))

Here, left a abbreviates Sum (Left a) and right a abbreviates Sum (Right a). Note

that the term encodes both the height and the size of the heap. The prefix of Succ and

Zero constructors represents the height. The sequence of left and right constructors

encodes the size: if we replace left by 0, right by 1, remove the trailing 1 and add a

leading 1, then we obtain the binary decomposition of the size (most significant bit

first). Figure 3(a) shows a heap containing 11 elements. The representation of heaps

is unwieldy mainly because ‘]’ is used in an argument position. Fortunately, we can

simplify the definition of heap ′1 by noting that λh → heap ′1 h p p ′ for fixed p and p ′
is a homomorphism (this can be shown by a simple fixpoint induction). Pushing ‘]’

to the outside and simplifying the base case we obtain

heap2 = heap ′2 0 0 1

heap ′2 h p p ′ = h ] heap ′2 (1 + h + p) p ′ (1 + p ′ ∗ 2)

] heap ′2 (1 + p ′ + h) p ′ (1 + p ′ ∗ 2).

Here are the corresponding functor equations

Heap2 = Heap ′2 (K Unit) (K Unit) Id

Heap ′2 h f f ′ = h | Heap ′2 (Id × h × f ) f ′ (Id × f ′ · (Id × Id ))

| Heap ′2 (Id × f ′ × h) f ′ (Id × f ′ · (Id × Id ))
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Fig. 3. Different representations of a vector with 11 elements (continued).

and finally the Haskell datatype declarations, which assume that t ′ is simple.

type Heap = Heap ′ (K Unit) (K Unit) Id

data Heap ′ h t t ′ a = Base (h a)

| One (Heap ′ (Bin h t) t ′ (Node t ′) a)

| Two (Heap ′ (Bin t ′ h) t ′ (Node t ′) a)

Perhaps surprisingly, the transformation yields a representation that is based on

the 1-2 number system (least significant bit first). For background information the

interested reader is referred to Hinze (1999), which explains the relationship between

heaps and different number systems in more detail. The representation of the vector

(0, 1, 2, 3, 4, 5) is much more compact now.

Two (Two (Base (Bin 3 (Node 0 (Id 1) (Id 2)) (Bin 5 (Id 4) (K ())))))

Figure 3(b) displays a heap comprising 11 elements.

4.7 2-3 trees

Up to now we have mainly considered unique representations where the shape of

a data structure is completely determined by the number of elements it contains.
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Interestingly, unique representations are not well-suited for implementing search

trees: one can prove a lower bound of Ω(
√
n) for insertion and deletion in this case

(Snyder, 1977). For that reason, popular search tree schemes such as 2-3 trees (Aho

et al., 1983), red-black trees (Guibas & Sedgewick, 1978), and AVL-trees (Adel’son-

Vel’skiı̆ & Landis, 1962) are always based on non-unique representations. Let us

consider how to implement, say, 2-3 trees. The other search tree schemes can be

handled in an analogous fashion. The definition of 2-3 trees is similar to that of

perfect leaf trees: a 2-3 tree of height 0 is a leaf and a 2-3 tree of height h + 1 is a

node with either two or three children, each of which is a 2-3 tree of height h . This

similarity suggests modelling 2-3 trees as follows:

tree23 = tree23 ′ 0

tree23 ′ N = N ] tree23 ′ (N + 1 + N ] N + 1 + N + 1 + N ).

Note that contrary to previous definitions the parameter of the auxiliary function

does not range over simple multisets. The corresponding functor equations

Tree23 = Tree23 ′ (K Unit)

Tree23 ′ F = F | Tree23 ′ (F × Id × F | F × Id × F × Id × F )

give rise to the following datatype definitions:

type Tree23 a = Tree23 ′ Nil a

data Tree23 ′ t a = Zero (t a) | Succ (Tree23 ′ (Node23 t) a)

data Node23 t a = Node2 (t a) a (t a) | Node3 (t a) a (t a) a (t a).

The vector (0, 1, 2, 3, 4, 5) has three different representations; one alternative is

Succ (Succ (Zero (Node3 (Node3 Nil 0 Nil 1 Nil ) 2 (Node2 Nil 3 Nil )

4 (Node2 Nil 5 Nil )))).

Algorithms for insertion and deletion are described in Hinze (1998).

4.8 Square and rectangular matrices

Let us finally design representations of square matrices and rectangular matrices. In

the introduction we have already discussed the central idea: we take a tail-recursive

definition of the natural numbers (or of the positive numbers)

X = f a

f y = y ] f (h1 y) ] · · · ] f (hn y)

and replace y by y ∗ y in the second equation:

square = square ′ a

square′ y = y ∗ y ] square′ (h1 y) ] · · · ] square′ (hn y).

This transformation works provided a is a simple multiset and the hi preserve

simplicity. These conditions hold for all of the examples above with the notable
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Fig. 4. The representation of a 6× 6 matrix based on fork-node trees.

exception of 2-3 trees. As a concrete example, here is an implementation of square

matrices based on fork-node trees.

data Square a = Empty | NonEmpty (Square′ Id a)

data Square ′ t a = Base (t (t a))

| Zero (Square′ (Fork t) a)

| One (Square′ (Node t) a)

The representation of a 6× 6 matrix is shown in figure 4.

Rectangular matrices are equally easy to implement. In this case we replace y by

nat ∗ y in the second equation:

rect = rect ′ a

rect ′ y = nat ∗ y ] rect ′ (h1 y) ] · · · ] rect ′ (hn y).

Alternatively, one may use the following scheme:

rect = rect ′ a a

rect ′ y z = y ∗ z ] rect ′ (h1 y) (h1 z ) ] · · · ] rect ′ (h1 y) (hn z )

] · · ·
] rect ′ (hn y) (h1 z ) ] · · · ] rect ′ (hn y) (hn z ).

This representation requires more constructors than the first one (n2 + 1 instead of

n+ 1). On the positive side, it can easily be generalized to higher dimensions.
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5 Vector and matrix operations

Many of the Haskell datatype declarations we have seen so far are unusual, some

even mind-boggling. The question naturally arises how the standard vector and

matrix operations can be adapted to these new representations.

Fortunately, several functions can be generated automatically using the technique

of polytypic programming (Hinze, 2000b). A useful polytypic function is the so-

called mapping function map〈F 〉 :: ∀a b. (a → b) → (F a → F b), which applies

a given function to each element of type a in a given container of type F a . The

mapping function can be used, for instance, to multiply a vector or a matrix by a

scalar: map〈F 〉 (times c) where times a b = a ∗ b. A related function is the zipping

function zip〈F 〉 :: ∀a b c. (a → b → c) → (F a → F b → F c), which takes two

containers of the same shape and combines them into a single container. Zipping

with ‘+’, for instance, implements vector and matrix addition. Further examples for

polytypic functions include equality and comparison functions, pretty printers (such

as Haskell’s show function), and parsers (such as Haskell’s read function).

In the rest of this section we explain how to implement non-polytypic operations

in a fairly systematic manner. For concreteness, we use vector and matrix represen-

tations based on fork-node trees. Recall that a fork-node tree is a complete binary

tree, where the nodes in each level are either consistently labelled or consistently

unlabelled. The bottom-up definition of fork-node trees given in section 4.3 captures

these structural constraints. As usual, the straightforward top-down definition

data Tree a = Id a | Fork (Tree a) (Tree a) | Node a (Tree a) (Tree a)

fails to meet the requirements. Interestingly though, both definitions are closely

related. Consider the definitions of the subsidiary types that are used in Vector and

Vector ′.

newtype Id a = Id a

data Fork tree a = Fork (tree a) (tree a)

data Node tree a = Node a (tree a) (tree a)

These types can be seen as decompositions of the regular type constructor Tree:

instead of a single type consisting of three constructors we have three types each

consisting of a single constructor, where the recursive type calls are turned into type

arguments. Of course, this is not a coincidence since Vector and Vector ′ result from

an application of Theorem 1: Id corresponds to the multiset A and Fork and Node

correspond to the homomorphisms hi. Generally, every datatype that stems from

the transformation into a tail-recursive form incorporates a similar decomposition.

Now, the basic idea for implementing operations on fork-node trees is to let

‘function follow type’. We start by defining the required operation on regular trees,

that is, on elements of type Tree. This is usually the creative part. Then we decompose

this function into a base and two recursive cases mirroring the decomposition of

Tree into Id , Fork , and Node. Finally, we write ‘wrapping code’ for Vector and
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Vector ′. The development in this section is essentially based on Hinze (1998), which

shows how to adapt search tree algorithms to nested representations of search

trees.

5.1 Vector Traversal

Let us illustrate the basic idea with a simple example: collecting the elements of a

vector from left to right in a list. The type of the traversal function is given by

type Flatten t = ∀a . t a → [a ].

Note that Flatten is parameterized by the vector type, which is of kind ∗ → ∗.
Furthermore, note that this type declaration is not legal Haskell 98 since it introduces

a polymorphic type on the right-hand side. Type synonyms like Flatten will, however,

prove to be very useful.

We assume that the vector elements are stored as follows: if l represents the

vector (b1, . . . , bn ) and r represents (c1, . . . , cn ), then Fork l r represents the vector

(b1, c1, . . . , bn , cn ) and Node a l r represents (a , b1, c1, . . . , bn , cn ). Transliterating this

description into Haskell yields the desired traversal function:

flatten :: Flatten Tree

flatten (Id a) = [a ]

flatten (Fork l r) = interleave (flatten l ) (flatten r)

flatten (Node a l r) = a : interleave (flatten l ) (flatten r)

interleave :: ∀a . [a ]→ [a ]→ [a ]

interleave [ ] as2 = as2

interleave (a : as1) as2 = a : interleave as2 as1.

Note that flatten is defined by structural recursion over the datatype Tree, that

is, flatten is a so-called catamorphism (Meijer et al., 1991). This renders it easy to

decompose the function.

flattenId :: Flatten Id

flattenId (Id a) = [a ]

flattenFork :: ∀t . Flatten t → Flatten (Fork t)

flattenFork flt (Fork l r) = interleave (flt l ) (flt r)

flattenNode :: ∀t . Flatten t → Flatten (Node t)

flattenNode flt (Node a l r) = a : interleave (flt l ) (flt r)

The recursive calls are turned into function arguments mirroring the transformations

on the type level. Again, we make use of an extension to Haskell’s type system: both

flattenFork and flattenNode have so-called rank-2 type signatures (Leivant, 1983),
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that is, they operate on polymorphic functions.4 Now, in defining the traversal

function for Vector we follow again the structure of the datatype definition.

flattenVector :: Flatten Vector

flattenVector Empty = [ ]

flattenVector (NonEmpty v ) = flattenVector ′ flattenId v

flattenVector ′ :: ∀t . Flatten t → Flatten (Vector ′ t)

flattenVector ′ flt (Base v ) = flt v

flattenVector ′ flt (Zero v ) = flattenVector ′ (flattenFork flt) v

flattenVector ′ flt (One v ) = flattenVector ′ (flattenNode flt) v

While recursing flattenVector ′ constructs a tailor-made traversal function, which is

eventually applied in the base case. As an aside, note that flatten and flattenVector

take O(n log n) time. The running time can be improved to O(n) using a variant of

the bottom-up traversal described in Hinze (2000a).

5.2 Vector indexing

The particular layout of vector elements was chosen to simplify the definition of

the indexing function. Since the elements of the left and the right subtree are

intertwined, the least significant bit of the index indicates the subtree in which the

indexed element is located. On vectors of type Tree the indexing function takes the

following form:

type Sub t = ∀a . Int → t a → Maybe a

sub :: Sub Tree

sub n (Id a)

| n 0 = Just a

| otherwise = Nothing

sub n (Fork l r)

| n ‘mod ‘ 2 0 = sub (n ‘div ‘ 2) l

| otherwise = sub (n ‘div ‘ 2) r

sub n (Node a l r)

| n 0 = Just a

| m ‘mod ‘ 2 0 = sub (m ‘div ‘ 2) l

| otherwise = sub (m ‘div ‘ 2) r

where m = n − 1.

If the index n is out of range, sub n v returns Nothing . Otherwise, it yields Just a

where a is the requested element. Again, it is straightforward to decompose the

4 In this case we can turn the rank-2 type signatures into ordinary rank-1 type signatures:

flattenFork :: ∀t . ∀a . (t a → [a ])→ (Fork t a → [a ])

flattenNode :: ∀t . ∀a . (t a → [a ])→ (Node t a → [a ]).

This transformation, that is, simplifying (∀a . t)→ (∀a . u) to ∀a . t → u works as long as the decomposed
function does not rely on polymorphic recursion (Mycroft, 1984).
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function into the three cases.

subId :: Sub Id

subId n (Id a)

| n 0 = Just a

| otherwise = Nothing

subFork :: ∀t . Sub t → Sub (Fork t)

subFork subt n (Fork l r)

| n ‘mod ‘ 2 0 = subt (n ‘div ‘ 2) l

| otherwise = subt (n ‘div ‘ 2) r

subNode :: ∀t . Sub t → Sub (Node t)

subNode subt n (Node a l r)

| n 0 = Just a

| m ‘mod ‘ 2 0 = subt (m ‘div ‘ 2) l

| otherwise = subt (m ‘div ‘ 2) r

where m = n − 1

The ‘wrapping code’ for vector indexing is very similar to that for vector traversal.

subVector :: Sub Vector

subVector n Empty = Nothing

subVector n (NonEmpty v ) = subVector ′ subId n v

subVector ′ :: ∀t . Sub t → Sub (Vector ′ t)

subVector ′ subt n (Base v ) = subt n v

subVector ′ subt n (Zero v ) = subVector ′ (subFork subt) n v

subVector ′ subt n (One v ) = subVector ′ (subNode subt) n v

In general, all catamorphisms on Tree can be adapted along these lines.

5.3 Matrix indexing

Building upon the functions of the previous section we can quite easily implement

matrix indexing. Recall that the type of square matrices differs from the vector

type only in the base case where we have Base (t (t a)) instead of Base (t a).

Consequently, we only have to change one equation.

type SubMatrix m = ∀a . (Int , Int)→ m a → Maybe a

subSquare :: SubMatrix Square

subSquare (i , j ) Empty = Nothing

subSquare (i , j ) (NonEmpty m) = subSquare′ subId (i , j ) m

subSquare ′ :: ∀t . Sub t → SubMatrix (Square′ t)

subSquare ′ subt (i , j ) (Base m) = subt i m >>= subt j

subSquare′ subt (i , j ) (Zero m) = subSquare′ (subFork subt) (i , j ) m

subSquare ′ subt (i , j ) (One m) = subSquare′ (subNode subt) (i , j ) m

Note that the call subt n v has been replaced by subt i m >>= subt j . A remark

is appropriate: the so-called monadic application ‘>>=’ takes care of ‘out of range’
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exceptions. If subt i m yields Nothing , then Nothing is propagated; if it returns

Just v , then subt j is applied to v .

5.4 Vector creation

Roughly speaking, a catamorphism is a function that consumes a data structure.

Its dual, an anamorphism, produces a data structure. While both classes are equally

important, anamorphisms are slightly harder to adapt. To illustrate the additional

work involved let us implement an operation that creates a vector of a given length.

For simplicity, we assume that the length is given as a bit list with the least significant

bit first.

type Make t = ∀a . a → t a

make :: [Bit ]→ Make Tree -- LSB first

make [1] a = Id a

make (0 : bs) a = Fork (make bs a) (make bs a)

make (1 : bs) a = Node a (make bs a) (make bs a)

The call make (bits n) a creates a vector containing n copies of a . Now, since make

performs a case analysis on the bit list, we cannot simply decompose this function.

Clearly, the size information must be used while creating the prefix of Zero and

One constructors. Consequently, the size parameter is no longer necessary when the

actual tree is constructed, which motivates the following definitions:

makeId :: Make Id

makeId a = Id a

makeFork :: ∀t . Make t → Make (Fork t)

makeFork maket a = Fork (maket a) (maket a)

makeNode :: ∀t . Make t → Make (Node t)

makeNode maket a = Node a (maket a) (maket a).

The case analysis makeVector ′ performs is similar to that of make except that we

now assume that the bit list has the most significant bit first. This change of order is

necessary since the creation function maket is constructed bottom-up.

makeVector :: [Bit ]→ Make Vector -- MSB first

makeVector [ ] a = Empty

makeVector (1 : bs) a = NonEmpty (makeVector ′ bs makeId a)

makeVector ′ :: [Bit ]→ ∀t . Make t → Make (Vector ′ t)

makeVector ′ [ ] maket a = Base (maket a)

makeVector ′ (0 : bs) maket a = Zero (makeVector ′ bs (makeFork maket) a)

makeVector ′ (1 : bs) maket a = One (makeVector ′ bs (makeNode maket) a)

In general, implementing anamorphisms is more involved since top-down algorithms

must be adapted to the bottom-up representation.
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6 Related and future work

This work is inspired by a recent paper of Okasaki (1999), who derives represen-

tations of square matrices from exponentiation algorithms. He shows, in particular,

that the tail-recursive version of the fast exponentiation algorithm gives rise to

an implementation based on rightist right-perfect trees. Interestingly, the simpler

implementation based on fork-node trees is not mentioned. The reason is probably

that fast exponentiation algorithms typically process the bits from least significant

to most significant while fork-node trees and Braun trees are based on the reverse

order. The relationship between number systems and data structures is explained at

great length in the textbook by Okasaki (1998). The development in section 3 can

be seen as putting this design principle on a formal basis.

Extensions to the Hindley–Milner type system that are able to capture structural

invariants in a more straightforward way have been described by Zenger (1997;

1998) and Xi (1999). Using the indexed types of Zenger one can, for instance,

parameterize vectors and matrices by their size. Size compatibility is then statically

ensured by the type checker. Xi achieves the same effect using dependent datatypes.

In his system, de Caml, the type of perfect leaf trees, for instance, is declared as

follows:

datatype ‘a perfect with nat

= Leaf (0) of ‘a

| {n : nat }Fork (n + 1) of ‘a perfect (n) ∗ ‘a perfect (n).

This definition is essentially a transliteration of the top-down definition of perfect

leaf trees given in the introduction. A practical advantage of dependent types is that

standard regular datatypes and functions on these types can be adapted with little

or no change. Often it suffices to annotate datatype declarations and type signatures

with appropriate size constraints.

A direction for future work suggests itself. It remains to investigate the expressive-

ness of the framework and of higher-order kinded types in general. Which class of

multisets can be described using higher-order recursion equations? It appears that

recursion equations of order n + 1 are more expressive than recursion equations of

order n . Observe, for instance, that one cannot define the multiset of square num-

bers using zeroth-order equations, where the unknowns range only over multisets.

Finally, are there data structures of practical interest that cannot be captured by

second-order kinded types?
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A Proofs

A.1 Proof of Theorem 1

Recall the definitions of X and f ,

X = A ]⊎
i∈N

hi X f Y = Y ]⊎
i∈N

f (hi Y ),

where N is some finite index set, A is an arbitrary multiset, and the hi are homo-

morphisms, that is, they satisfy hi ? = ? and hi (A ] B ) = hi A ] hi B . We show

X = f A by fixpoint induction. To this end define X and F
X X = A ]⊎

i∈N
hi X F f Y = Y ]⊎

i∈N
f (hi Y )

and Xn and Fn

X0 = ?
Xn+1 = X Xn

F0 = λY → ?
Fn+1 = FFn.

Now, in order to prove
⊔
n>0Xn = (

⊔
n>0Fn) A we establish

∀n ∈ N. Xn =Fn A

by induction over the natural numbers.

• Case n = 0:

X0

= { definition X0 }
?

= { definition F0 }
F0 A.

• Case n = m+ 1:

Xm+1

= { definition Xm+1 and X }
A ]⊎

i∈N
hi Xm

= { ex hypothesi }
A ]⊎

i∈N
hi (Fm A)

= { proof obligation, see below }
A ]⊎

i∈N
Fm (hi A)

= { definition Fm+1 and F }
Fm+1 A.
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It remains to show

∀n ∈ N. ∀Y . ⊎
i∈N

hi (Fn Y ) =
⊎
i∈N
Fn (hi Y ).

Again we proceed by simple induction.

• Case n = 0: ⊎
i∈N

hi (F0 Y )

= { definition F0 }⊎
i∈N

hi ?

= { the hi are homomorphisms }⊎
i∈N
?

= { definition F0 }⊎
i∈N
F0 (hi Y ).

• Case n = m+ 1: the proof makes essential use of the following two properties

of the multiset union:⊎
i∈I

(Ai ] Bi) =
⊎
i∈I
Ai ]

⊎
i∈I
Bi

⊎
i∈I

⊎
j∈J

Ai,j =
⊎
j∈J

⊎
i∈I
Ai,j .

Note that the associativity law on the left is a special case of the second law

called interchanging the order of union. Now we reason as follows:⊎
i∈N

hi (Fm+1 Y )

= { definition Fm+1 and F }⊎
i∈N

hi (Y ] ⊎
k∈N
Fm (hk Y ))

= { the hi are homomorphisms }⊎
i∈N

(hi Y ]
⊎
k∈N

hi (Fm (hk Y )))

= { associativity }⊎
i∈N

hi Y ]
⊎
j∈N

⊎
k∈N

hj (Fm (hk Y ))

= { interchanging the order of union }⊎
i∈N

hi Y ]
⊎
k∈N

⊎
j∈N

hj (Fm (hk Y ))

= { ex hypothesi }⊎
i∈N

hi Y ]
⊎
k∈N

⊎
j∈N
Fm (hj (hk Y ))

= { associativity }

https://doi.org/10.1017/S095679680100404X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100404X


Manufacturing datatypes 521⊎
i∈N

(hi Y ]
⊎
j∈N
Fm (hj (hi Y )))

= { definition Fm+1 and F }⊎
i∈N
Fm+1 (hi Y ).

A.2 Proof of Theorem 2

The theorem and its proof rely heavily on the framework of polytypic programming.

The basic idea of polytypism is briefly sketched below. For a more thorough

treatment the interested reader is referred to Hinze (2000b; 2000c).

The Haskell Prelude defines the function sum , which computes the sum of a finite

list of numbers. Summing up a container of numbers makes, of course, sense for

arbitrary functors, of which List is only a very popular instance. Unfortunately, in

Haskell the programmer must define sum for each datatype from scratch, typically,

by induction on the structure of values. Using a polytypic definition sum can be

defined once and for all times. The basic idea is to recurse on the structure of types.

Writing the type argument in angle brackets we may define

sum〈F 〉 :: F Nat → Nat

sum〈K Unit〉 x = 0

sum〈Id〉 x = x

sum〈F1 | F2〉 x = case x of {Left x1 → sum〈F1〉 x1; Right x2 → sum〈F2〉 x2 }
sum〈F1 × F2〉 x = sum〈F1〉 (fst x ) + sum〈F2〉 (snd x ).

A polytypic function is uniquely defined by giving cases for the constant functor

K Unit , for the identity functor, for sums, and for products. The case for functor

composition can be automatically derived from this information. Furthermore, a

polytypic function must be strict with respect to its type argument, for example,

sum〈K Void〉 = ⊥ where K Void is the ‘bottom functor’ and ⊥ is the bottom

element of Void → Nat .

The second polytypic function we require is fan〈F 〉, which generates the multiset

of all structures of type F a from a given seed of type a .

fan〈F 〉 :: ∀a .a → HF aI
fan〈K Unit〉 x = H()I
fan〈Id〉 x = HxI
fan〈F1 | F2〉 x = HLeft x1 | x1 ← fan〈F1〉 xI ] HRight x2 | x2 ← fan〈F2〉 xI
fan〈F1 × F2〉 x = H(x1, x2) | x1 ← fan〈F1〉 x ; x2 ← fan〈F2〉 xI

Note that fan〈K Void〉 = λx → ? by strictness (? is the least element of HF aI).
Finally, we define

Size〈F 〉 :: HNatI
Size〈F 〉 = Hsum〈F 〉 a | a ← fan〈F 〉 1I,

which determines the multiset of all container sizes of F . Given this definition we

must prove that if the functor F corresponds to the multiset M and if M ’s definition
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only involves admissible products, then M = Size〈F 〉. The following equations can

be shown using straightforward calculations:

Size〈K Void〉 = ? (A 1)

Size〈K Unit〉 = H0I (A 2)

Size〈Id〉 = H1I (A 3)

Size〈F1 | F2〉 = Size〈F1〉 ] Size〈F2〉 (A 4)

Size〈F1 × F2〉 = Size〈F1〉+ Size〈F2〉. (A 5)

It remains to establish

Size〈F · G〉 = Size〈F 〉 ∗ Size〈G〉 if Size〈G〉 is simple. (A 6)

We proceed by fixpoint induction over the structure of F—this proof principle is

detailed in Hinze (2000c).

• Case F = K Void :

Size〈K Void · G〉
= { K Void · F = K Void }

Size〈K Void〉
= { Eq. (A 1) }

?

= { ? ∗ A = ? }
? ∗ Size〈G〉

= { Eq. (A 1) }
Size〈K Void〉 ∗ Size〈G〉.

• Case F = K Unit:

Size〈K Unit · G〉
= { K Unit · F = K Unit }

Size〈K Unit〉
= { Eq. (A 2) }H0I
= { H0I ∗ a = H0I and Size〈G〉 is simple }H0I ∗ Size〈G〉
= { Eq. (A 2) }

Size〈K Unit〉 ∗ Size〈G〉.
• Case F = Id :

Size〈Id · G〉
= { Id · F = F }

Size〈G〉
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= { H1I ∗ A = A }H1I ∗ Size〈G〉
= { Eq. (A 3) }

Size〈Id〉 ∗ Size〈G〉.
• Case F = F1 | F2:

Size〈(F1 | F2) · G〉
= { (F | G) · H = F · H | G · H }

Size〈F1 · G | F2 · G〉
= { Eq. (A 4) }

Size〈F1 · G〉 ] Size〈F2 · G〉
= { ex hypothesi }

Size〈F1〉 ∗ Size〈G〉 ] Size〈F2〉 ∗ Size〈G〉
= { (A ] B ) ∗ C = A ∗ C ] B ∗ C }

(Size〈F1〉 ] Size〈F2〉) ∗ Size〈G〉
= { Eq. (A 4) }

Size〈F1 | F2〉 ∗ Size〈G〉.
• Case F = F1 × F2: analogous using (F × G) · H = F · H × G · H and

(A + B ) ∗ c = A ∗ c + B ∗ c.

Note that the cases F = K Unit and F = F1 × F2 require the multiset Size〈G〉 to

be simple. Finally, Theorem 2 follows by a straightforward fixpoint induction using

Eq. (A 1)–(A 6).
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