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Abstract

We study a relative variant of Serre’s notion of G-complete reducibility for a reductive algebraic
group G. We let K be a reductive subgroup of G, and consider subgroups of G that normalize the
identity component K ◦. We show that such a subgroup is relatively G-completely reducible with
respect to K if and only if its image in the automorphism group of K ◦ is completely reducible. This
allows us to generalize a number of fundamental results from the absolute to the relative setting.
We also derive analogous results for Lie subalgebras of the Lie algebra of G, as well as ‘rational’
versions over nonalgebraically closed fields.

2010 Mathematics Subject Classification: 20G15 (primary); 14L24 (secondary)

1. Introduction

Let G be a (possibly disconnected) reductive algebraic group over an algebraically
closed field. In recent years, much effort has been devoted to understanding
Serre’s notion of G-complete reducibility [1, 4–7, 12, 13, 17, 18, 20]. This
powerful notion links the subgroup structure of G with representation theory
(which can be viewed as the special case G = GLn) and with concepts from
geometric invariant theory.
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In [7], a relative version of this concept is introduced. If K is a closed reductive
subgroup of G, then a closed subgroup H of G is called relatively G-completely
reducible with respect to K if, whenever H is contained in an R-parabolic
subgroup Pλ for a cocharacter λ of K , then H is contained in an R-Levi subgroup
Lµ for some cocharacter µ of K with Pλ = Pµ. More detailed definitions are
given in Section 2.

Our main result is a direct relation between this relative variant and the usual
‘absolute’ notion of complete reducibility (which is the case K = G) when
considering subgroups that normalize the identity component K ◦ of K . This
allows us to deduce relative versions of many pivotal theorems directly from
their absolute counterparts, which we do in Section 4. Throughout, all groups
are defined over a fixed field k which, until Section 7, is taken to be algebraically
closed.

THEOREM 1. Let K 6 G be reductive algebraic groups, write N = NG(K ◦),
C = CG(K ◦), and let π : N → N/C be the quotient map. Let H be a closed
subgroup of N. Then H is relatively G-completely reducible with respect to K if
and only if π(H) is π(N )-completely reducible.

Note that we do not assume that any of the groups G, H , K , N or C in
Theorem 1 is connected. Since K ◦ is reductive, π(N ) is a finite extension of
the connected semisimple group Inn(K ◦) ∼= K ◦/Z(K ◦). Hence it is reductive and
π(N )-complete reducibility makes sense; cf. [4, Section 6].

The assumption that H normalizes K ◦ is a natural one. It holds in the
absolute case or if H is contained in K , and is often necessary to obtain sensible
statements for relative results. More importantly, many natural extensions of
results fail without this assumption, as we now illustrate. Recall that a G-
completely reducible subgroup is necessarily reductive [17, Property 4], and
the converse to this holds in characteristic zero [18, Théorème 4.4]. However,
neither direction holds in full generality in the relative setting, as pointed out in
[7, Remarks 3.2]. Nevertheless, the following consequence of Theorem 1
faithfully generalizes this to the relative setting, as long as H normalizes K ◦. We
discuss this further in Section 4.

COROLLARY 2. Let K 6 G be reductive algebraic groups and let H 6 NG(K ◦).
If H is relatively G-completely reducible with respect to K , then the unipotent
radical Ru(H) centralizes K ◦. Conversely, if k has characteristic zero and
Ru(H) centralizes K ◦, then H is relatively G-completely reducible with respect
to K .
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As in the absolute case, the reverse direction of Corollary 2 also holds if the
characteristic char(k) of k is sufficiently large relative to K and H (independently
of G), and this specializes to [18, Théorème 4.4] in the case K = G. A more
detailed statement is given in Theorem 4.2.

Just as G-complete reducibility can be expressed in terms of the closure of
orbits of G on its Cartesian products Gn under conjugation [4, Corollary 3.7], the
relative notion can be characterized in terms of the closure of orbits of K on Gn

(see Theorem 2.1). Since π(N )◦ = π(K ◦) and an orbit K ·h is closed in Gn if
and only if K ◦ ·h is closed in Gn , Theorem 1 is equivalent to the following.

THEOREM 3. Let K 6 G be reductive algebraic groups, write N = NG(K ◦),
C = CG(K ◦), and let π : N → N/C be the quotient map. Let h ∈ N n (n > 1),
and write π also for the induced map N n

→ (N/C)n . Then K ·h is closed in Gn

if and only if π(N ) ·π(h) is closed in (N/C)n .

In the absolute case, G-complete reducibility of a subgroup H interacts with
separability of H in G [4, Definition 3.27] and semisimplicity of the Lie algebra
Lie(G) as an H -module [6, 21]. In Section 5, we define a relative version of
separability, and show that the corresponding results still hold. The next two
results are particularly interesting.

The following is a generalization of [6, Theorem 1.7] both to the relative setting
and to the case that G may not be connected. Recall that a prime p is called bad
for the reductive group G if p divides some coefficient when the highest root in
the root system of some simple factor of G is expressed as a sum of simple roots.
The characteristic char(k) of k is called good for G if it is not a bad prime. If
char(k) is good and not a divisor of r+1 whenever G has a simple factor Ar , then
it is called very good for G.

THEOREM 4. Let K 6 G be reductive algebraic groups, write N = NG(K ◦),
C = CG(K ◦), and let π : N → N/C be the quotient map. Suppose that char(k)
is zero or is very good for K and does not divide |π(N )/π(N ◦)|. If H 6 N
and Lie(K ) is semisimple as an H-module, then H is relatively G-completely
reducible with respect to K .

Theorem 4 in fact holds under a slightly weaker condition on char(k) involving
H as well as K and NG(K ◦); see Corollary 5.5.

Next, for subgroups H and K of an algebraic group G, we say that (G, K )
is a reductive pair for H if Lie(K ) is an H -module direct summand of Lie(G)
(Definition 3). The interplay between this notion and separability (Lemma 5.6)
gives a further condition for G-complete reducibility (Corollary 5.7). Due to
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the well-known fact that every subgroup of GL(V ) is separable, we obtain a
particularly nice criterion in this case, with no dependence on char(k). This is
orthogonal to other criteria derived recently in [1]. The proof can be found at the
end of Section 5.

THEOREM 5. Let G = GL(V ), let K 6 G be reductive and let H 6 NG(K ◦).
Suppose that (G, K ) is a reductive pair for H. If Lie(K ) is semisimple as an
H-module, then H is relatively G-completely reducible with respect to K .

For general connected G, we obtain the following criterion on char(k) for
complete reducibility, which depends on G but not on K , NG(K ◦) or H .

THEOREM 6. Maintain the notation of Theorem 1 and suppose that G is
connected. Suppose that (G, K ) is a reductive pair for H and that char(k) is
very good for G. If Lie(K ) is semisimple as an H-module, then H is relatively
G-completely reducible with respect to K .

The paper is organized as follows. After recalling relevant background in
Section 2, we prove Theorem 1 in Section 3. We also briefly discuss the analogue
of Theorem 1 for relative G-irreducibility (Corollary 3.9). In Section 4, we derive
a series of consequences of Theorem 1, including Corollary 2. In Section 5, we
introduce our relative notions of separability and reductive pairs, and generalize
further results from the absolute case, particularly from [6]. In Section 6, we
consider relative G-complete reducibility of Lie subalgebras of Lie(G), and
derive variants of Theorems 1 and 3. Finally, in Section 7, we consider a rational
version of relative G-complete reducibility, dropping the assumption that k is
algebraically closed. Again, variants of Theorems 1 and 3 hold in this setting.

2. Notation and preliminaries

Throughout, k denotes a field and char(k) denotes the characteristic of k. We
take k to be algebraically closed, until Section 7, where we generalize our main
results. All groups encountered are affine algebraic groups, meaning Zariski-
closed subgroups of some general linear group over k (or its algebraic closure
k in Section 7). Homomorphisms between groups are morphisms of varieties, and
subgroups are closed. For an algebraic group G, we denote by G◦ the connected
component of the identity element. For a subgroup K of G, the normalizer and
centralizer of K in G are, respectively, denoted by NG(K ) and CG(K ). The
unipotent radical of G, denoted by Ru(G), is the (unique) maximal connected
normal unipotent subgroup of G. We say that G is reductive if Ru(G) = 1.
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We do not require that a reductive group is connected. An isogeny means a
surjective map G1 → G2 with finite kernel, where G1 and G2 are reductive. In
this case, the kernel centralizes G◦1.

A cocharacter of G is a homomorphism of algebraic groups from the
multiplicative group k∗ to G. The set of all cocharacters of G is denoted by
Y (G). Conjugation induces an action of G on Y (G), with (g ·φ)(c) def

= gφ(c)g−1

for all g ∈ G, φ ∈ Y (G), c ∈ k∗. We also use a dot to denote left conjugation
of G on itself and on the Cartesian products Gn . If φ : k∗ → G is a morphism,
we say that the limit lima→0 φ(a) exists if there is a morphism φ̂ : k → G whose
restriction to k∗ is φ. In this case, we write lima→0 φ(a) for φ̂(0). If the limit
exists, then it is unique, as k∗ is Zariski-dense in k. For λ ∈ Y (G), define the
following subgroups of G:

Pλ
def
=
{
g ∈ G : lim

a→0
(λ(a) · g) exists

}
,

Lλ
def
=
{
g ∈ G : lim

a→0
(λ(a) · g) = g

}
= CG(λ(k∗)).

Following [4], such a subgroup Pλ is called a Richardson parabolic subgroup,
or an R-parabolic subgroup of G, and Lλ is called a Richardson Levi subgroup
of G, or an R-Levi subgroup. If G is connected reductive, then these definitions
coincide with the usual definitions of parabolic subgroups and Levi subgroups
[4, Section 6]. The unipotent radical of Pλ is given by

Ru(Pλ) =
{
g ∈ G : lim

a→0
(λ(a) · g) = 1

}
.

If K is a reductive subgroup of G, then the inclusion K → G induces an
injective map Y (K ) → Y (G), and we identify Y (K ) with its image in Y (G).
The following is the central notion of the paper.

DEFINITION 1. Let H and K be closed subgroups of an algebraic group G. We
say that H is relatively G-completely reducible with respect to K if, for every
cocharacter λ ∈ Y (K ) such that H 6 Pλ, there exists a cocharacter µ ∈ Y (K )
such that Pλ = Pµ and H 6 Lµ.

While the above definitions make sense without assumptions on G or K , we
always assume that both K and G are reductive. We refer to the case K = G as
the absolute case, and say that H is G-completely reducible if the above holds in
this case. For brevity, we sometimes write ‘relatively G-cr with respect to K ’, or
just ‘G-cr’ in the absolute case.

Recall from [8, Definition 5.4] that a generic tuple for a subgroup H 6 G is an
n-tuple h ∈ Gn (n > 1) such that the elements in h generate the same associative
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k-subalgebra of Matm×m(k) as H , for some faithful representation G → GLm(k).
For instance, a tuple of elements that topologically generate H is a generic tuple
for H [8, Remark 5.6].

THEOREM 2.1 [7, Theorem 1.1]. Let K 6 G be reductive algebraic groups, let
H be a closed subgroup of G and let h ∈ Gn be a generic tuple for H. Then H is
relatively G-completely reducible with respect to K if and only if the orbit K ·h
is closed in Gn .

REMARK 2.2. Let H be a subgroup of G and let h ∈ Gn be a generic tuple for H .
Then we can lengthen h so that π(h) is also a generic tuple for π(H). Together
with Theorem 2.1, this shows that Theorem 3 implies Theorem 1. Conversely,
given h ∈ Gn , we let H be the closed subgroup topologically generated by the
elements of h. Then π(H) is topologically generated by π(h) and it follows at
once that Theorem 1 implies Theorem 3.

REMARK 2.3. Although our methods make intrinsic use of the fact that K
is reductive, Theorem 2.1 shows that the assumption that G is reductive is
unimportant in the relative setting, since we are free to replace G with any closed
subgroup of G containing H and K , or with any group G ′ containing G as a
closed subgroup; cf. [7, Corollary 3.6]. Although it is beyond the scope of this
paper, there is the potential to develop the theory of relative complete reducibility
with respect to arbitrary closed subgroups K . For instance, applying Definition 1
in the case when Y (K ) is trivial, that is, when K ◦ is unipotent, we see that every
subgroup is relatively G-cr with respect to K . This corresponds to the geometric
fact that all orbits of a unipotent group on a variety are closed.

3. Proof of Theorem 1

Recall our set-up that G is a (not necessarily connected) reductive algebraic
group, and H and K are closed subgroups of G with K reductive. Write N =
NG(K ◦), C = CG(K ◦), let π : N → N/C be the quotient map, and assume that
H 6 N . We begin with a crucial lemma. This is straightforward if N is reductive;
cf. [4, Lemma 6.14]. But see Remark 3.2 for a subtle point, which arises when N
has a nontrivial unipotent radical.

LEMMA 3.1. In the setting of Theorem 1, there exists a reductive subgroup M of
N such that

(1) M◦ = [K ◦, K ◦], M ∩ C is finite and N = MC;
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(2) the restriction of π to M gives an isogeny M → N/C;
(3) for all λ ∈ Y (K ), we have Pλ∩ N = (Pλ∩M)C and Lλ∩ N = (Lλ∩M)C.

Proof. Note first that N ◦ = [K ◦, K ◦]C◦ since N/C is a finite extension of
Inn(K ◦) = K ◦/Z(K ◦) = [K ◦, K ◦]/Z([K ◦, K ◦]). Consider the quotient map
σ : N � N/[K ◦, K ◦]. By the above, N/[K ◦, K ◦] is a finite extension of
σ([K ◦, K ◦]C). By [10, Theorem 1.1], N/[K ◦, K ◦] admits a finite subgroup F
such that N/[K ◦, K ◦] = F(σ ([K ◦, K ◦]C)). Let M be the preimage of F under
σ . Then M◦ = [K ◦, K ◦] by construction, and M ∩ C is finite since it is a finite
extension of [K ◦, K ◦] ∩C , which is itself finite as it is contained in Z([K ◦, K ◦]).
Finally, N = σ−1(Fσ([K ◦, K ◦]C)) = Mσ−1(σ (C)) 6 MC ; hence N = MC .
Thus (1) is proved. Now (2) and (3) follow directly from the fact that N = MC ,
M ∩ C is finite and C 6 Lλ 6 Pλ for all λ ∈ Y (K ).

REMARK 3.2. If N is reductive, then [4, Lemma 6.14] lets us take M◦ to be
the product of the simple factors of N ◦, which commute with C◦ (which is also
reductive in this case). The following example shows that in general M need not
be isomorphic to its image in the reductive group N/Ru(C); in particular, M could
be a nonsplit extension of M ∩ Ru(C).

Let K = SL3(k), where char(k) = 2, and let C be a copy of Ga . Let X = 〈x〉 be
cyclic of order 4, and consider the product (X ×C)/〈x2 y〉 for any nonzero y ∈ k.
Write H for the resulting Abelian two-fold nonsplit extension of C , so H ◦ = C .

Now let H act on K , such that C acts trivially and H/C acts as the inverse-
transpose automorphism, and write G = N for the semidirect product K o H . By
construction, K = K ◦ is normal in N , and C = H ◦ = CN (K ◦) is connected and
unipotent. In N/C , the subgroup M guaranteed by [4, Lemma 6.14] is the image
of the outer automorphism, that is, there is an involution giving a complement to
K = (N/C)◦. But in N , this element has order 4 by construction. So the smallest
M satisfying the conclusion of Lemma 3.1 is a four-fold extension SL3(k)o 〈x〉,
where x acts as the inverse-transpose automorphism on SL3(k); this is a nonsplit
extension of M ∩ C = 〈x2

〉.

Proof of Theorem 1. Let G, K , H , N = NG(K ◦), C = CG(K ◦) and π : N →
N/C be as in Theorem 1, and let M be the reductive subgroup given by
Lemma 3.1.

To begin, for λ ∈ Y (K ), we have C 6 Lλ 6 Pλ. Hence HC is contained
in Pλ (respectively, Lλ) if and only if H is contained in Pλ (respectively, Lλ).
Moreover, since N = MC , we have HC = (HC ∩M)C , and HC is contained in
Pλ (respectively, Lλ) if and only if HC ∩ M is contained in Pλ (respectively, Lλ).
Since also π(H) = π(HC) = π(HC ∩ M), it suffices to prove the conclusion of
Theorem 1 for subgroups of the form HC ∩ M , in particular for subgroups of M .
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So assume H 6 M . Then the reductive subgroup M Z(K ◦)◦ contains both K ◦

and H . Since also Y (K ) = Y (K ◦), as in Remark 2.3, it follows that H is relatively
G-cr with respect to K if and only if H is relatively M Z(K ◦)◦-cr with respect to
K ◦. Moreover, because π(M Z(K ◦)◦) = π(M) = π(N ), it suffices to prove the
conclusion of Theorem 1 when G = N = M Z(K ◦)◦, a reductive group in which
C◦ = CG(K ◦)◦ is a central torus of G◦. We can still assume H 6 M .

Now, under these assumptions, we have Y (G) = Y (K ); so H is relatively G-
cr with respect to K if and only if H is G-cr. In this situation, the statement of
Theorem 1 becomes: ‘Let G be reductive and let K be a reductive subgroup of
G such that K ◦ is normal in G. Let π : G → G/CG(K ◦), where CG(K ◦)◦ is a
central torus of G◦. Then H is G-cr if and only if π(H) is (G/CG(K ◦))-cr.’ This
is proved in [4, Section 6.2]. More specifically, the result for connected groups
is part of [4, Lemma 2.12(ii)(b)], and [4, Section 6.2] generalizes this part to
nonconnected reductive groups.

REMARK 3.3. After the reduction to the case G = N , the above proof of
Theorem 1 is similar to the argument of [5, Theorem 3.4], which shows that the G-
complete reducibility of a subgroup H 6 G is preserved under taking quotients by
subgroups of H , which are normal in G. Indeed, adapting that argument provides
another proof of Theorem 1, where one first reduces to the case C 6 H (rather
than H 6 M).

REMARK 3.4. If instead of H 6 N , we assume that both H and K are reductive
and K ◦ normalizes H , then H is always relatively G-cr with respect to K . This
follows from [7, Corollary 3.28] since if K normalizes H , then in particular a
maximal torus of K normalizes H , and this implies that H is relatively G-cr with
respect to K .

Before discussing a number of consequences of Theorem 1 in the next section,
we take this opportunity to note a slightly more general result and to observe that
some subtleties can arise when dealing with R-parabolic and R-Levi subgroups
of disconnected groups. The following slight generalization of Theorem 1 shows
that we can factor out any normal subgroup of CG(K ◦) without affecting relative
complete reducibility.

THEOREM 3.5. Keep the notation of Theorem 1 and let M be as in Lemma 3.1.
Let f : N → G ′ be a homomorphism into a reductive group G ′ such that
ker( f ) 6 C. If H 6 M ker( f ), then H is relatively G-completely reducible with
respect to K if and only if f (H) is relatively G ′-completely reducible with respect
to f (K ).
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Proof. As in the proof of Theorem 1, it suffices to prove the result for the
subgroup H ker( f ) ∩ M of M , because this is contained in an R-parabolic or R-
Levi subgroup corresponding to λ ∈ Y (K ) if and only if H is since ker( f ) 6 C .
Moreover, the hypotheses imply that f (H ker( f ) ∩ M) = f (H). Also, since
ker( f ) 6 C , and since the restriction π : M → N/C gives an isogeny onto its
image, the restriction f : M → N/ ker( f ) is also an isogeny onto its image.
Then as before, we can reduce to the case that G = N = M Z(K ◦)◦, since
this contains both K ◦ and H , and this does not change f (H) or the set of
cocharacters of f (K ), and hence does not change which R-parabolic subgroups
or R-Levi subgroups of G ′ stemming from f (K ) contain f (H). Thus f (G)
is reductive and contains f (K ) and f (H), and we can thus also assume that
f (G) = G ′.

So now H is relatively G-cr with respect to K ◦ precisely when H is G-cr, and
also f (K ◦) = (G ′)◦; so f (H) is relatively G ′-cr with respect to f (K ) precisely
when f (H) is G ′-cr. As before, the desired result reduces to the result proved
in [4, Section 6.2].

REMARK 3.6. When λ ∈ Y (K ) \ Y (M), it is not necessarily the case that
π(Pλ ∩ N ) = Pπ◦λ and π(Lλ ∩ N ) = Lπ◦λ, as the following example
shows. So although relative complete reducibility behaves well with respect
to taking quotients by subgroups centralizing K ◦, some care is required in the
proofs.

Let G be a connected reductive group with a maximal torus T such that T
and NG(T )/T are nontrivial, and let K = N = NG(T ). Then K ◦ = C = T and
π(N ) = N/C is the Weyl group of G, and hence finite. For the subgroup M
of Lemma 3.1, we can take any finite subgroup of K , which maps onto π(N ).
Then Y (M) = Y ([K ◦, K ◦]) contains only the trivial cocharacter. Thus the only
R-parabolic subgroup (and the only R-Levi subgroup) of π(N ) is π(N ) itself,
and its preimage under π , namely N , is not contained in any proper R-parabolic
subgroup of G. Thus for any λ ∈ Y (K ) whose image is noncentral in G, the
images π(Pλ∩N ) and π(Lλ∩N ) are proper subgroups of π(N ) and are therefore
not R-parabolic subgroups or R-Levi subgroups.

REMARK 3.7. Recall that a subgroup H of G is called relatively G-irreducible
with respect to K if, whenever λ ∈ Y (K ) such that H 6 Pλ, we have Pλ = G
[7, Definition 3.14]. In this case, if K = G, then H is called G-irreducible [18].
We observe that the analogue of Theorem 1 does not hold for relative G-
irreducibility. For instance, if K contains any noncentral torus S of G, then C is
contained in CG(S), a proper R-Levi subgroup of G, so C is not relatively
G-irreducible with respect to K . On the other hand, if we suppose that
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π(N ) = N/C is finite, then every subgroup of π(N ) is π(N )-irreducible
since Y (π(N )) is trivial; in particular, the trivial subgroup (which is the image of
C) is π(N )-irreducible in this case.

The essential problem in the above discussion is the existence of nontrivial tori
in the kernel of N → N/C , that is, a nontrivial torus in Z(K ◦). The following
result generalizes [4, Lemma 6.15], which considers the case that N is reductive.
This allows us to extend Theorem 1 to relative G-irreducibility, assuming K ◦ is
semisimple (Corollary 3.9).

PROPOSITION 3.8. Keep the notation of Theorem 1 and let M 6 N be a reductive
subgroup guaranteed by Lemma 3.1 so that N = MC and M ∩ C is finite. Let
f : N → G ′ be a homomorphism into a reductive group G ′ such that ker( f ) 6 C.
If λ ∈ Y (M), then

f (Pλ ∩ N ) = f (Pλ ∩ M) f (C) = P f ◦λ ∩ f (N ),
f −1(P f ◦λ ∩ f (N )) = Pλ ∩ N ,

f (Lλ ∩ N ) = f (Lλ ∩ M) f (C) = L f ◦λ ∩ f (N ),
f −1(L f ◦λ ∩ f (N )) = Lλ ∩ N .

In particular, taking f = π : N → N/C, we have

π(Pλ ∩ N ) = π(Pλ ∩ M) = Pπ◦λ, π−1(Pπ◦λ) = Pλ ∩ N ,
π(Lλ ∩ N ) = π(Lλ ∩ M) = Lπ◦λ, π−1(Lπ◦λ) = Lλ ∩ N .

Proof. Since ker( f ) 6 C and π : M → N/C is an isogeny onto its image, it
follows that f : M → f (M) is an isogeny. Thus by the nonconnected version
of [4, Lemma 2.11], the R-parabolic subgroups and R-Levi subgroups of f (M)
are precisely the subgroups P f ◦λ ∩ f (M) and L f ◦λ ∩ f (M) for λ ∈ Y (M), and
these are, respectively, equal to f (Pλ ∩ M) and f (Lλ ∩ M). Since C 6 Lλ 6 Pλ
for all λ ∈ Y (K ), we also have f (C) 6 L f ◦λ 6 P f ◦λ, and since also N = MC ,
we have f (N ) = f (M) f (C) and it follows that

f (Pλ ∩ N ) = f ((Pλ ∩ M)C) = f (Pλ ∩ M) f (C)
= (P f ◦λ ∩ f (M)) f (C) = P f ◦λ ∩ f (N ),

and f (Lλ ∩ N ) = f (Lλ ∩ M) f (C) = L f ◦λ ∩ f (N ) follows similarly. Finally,
since ker( f ) 6 C , we have

f −1(P f ◦λ ∩ f (N )) = f −1 f (Pλ ∩ N ) = (Pλ ∩ N ) ker( f ) = Pλ ∩ N

and similarly for Lλ.
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The later statements above show in particular that if H is a subgroup of G, then
H 6 Pλ or Lλ for λ ∈ Y (M) precisely when π(H)6 Pπ◦λ or Lπ◦λ, respectively. In
particular, if Y (K ) = Y (M) (that is if K ◦ is semisimple), we obtain the following.

COROLLARY 3.9. In the notation of Theorem 1, if K ◦ is semisimple, then a
subgroup H of N is relatively G-irreducible with respect to K if and only if π(H)
is π(N )-irreducible.

We close this section with an extended example illustrating Theorem 1.

EXAMPLE 3.10. Write K = Cl(W ) to indicate that K is a special orthogonal
or symplectic group with natural module W , in characteristic p > 0. Take an
orthogonal direct sum V = W1 ⊥ W2, where Wi

∼= W for i = 1, 2, and let G =
Cl(V ) (so G has type Cn or Dn for some n > 0). We have a chain of subgroups

K 6 Cl(W1)× Cl(W2) 6 Cl(V ) = G,

where the first embedding is just the diagonal one. Write K0 for the left-hand-side
group, and Ki = Cl(Wi) for i = 1, 2.

(1) If p 6= 2 then K0 is G-cr, contained in a Levi subgroup of type An−1

corresponding to a direct-sum decomposition of V into two totally isotropic
K0-submodules. Thus CG(K0)

◦ is a 1-dimensional torus, consisting of
elements acting as a scalar on W1 and as the inverse scalar on W2.

(2) If p = 2, then K0 stabilizes a unique nonzero totally isotropic subspace
of V [4, Example 3.45], which is a diagonal submodule W0 ⊂ W1 + W2.
This shows that K0 is contained in a parabolic subgroup of G whose Levi
factor has type An−1, but not in any Levi subgroup of G. In particular, K0

is non-G-cr and CG(K0)
◦ is unipotent. In fact, one can show that CG(K0)

◦

is a 1-dimensional unipotent group; writing V = W0 + W1 and identifying
elements of W0 and W1 via a K0-module isomorphism, this unipotent group
consists of the maps (w0, w1) 7→ (w0 + λw1, w1) for λ ∈ k. The image of
K0 under projection to the Levi factor is a subgroup K ′0 stabilizing a totally
isotropic complement to W0. Then K ′0 is G-cr, and its centralizer is simple
of type A1; K ′0CG(K ′0) acts on V as a tensor product W0 ⊗ V2, where V2 is
the natural SL2(k)-module.

(3) If we repeat the above construction but with a K -module W1 ⊥ W2, where
W2 is nontrivial and not isomorphic to W1, then K0 is G-irreducible and has
a trivial connected centralizer (independently of p).
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These three cases illustrate first that even a uniform (characteristic-independent)
construction can lead to variation in G-complete reducibility and the structure of
normalizers and centralizers. Part (2) gives an example of a nontrivial unipotent
subgroup of G, namely CG(K0)

◦, which is relatively G-cr with respect to K0. The
tables of [13] give further examples of unipotent groups (and more general groups
with nontrivial unipotent radicals) arising as centralizers of reductive groups.

In all three cases, Theorem 1 tells us that if H 6 NG(Ki), then H is relatively
G-cr with respect to Ki if and only if the image of H in Ki/Z(Ki) is completely
reducible. The complete reducibility of this image can be characterized purely in
terms of the natural module Wi if i = 1 or 2. In part (2), NG(K0) = K0U1 is also
non-G-cr and hence contained in the unique maximal parabolic subgroup of G,
which contains K0; in particular, it stabilizes W0. Then a subgroup H 6 NG(K0)

acts on W0, and to determine whether the image of H in NG(K0)/CG(K0) is
completely reducible (hence whether H is relatively G-cr with respect to K0), we
only need to consider the action of H on W0.

4. Consequences of Theorem 1

Armed with Theorem 1, we deduce many core results for relative complete
reducibility directly from their counterparts in the absolute setting. To begin,
keeping the notation of Theorem 1, it is clear that π(N ) = N/C and the
trivial subgroup of π(N ) are π(N )-cr. Hence the following is immediate from
Theorem 1.

COROLLARY 4.1. Let K 6 G be reductive algebraic groups. Then NG(K ◦) and
CG(K ◦) are relatively G-completely reducible with respect to K .

Since K is K -cr, that is, relatively G-cr with respect to itself, Corollary 4.1 can
be viewed as a generalization of [4, Corollaries 3.16 and 3.17], which assert that
both NG(K ◦) and CG(K ◦) are G-cr provided K is. Note that CG(K ◦) is contained
in Lλ for all λ ∈ Y (K ) and is therefore clearly relatively G-cr with respect to
K . However, the conclusion for NG(K ◦) is less obvious. Note that NG(K ◦) and
CG(K ◦) need not be reductive in general. When they are reductive, the assertion
of Corollary 4.1 follows from [7, Corollary 3.28].

4.1. Relative complete reducibility, reductivity and semisimple modules.
As mentioned in Section 1, it is well known that in the absolute case, a G-cr
subgroup is reductive. Furthermore, a combination of results of Jantzen [11],
McNinch [14] and Liebeck and Seitz [12] tells us that if char(k) is sufficiently
large and is coprime to |H/H ◦| for a closed subgroup H of G, then H is G-cr
if and only if H is reductive. More specifically, for a simple algebraic group X
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define a(X) to be 1 plus the rank of X (the dimension of a maximal torus of X ).
For a general reductive group X , let a(X) be the maximum value of a(Y ) over all
simple factors Y of X . Then [18, Théorème 4.4] states that if H is a subgroup of
G, and if char(k) is zero or a prime p > a(G) which is coprime to |H/H ◦|, then
H is G-cr if and only if it is reductive. The relative version of this result, of which
Corollary 2 is a special case, is as follows.

THEOREM 4.2. In the notation of Theorem 1, the following hold.

(1) If H is relatively G-completely reducible with respect to K , then Ru(H) 6 C.

(2) If char(k) is zero or a prime p > a(K ) not dividing |π(H)/π(H)◦|, then
H is relatively G-completely reducible with respect to K if and only if
Ru(H) 6 C.

Proof. For (i), Theorem 1 together with the absolute result [17, Property 4]
implies that if H is relatively G-cr with respect to K , then π(H) is reductive;
hence Ru(H) 6 C . For (ii), if Ru(H) 6 C , then π(H) is reductive. Moreover,
char(k) is either zero or coprime to |π(H)/π(H)◦|. Then the absolute result
[18, Théorème 4.4] tells us that π(H) is π(N )-cr, and from Theorem 1, we see
that H is relatively G-cr with respect to K .

Theorem 4.2 gives an intrinsic group-theoretic characterization of relative
G-complete reducibility in characteristic zero, generalizing the result from the
absolute setting. Next, complete reducibility in the absolute case is closely linked
to the semisimplicity of G-modules. More precisely, let T be a maximal torus
of G, let Φ+ be a choice of positive roots of G with respect to T , and for a G-
module V define n(V ) = max{

∑
α∈Φ+〈λ, α

∨
〉}, the maximum over T -weights λ

of V . Then a result of Serre [18, Théorème 5.4] states that if H is G-cr and char(k)
is zero or greater than n(V ), then V is semisimple as an H -module. Moreover if
V is nondegenerate (that is, the identity component of the kernel is a torus), the
converse also holds. Since n(Lie(G)) = 2hG−2, where hG is the Coxeter number
of G, this gives a concrete criterion for G-complete reducibility in terms of the
action of H on Lie(G) [18, Corollary 5.5]. The relative versions of these results
are as follows.

THEOREM 4.3. In the notation of Theorem 1, the following hold.

(1) Let V be a π(N )-module, and suppose that char(k) is zero or greater than
n(V ). If H is relatively G-completely reducible with respect to K , then V
is semisimple as a π(H)-module. Conversely, if V is nondegenerate and
semisimple as a π(H)-module, then H is relatively G-completely reducible
with respect to K .
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(2) If char(k) is zero or greater than 2hK − 2, where hK is the Coxeter number
of K , then H is relatively G-completely reducible with respect to K if and
only if Lie(K ) is semisimple as an H-module.

Proof. Part (i) follows directly from Theorem 1 and the result in the absolute
case applied to N/C . For (ii), note that since N normalizes K ◦, it acts on the
adjoint module Lie(K ); hence so does H . Moreover, this action factors through
π(N ) since C centralizes K ◦. Now the isomorphism π(N )◦ ∼= K ◦/Z(K ◦) implies
that hK = hπ(N ). Therefore, since Lie(K ) is nondegenerate as an (N/C)-module,
part (ii) follows from part (i) and the fact that n(Lie(K )) = 2hK − 2.

Putting Theorems 4.2(ii) and 4.3(ii) together, and using the fact that
π(H)/π(H ◦) is a quotient of H/H ◦, gives the following.

COROLLARY 4.4. Let K 6 G be reductive algebraic groups, let H 6 NG(K ◦)
and suppose that char(k) is zero or a prime p > 2hK − 2 which does not divide
|H/H ◦|. Then the following are equivalent:

(1) H is relatively G-completely reducible with respect to K .

(2) Lie(K ) is semisimple as an H-module.

(3) Ru(H) centralizes K ◦.

A result of Jantzen [11, Proposition 3.2] states that if G is connected and V is
a G-module, and if dim V 6 p when char(k) = p > 0, then V is semisimple.
In [2], this is generalized to show that V is also semisimple as an H -module for
every G-cr subgroup H of G. The relative variant of this result is as follows; this
follows directly from the absolute result [2, Theorem 1.3] and Theorem 1.

COROLLARY 4.5. Keep the notation of Theorem 1. Suppose that π(N ) is
connected and let V be a π(N )-module. If char(k) = p > 0, assume that
dim V 6 p.

If H 6 N is relatively G-completely reducible with respect to K , then V is
semisimple as an H-module.

The following result also follows directly from its absolute counterpart
[2, Theorem 1.4] and Theorem 1. Recall that a module V for an algebraic group
is called nondegenerate if the identity component of the kernel of the action is a
torus.
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COROLLARY 4.6. With the notation of Theorem 1, suppose that π(N ) is
connected and let V be a nondegenerate π(N )-module. If V ⊗ V ∗ is semisimple
as a π(H)-module, then H is relatively G-completely reducible with respect
to K .

REMARK 4.7. If V is a nondegenerate π(N )-module, then V is a nondegenerate
K -module since the identity components of the kernels of K → π(K ) =
K/CK (K ◦) and π(N ) → GL(V ) are both tori. Therefore in the particular case
H 6 K , noting that H is relatively G-cr with respect to K precisely when
H is K -cr, Corollary 4.6 specializes to the complete reducibility statement of
[2, Theorem 1.4].

4.2. Normal subgroups, normalizers and Clifford theory. Recall that
in the absolute setting, a normal subgroup of a G-cr subgroup is again G-cr,
and furthermore a subgroup H 6 G is G-cr if and only if NG(H) is G-cr
[4, Theorem 3.10 and Corollary 3.16]; this generalizes Clifford’s theorem from
representation theory. Moreover, if H is G-cr and H ′ is a subgroup of G that
satisfies HCG(H)◦ 6 H ′ 6 NG(H), then H ′ is G-cr [4, Theorem 3.14]. The
relative versions of these results are as follows.

THEOREM 4.8. With the notation of Theorem 1, the following hold.

(1) Let H ′ be a normal subgroup of H. If H is relatively G-completely reducible
with respect to K , then so is H ′.

(2) Let H ′ be a subgroup of N satisfying (HC)NN (HC)◦ 6 H ′C 6 NN (HC).
If H is relatively G-completely reducible with respect to K , then so is H ′.

(3) H is relatively G-completely reducible with respect to K if and only if
NN (HC) is relatively G-completely reducible with respect to K .

(4) If H is relatively G-completely reducible with respect to K , then so is
CN (HC).

Proof. Part (1) follows directly from Theorem 1 and the absolute result
[4, Theorem 3.10] since π(H ′) is normal in π(H).

For part (2), if H is relatively G-cr with respect to K , then by Theorem 4.2,
π(H) is reductive. Therefore Nπ(N )(π(H))◦ = π(H)◦Cπ(N )(π(H))◦. The group
π(NN (HC)◦) is a connected subgroup of Nπ(N )(π(H)) containing π(H)◦.
Moreover, if π(x) ·π(h) = π(h) for some h ∈ H , then x · h = hc′ for some
c′ ∈ C . Since C is normal in N , it follows that x · (hc) ∈ HC for all h ∈ H and
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all c ∈ C . Hence NN (HC)◦ > π−1(Cπ(N )(π(H))◦), and so π(HC NN (HC)◦) =
π(H)Cπ(N )(π(H))◦. Since we also have π(NN (H)) 6 Nπ(N )(π(H)), the
hypotheses imply that π(H)Cπ(N )(π(H))◦ 6 π(H ′) 6 Nπ(N )(π(H)). Applying
the result from the absolute case [4, Theorem 3.14], we conclude that π(H ′) is
π(N )-cr, and so H ′ is relatively G-cr with respect to K .

For part (3), if H is relatively G-cr with respect to K , then by (2) so is NN (HC).
Conversely, if NN (HC) is relatively G-cr with respect to K , then by (1) so is its
normal subgroup HC . This is contained in precisely the same parabolic and Levi
subgroups corresponding to elements of Y (K ) as H , and so H is also relatively
G-cr with respect to K . Part (4) now follows from parts (1) and (3) since CN (HC)
is normal in NN (HC).

REMARK 4.9. Theorem 4.8 fails without the hypothesis that H 6 N , even if we
impose other natural conditions, for instance requiring that H is connected and
reductive [7, Examples 5.6 and 5.7].

The following example demonstrates the failure of Theorems 4.2(i) and 4.8(i)
if H does not normalize K ◦, even when H is connected.

EXAMPLE 4.10. Let G = GLn(k), K = SOn(k) and let e1, . . . , en be the standard
basis of kn . Suppose that char(k) > 3 or n > 3. Let H be the stabilizer in G of the
totally isotropic subspace 〈e1〉. Since H is relatively G-irreducible with respect
to K , it is relatively G-completely reducible with respect to K . But its normal
subgroup Ru(H) is not relatively G-completely reducible with respect to K since
Ru(H) 6 Ru(StabG( f )), where f is the flag f = 〈e1〉 6 〈e1〉

⊥ and StabG( f ) is a
parabolic subgroup of G, which is given by a cocharacter of K .

In addition, Ru(H) is not contained in NG(K ◦). Thus H does not normalize

K ◦ and Ru(H) does not centralize K ◦. For let h =


1 1 ··· 1

0
... 0

...
... 0

... 1
0 ··· 0 1

 ∈ Ru(H). Since

char(k) > 3 or n > 3, we see that hth−1
6∈ K , for 1 6= t ∈ Dn ∩ K , where Dn is

the subgroup of diagonal matrices in G.

The following directly generalizes [5, Theorem 1.3].

COROLLARY 4.11. With the notation of Theorem 1, suppose that π(N ) is
connected and that p > 3 or p is good for K . Let A, B be commuting connected
subgroups of N , which are relatively G-completely reducible with respect to K .
Then AB is relatively G-completely reducible with respect to K .
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Proof. This follows directly from the absolute result [5, Theorem 1.3] and
Theorem 1 since π(AB) is the commuting product of the connected groups π(A)
and π(B).

4.3. A geometric viewpoint. We end this section with a geometric conse-
quence of Theorem 3.

THEOREM 4.12. In the notation of Theorem 3, with h ∈ N n and π also denoting
the quotient map N n

→ (N/C)n , the following are equivalent.

(1) K ·h is closed in Gn .

(2) π(K ) ·π(h) is closed in (N/C)n .

(3) π−1(π(K ·h)) is closed in Gn .

(4) Every orbit of K on π−1(π(K ·h)) is closed in Gn .

Proof. Theorem 3 tells us that (1) and (2) are equivalent. Now N n is closed in Gn

and, since π(K ) ·π(h) = π(K ·h) and the topology on (N/C)n is the quotient
topology, it follows that (2) and (3) are equivalent.

Let K =
⋃t

i=1 K ◦xi be the decomposition of K into right cosets of K ◦.
Expressing h as h = (h1, . . . , hn), we have

π−1(π(K ·h)) =
t⋃

i=1

π−1(π(K ◦ · (xi ·h)))

=

t⋃
i=1

{(x · (xi · h1)c1, . . . , x · (xi · hn)cn) : x ∈ K ◦, ci ∈ C},

=

t⋃
i=1

{(x · ((xi · h1)c1), . . . , x · ((xi · hn)cn)) : x ∈ K ◦, ci ∈ C},

where the last equality follows since K ◦ centralizes C .
Now if K ·h is closed in Gn , then so is K ◦ · (xi ·h) for each i . Thus

π−1(π(K ·h)) is a union of K ◦-orbits, each of which is translated to one of
the closed K ◦-orbits K ◦ · (xi ·h) by an element of Cn . As translation is a variety
automorphism Gn

→ Gn , it follows that every K ◦-orbit in π−1(π(K ·h)) is closed
in Gn . Consequently, every K -orbit in π−1(π(K ·h)) is closed in Gn as well.
So (4) follows from (1), and the reverse implication is clear.

REMARK 4.13. The proofs of the equivalences (2) ⇔ (3) and (1) ⇔ (4) in
Theorem 4.12 are easily seen to be independent of Theorems 1 and 3. From the
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argument above, we see that π−1(π(K ·h)) consists of K ◦-orbits, which are Cn-
translates of a K ◦-orbit K ◦ · (xi ·h) for some i . From the observation that one
of the latter is closed if and only if all of them are closed, together with the
fact that closed orbits always exist, we conclude that all K ◦-orbits are closed in
π−1(π(K ·h)) in the subspace topology and thus every K -orbit in π−1(π(K ·h))
is closed in π−1(π(K ·h)) in the subspace topology. Hence we also see that (3)
implies (4), even without appealing to Theorem 3 (or Theorem 1). However, the
final implication is more subtle since it is not clear a priori that in this setting, an
arbitrary union of Cn-translates of a closed K -orbit is again Zariski-closed in Gn .

Corollary 3.9 also has a geometric counterpart, as follows. If h ∈ Gn is a generic
tuple for a subgroup H 6 G, then H is relatively G-irreducible with respect to
K precisely when h is a K -stable point of Gn , that is, K ·h is closed in Gn and
CK (h)/CK (G) is finite [7, Definition 3.12, Proposition 3.16].

COROLLARY 4.14. In the notation of Theorem 3, suppose that K ◦ is semisimple
and that h ∈ N n . Then the following are equivalent.

(1) h is a K -stable point of Gn .

(2) π(h) is a π(K )-stable point of (N/C)n .

(3) π−1(π(K ·h)) is closed in Gn and contains a K -stable point.

(4) Every point of π−1(π(K ·h)) is K -stable in Gn .

Proof. Corollary 3.9 gives the equivalence (1)⇔ (2). Theorem 4.12 tells us that
the closure conditions in (1), (3) and (4) are equivalent. It therefore suffices to
show that all K -orbits in π−1(π(K ·h)) have the same dimension, since then
their stabilizers (in K ) all have the same dimension, so π−1(π(K ·h)) contains
a K -stable point if and only if all of its points are K -stable. As in the proof
of Theorem 4.12, the set π−1(π(K ·h)) is a union of K ◦-orbits, each of which
is a Cn-translate of a K ◦-orbit K ◦xi ·h, where {x1, . . . , xt} is a set of coset
representatives for K ◦ in K . But K/K ◦ acts transitively by conjugation on these
orbits since K ◦xi ·h = xi K ◦ ·h = xi · (K ◦ ·h); hence these orbits indeed have the
same dimension.

5. Relative complete reducibility and separability

Recall from [4, Definition 3.27] that a closed subgroup H of G is called
separable in G if the Lie algebra centralizer CLie(G)(H) equals the Lie algebra
of CG(H). As discussed in [4, Section 3.5], this is equivalent to the smoothness
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of the scheme-theoretic centralizer of H in G. Moreover, if H is topologically
generated by {h1, . . . , hn}, then H is separable in G precisely when the orbit map
G → G · (h1, . . . , hn) is a separable morphism of varieties.

In [4, Section 3.5] and [6], it is shown that separability interacts closely with
complete reducibility. We now derive relative analogues of these results.

DEFINITION 2. For subgroups H and K of a reductive group G, we say that H is
separable for K if Lie(CK (H)) and CLie(K )(H) coincide as subspaces of Lie(G).

This definition is equivalent to requiring that the orbit map K → K ·h is
a separable morphism for some (equivalently any) generic tuple h of H . This
equivalence is proved in [2, Lemma 5.1] under the assumption that H 6 K and
K is connected, but the same proof applies word for word in this more general
setting. Note also that when K = G, this gives the usual definition of separability
of a subgroup in G; cf. [4, Definition 3.27].

Recall from [7, Theorem 3.5] that a subgroup of G is relatively G-cr with
respect to K if and only if for all λ ∈ Y (K ) such that H 6 Pλ, we have
dim CK (H) = dim CK (cλ(H)), where cλ is the map Pλ → Lλ, given by x 7→
lima→0(λ(a) · x). This observation allows us to prove the following analogue of
[4, Theorem 3.46].

THEOREM 5.1. In the notation of Theorem 1, suppose that H is separable for
K . If Lie(K ) is semisimple as an H-module, then H is relatively G-completely
reducible with respect to K .

Proof. We mimic the proof of [4, Theorem 3.46]. Suppose that H is not relatively
G-cr with respect to K . Thus by [7, Theorem 3.5], there exists λ ∈ Y (K ) such
that H 6 Pλ and dim CK (H) < dim CK (cλ(H)). Since H is separable for K by
hypothesis, it follows that

dim CLie(K )(H) = dim CK (H) < dim CK (cλ(H)) 6 dim CLie(K )(cλ(H)).

Note that cλ(H) is in N : for each a in k, and x in N , we have that λ(a)xλ(a)−1

belongs to N . As N is closed, the limit of the former as a tends to 0 still belongs
to N . In particular, cλ(H) belongs to N .

Now consider the images of H and cλ(H) under the adjoint map Ad : N →
GL(Lie(K )). Then it is clear that Ad(cλ(H)) = cAd ◦λ(H). Since Lie(K ) is
semisimple as an H -module, we deduce that Ad(H) is GL(Lie(K ))-completely
reducible, and in particular it is GL(Lie(K ))-conjugate to Ad(cλ(H)). The
fixed points of Ad(H) and Ad(cλ(H)) on Lie(K ) are precisely CLie(K )(H) and
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CLie(K )(cλ(H)), and so these have equal dimensions. This contradicts the strict
inequality above.

REMARK 5.2. One may be tempted to prove Theorem 5.1 more directly by
working with the image in π(N ) and applying Theorem 1 and the absolute
result [4, Theorem 3.46]. However, even in the absolute case, separability of H
does not imply separability of π(H) in π(N ). As an example of this phenomenon,
it is well known that every subgroup of GLn(k) is separable, whereas PGLn(k)
has nonseparable subgroups, for instance the normalizer of a maximal torus in
PGL2(k) is not separable when char(k) = 2; cf. [4, Examples 3.28–3.30].

REMARK 5.3. In [6, Theorem 1.2], it is shown that if G is connected and char(k)
is very good for G, then every subgroup of G is separable in G. This does
not generalize to nonconnected G. Again, the normalizer of a maximal torus in
PGL2(k) provides a counterexample when char(k) = 2. This subgroup has the
form G = T o 〈x〉, where x is an involution inverting every element of the 1-
dimensional torus T . Then G is centreless but acts trivially on the 1-dimensional
Lie algebra Lie(G); in particular, G is not separable as a subgroup of itself,
although 2 is very good for G as the root system is trivial (cf. [6, Remark 3.5(iv)],
which is missing the necessary condition p = 2).

It turns out that the above is essentially the only obstruction, arising because
char(k) divides the order of the finite group T o 〈x〉/T . The following
generalizes [6, Theorem 1.2] both to nonconnected G and to the relative setting.

THEOREM 5.4. With the notation of Theorem 1, suppose that char(k) is zero or
is very good for K and coprime to |π(H)/π(H ∩ N ◦)|. Then H is separable for
K . In particular, if char(k) is zero or is very good for K and coprime to one of
|π(H)/π(H ◦)| or |π(N )/π(N ◦)|, then H is separable for K .

Proof. For brevity, write H ′ = H ∩ N ◦. Note first that H/H ′ ∼= H N ◦/N ◦ 6
N/N ◦, and since H ◦ 6 H ′, we have a surjection H/H ◦→ H/H ′. Applying π , if
char(k) is positive and coprime to one of |π(H)/π(H ◦)| or |π(N )/π(N ◦)|, then
it is coprime to |π(H)/π(H ′)|. Thus it suffices to prove the first statement of the
theorem.

Now, CK (H)◦ is the largest connected subgroup of K centralizing H and hence
is the largest connected subgroup of K ◦ centralizing H ; thus dim CK (H) =
dim CK ◦(H). Since also Lie(K ) = Lie(K ◦), it follows that we can assume
K = K ◦. Next let M be a reductive subgroup of N guaranteed by Lemma 3.1.
It is clear that dim CK (H) = dim CK (HC) and CLie(K )(H) = CLie(K )(HC), and
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since HC = (HC ∩ M)C , it suffices to prove the result assuming that H 6 M
(this does not change π(H) or π(H ∩ N ◦)). We can therefore also assume
G = N = M Z(K )◦, since this does not change K , CK (H), CLie(K )(H), π(H) or
π(H ∩N ◦). In this case, H is separable for K precisely when H is separable in G.

We now have G◦ = N ◦ = K ; hence char(k) is very good for G by hypothesis.
Now H ′ = H ∩ N ◦ = H ∩ G◦; in particular, H ′ 6 G◦ and by [6, Theorem 1.2],
the subgroup H ′ is separable in G◦. The finite group H/H ′ acts on CK (H ′)
and on CLie(K )(H ′), and H is separable in G (hence separable for K ) precisely
when the fixed points of H/H ′ on Lie CK (H ′) = CLie(K )(H ′) are equal to the
Lie algebra of CCK (H ′)(H/H ′). But the action of H on K factors through π(H),
and so the action of H/H ′ factors through π(H)/π(H ′). By hypothesis, char(k)
is either zero or coprime to the order of this latter group; hence π(H)/π(H ′) is
linearly reductive and the desired result follows from [16, Lemma 4.1].

Combining Theorems 5.4 and 5.1 gives the following, which in turn implies
Theorem 4.

COROLLARY 5.5. With the notation of Theorem 1, suppose that char(k) is zero
or is very good for K and coprime to |π(H)/π(H ∩N ◦)|. If Lie(K ) is semisimple
as an H-module, then H is relatively G-completely reducible with respect to K .

In [4, Section 3.5] and [6], it is shown that separability interacts closely with
Richardson’s notion of reductive pairs. We now generalize these results to the
relative setting.

DEFINITION 3. Let G be reductive, let H, K 6 G and suppose that H normalizes
K ◦. We say that (G, K ) is a reductive pair for H if Lie(K ) is an H -module direct
summand of Lie(G).

This generalizes the usual notion of a reductive pair [4, Definition 3.32], which
is the special case H = K .

The following result generalizes [2, Corollary 5.3], which is a corollary of
[2, Lemma 5.2]. The proof of this latter result does not use the assumption
‘H 6 K ’, and therefore goes through word for word in this situation.

LEMMA 5.6 (Cf. [2, Corollary 5.3]). Let K 6 G be reductive algebraic groups
and let H be a subgroup of G. If H is separable for G and (G, K ) is a reductive
pair for H, then H is separable for K .

The following corollary of Lemma 5.6 generalizes [2, Corollary 5.4] to the case
that G is not necessarily connected.
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COROLLARY 5.7. Take G, K , H as in Lemma 5.6 and let ψ : G → Aut(G◦)
denote the map induced by conjugation. If (G, K ) is a reductive pair for H and
char(k) is zero, or is very good for G and coprime to |ψ(H)/ψ(H ∩ G◦)|, then
H is separable for K .

Proof. Apply Theorem 5.4 (taking K = G there) to conclude that H is separable
for G, and then apply Lemma 5.6.

Proof of Theorem 5. It is well known that every subgroup of GL(V ) is separable
in GL(V ); hence Lemma 5.6 implies that H is separable for K . Again,
since Lie(K ) is a semisimple H -module, the desired conclusion follows from
Theorem 5.1.

Combining Corollary 5.7 and Theorem 5.1 gives the following, which in turn
implies Theorem 6.

COROLLARY 5.8. Let K 6 G be reductive algebraic groups, let H be a subgroup
of G and let ψ : G → Aut(G◦) denote the map induced by conjugation. Suppose
that (G, K ) is a reductive pair for H and char(k) is either zero or is very good for
G and coprime to |ψ(H)/ψ(H ∩ G◦)|. If Lie(K ) is semisimple as an H-module,
then H is relatively G-completely reducible with respect to K .

REMARK 5.9. Theorem 5.4, Corollary 5.7 and Corollary 5.8 all hold with the
term |H/(H ∩ N ◦)| in place of |π(H)/π(H ∩ N ◦)| and other similar adjustments.
While this makes for slightly cleaner statements, it also misses some pathological
cases, such as letting K be a connected reductive group and G = H = K×S for a
finite p-group S, where p = char(k) > 0. In this case, the question of whether H
is separable for K does not depend on properties of S, although H/(H ∩ K ) ∼= S
so char(k) divides |H/(H ∩ G◦)| if |S| > 0.

6. Relative complete reducibility of Lie subalgebras

In this section, we consider the analogue of Theorem 1 for subalgebras of
Lie(G). We write g = Lie(G), and we denote the Lie algebras of the subgroups
K , N , C , Pλ, Lλ of G by k, n, c, pλ and lλ, respectively.

Recall from [7, Definition 3.9] that a subalgebra h of g is called relatively G-
completely reducible with respect to a reductive subgroup K 6 G if, whenever
h ⊆ pλ for λ ∈ Y (K ), there exists µ ∈ Y (K ) such that Pλ = Pµ and h ⊆ lµ. If
this holds for K = G, then h is called G-completely reducible; cf. [15].

LEMMA 6.1. In the notation of Theorem 1, for all λ ∈ Y (K ), the following hold.

(1) π(P◦λ ∩ N ) = P◦π◦λ, π(L
◦

λ ∩ N ) = L◦π◦λ.
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(2) π−1(P◦π◦λ) = P◦λ ∩ N, π−1(L◦π◦λ) = L◦λ ∩ N.

(3) Lie(Pλ ∩ N ) = pλ ∩ n, Lie(Lλ ∩ N ) = lλ ∩ n.

(4) dπ(pλ ∩ n) = pπ◦λ, dπ(lλ ∩ n) = lπ◦λ.

(5) (dπ)−1(pπ◦λ) = pλ ∩ n, (dπ)−1(lπ◦λ) = lλ ∩ n.

Proof. For all λ ∈ Y (K ), we have P◦π◦λ = Pπ◦λ ∩ (N/C)◦ since this
is a parabolic subgroup of the connected reductive subgroup (N/C)◦,
and similarly L◦π◦λ = Lπ◦λ ∩ (N/C)◦. Now recall the subgroup M from
Lemma 3.1, and that the restriction π : M → N/C is an isogeny. Thus
π : M◦ → (N/C)◦ is a surjective map of connected reductive groups. Thus
part (1) follows from [4, Lemma 2.11(i)]. For part (2), using part (1), we see that
π−1(P◦π◦λ) = π

−1(π(P◦λ )) = (P
◦

λ ∩ N )C = P◦λ ∩ N , and similarly for Lλ.
Part (3) follows from the proof of [19, Theorem 13.4.2(ii)], which shows that

the containment (63) given on p. 234 there is an equality; this is the desired result
for Pλ. Also, Lie(Lλ ∩ N ) is the subalgebra of n centralized by λ(k∗), which is
precisely lλ ∩ n.

For part (4), the left-hand side is clearly contained on the right-hand side. On the
other hand, n = Lie(N ◦) and the restriction π : N ◦→ N ◦/(N ◦ ∩C) is a quotient
of N ◦ by the closed subgroup N ◦ ∩C and is therefore separable [19, 5.5.6(ii)] (cf.
also [19, Exercise 5.5.9(5)(c)]); so dπ induces an isomorphism n/c→ Lie(N/C).
Therefore,

dim dπ(pλ ∩ n)+ dim c = dim(pλ ∩ n)
= dim(P◦λ ∩ N )
= dimπ(P◦λ ∩ N )+ dim C
= dim Pπ◦λ + dim C
= dim pπ◦λ + dim C,

where the first equality uses the separability of the restriction of π to N ◦ and the
second equality uses (3). We thus deduce that dim dπ(pλ ∩ n) = dim pπ◦λ, and so
the two subalgebras are equal. An identical argument shows that dπ(lλ∩n) = lπ◦λ.

Part (5) follows directly from part (4), as (dπ)−1(pπ◦λ)= (dπ)−1(dπ(pλ∩n))=
pλ ∩ n, and similarly for lλ.

Our analogue of Theorem 1 for Lie algebras is now as follows.

THEOREM 6.2. Let K 6 G be reductive algebraic groups. Let N = NG(K ◦) 6
NG(k) and C = CG(K ◦) 6 CG(k), let π : N → N/C be the quotient map, and
write dπ for the differential n→ n/c = Lie(N/C).
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Let h be a Lie subalgebra of n. Then h is relatively G-completely reducible with
respect to K if and only if dπ(h) is π(N )-completely reducible.

Proof. The map π : N → N/C induces a surjection Y (K )→ Y (N/C). It follows
from Lemma 6.1(iv), (v) that h is contained in pλ (respectively, lλ) for λ ∈ Y (K )
if and only if dπ(h) is contained in pπ◦λ (respectively, lπ◦λ).

The following is the Lie algebra counterpart of Corollary 4.1. Since both n/c
and the trivial subalgebra in n/c are π(N )-cr, Theorem 6.2 gives the following.

COROLLARY 6.3. Let K 6 G be reductive algebraic groups. Then the
subalgebras ng(K ◦) and cg(K ◦) of g are relatively G-completely reducible
with respect to K .

As with relative G-complete reducibility of subgroups, a Lie subalgebra h of g
is relatively G-cr with respect to a reductive subgroup K 6 G precisely when the
K -orbit of any (equivalently, of every) finite tuple h ∈ hn which generates h as
a Lie algebra is closed in gn [7, Theorem 3.10(iii)]. Thus results from geometric
invariant theory can be brought to bear. In particular, if h is not relatively G-cr
with respect to K , then there exists a so-called ‘optimal destabilizing parabolic
subgroup’ for h; see [7, Definition 3.23 and Remark 3.24]. This is a canonical
parabolic subgroup Pλ (λ ∈ Y (K )) such that h ⊆ pλ and h * lλ.

The following result generalizes [15, Theorem 1(2)]. It follows directly
from this absolute result and Theorem 6.2, but can also be proved directly
by considering optimal destabilizing parabolic subgroups, mirroring [8,
Example 5.29].

THEOREM 6.4. In the notation of Theorem 1, if H is relatively G-completely
reducible with respect to K , then the Lie algebra h of H is also relatively G-
completely reducible with respect to K .

Proof. Suppose that h is not relatively G-cr with respect to K and let Pλ (λ ∈
Y (K )) be the optimal destabilizing parabolic subgroup for h. By the optimality
of Pλ [7, Remark 3.24], we have NNG (k)(h) 6 Pλ, and since H 6 NG(h) and
H 6 N 6 NG(k), we have H 6 Pλ also. Then by hypothesis, we have H 6 Lµ
for some µ ∈ Y (K ) such that Pλ = Pµ, and therefore h 6 lµ.

Note that the converse of Theorem 6.4 already fails in the absolute case [15].
Here is the counterpart of Theorem 3 for Lie algebras, which is equivalent

to Theorem 6.2 thanks to [7, Theorem 3.10(iii)], which is the analogue of
Theorem 2.1 for Lie subalgebras of g and their generating tuples.
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THEOREM 6.5. Let K 6 G be reductive algebraic groups, write N = NG(K ◦),
C = CG(K ◦), and let π : N → N/C be the quotient map, and write dπ for the
differential n→ n/c = Lie(N/C). Let h ∈ nn (n > 1) and write dπ also for the
map nn

→ (n/c)n .
Then K ·h is closed in gn if and only if π(N ) · dπ(h) is closed in (n/c)n .

The following is the analogue of Theorem 4.12 for the diagonal action of K
on gn .

COROLLARY 6.6. With the above notation, the following are equivalent.

(1) K ·h is closed in gn .

(2) π(K ) · dπ(h) is closed in (n/c)n .

(3) (dπ)−1(dπ(K ·h)) is closed in gn .

(4) Every orbit of K on (dπ)−1(dπ(K ·h)) is closed in gn .

Proof. The equivalence of (1) and (2) is given by Theorem 6.5. The equivalence
of (2) and (3) follows from the fact that the topology on (n/c)n is the quotient
topology, and we also use the fact that dπ is surjective (as shown in the proof of
Lemma 6.1(4)).

Let K =
⋃t

i=1 K ◦xi be the decomposition of K into right cosets of K ◦. Writing
h = (h1, . . . , hn), we have

(dπ)−1(dπ(K ·h)) =
t⋃

i=1

(dπ)−1(dπ(K ◦ · (xi ·h)))

=

t⋃
i=1

{(x · (xi · h1)+ c1, . . . , x · (xi · hn)+ cn) : x ∈ K ◦, ci ∈ c},

=

t⋃
i=1

{(x · ((xi · h1)+ c1), . . . , x · ((xi · hn)+ cn)) : x ∈ K ◦, ci ∈ c},

where the last equality follows since K ◦ centralizes c.
Now if K ·h is closed in gn , then so is K ◦ · (xi ·h) for each i . Thus

(dπ)−1(dπ(K ·h)) is a union of K ◦-orbits, each of which is translated to one of
the closed K ◦-orbits K ◦ · (xi ·h) by an element of cn . As translation is a variety
automorphism gn

→ gn , it follows that every K ◦-orbit in (dπ)−1(dπ(K ·h)) is
closed in gn . Consequently, every K -orbit in (dπ)−1(dπ(K ·h)) is closed in gn

as well. So (4) follows from (1) and the reverse implication is clear.
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Comments concerning the equivalences in Corollary 6.6 similar to those
in Remark 4.13 apply. Moreover, one defines relative G-irreducibility of Lie
subalgebras of g (with respect to K ) in terms of K -stable points on gn [7,
Definition 3.12], and results analogous to Corollary 3.9 and 4.14 apply in this
case, with the obvious modifications.

7. Changing the field

In this section, we prove Theorem 7.4, which generalizes Theorem 1 to arbitrary
fields. This allows us to generalize many other results, including Theorem 3. First,
we recall some relevant notions from [7, Section 4]. In this section, k denotes an
arbitrary field and k is the algebraic closure of k. Algebraic groups and varieties
are taken to be defined over k. If V is a k-variety and k ′/k is an algebraic
extension, then we denote the set of k ′-points of V by V (k ′). The set of k-defined
cocharacters of a k-group M is denoted by Yk(M). We say that a G-variety V is
defined over k if both V and the action of G on V are defined over k.

We begin with the definition of relative G-complete reducibility over k,
[7, Definition 4.1].

DEFINITION 4. Let K 6 G be reductive algebraic k-groups. A subgroup H of
G is relatively G-completely reducible over k with respect to K if for every λ ∈
Y (K ) such that Pλ is k-defined and H ⊆ Pλ, there exists µ ∈ Y (K ) such that
Pλ = Pµ, Lµ is k-defined and H ⊆ Lµ. If K = G, then we say that H is G-
completely reducible over k; see also [18] and [4, Section 5].

When k = k, this definition coincides with Definition 1 since in this case each
R-parabolic subgroup and R-Levi subgroup of G is k-defined.

According to [7, Lemma 4.8], when discussing relative G-complete reducibility
over k with respect to K , it suffices to consider R-parabolic subgroups and R-
Levi subgroups of the form Pλ and Lλ for λ ∈ Yk(K ), rather than all k-defined
R-parabolic subgroups and R-Levi subgroups arising from a cocharacter of K .

7.1. Rational analogue of Theorem 1. We now embark on proving the
rational version of Theorem 1. We need to generalize results from Section 3 and
from [4]. From now on, we suppose that in the setting of Theorem 1, the groups G,
K , N and C are all k-defined. Then the quotient map π : N → N/C is a k-defined
morphism. Let M be a reductive subgroup of G guaranteed by Lemma 3.1, and
let πM denote the restriction of π to M , so that πM is an isogeny M → N/C .

LEMMA 7.1. With the above assumptions, the subgroup M may be taken to be
k-defined, and then πM is a k-defined isogeny.
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Proof. By assumption, K is k-defined, and hence so are K ◦ and [K ◦, K ◦]
[9, Ch. I 1.2 Proposition (b); 2.3 Corollary]. Therefore, so is the quotient map
N → N/[K ◦, K ◦]. Now [10, Theorem 1.1] applies to the more general setting
of k-group schemes with finite quotients; hence the subgroup M constructed in
Lemma 3.1 is the preimage (under π ) of a finite k-defined subgroup of N/C
and hence is a k-defined subgroup of G. Now π is k-defined and hence so is its
restriction to M .

LEMMA 7.2. Keeping the above assumptions, suppose that C is normal in G. If
λ ∈ Yk(G/C), then there exists µ ∈ Yk(G/C) such that Pµ = Pλ, Lµ = Lλ and
µ = π ◦ ν for some ν ∈ Yk(M).

Proof. With M and πM as above, πM is an isogeny and hence πM is quasicentral.
Since dπ : n → n/c is the quotient map, the kernel of dπM is just Lie(M) ∩
Lie(CG(K ◦)) ⊆ Lie(M)∩Lie(CG(M◦)), and the latter is central in Lie(M). Then
πM is central; cf. [9, Section 22.3]. Thus, by [9, 22.5 Corollary], the preimage of
a k-defined torus is k-defined. Let T = λ(k

∗

) and let S = π−1
M (T )◦. Thus S and

T are 1-dimensional k-defined tori. Since π is a k-morphism, it induces a map
Yk(S) → Yk(T ) whose image has finite index, say n. Then µ = nλ satisfies the
required conditions.

The following is the rational version of Theorem 1 in the special case that
G = N and C◦ is a torus. The proof of Theorem 7.4 proceeds by reducing to this
special case.

LEMMA 7.3. Let G be a k-defined reductive group. Let C be a k-defined normal
subgroup of G such that C◦ is a torus, and let π be the quotient map G → G/C.
Let M be a subgroup guaranteed by Lemma 7.1 so that M ∩ C is finite and π
induces an isogeny πM : M → G/C.

Then a subgroup H of G is G-completely reducible over k if and only if π(H)
is (G/C)-completely reducible over k.

Proof. As in the proof of Theorem 1, it suffices to assume that H 6 M , since H
is contained in a parabolic subgroup Pλ (λ ∈ Yk(G)) if and only if HC 6 Pλ if
and only if HC ∩ M 6 Pλ, and similarly for Lλ.

So suppose H is G-cr over k, and suppose that π(H) 6 Pµ(G/C), where
µ ∈ Yk(G/C). By Lemma 7.2, we can assume that µ = π ◦λ for some λ ∈ Yk(M).
Then H 6 π−1(π(H)) 6 π−1(Pµ) = Pλ(G), by Proposition 3.8. Since H is G-cr
over k, by [8, Lemma 2.5(iii)], there exists u ∈ Ru(Pλ)(k) such that H 6 Lu · λ.
Now by [4, Lemma 6.15(iii)], we have u ∈ Ru(Pλ ∩ M)(k), so u · λ ∈ Yk(M).
Thus using Proposition 3.8 again, we have π(H) 6 π(Lu · λ ∩ M) = Lπ(u) ·µ.
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Moreover, Pπ(u) ·µ = π(Pu · λ) = π(Pλ) = Pµ, also by Proposition 3.8; so Lπ(u) ·µ
is an R-Levi subgroup of Pµ. It follows that π(H) is (G/C)-cr over k.

Conversely, suppose that π(H) is (G/C)-cr over k, and suppose that H 6 Pλ
for some λ ∈ Yk(G). Then π(H) 6 Pµ, where µ = π ◦ λ ∈ Yk(G/C). As π(H)
is (G/C)-cr over k, there is an R-Levi subgroup L of Pµ such that π(H) 6 L .
By the proof of Lemma 7.2, we can replace µ and λ by some positive integer
multiples (without changing the corresponding R-parabolic or R-Levi subgroups)
so that there exists σ ∈ Yk(M) with π ◦ σ = µ. We have λ(k

∗

) 6 σ(k
∗

)C◦, and it
follows that there exists a k-cocharacter τ ∈ Yk(C) such that λ = σ + τ .

Since π(H) is (G/C)-cr over k, there exists ν ∈ Yk(G/C) so that Pν = Pµ
and π(H) 6 Lν . By Lemma 7.2, we can choose ν so that ν = π ◦ σ ′ for some
σ ′ ∈ Yk(M). Using Proposition 3.8 we have Pσ ′ = π−1(Pν) = π−1(Pµ) = Pσ .
By [8, Corollary 2.6], we can adjust ν and σ ′ (without affecting the corresponding
R-parabolic and R-Levi subgroups) so that σ ′ = u · σ for some u ∈ Ru(Pσ ∩
M)(k) = Ru(Pσ )(k) = Ru(Pλ)(k). Thus, replacing λ by u · λ if necessary, we can
assume that π(H) 6 Lµ. We have H 6 π−1

M (Lµ) = Lσ ∩ M by Proposition 3.8.
We have λ ∈ Yk(Lσ ), and

H 6 Pλ ∩ (Lσ ∩ M) 6 Pλ ∩ Lσ = Pτ ∩ Lσ .

Now L◦σ 6 (Lσ ∩M◦)C◦ 6 Pτ ∩ Lσ ; hence Ru(Pτ ∩ Lσ ) = {1}, and so Pτ ∩ Lσ =
Lτ ∩ Lσ . Thus H 6 Lτ ∩ Lσ 6 Lλ, and so H is G-cr over k.

The following is now the rational version of Theorem 1.

THEOREM 7.4. Let K 6 G be reductive algebraic k-groups, write N = NG(K ◦),
C = CG(K ◦), and let π : N → N/C be the quotient map. Suppose that N and C
are k-defined, and let H 6 N.

Then H is relatively G-completely reducible over k with respect to K if and
only if π(H) is π(N )-completely reducible over k.

Proof. The proof of Theorem 1 begins by reducing to the case that G = N =
M Z(K ◦)◦, where M is a reductive subgroup guaranteed by Lemma 3.1. Using
Lemma 7.1, the same reduction holds in this rational setting, since none of the
arguments require special properties of the field k, only that the groups and
quotient maps involved are defined over k. So under this reduction, Yk(G) =
Yk(G◦) = Yk(K ◦) = Yk(K ) so that H is relatively G-cr over k with respect to
K if and only if H is G-cr over k. Moreover, after reduction to this case, the
group C◦ = Z(K ◦)◦ is a torus, and so the required conclusion follows from
Lemma 7.3.
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REMARK 7.5. Note that while G, K , N and C all need to be k-defined for the
above proofs to work, we do not make any such assumption on H .

7.2. Rational analogues of Theorem 3 and corollaries. In order to genera-
lize Theorem 3 to arbitrary fields, we need a notion of a ‘closed orbit’ for a group
M(k) of k-points of a reductive k-group M acting on a k-variety. The correct
notion for us is as follows [8, Definition 3.8].

DEFINITION 5. Let M be a reductive k-group and let V be an M-variety defined
over k. Let v ∈ V . We say that the M(k)-orbit M(k) · v is cocharacter-closed over
k if for any λ ∈ Yk(M) such that v′ = lima→0 λ(a) · v exists, v′ is M(k)-conjugate
to v.

The usefulness of this notion is shown by the following characterization
of relative G-complete reducibility over k in terms of cocharacter closure
of a rational orbit of a generic tuple. Combining [3, Corollary 5.3], [7,
Theorem 4.12 (iii)] and [3, Theorem 9.3], we obtain the following rational
version of Theorem 2.1. For K = G, this is just [3, Theorem 9.3].

THEOREM 7.6. Let K 6 G be reductive algebraic k-groups. Let H be a subgroup
of G and let h ∈ H n be a generic tuple of H. Then H is relatively G-completely
reducible over k with respect to K if and only if K (k) ·h is cocharacter-closed
over k.

Owing to Theorem 7.6, Theorem 7.4 is equivalent to the following rational
version of Theorem 3.

THEOREM 7.7. Let K 6 G be reductive algebraic k-groups, write N = NG(K ◦),
C = CG(K ◦), and let π : N → N/C be the quotient map. Suppose that N and C
are k-defined, let h ∈ N n (n > 1) and write π also for the map N n

→ (N/C)n .
Then K (k) ·h is cocharacter-closed over k if and only if π(N )(k) ·π(h) is

cocharacter-closed over k.

Next, Theorem 7.4 allows us to immediately deduce the relative version of
[3, Corollary 9.7]. However, the result holds without the restriction H 6 N .
One implication of the first part holds without the condition on CK (H),
by [7, Theorem 4.13]. If k ′/k is an algebraic extension of perfect fields,
then both implications of the first part hold without the condition on CK (H),
by [3, Theorem 4.14]. The next corollary therefore follows at once from
[3, Theorem 5.7] and Theorem 7.6.
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COROLLARY 7.8. Let K 6 G be reductive algebraic k-groups and let H be a
k-defined subgroup of G such that CK (H) is k-defined. Then the following hold.

(1) For any separable algebraic extension k ′/k, H is relatively G-completely
reducible over k ′ with respect to K if and only if H is relatively G-completely
reducible over k with respect to K .

(2) For a k-defined torus S of CK (H), let L = CK (S). Then H is relatively G-
completely reducible over k with respect to K if and only if H is relatively
G-completely reducible over k with respect to L.

We end this section with a geometric consequence of Theorem 7.7, which
provides a rational version of Theorem 4.12. For that, we require the notion of
a cocharacter-closed subset of a G-variety over k [3, Definition 1.2(a)].

DEFINITION 6. Let V be an affine variety over k on which G acts. Given a subset
X of V , we say that X is cocharacter-closed (over k) if for every v ∈ X and every
λ ∈ Yk(G) such that v′ = lima→0 λ(a) · v exists, v′ ∈ X .

Note that this definition coincides with Definition 5 if X = G(k) · v for some
v ∈ V .

The cocharacter-closed subsets of V form the closed sets of a topology on V
(it is clear that arbitrary intersections and unions of cocharacter-closed sets are
cocharacter-closed, and that the empty set and the whole space V are cocharacter-
closed); cf. [3, Remark 3.1(iii)]. It is this topology that is used in our rational
version of Theorem 4.12.

THEOREM 7.9. Let K 6 G be reductive algebraic k-groups, write N = NG(K ◦),
C = CG(K ◦), and let π : N → N/C be the quotient map. Let h ∈ N n (n > 1)
and write π also for the map N n

→ (N/C)n . Suppose that N and C are k-defined.
Then the following are equivalent.

(1) K (k) ·h is cocharacter-closed over k in Gn .

(2) π(K (k)) ·π(h) is cocharacter-closed over k in (N/C)n .

(3) π−1(π(K (k) ·h)) is cocharacter-closed over k in Gn .

(4) Every K (k)-orbit on π−1(π(K (k) ·h)) is cocharacter-closed over k in Gn .

Proof. Thanks to Theorem 7.7, (1) and (2) are equivalent. Since N n is closed
in Gn and stabilized by K , it is cocharacter-closed for the action of K by
[3, Remark 3.1(ii)]. Further, since π(K (k)) ·π(h)= π(K (k) ·h) and the topology
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on (N/C)n is the quotient topology afforded by the cocharacter-closed subsets of
N , it follows that (2) and (3) are equivalent.

Clearly, (4) implies (1). Now suppose (1). Thanks to [3, Corollary 3.5], K (k) ·h
is cocharacter-closed over k if and only if K ◦(k) ·h is cocharacter-closed over k.
Thus we may assume that K is connected. Writing h = (h1, . . . , hn), we have

π−1(π(K (k) ·h)) = {((x · h1)c1, . . . , (x · hn)cn) : x ∈ K (k), ci ∈ C},
= {(x · (h1c1), . . . , x · (hncn)) : x ∈ K (k), ci ∈ C},

where the last equality follows again since K = K ◦ centralizes C . Thus
π−1(π(K (k) ·h)) is a union of K (k)-orbits, each of which is a translate of
the cocharacter-closed K (k)-orbit K (k) ·h by an element of Cn . As translation
is a k-variety automorphism Gn

→ Gn , it follows that every K (k)-orbit on
π−1(π(K (k) ·h)) is cocharacter-closed in Gn , as desired.

Acknowledgements

The second author acknowledges support from the Alexander von Humboldt
Foundation. The authors wish to thank Ben Martin for helpful comments on early
versions of the paper.

Conflict of Interest: The authors declare there are no conflicts of interest.

References

[1] C. Attenborough, M. Bate, M. Gruchot, A. Litterick and G. Röhrle, ‘On relative complete
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