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Abstract. The main result of the paper is classification of free multidimensional Borel flows
up to Lebesgue orbit equivalence, by which we mean an orbit equivalence that preserves
the Lebesgue measure on each orbit. Two non-smooth Rd -flows are shown to be Lebesgue
orbit equivalent if and only if they admit the same number of invariant ergodic probability
measures.

1. Introduction
1.1. Orbit equivalences. The core concept for this paper is orbit equivalence of actions.
Since we work in the framework of descriptive set theory, we consider Borel actions of
Polish groups† on standard‡ Borel spaces. Two group actions G y X and H y Y are
orbit equivalent (OE) if there exists a Borel bijection φ : X→ Y which sends orbits onto
orbits: that is, if

φ(OrbG(x))= OrbH (φ(x)) for all x ∈ X.

This notion is, perhaps, better known in the framework of ergodic theory, where
phase spaces X and Y are endowed with invariant probability measures which the orbit
equivalence is assumed to preserve. Our set up is different in two aspects. We do not
fix any measures on the phase spaces, therefore potentially increasing the choice of orbit
equivalence maps. On the other hand, contrary to the ergodic theoretical case where
functions need to be defined almost everywhere, we require our maps φ : X→ Y to be
defined on each and every point. In this sense, the descriptive theoretical set up is more
restrictive.

† A topological group is Polish if its topology is Polish, i.e., it is separable and metrizable by a complete metric.
‡ A standard Borel space is a set X together with a distinguished σ -algebra6 such that for some Polish topology
on X the σ -algebra 6 coincides with the family of Borel sets.
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Lebesgue orbit equivalence of multidimensional Borel flows 1967

The notion of OE in the above form is arguably better suited for actions of discrete
groups. One of the high points in that area is the classification of hyperfinite equivalence
relations up to orbit equivalence by Dougherty et al [DJK94, Theorem 9.1] based on an
earlier work of Nadkarni [Nad90]. First, let us recall that with any action G y X we
may associate the orbit equivalence relation on X (denoted by EG

X , or just by EX , when
the group is understood) by declaring two points to be equivalent whenever they are in
the same orbit of the action. We say that an equivalence relation is countable if each
equivalence class is countable (but note that there will typically be an uncountable number
of classes), and an equivalence relation is finite if every equivalence class is finite. A
countable Borel equivalence relation is hyperfinite if it is an increasing union of finite
Borel equivalence relations. Given a countable Borel equivalence relation E ⊆ X × X , a
measure µ on X is said to be E-invariant if every Borel automorphism θ : X→ X of E
preserves µ. A measure is ergodic with respect to E if every E-invariant subset of X is
either null or conull. For the sake of brevity, a probability invariant ergodic measure is
called a pie measure. A countable equivalence relation is aperiodic if all of its classes
are infinite. Finally, recall that a countable equivalence relation is smooth if it admits
a Borel transversal—a Borel set that intersects every equivalence class in exactly one
point. Having introduced all the necessary terminology, the Dougherty–Jackson–Kechris
classification (we later refer to it as DJK classification for short) of hyperfinite Borel
equivalence relations can be stated by the following theorem.

THEOREM. (Dougherty–Jackson–Kechris) Two non-smooth aperiodic hyperfinite Borel
equivalence relations are isomorphic if and only if cardinalities of the sets of pie measures
are the same.

We recall that hyperfinite equivalence relations are exactly the orbit equivalence
relations arising from Borel actions of the group of integers Z (see, for instance, [DJK94,
Theorem 5.1]). The situation changes drastically when one considers locally compact non-
discrete groups. All free non-smooth Borel R-flows are orbit equivalent. In fact, a much
stronger result is true. An orbit equivalence φ : X→ Y between two free actions Ry X
and Ry Y gives rise to a cocycle†

f : R× X→ R f (r, x) is such that φ(x)+ f (r, x)= φ(x + r).

A time-change equivalence between free actions Ry X and Ry Y is an OE φ : X→ Y
such that for each x ∈ X the function f ( · , x) : R→ R is a homeomorphism‡. This is
a substantial strengthening of the notion of orbit equivalence. Nevertheless, as proved
by Miller and Rosendal [MR10], in the descriptive set theoretic set-up the world of free
R-flows collapses with respect to time-change equivalence.

THEOREM. (Miller–Rosendal) Any two non-smooth free R-flows are time-change
equivalent.

† For abelian groups the action is denoted additively. For instance, x + r below means the action of r ∈ R upon
the element x ∈ X .
‡ One may even require a stronger condition of f ( · , x) being a C∞-diffeomorphism. The theorem of Miller
and Rosendal remains valid in this case.
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The difference between continuous and discrete worlds lies in the fact that continuous
groups have a lot more non-trivial structures on them. The obvious one is topology.
Whenever we have a free action G y X and an orbit O ⊆ X , we may transfer the topology
from G onto O using the correspondence G 3 g 7→ gx ∈O for any chosen x ∈O. If
groups G and H are discrete, any OE between their free actions respects the topology:
restricted onto any orbit O ⊆ X , φ :O→ φ(O) is a homeomorphism. When the topology
on O is not discrete, the map φ :O→ φ(O) has no reason to preserve the topology and,
when this is imposed as an additional assumption on φ, one recovers the concept of time-
change equivalence.

Another structure possessed by all locally compact groups is Haar measure. Being
invariant, it can also be transferred† onto any orbit of a free action G y X . Again, if G and
H are discrete (and if one takes counting Haar measures), any OE map φ : X→ Y restricts
to a measure preserving isomorphism between orbits. When G and H are continuous, this
may no longer be the case. This turns out to be an obstacle for cardinality of the set of pie
measures to be an invariant of the OE between non-discrete locally compact group actions
and is responsible for the failure of the analog of DJK classification.

1.2. Lebesgue orbit equivalence. The paper is concerned mainly with free actions of
Euclidean spaces Rd y X on standard Borel spaces. Two such actions Rd y X and
Rd y Y are Lebesgue orbit equivalent (LOE) if there exists an OE φ : X→ Y which
preserves the Lebesgue measure on each orbit‡. In an ergodic theoretical set-up, i.e.,
when X and Y are endowed with probability invariant measures and the map φ needs to
be defined almost everywhere, this notion seems to have appeared for the first time in the
work of Krengel [Kre76], in which the following theorem was proved.

THEOREM. (Krengel) Free ergodic flows Ry X and Ry Y are always LOE.

Still within the framework of ergodic theory, this has later been generalized by
Rudolph [Rud79] to free actions of Rd . In fact, Rudolph proved a much stronger result.
Namely, for d ≥ 2 an OE map φ : X→ Y may be assumed to be both Lebesgue measure
preserving and a homeomorphism when restricted to any orbit.

1.3. Main results. In the present paper we prove an analog of DJK classification for free
Rd -flows.

THEOREM 9.1. Free non-smooth Borel Rd -flows are Lebesgue orbit equivalent if and only
if cardinalities of the sets of pie measures are the same.

The structure of the paper is as follows. Section 2 provides a different proof of a
theorem due to Conley which guarantees existence of cocompact cross sections. Section 3
introduces various notions of orbit equivalences which preserve measures between orbits
and §4 shows a correspondence between invariant measures on a phase space and on a
cocompact cross section.

† Since we consider left actions one needs to take a right Haar measure. More on this in §3.
‡ A rigorous definition can be found in §3.
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Remaining sections deal with Rd -flows and prove various parts of the main result. In
§5 we introduce rectangular tilings, §6 proves a version of Rokhlin’s lemma that works
for all invariant measures at the same time, and §7 employs this result together with a
tiling method due to Rudolph [Rud88] to construct a LOE between invariant subsets of
uniformly full measures. Section 8 then deals with the complementary case of flows with
no invariant measures, and in §9 we finally prove the main theorem.

2. Cocompact cross sections
Let G be a locally compact Polish group acting in a Borel way on a standard Borel space
X . In this section the action is not assumed to be free. A cross section for G y X is a
Borel set C ⊆ X that intersects every orbit of the action, i.e., G · C = X , and is such that,
for some neighborhood of the identity U ⊆ G,

U · x ∩U · y =∅ whenever x, y ∈ C are distinct. (1)

We shall typically assume U to be symmetric and compact. When for a set U the
cross section C satisfies (1), we say that the cross section is U-lacunary. Frequently, the
definition of a cross section is relaxed by omitting the lacunarity condition and requiring
the countability of intersections with orbits instead but, since all the cross sections in our
work will be lacunary, we choose to adopt the stronger definition.

Lacunarity says that distinct points within an orbit are never ‘too close’ to each
other. The complementary notion of not having ‘large gaps’ within orbits is called
cocompactness. A cross section C is cocompact if there exists a compact neighborhood
of the identity V ⊆ G such that V · C = X , and C is said to be V -cocompact in that
case. Finally, we say that a cross section C is a maximal U -lacunary cross section if
it is U -lacunary and, for any z ∈ X\C, the set C ∪ {z} is no longer a U -lacunary cross
section. When U is a symmetric neighborhood of the identity, a U -lacunary cross section
is maximal if and only if it is U 2-cocompact.

To illustrate this concept consider, for instance, the case G = R2 and suppose,
additionally, that the action R2 y X is free. We may therefore identify each orbit with
an affine† copy of the plane. Take U to be a ball of radius r around the origin in R2. A
cross section C ⊂ X is U -lacunary if and only if balls of radius r around distinct points in
C do not intersect, see Figure 1. It is maximal U -lacunary if, moreover, any point in the
orbit is at most 2r from a point in C.

A theorem of Kechris [Kec92, Corollary 1.2] establishes existence of U -lacunary
cross sections for any action G y X of a locally compact group and any given compact
neighborhood of the identity U ⊆ G. Conley proved that one can always find a cocompact
cross section.

THEOREM. (Conley) Any Borel action of a locally compact group admits a cocompact
cross section.

† By affine we mean a plane with no distinguished origin. It nevertheless carries all the structures from R2 which
are translation invariant: Euclidean distance, Lebesgue measure, etc.
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FIGURE 1. Cocompact cross section.

Conley’s argument uses G0-dichotomy. For the purpose of completeness, we present,
in this section, an elementary construction of enlarging any cross section into a maximal
one.

Let C ⊆ X be a cross section, and let W ⊆ G be a compact symmetric neighborhood
of the identity. We turn C into a Borel graph with the set of edges FW by putting an edge
between x and y whenever there exists g ∈W such that gx = y: that is,

FW = {(x, y) ∈ C × C : ∃g ∈W gx = y}.

Lacunarity of C ensures that the degree of any vertex in FW is finite (in fact, the degree
is uniformly bounded). A subset A⊆ C is said to be FW -independent if there are no edges
between its points: that is,

x 6= y H⇒ (x, y) 6∈ FW for all x, y ∈A.

The proof of [JKL02, Lemma 1.17] shows that C can be written as a disjoint union of
a countable number of Borel FW -independent subsets. We reproduce the argument for the
reader’s convenience and refer to [KST99] for the background on Borel combinatorics.

LEMMA 2.1. Let C ⊆ X be a cross section and let W ⊆ G be a compact symmetric
neighborhood of the identity. There exist Borel FW -independent subsets An ⊆ C such that
C =

⊔
n∈N An .

Proof. Let (Zn)
∞

n=1 be a countable family of Borel subsets of C which separates points and
which is closed under finite intersections. Since FW is locally finite, for any x ∈ C there
exist n such that FW [x] ∩ Zn = {x}, where

FW [x] = {y ∈ C : (x, y) ∈ FW }.

Let φ : C→ N be given by

φ(x)=min{n ∈ N : FW [x] ∩ Zn = {x}}.

The function φ is Borel and φ−1(n) is FW -independent for each n. We may therefore set
An = φ

−1(n). �
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We now need a refinement of the notion of maximality for a cross section. Let C ⊆ X
be a U -lacunary cross section. Given a set Y ⊆ X , we say that C is a maximal U-lacunary
cross section in Y if there are no y ∈ Y\C for which the set C ∪ {y} is U -lacunary. In other
words, C cannot be enlarged by an element from Y while keeping U -lacunarity.

LEMMA 2.2. Let U and V be compact symmetric neighborhoods of the identity in G,
and let C be a U-lacunary cross section. Set W = V ·U 2

· V , and let A⊆ C be an FW -
independent Borel set. There exists a Borel cross section D such that C ⊆D and D is
maximal U-lacunary in V ·A.

Proof. Let ( fn) be a countable family dense in V , and set

Y0 = {x ∈A : f0(x) 6∈U 2
· C},

Y1 = {x ∈A : f1(x) 6∈U 2
· (C ∪ f0(Y0))},

Y2 = {x ∈A : f2(x) 6∈U 2
· (C ∪ f0(Y0) ∪ f1(Y1))},

...

Yk =

{
x ∈A : fk(x) 6∈U 2

·

(
C ∪

⋃
i<k

fi (Yi )

)}
.

In words, Y0 contains all x ∈A such that f0(x) can be added to C while preserving U -
lacunarity; Y1 consists of those x ∈A such that f1(x) can be added to C ∪ f0(Y0) keeping
U -lacunarity, etc.

Note that C ∪ f0(Y0) is U -lacunary. Indeed, suppose y, z ∈ C ∪ f0(Y0) are such that
g1 y = g2z for some g1, g2 ∈U and y 6= z. Since C is U -lacunary, at least one of y, z
has to be in f0(Y0), say z ∈ f0(Y0). If y ∈ C, then z = g−1

2 g1 y implies z ∈U 2
· C, which

contradicts the construction of Y0. Hence y ∈ f0(Y0). Let xy, xz ∈ Y0 be such that y =
f0xy , z = f0xz . Equality z = g−1

2 g1 y implies xz = f −1
0 g−1

2 g1 f0(xy). Since

f −1
0 g−1

2 g1 f0 ∈ V ·U 2
· V =W,

and xy, xz ∈A, the set A is not FW -independent. This is a contradiction.
This shows that C ∪ f0(Y0) is U -lacunary. Similarly, one checks that C ∪ f0(Y0) ∪

f1(Y1) is U -lacunary and, in fact, D = C ∪
⋃

i fi (Yi ) is U -lacunary. It remains to see that
D is maximal U -lacunary in V ·A.

To begin with, for any n and any x ∈A such that fn(x) 6∈D, D ∪ { fn(x)} is not U -
lacunary, for otherwise C ∪

⋃
i<n fi (Yi ) ∪ { fn(x)} would be U -lacunary, and hence x ∈

Yn , implying that fn(x) ∈ fn(Yn)⊆D. In other words, D cannot be enlarged to a U -
lacunary cross section by adding an element of the form fn(x), for some x ∈A.

Suppose there is some x ∈A and y ∈ V · x such that y 6∈D and D ∪ {y} is U -lacunary.
Let g ∈ V be such that gx = y and pick (nk)

∞

k=0 for which fnk → g. Since U is a
neighborhood of the identity, we may assume that fnk g−1

∈U for all k; in particular
fnk x 6∈D for all k. But we showed that D cannot be enlarged to a U -lacunary cross
section by an element of the form fnk x , and hence there are zk ∈ (U 2

· V · x) ∩D such
that hk fnk x = zk for some hk ∈U 2. Since (U 2

· V · x) ∩D is finite, by passing to a
subsequence, we may assume that hk fnk x = z for some fixed z ∈D and all k. Recall
that U is compact, and so, by passing to a subsequence once again, we may assume that
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hk→ h ∈U 2. Let p ∈ G be some element such that pz = x , for example, p = (h0 fn0)
−1.

Thus phk fnk x = x for all k: i.e., elements phk fnk are in the stabilizer of x . By
Miller’s theorem [Kec95, Theorem 9.17] stabilizers are closed, and thus phgx = x : hence
hgx = p−1x = z. But gx = y, h ∈U 2 and z ∈D, and hence D ∪ {y} is not U -lacunary.
This proves the claim and the lemma. �

LEMMA 2.3. Let U and V be compact symmetric neighborhoods of the identity in G, and
let C be a U-lacunary cross section. There exists a U-lacunary cross section D containing
C which is maximal U-lacunary in V · C.

Proof. Let W = V ·U 2
· V . By Lemma 2.1, we may write C =

⊔
n An with each An

being Borel and FW -independent. Using Lemma 2.2, we construct inductively U -lacunary
cross sections C ⊆ C0 ⊆ C1 ⊆ · · · such that Ci is maximal U -lacunary in V ·Ai . It is easy
to see that D =

⋃
n Cn is maximal U -lacunary in V · C. �

THEOREM 2.4. Let U be a compact symmetric neighborhood of the identity in G. For
every U-lacunary Borel cross section C ⊆ X there exists a maximal Borel U-lacunary
cross section D ⊆ X such that C ⊆D. The cross section D is therefore U 2-cocompact.

Proof. Fix an increasing sequence (Vn)
∞

n=1 of symmetric compact neighborhoods of the
identity which cover G: i.e., G =

⋃
n Vn . Applying Lemma 2.3, construct U -lacunary

cross sections C = C0 ⊆ C1 ⊆ C2 ⊆ · · · such that Ci is maximal U -lacunary in Vi · Ci−1

(and, in particular, Ci is maximal U -lacunary in Vi · C). We claim that D =
⋃

n Cn is
maximal U -lacunary: i.e., we claim that there are no y ∈ X\D for which the cross section
D ∪ {y} is U -lacunary. Indeed, take y ∈ X\D and let x ∈ C be such that y ∈ Gx . Pick
n so large that y ∈ Vn · x . Since D is maximal U -lacunary in Vn · C, D ∪ {y} cannot be
U -lacunary, and the claim follows. �

3. Orbit equivalences of locally compact group actions
From now on we consider only free actions of groups.

Let H be a locally compact group and let λ be a right invariant Haar measure on H .
Suppose also that H acts freely on a standard Borel space X . Once we select a point x ∈ X ,
the orbit Orb(x) can be identified with the group H itself via

H 3 h 7→ hx ∈ Orb(x).

This identification makes it possible to transfer the measure λ from H onto the orbit Orb(x)
by setting, for a set A ⊆ Orb(x),

λx (A)= λ({h ∈ H : hx ∈ A}).

The right invariance of λ implies that λx (A)= λy(A) whenever y ∈ Orb(x): if f x = y,
f ∈ H , then

λy(A) = λ({h ∈ H : hy ∈ A})

= λ({h ∈ H : h f x ∈ A})

= [g := h f ]

= λ({g ∈ H : gx ∈ A} f −1)

= λx (A),
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and therefore the push forward of the Haar measure onto the orbit Orb(x) is independent
of the base point. When H is discrete, the measure on an orbit is just the counting measure,
and any orbit equivalence thus automatically preserves the counting measure. This results
in the fact that any orbit equivalence induces a bijection between the sets of invariant
measures on the phase spaces. In the non-discrete world this is may no longer be the case.
To fix this, we introduce a strengthening of OE which requires the isomorphism between
phase spaces to preserve Haar measures on orbits. There are three increasingly restrictive
rigorous formulations of this concept.

Let G1 y X1 and G2 y X2 be a pair of free Borel actions of locally compact groups,
and pick right invariant Haar measures λ1 and λ2 on G1 and G2, respectively. We say
that the actions G1 y X1 and G2 y X2 are weakly Haar orbit equivalent (abbreviated
by wHOE) if there exists an orbit equivalence φ : X1→ X2 such that, for any x ∈ X1,
the push forward measure φ∗λ1,x is a multiple of λ2,φ(x). In other words, the actions are
wHOE if there exists an orbit equivalence which sends a Haar measure on each orbit onto
a Haar measure. Note that we allow the normalization to vary from orbit to orbit. It is
evident that the definition of wHOE does not depend on the choice of λ1 and λ2. Given a
wHOE φ : X1→ X2, we may associate a normalization function

α
λ1,λ2
φ = αφ : X1→ R>0 defined by the condition φ∗λ1,x = αφ(x)λ2,φ(x).

Note that αφ(x)= αφ(y) whenever x and y are EG1
X1

-equivalent. The function αφ does

depend on the choice of λ1 and λ2, but in a mild way: if α
λ′1,λ

′

2
φ is defined with respect to

some other choice of right Haar measures λ′1 and λ′2, then α
λ′1,λ

′

2
φ is a constant multiple of

α
λ1,λ2
φ . The property of αφ being constant is therefore independent of the choice of λ1 and
λ2. This allows us to introduce the following definition.

Definition 3.1. Given a pair of free actions G1 y X1 and G2 y X2, we say that these
actions are Haar orbit equivalent (HOE) whenever there exists a weak Haar orbit
equivalence φ : X1→ X2 with the constant normalization function: αλ1,λ2

φ ≡ const for
some (equivalently, any) right Haar measures λ1, λ2 on G1 and G2, respectively.

One could reformulate HOE by saying that, given λ1 for a suitable choice of λ2, the
push forward φ∗λ1,x is equal to the measure λ2,φ(x) for all x ∈ X1.

Sometimes one has a natural normalization choice of the Haar measure, the Euclidean
space Rd being a notable example. One may then wonder whether for a given choice of λ1

and λ2 on G1 and G2 there exists a HOE φ : X1→ X2 such that the normalization function
is constantly equal to one. This brings us to our last and strongest definition.

Definition 3.2. Let λ1 and λ2 be right Haar measures on G1 and G2, and let G1 y X1,
G2 y X2 be a pair of free actions. We say that these actions are Lebesgue orbit equivalent
(LOE) if there exists a HOE φ : X1→ X2 such that the corresponding normalization
function is constantly equal to 1: i.e., αλ1,λ2

φ (x)= 1 for all x ∈ X1.

Equivalently, φ∗λ1,x = λ1,φ(x) holds for all x ∈ X1. Whereas wHOE and HOE do not
depend on the choice of λ1 and λ2, the notion of LOE requires a choice of Haar measures.
We shall always equip Euclidean spaces Rd with the standard Lebesgue measure, and
LOE between Rd -flows should always be understood with respect to that choice of Haar
measure.
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FIGURE 2. Voronoi tessellation.

4. Invariant measures on cross sections and phase spaces

In this section G is assumed to be a unimodular† locally compact Polish group acting
freely on X . We fix a Haar measure λ and a compatible proper‡ left invariant metric d
on G.

4.1. Voronoi domains. Let E = EG
X denote the orbit equivalence relation of the action:

i.e., (x, y) ∈ E whenever there exists some g ∈ G such that gx = y. Note that freeness of
the action implies uniqueness of such an element g ∈ G. The set E is Borel and so is the
function ρ : E→ G that assigns to a pair (x, y) ∈ E the unique g ∈ G such that gx = y.

Given a cross section for the action G y X , we associate a decomposition of each
orbit into Voronoi domains, which are determined by the proximity to the points in the
cross section, as measured by the metric d. Let us first recall the construction in the more
familiar setting of the Euclidean space followed by the formal definition of the general
case.

Let C ⊆ Rd be a cross section. A Voronoi domain of a point c ∈ C consists of all the
points x ∈ Rd such that x is closer to c in the Euclidean distance than to any other point
in C. Voronoi tessellation is the partition of Rd into Voronoi domains. Figure 2 shows a

† A locally compact group is unimodular if its left Haar measure is also a right Haar measure, i.e., if the Haar
measure is two-sided invariant.
‡ A compatible metric d on a locally compact group is proper if all balls Br (e)= {g ∈ G : d(g, e)≤ r} are
compact. Existence of such metrics has been established in [Str74].
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fragment of Voronoi tessellation on R2 determined by the five points. The gray polygon is
the Voronoi domain of the central point. Note that attribution of points on the boundary of
domains is ambiguous.

In the general set-up of a unimodular group action, we start by fixing a Borel linear
order�C on the cross section. It will be used to distribute the boundary points between the
Voronoi domains. The Voronoi tiling determined by C (also known as Voronoi tessellation
or Voronoi partition) is the set V ⊆ X × C given by

V = {(x, c) ∈ E : ∀a ∈ C ∩ (G · c) (d(ρ(x, c), e) < d(ρ(x, a), e)) or

(d(ρ(x, c), e)= d(ρ(x, a), e) and c �C a)}.

In words, (x, c) ∈ V if c is closer to x than any other point in C, or, when there are several
closest points in C, c is the minimal one according to�C . Note that, by lacunarity, there can
only be a finite number of closest points, so the minimal one always exists. The Voronoi
domain of c ∈ C is the set

Vc = {x ∈ X : (x, c) ∈ V }.

Note that if C is cocompact, then Voronoi domains Vc are bounded (in the sense that
d(ρ( · , c), e) : Vc→ R is bounded) uniformly in c.

The set V is an example of a tiling of the action G y X .

Definition 4.1. A tiling of G y X is a Borel set W ⊆ X × X satisfying the following
properties.
(i) Projection C of the set W onto the second coordinate is Borel and forms a cross

section of the action,

C = {c ∈ X : (x, c) ∈ X for some x ∈ X}.

We refer to this cross section as the one associated with W . By definition W ⊆

X × C.
(ii) W ⊆ EG

X : i.e., W respects the orbit equivalence relation.
(iii) For any x ∈ X there exists a unique c ∈ C with (x, c) ∈W : i.e., W is a graph of a

Borel function w : X→ C.
(iv) There exists a neighborhood of the identity U ⊆ G such that C is U -lacunary and

Uc × {c} ⊆W for all c ∈ C.
Given a tiling W , the domain of a point c ∈ C is the set Wc of all x ∈ X such that

(x, c) ∈W . Geometrically, any orbit O ⊆ X is therefore tiled by sets Wc, c ∈O ∩ C.
We say that a tiling is bounded if the cross section C associated with W is cocompact

and domains Wc are bounded uniformly in c, in the sense that there exists a compact set
V ⊆ G such that Wc ⊆ V · c for all c ∈ C.

Note that, given any cocompact cross section C ⊆ X , the Voronoi tessellation
constructed above is an example of a bounded tiling of G y X with associated cross
section C.

Our goal in the next few subsections is to establish a correspondence between finite
invariant measures on the phase space X and on a cocompact cross section C.
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4.2. Lifting measures to the phase space. Let ν be a finite invariant measure on a
cocompact cross section C. We are going to lift ν to a finite invariant measure µν on X .
For this, we fix a bounded tiling W of G y X for which the associated cross section is C:
e.g., the Voronoi tessellation constructed above. We mention, in advance, that the measure
µν will turn out to be independent of the choice of W . Given a Borel set A ⊆ X and c ∈ C,
let ξ(A, c) be defined by

ξ(A, c)= λ({g ∈ G : gc ∈Wc ∩ A}).

For a fixed c ∈ C, ξ( · , c) is a finite (albeit not invariant) measure on X . Measures ξ( · , c)
are bounded uniformly in c since W is assumed to be bounded. The measure µν is then
defined to be the integration of ξ( · , c) with respect to ν: i.e., for a Borel A ⊆ X

µν(A)=
∫
C
ξ(A, c) dν(c).

We would like to show that µν is G-invariant. Let T : X→ X be a Borel automorphism
of the orbit equivalence relation EG

X , and suppose that T preserves the Haar measure on
each orbit: for any orbit O ⊆ X , any Borel set P ⊆O and any (equivalently, some) x ∈O
one has λx (P)= λx (TP), or in a more detailed form,

λ({g ∈ G : gx ∈ P})= λ({g ∈ G : gx ∈ T P}).

PROPOSITION 4.2. In the notation above, µν(T A)= µν(A) for all Borel A ⊆ X.

Proof. Let H be a countable group, with an enumeration of its element (hn)
∞

n=1, such that
the relation

EC = EG
X ∩ (C × C)

is given by an action H y C (existence of such an action is guaranteed by a theorem of
Feldman and Moore [FM77]). Fix a Borel set A ⊆ X and let

A′n = {x ∈ A : hnw(x)= w(T x)},

where w : X→ C is a function which has graph W . The sets A′n may not be disjoint, so
we also define A1 = A′1 and An = A′n\

⋃
k<n Ak . This gives us a partition A =

⊔
n An .

Since
µν(A)=

∑
n

µν(An) and µν(T A)=
∑

n

µν(T An),

to prove the proposition it is enough to show that µν(T An)= µν(An) for each n.
Sets An are constructed in such a way that, for any c ∈ C,

T (An ∩Wc)= T An ∩Whnc,

and therefore the assumption that T preserves the Haar measure within each orbit implies

ξ(An, c)= ξ(T An, hnc) for all c ∈ C. (2)
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We therefore conclude that

µν(T An) =

∫
C
ξ(T An, c) dν(c)

= [c̃ := h−1
n c]

=

∫
C
ξ(T An, hn c̃) dν(hn c̃)

=

∫
C
ξ(An, c̃) dν(c̃)

= µν(An),

where the penultimate equality follows from (2) and from the H -invariance of ν. �

COROLLARY 4.3. The measure µν is G-invariant.

Proof. For g ∈ G set Tg(A)= g A and apply Proposition 4.2. �

Note that the construction of µν and Proposition 4.2 are valid when G is not necessarily
unimodular and λ is merely a right invariant Haar measure, but Corollary 4.3 uses left
invariance of λ.

For future reference, we note that, if a neighborhood of the identity U ⊆ G is such that
U × {c} ⊆W for all c ∈ C, then the map U × C 3 (g, c) 7→ gc ∈U · C is a bijection and,
via this identification,

µν |U · C = λ|U × ν. (3)

4.3. Pulling measures to a cross section. One can pull measures in the opposite
direction as well. Pick U ⊆ G to be such a small neighborhood of the identity that C
is U -lacunary. If µ is an invariant measure on the phase space X , we set, for A⊆ C, the
measure νµ(A) to be defined by

νµ(A)=
µ(U ·A)
λ(U )

.

The definition turns out to be independent of the choice of U . The measure νµ is a finite
invariant measure on C and, moreover,

µ|U · C = λ|U × νµ. (4)

For a slick proof of these assertions see [KPV13, Proposition 4.3]. Whereas cocompact-
ness of C was used in §4.2 to ensure that µν is finite, results of this subsection are valid
even when C is not necessarily cocompact.

4.4. Correspondence between ergodic measures. The maps µ 7→ νµ and ν 7→ µν are
inverses of each other. Indeed, (3) and (4) imply that νµν is such that, via the natural
identifications,

λ|U × νµν = µν |U · C = λ|U × ν,

and therefore νµν = ν for any finite invariant measure ν on C. On the other hand, for any
invariant measure µ on X

µνµ |U · C = λ|U × νµ = µ|U · C,
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implying that µνµ |U · C = µ|U · C . But both measures are G-invariant and hence µνµ = µ.
In particular, the construction of µν does not depend on the choice of a bounded tiling W .

While the map µ 7→ νµ is a linear bijection between spaces of invariant measures, it
does not preserve the normalization: in general, µ(X) 6= νµ(C). Let E(X) denote the
family of all pie measures on X (recall that pie stands for probability invariant ergodic);
invariance and ergodicity is understood to be with respect to the orbit equivalence relations
EG

X . Similarly let E(C) denote the family of pie measures on C with respect to the
relation EC .

PROPOSITION 4.4. The map E(X) 3 µ 7→ νµ/νµ(C) ∈ E(C) is a bijection between E(X)
and E(C).

Proof. We start by checking that, for any finite invariant measure µ on X , the measure
νµ is ergodic if and only if µ is ergodic. Indeed, suppose νµ is ergodic and let Z ⊆ X
be a G-invariant set. Since Z ∩ C is EC-invariant, either νµ(Z ∩ C)= 0 or νµ(C\Z)= 0.
Suppose, for definiteness, that the former is realized. By (4), µ(U · (Z ∩ C))= 0, and
therefore µ(Z)= 0. Thus µ must be ergodic.

If µ is ergodic and Z ⊆ C is EC-invariant, then either µ(G · Z)= 0 or µ(G · (C\Z))=
0. Equation (4) implies that either νµ(Z)= 0 or νµ(C\Z)= 0 must take place.

This proves that, for any µ ∈ E(X), the measure νµ/νµ(C) is indeed an element of E(C).
The map µ 7→ νµ/νµ(C) is injective since, if µ1 6= µ2 are pie measure on X , there exists
an invariant Z ⊆ X such that µ1(Z)= 1 and µ2(Z)= 0. This implies that νµ1(Z ∩ C) > 0
and νµ2(Z ∩ C)= 0: therefore νµ1/νµ1(C) and νµ2/νµ2(C) are distinct.

Finally, the map is surjective. Indeed, for a given ν ∈ E(C) there exists a finite invariant
measure µ on X such that νµ = ν. By the above, the measure µ must be ergodic, and
hence µ/µ(X) ∈ E(X). But also

νaµ = aνµ for all a ∈ R>0,

and therefore
νµ/µ(X)

νµ/µ(X)(C)
=

νµ

νµ(C)
= ν. �

We conclude this section with an observation that wHOE induces a bijection between
pie measures on the phase spaces.

THEOREM 4.5. Let G1 y X1 and G2 y X2 be free Borel actions of unimodular locally
compact Polish groups G1 and G2, and let φ : X1→ X2 be a wHOE between the actions.
The push-forward map φ∗ : E(X1)→ E(X2) induces a bijection between pie measures on
X1 and X2.

Proof. The only thing that is not immediate from the definitions is that φ∗µ is G2-invariant
whenever µ is a G1-invariant measure. Let Z ⊆ X2 and let h ∈ G2. We need to show that
φ∗µ(Z)= φ∗µ(h Z), or in other words,

µ(φ−1(Z))= µ(φ−1(h Z)).

Let T : X1→ X1 be defined by T x = φ−1
◦ h ◦ φ(x). The map T is a Borel bijection

preserving EG1
X1

and, moreover, we claim that T preserves the Haar measure on each orbit
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of G1, therefore satisfying the assumptions of Proposition 4.2. Once this claim is proved,
we get

µ(φ−1(Z))= µ(Tφ−1(Z))= µ(φ−1(h Z)).

To see that T preserves the Haar measure, let us pick an orbit O ⊆ X1 and a point
x1 ∈O, and let λ1 and λ2 be Haar measures on G1 and G2, respectively. By the definition
of wHOE, φ∗λ1,x = αφ(x)λ2,φ(x) for some αφ(x) ∈ R>0 which is, moreover, constant
on O. For a subset P ⊆O, using that λ2,φ(x) is G2-invariant,

λ1,x (T P) = λ1,x (φ
−1
◦ h ◦ φ(P))

= αφ(x)λ2,φ(x)(h ◦ φ(P))

= αφ(x)λ2,φ(x)(φ(P))

= λ1,x (P).

Thus λ1,x (T P)= λ1,x (P) for all P ⊆O, and the theorem follows. �

5. Rectangular tilings of multidimensional flows
From this section onward, we restrict ourselves to the case of a free Borel action Rd y X
of the Euclidean space on a standard Borel space X . Recall that we use an additive notation
for the action: for x ∈ X and r ∈ Rd the action of r upon x is denoted by x + r .

Our main tool in understanding multidimensional flows is the concept of a rectangular
tiling. Simply put, it is a Borel partition of orbits into rectangles†.

Definition 5.1. A rectangular tiling of an action Rd y X is a tiling R (in the sense of
Definition 4.1) such that, for the associated cross section C and any c ∈ C, the domain Rc

is a (half-open) rectangle: Rc = c + Rc, where Rc is of the form

Rc =

d∏
i=1

[ai , bi ).

Equivalently, a rectangular tiling is a cross section C ⊆ X together with bounded away
from zero Borel functions (we call them dimension functions) ζ l

i , ζ
r
i : C→ R>0, i ≤ d,

such that rectangles Rc =
∏d

i=1[−ζ
l
i (c), ζ

r
i (c)) tile all the orbits: for any orbit O ⊆ X ,

O =
⊔

c∈C∩O
(c + Rc).

Figure 3 provides an illustration of a rectangular tiling. The gray rectangle corresponds
to a single tile of the form c + Rc. All our rectangles are half-open to ensure that c + Rc

and c′ + Rc′ are disjoint whenever c 6= c′. Note also that, given a tiling R, we may select
in a Borel way centers of tiles c + Ewc, where Ewc(i)= (ζ r

i (c)− ζ
l
i (c))/2. Unless stated

otherwise, we shall therefore assume that our tilings are symmetric and points c ∈ C are
centers of the tiles Rc =

∏d
i=1[−ζi (c), ζi (c)).

Existence of rectangular tilings for actions of Zd has been established by Gao and
Jackson [GJ15]. They proved that any free action Zd y X admits a rectangular tiling

† Perhaps it would be more accurate to speak of cuboids rather than rectangles, but since our figures illustrate
the case d = 2, and since the argument is the same in all dimensions, we choose to use the two-dimensional
terminology throughout the paper.
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FIGURE 3. Rectangular tiling.

and, moreover, for any L ∈ R one may always find a tiling R such that the dimension
functions are bounded below by L . A similar result is true for Rd -flows.

THEOREM 5.2. (Gao–Jackson for Zd actions) For any L > 0 there exists a rectangular
tiling of Rd y X with all edges of rectangles at least 2L: ζi (c)≥ L for all i ≤ d and all c
in the associated cross section C.

What matters for the argument in [GJ15, §3] is the large-scale geometry of Zd , which
is the same as that of Rd ; thus only superficial modifications for their proof are required,
which we therefore omit.

Following [GJ15, Lemma 3.2], we may improve the above statement by imposing
further restrictions on the dimension functions.

THEOREM 5.3. Let Rd y X be a free multidimensional flow. For any L ′ > 0 and any
ε > 0 there exists a rectangular tiling Q of the flow such that

|ζi (c)− L ′|< ε

for all c in the associated cross section C.

Proof. Pick L so large that any real r ≥ L can be partitioned into reals ε-close to L: for
any r ≥ L there exist s1, . . . , sn > 0 such that r =

∑n
i=1 si and |si − L ′|< ε for all i ≤ n.

Use Theorem 5.2 and construct a tiling R with all edges of tiles being at least L . By
the choice of L , each tile Rc can be partitioned into rectangles Qc,1, . . . , Qc,n having all
edges ε-close to L ′. These rectangles Qc,i constitute tiles of the desired tiling Q. �
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FIGURE 4. Large marker—small marker.

6. Uniform Rokhlin’s lemma
The following theorem is the usual Rokhlin’s lemma [Lin75, Theorem 1] when the
measure µ is fixed. The adjective ‘uniform’ refers to the fact that µ(C + R) > 1− ε holds
for all invariant probability measures.

THEOREM 6.1. (Uniform Rokhlin’s lemma for Rd actions) Let Rd y X be a free Borel
action. For any rectangle R =

∏d
i=1[−ai , ai ), ai > 0 and any ε > 0, there exists a Borel

R-lacunary cocompact cross section C ⊆ X such that µ(C + R) > 1− ε for any invariant
probability measure µ on X.

Proof. We begin with an application of Theorem 5.3 and select a tiling Q with associated
cross section C0 ⊆ X and domains Qc = c + Qc, such that each rectangle Qc is ‘large’
compared to R.

Now try to tile each c + Qc with copies of R starting from the ‘bottom left’ corner
as shown in Figure 4. Since lengths of edges of Qc are not necessarily multiples of the
corresponding edges of R, there will be some remainder, also known as the error set,
marked gray in Figure 4. The condition on the size of Qc is that the proportion of the
measure of the error set to the measure of Qc is at most ε: in the notation of §4.2,

ξ(error set, c)/ξ(Qc, c) < ε.

Let C denote the cross section which consists of centers of all the rectangles R inscribed
into tiles Qc. We claim that C satisfies the desired properties.

The only thing that requires checking is that µ(C + R) > 1− ε for all probability EX -
invariant measures µ on X . By §4, one can find a finite invariant measure ν on C0 such
that

µ=

∫
C
ξ( · , c) dν(c) where ξ( · , c) is the ‘Lebesgue’ measure on Qc.
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By the construction of C, one has ξ(C + R, c) > (1− ε)ξ(Qc, c)= (1− ε)ξ(X, c) and
therefore

µ(C + R)=
∫
C0

ξ(C + R, c) dν(c) >
∫
C0

(1− ε)ξ(X, c) dν(c)

= (1− ε)µ(X)

= 1− ε. �

For the proof of the main technical result, namely Theorem 6.3 below, we shall need an
easy lemma. Suppose we have a square R =

∏d
i=1[−l, l) and an R-lacunary cross section

C. If we shrink R to a square R←b
=
∏d

i=1[−l + b, l − b), where b is small compared to
l, then µ(C + R←b) has to be close to µ(C + R) for all invariant measures µ on X .

FIGURE 5. Shrinking R to R←b .

In general, for any rectangle R =
∏d

i=1[li , ri ) and b ∈ R≥0, we let R←b denote the
rectangle

∏d
i=1[li + b, ri − b). This notation will only be used when li + b is still less

than ri − b. In that case R←b is obtained by shrinking each edge of R by b (see Figure 5).
Note that if R̃ is any rectangle contained in

∏d
i=1[−L , L], then

R←b
+ R̃ ⊆ R←b−L . (5)

LEMMA 6.2. Let Rd y X be a free Borel flow. For any ε > 0 and any real b ∈ R≥0, there
exists L ≥ b such that, for any l ≥ L, square R = [−l, l)d , any R-lacunary cocompact
cross section C ⊆ X and any probability invariant measure µ on X,

µ(C + R←b) > µ(C + R)− ε.

Proof. Pick L so large that λ(R←b)/λ(R) > 1− ε for any R = [−l, l)d , l ≥ L , where λ is
the Lebesgue measure on Rd . We claim that such L works. Let µ be a probability invariant
measure on X . Since C + R may be a proper subset of X , it does not form a tiling of the
action. It is, nevertheless, easy to enlarge it into a tiling as follows. Let V be the Voronoi
tiling determined by C. Define W to be

W = {(x, c) : (x ∈ c + R) or ((x, c) ∈ V and ((x, c) 6∈ c′ + R for any c′ ∈ C))}.
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It is easy to see that W is a bounded tiling of Rd y X and we may therefore apply results
of §4 to decompose µ as an integral over some measure ν on C of ‘Lebesgue’ measures
ξ( · , c): that is,

µ=

∫
C
ξ( · , c) dν(c).

Since λ(R←b) > (1− ε)λ(R),

µ(C + R←b)=

∫
C
ξ(C + R←b, c) dν(c)

> (1− ε)
∫
C
ξ(C + R, c) dν(c)

= (1− ε)µ(C + R)

≥ µ(C + R)− εµ(X).

Since the measureµ is assumed to be a probability measure,µ(X)= 1 andµ(C + R←b) >

µ(C + R)− ε. �

In ergodic theory, Rokhlin’s lemma is frequently applied a countable number of times to
build a cover of the phase space with a sequence of refining Rokhlin towers. Exact details
vary from application to application, and the following theorem provides the set-up that
will be needed in our case.

THEOREM 6.3. For any increasing sequence (bn)
∞

n=1 and any real κ > 0, there exist an
invariant Borel Z ⊆ X, an increasing sequence of reals (ln)∞n=1 and a sequence of Borel
sets Cn ⊆ Z such that, for Rn = [−ln, ln)d :
(i) (c + Rn+1) ∩ Cn 6=∅ for each c ∈ Cn+1;
(ii) Z =

⋃
n(Cn + Rn);

(iii) each ln is an integer multiple of κ;
(iv) ln ≥ bn;
(v) Cn is Rn-lacunary;
(vi) Cn + Rn ⊆ Cn+1 + R←bn+1

n+1 ; and
(vii) µ(Z)= 1 for any probability invariant measure µ on X.

Item (vi) is the most important one here. It says that each rectangle in Cn + Rn is inside
a rectangle from Cn+1 + Rn+1 and, moreover, it is far from its boundary. Figure 6 gives
an illustration of this item. While it would be convenient to have such a covering on all
orbits, this is not always possible, and item (vii) offers the next best thing instead. Reasons
for taking ln to be a multiple of κ will be apparent in the proof of Theorem 7.1, but this
restriction is not essential. Note, also, that items (i) and (ii) imply that each Cn is a cross
section of Rd y Z .

Proof. Without loss of generality, we assume that limn→∞ bn =∞. Pick a decreasing
sequence (εn)

∞

n=1, εn > 0, such that
∑

n εn < 1. Using Theorem 6.1 and Lemma 6.2 at
each step, we construct inductively reals b̃n , ln and Rn-lacunary cross sections C′n ⊆ X ,
where Rn = [−ln, ln)d , such that:
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FIGURE 6. Rokhlin towers.

(a) ln is a multiple of κ;
(b) ln ≥ b̃n ≥ bn + 2ln−1 for all n; and

(c) µ(C′n + R←b̃n
n ) > 1− εn for all probability invariant measures µ.

For the base of the construction, l0 is as assumed to be zero.
Set, for all k ≥ 1,

Ck = C′k ∩
( ⋂

n≥k+1

(C′n + R←b̃n−lk
n )

)
,

and let Z =
⋃

k(Ck + Rk). We claim that sets Ck and Z satisfy all the requirements of the
theorem except, possibly, item (i). (It will be easy to enlarge sets Cn to fulfill this item.)

Items (ii)–(v) are evident from the construction. We check (vi) next. Pick x ∈ Ck and
note that, by the definition of Ck , there exists y ∈ C′k+1 such that

x ∈ y + R←b̃k+1−lk
k+1 . (6)

Since b̃k+1 ≥ bk+1 + 2lk , using (5), we conclude that

x + Rk ⊆ y + R←b̃k+1−lk
k+1 + Rk ⊆ y + R←b̃k+1−2lk

k+1 ⊆ y + R←bk+1
k+1 .

To verify (vi) it is therefore enough to check that this y ∈ C′k+1 is actually an element of

Ck+1. Pick n > k + 1; we show y ∈ C′n + R←b̃n−lk+1
n . Since x ∈ Ck , there exists z ∈ C′n

such that
x ∈ z + R←b̃n−lk

n . (7)

Using b̃k+1 − 2lk ≥ 0 and equations (6) and (7), we have the chain of inclusions

y ∈ z + R←b̃n−lk
n − R←b̃k+1−lk

k+1 ⊆ z + R←b̃n−lk−(lk+1−b̃k+1+lk )
n

⊆ z + R←b̃n−lk+1+b̃k+1−2lk
n

⊆ z + R←b̃n−lk+1
n .
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Thus y ∈ C′n + R←b̃n−lk+1
n for all n > k + 1, and therefore y ∈ Ck , as required. This checks

(vi).
Note that (vi) implies that Z =

⋃
k(Ck + Rk) is an invariant subset of X . Indeed, for

any c ∈ Ck and any x ∈ c + Rd , we may find n ≥ k so large that x ∈ c + Rn (recall that we
assume lim bn =∞ and therefore also lim ln =∞). By item (vi),

c ∈ Ck+1 + R←bk+1
k+1 ⊆ Ck+2 + R←bk+1+bk+2

k+2 ⊆ · · · ⊆ Ck+m + R
←
∑m

i=1 bk+i
k+m .

For m so large that
∑m

i=1 bk+i ≥ ln ,

x ∈ c + Rn ⊆ Ck+m + R←
∑m

i=1 bk+i−ln
k+m ⊆ Ck+m + Rk+m ⊆ Z .

To see item (vii), note first that, for any k,⋂
n≥k

(C′n + R←b̃n
n ) ⊆ (C′k + Rk) ∩

( ⋂
n≥k+1

(C′n + R←b̃n
n )

)

⊆

(
C′k ∩

( ⋂
n≥k+1

(C′n + R←b̃n−lk
n )

))
+ Rk

= Ck + Rk .

And, in particular, for all k ≥ 1 and all measures µ,

µ

(⋂
n≥k

(C′n + R←b̃n
n )

)
≤ µ(Ck + Rk).

Hence by item (c) in the construction of Ck ,

µ(Z) = µ
(⋃

k

(Ck + Rk)

)
≥ sup

k
µ(Ck + Rk)

≥ sup
k
µ

(⋂
n≥k

(C′n + R←b̃n
n )

)

≥ lim
k→∞

(
1−

∞∑
n=k

εk

)
= 1.

This almost finishes the proof of the theorem. The only problem is item (i). It is possible
to have points c ∈ Cn such that the rectangle c + Rn has no points from Ck for k < n. The
easy fix is to add all such c ∈ Cn to Ck for k < n: i.e., we set

C̄k = Ck ∪
⋃

n≥k+1

{z ∈ Cn : Cm ∩ (z + Rn)=∅∀m < n}.

This enlargement does not violate any of the items (ii)–(vii), and sets C̄k are as desired. �
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7. Rudolph’s regular tilings
In this section we employ Theorem 6.3 and construct a regular tiling of a subspace Z ⊆ X
of uniformly full measure. Regularity refers to the fact that orbits will be tiled by rectangles
of a finite number of shapes. To describe possible tiles, we first pick an irrational number
α > 0: for instance, α =

√
2 will be good enough. For a vector Ea ∈ {1, α}d let

R̃Ea =
d∏

i=1

[−a(i)/2, a(i)/2).

In other words, each edge of R̃Ea has length one or α. We let E1 denote the vector
(1, . . . , 1) ∈ {1, α}d , and R̃E1 is therefore a square with side one.

Using Theorem 6.3, one can extract the following result from [Rud88, §3].

THEOREM 7.1. (Essentially Rudolph) Given a free Borel flow Rd y X and an irrational
α > 0, there exists an invariant subset Z ⊆ X of uniformly full measure such that, for the
restriction of the action Rd y Z, the following holds. There exists a rectangular tiling R

of Rd y Z with associated cross section C, a Borel partition C =
⊔
Ea∈{1,α}d CEa and Borel

bijections θEa : CE1→ CEa , Ea ∈ {1, α}d\{E1} such that, for Rc = c + Rc:

(i) Rc = R̃Ea for all c ∈ CEa; and
(ii) c ECθEa(c) for all c ∈ C and all Ea ∈ {1, α}d\{E1}.

This theorem asserts that we can find a tiling of Z which uses only 2d different tiles. It
is generally easy to construct tilings with approximate properties of tiles, but getting exact
restrictions on length of edges is typically a more difficult task. Naturally, we would want
to have such a tiling on all X , but at present, it is open as to whether this can always be
achieved.

During the construction of the tiling, we shall ensure that each type of tile occurs on
each orbit an infinite number of times. In fact, we shall have a Borel witness for that,
namely, Borel matchings θEa : CE1→ CEa between tiles of type E1 and of type Ea within each
orbit. Figure 7 shows how such a tiling may look.

While the construction in [Rud88, §3] is presented relative to single measure µ on
X , it only uses existence of exhausting towers given in Theorem 6.3. Existence of Borel
correspondences θEa is almost immediate from the construction. For the convenience of the
reader, we present a sketch of the argument. While we believe that the reader will have
no difficulty in supplying the necessary details, if needed, the rigorous proof can be found
in [Rud88, §3].

Sketch of Proof. The starting point is to notice that irrationality of α implies that the set of
points

{m1 + m2α | m1, m2 ∈ N}

is asymptotically dense in the real line R in the sense that, for any ε > 0, there exists
N (ε) such that for any x ≥ N (ε) there are m1, m2 ∈ N for which |x − (m1 + m2α)|< ε.
Geometrically, this means that any sufficiently long interval, after being perturbed by a
small ε, can be partitioned into subintervals of length one or α.
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FIGURE 7. Regular tiling of an orbit. There are four types of tiles. The map θEa , Ea = (α, α), is a match between
(1, 1)-tiles (which are in gray) and (α, α)-tiles.

Imagine now the following situation depicted in Figure 8. Suppose we have a square
R with side K (1+ α) for some integer K . Suppose, also, that R sits inside a much
larger square R′ with side length K ′(1+ α) for some (much larger) integer K ′; suppose
furthermore that the distance from R to the boundary of R′ is at least N (ε) in every
coordinate direction.

For notational convenience, let us place the origin at the bottom left-hand corner of R′,
so R′ = [0, K ′ + K ′α)d , and let

R =
d∏

i=1

[ai , bi ), 0< ai < bi < K ′ + K ′α.

Since we assume that R is far from the boundary of R′, ai ≥ N (ε). We therefore may
move R along the x-axis by a small δ1, |δ1| ≤ ε in such a way that a1 + δ1 = m1 + m2α

for some m1, m2 ∈ N. The interval I1 = [0, a1 + δ1) may thus be tiled by intervals of
length one and α. The interval

I2 = [a1 + δ1, a1 + δ1 + K + Kα)= [a1 + δ, b1 + δ1)

can also be tiled in such a way, since we assume that sides of R have length K (1+ α).
Finally, the interval

I3 = [a1 + δ1 + K + Kα, K ′ + K ′α)

may be partitioned into segments of length one and α since R′ is supposed to have length
K ′ + K ′α; in particular,

K ′ + K ′α − a1 − δ1 − K − Kα = m̃1 + m̃2α

for some integers m̃1, m̃2 ∈ N.
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FIGURE 8. Moving the rectangle R and extending the tiling to R′.

The same can be done along other coordinate directions, and one may find a vector Ev of
`∞-norm at most ε such that, once R is shifted to R + Ev, the rectangle R′ can be tiled by
regular tiles R̃Ea , Ea ∈ {1, α}d , in a way that is consistent with the rectangle R + Ev.

To summarize, given a square R of length K (1+ α) which is tiled by rectangles R̃Ea ,
Ea ∈ {1, α}d , and which is N (ε)-far from the boundary of R′, we may shift R by an ε-small
vector and extend the tiling of (shifted) R to a regular tiling of R′. The right-hand square
in Figure 8 shows how such an extension may look.

Now to the construction of the regular tiling. Let (εk)
∞

k=1 be a sufficiently fast
decreasing sequence, e.g., εk = 2−k ; let N (εk) ∈ R>0 be so large that for any x ≥ N (εk)

there exists m1, m2 ∈ N such that

|x − m1 − m2α|< εk .

Pick a sequence (bk)
∞

k=1 such that:
(a) bk is a multiple of (1+ α); and
(b) bk ≥ N (εk)+ 2(1+ α).
An application of Theorem 6.3 allows us to find the following objects:
• an invariant subset Z ⊆ X of uniformly full measure;
• an increasing sequence (lk)∞k=1 of reals lk ≥ bk , where each lk is a multiple of (1+

α); and
• Borel Rk-lacunary cross sections Ck ⊆ Z such that Ck + Rk ⊆ Ck+1 + R←bk , where

Rk = [−lk, lk)d .
Our plan is to inductively tile regions Ck + R←bk

k . At step k + 1 of the construction we
may shift tiles in Ck + R←bk

k by at most εk , thus ensuring that the sum of all shifts is finite,
and each tile converges to a limiting position as k→∞.

Observe that, since bk and lk are multiples of (1+ α), sides of R←bk are also multiples
of (1+ α). Therefore R←bk can be partitioned into tiles R̃Ea in a canonical fashion by
partitioning each side of R←bk into consecutive intervals of length one and α and taking the
product of these partitions (see Figure 9). We shall refer to this partition as the canonical
tiling of R←bk .
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In particular, for the base of our construction, each square c + R←b1
1 in C1 + R←b1

1 can
be tiled in this canonical way.

FIGURE 9. Canonical tiling.

For the induction step, we have tiled Ck + R←bk
k , and proceed to tile Ck+1 + R←bk+1

k+1 .

Pick some c ∈ Ck+1, and consider the corresponding square c + R←bk+1
k+1 . In general, it

contains several points c1, . . . , cm ∈ Ck . Each square ci + R←bk
k has been tiled, and we

seek an extension of this tiling to a tiling of c + R←bk+1
k . It is helpful to consult at this point

Figure 10, on which m = 3 and three R←bk
k rectangles are marked in gray. By assumption,

squares ci + Rk are all inside c + R←bk+1
k+1 and have pairwise empty intersections. The

dashed lines in Figure 10 show that R←bk+1
k+1 admits the canonical tiling. We shall use it to

‘feel the gaps’ between squares Rk . Now comes the crucial idea in the construction. One
realizes that it is always possible to move squares Rk around ci by at most 1+ α in such
a way that corners of Rk will coincide with nodes of the canonical tiling of R←bk+1

k+1 . We
emphasize that tiles of Ck + R←bk

k constructed up to this stage are not being moved, we
are rather claiming that one may select ‘windows’ of size Rk around each point ci with
corners on the nodes of the canonical tiling of R←bk+1

k+1 and these ‘windows’ are no further
than 1+ α in each coordinate direction from ci + Rk . It is easy to see that such squares
may be chosen to be disjoint for distinct ci . These windows Rk are depicted on Figure 10
around each R←bk

k .

Now we are going to move each R←bk
k region by a vector of `∞-norm at most εk ;

according to the algorithm described at the beginning of this sketch, for each ci one can
find Evi ∈ Rd , ‖Evi‖∞ < εk , such that the tiling of ci + Evi + R←bk

k can be extended to the
tiling of the window Rk around ci . On Figure 10, the bottom Rk exhibits this process.
Finally, the gaps between Rk are filled by the canonical tiling, which extends the tiling of
each Rk to a tiling of R←bk+1

k+1 . To summarize, when extending the tiling of Ck + R←bk
k to

a tiling of Ck+1 + R←bk+1
k+1 , we shift each c ∈ Ck (together with all the tiles in c + R←bk

k )
by no more than εk in each coordinate direction. This describes the step of induction.

While, strictly speaking, the tiling of Ck+1 + R←bk+1
k+1 extends the tiling of Ck + R←bk

k
only up to an εk-shift, using

∑
k εk <∞ we may naturally define the limit tiling of⋃

k(Ck + R←bk
k )= Z . This results in a construction of a tiling of Z by tiles of the form

R̃Ea , Ea ∈ {1, α}d , as in Figure 7.
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FIGURE 10. Extending tiling from Cn + R←bn
n to Cn+1 + R

←bn+1
n+1 .

So, let C̃ denote the set of centers of all the tiles in Z , and let

C̃ =
⊔
Ea∈{1,α}d

C̃Ea

be the decomposition of tiles into the 2d types, according to lengths of their sides.
It remains to explain how the maps θEa : C̃E1→ C̃Ea are constructed. It is immediate from

the construction that, for any c ∈ Ck , the tiling of c + R←bk
k has an equal number of tiles

of each type. For a given c ∈ Ck+1, if θEa is defined on each ci + R←bk
k , ci ∈ Ck ∩ (c +

R←bk+1
k+1 ), then in (c + R←bk+1

k+1 )\(Ck + Rk) we have the same number of tiles of each type,
and therefore the map θEa can be extended to a matching between E1-tiles and Ea-tiles on
c + R←bk+1

k+1 in a Borel way. In the limit, θEa is a matching from C̃E1 onto C̃Ea , as desired. �

We conclude this section by showing how the above theorem gives rise to a LOE
between invariant subsets of uniformly full measure.
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THEOREM 7.2. Let Rd y X and Rd y Y be a pair of free Borel flows having the same
cardinality of the sets of pie measures. There exist invariant Borel subsets Z X ⊆ X and
ZY ⊆ Y of uniformly full measure and a LOE φ : Z X → ZY between restrictions of the
flows.

Proof. If the flows admit no pie measures, the statement is vacuously true, since one may
take Z X =∅= ZY . We therefore assume that flows have invariant measures. One starts
with Theorem 7.1 to find Z X ⊆ X and ZY ⊆ Y of uniformly full measure together with
regular tilings associated with cross sections CX ⊆ Z X and CY ⊆ ZY . Notice that |E(X)| =
|E(Z X )| and |E(Y )| = |E(ZY )|, because X\Z X and Y\ZY have measure zero with respect
to all invariant measures.

We would like to apply DJK classification of hyperfinite equivalence relations to cross
sections CX,E1 and CY,E1 and to find a Borel isomorphism between induced equivalence
relations φ : CX,E1→ CY,E1. For this we need to check that the equivalence relations on these
cross sections possess the same number of pie measures. While Proposition 4.4 shows that
|E(Z X )| = |E(CX )|, it is not immediately clear whether this proposition can be applied to
the sub cross section CX,E1, as it is not evident from the construction of Theorem 7.1 whether
CX,E1 is cocompact in Z X . While it is possible to modify the argument in Theorem 7.1 to
ensure cocompactness of all CEa , we may show |E(CX )| = |E(CX,E1)| instead, as follows.
Since all the matchings θ X

Ea : CX,E1→ CX,Ea preserve the equivalence relation EX , they also
preserve all the invariant measures on CX . So, if µ is an invariant probability measure on
CX , then µ(CX )= 2dµ(CX,E1) and 2dµ|CX,E1

is an invariant probability measure on CX,E1. On
the other hand, if ν is an invariant measure on CX,E1, then

ν̃ = 2−d
∑
Ea∈{1,α}d

(θ X
Ea )∗ν where θ X

E1
= id,

is easily seen to be an invariant measure on CX . These maps, µ 7→ 2dµ|CX,E1
and ν 7→ ν̃,

are inverses of each other and are bijections between E(CX ) and E(CX,E1). We conclude
that |E(CX )| = |E(CX,E1)| and therefore

|E(CX,E1)| = |E(Z X )| = |E(ZY )| = |E(CY,E1)|.

This allows us to apply the DJK classification and get an isomorphism between the
restrictions of orbit equivalence relations φ : CX,E1→ CY,E1 (recall that ECX and ECY are
necessarily hyperfinite by [JKL02, Theorem 1.16]). The maps θ X

Ea and θY
Ea make it easy to

extend φ to an isomorphism φ : CX → CY by setting

φ ◦ θ X
Ea (c)= θ

Y
Ea ◦ φ(c) for each Ea ∈ {1, α}d and all c ∈ CX,E1.

Finally, we may extend φ linearly to a LOE φ : Z X → ZY . More formally, for any
x ∈ Z X there exist unique Ea ∈ {1, α}d and c ∈ CX,Ea such that x ∈ c + R̃Ea . Let Ev ∈ R̃Ea be
such that c + Ev = x . The point φ(x) is defined by

φ(x)= φ(x − Ev)+ Ev.

In other words, φ maps c + R̃Ea onto φ(c)+ R̃Ea in a linear fashion. It is, of course, the
crucial property of our construction that c ∈ CX,Ea if and only if φ(c) ∈ CY,Ea . �
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8. Lebesgue orbit equivalences between compressible flows
In this section, we deal with flows that have no invariant probability measures. This
negative condition has a positive reformulation discovered by Nadkarni [Nad90].

THEOREM. (Nadkarni) A hyperfinite† Borel equivalence relation has no invariant
probability measures if and only if it is compressible.

There are a number of equivalent reformulations of compressibility, but we shall adopt
the following one. A countable Borel equivalence relation E on a standard Borel space
C is compressible if there exist injective homomorphisms τn : C→ C, n ∈ N, with disjoint
images: τm(C) ∩ τn(C)=∅ when m 6= n and

cEτn(c) for all c ∈ C and all n ∈ N.

These homomorphisms will allow us to run a back-and-forth construction of LOE map
between compressible flows.

THEOREM 8.1. If free non-smooth flows Rd y X and Rd y Y admit no invariant
probability measures, then these flows are Lebesgue orbit equivalent.

Proof. We begin by applying Theorem 5.3 to pick rectangular tilings RX and RY of X
and Y . We agreed earlier to pick the center of each tile as its representing point, but it is
convenient to deviate from this convention here and let CX and CY consist of ‘bottom left’
corners of the domains RX

c and RY
c . For any c ∈ CX ∪ CY we therefore have a rectangle

Rc ⊆ Rd of the form
∏d

i=1[0, ζi (c)) such that

RX
= {(x, c) ∈ X × CX : x ∈ c + Rc} and RY

= {(x, c) ∈ Y × CY : x ∈ c + Rc}.

According to Theorem 5.3, we may assume that ζi (c) ∈ [4, 5] for all c ∈ CX ∪ CY and all
i ≤ d.

These cross sections are cocompact, and by the results from §4, equivalence relations
ECX and ECY have no invariant probability measures. By [JKL02, Theorem 1.16], these
relations are also hyperfinite, and therefore, by the DJK classification, there is a Borel
isomorphism φ : CX → CY between ECX and ECY .

In what follows, we extend φ to a LOE φ : X→ Y between EX and EY .
For k ≥ 0, let Bk

=
∏

i≤d [0, 2−k) denote a semi-open d-dimensional square with side
2−k , and let us fix, for a moment, a single tile Rc for some c ∈ CX . We describe a process
of covering a portion of Rc by copies of Bk . Let ni,k(c)= ni,k be the smallest integer such
that

2−k
· ni,k

ζi (c)
∈ (1− 2−k−1, 1). (8)

Here is a verbose explanation of this parameter. Consider the interval [0, ζi (c)), and
let us start tiling it with intervals of length 2−k beginning from the left endpoint. The
integer ni,k is the smallest integer such that, if we put ni,k many intervals [0, 2−k) into
[0, ζi (c)), then the proportion of [0, ζi (c)) that is not covered is less than 2−k−1. Since, in

† As proved in [BK96, Theorem 4.3.1], the assumption of hyperfiniteness may be dropped; the theorem is true
for all countable Borel equivalence relations.
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our situation, ζi (c) is always between four and five, ni,0(c)= 3 for all i and all c, but for
k ≥ 1 the parameter will start to vary.

Note that, since ni,k is defined to be the smallest integer satisfying (8), in fact

2−k
· ni,k

ζi (c)
∈ (1− 2−k−1, 1− 2−k−2

] for all i ≤ d and k ≥ 0. (9)

FIGURE 11. Cover of Rc by copies of Bk .

We now partially cover Rc with copies of Bk by putting ni,k many rectangles Bk in the
i th direction of Rc starting from the ‘bottom left’ corner.

Figure 11 illustrates the levels k = 0, 1 and 2 of this process. On that figure, n1,0 =

n2,0 = 3, and we therefore have nine squares B0—three in each row and each column. At
the level k = 1, n1,1 = 8 and n1,1 = 7 resulting in 56 copies of B1. Note that, in Figure 11,
blocks B1 which refine those of B0 are not shown; only the blocks which cover parts of
Rc uncovered by B0 are depicted. Finally, for k = 2, we have n1,2 = 17 and n2,2 = 16 and
blocks B2 cover even more of Rc.

This partial cover can be constructed in a Borel fashion for all points c in CX ∪ CY ,
which results in chains of Borel cross sections

CX ⊆ C0
X ⊆ C1

X ⊆ · · · and CY ⊆ C0
Y ⊆ C1

Y ⊆ · · · ,

where Ck
X consists of ‘bottom left’ endpoints of blocks Bk , that satisfy the following

properties.
(a) Ck

X + Bk
⊆ Ck+1

X + Bk+1—the next level of blocks covers at least as much as the
previous.

(b) (c + Rc) ∩ (Ck+1
X \(C

k
X + Bk)) 6=∅ for all c ∈ CX —within every tile Rc there is

always a point from Ck+1
X which has not been covered by any Bk block. In other

words, within every tile, blocks Bk+1 cover strictly more than Bk blocks.
(c) X =

⋃
k(Ck

X + Bk)—every point in X is covered from some level on.
Of course, similar properties hold for CY instead of CX .

We are now ready to run a back-and-forth extension of φ : CX → CY , beginning with
the step k = 0. Since we have chosen our tiles in such a way that ni,0 = 3 for all i , each
tile Rc has 3d blocks B0.
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FIGURE 12. Forth step extension.

We therefore may extend φ first to a Borel isomorphism φ : C0
X → C0

Y between EC0
X

and

EC0
Y

by matching (c + Rc) ∩ C0
X with points in (φ(c)+ Rφ(c)) ∩ C0

Y for all c ∈ CX , and

then extend φ : C0
X + B0

→ C0
Y + B0 linearly on each block B0. The map φ defined this

way preserves Lebesgue measure within orbits on its domain. Since ni,0(c)= 3 for all
c ∈ CX and all i ≤ d , there is no need for the ‘back’ part of the argument and we proceed
to the next step of the construction.

At the level k = 1 we would like to extend φ which is currently defined on C0
X + B0 to

a map φ : C1
X + B1

→ C1
Y + B1. A naive approach would be to take c ∈ CX and to try to

map injectively the elements C1
X\(C

0
X + B0) from c + Rc to corresponding elements from

φ(c)+ Rφ(c). This approach may fail, since there may be more elements in the domain,
than in the range. For instance, in the example in Figure 12 we have n1,1(c)= 8 and
n2,1(c)= 8, while in the image Rφ(c) we may have n1,1(φ(c))= 7 and n2,1(φ(c))= 7,
and so there will be 28 blocks B1 in c + Rc not in the domain of φ at the current stage,
and only 13 blocks B1 in φ(c)+ Rφ(c) not in the range of φ.

We overcome this obstacle by using the maps τY
n : CY → CY which witness

compressibility. By item (b), for any c̃ ∈ CY there exists at least one B1 block in c̃ + Rc̃
which is not in the range of φ. On the other hand, there is a uniform upper bound on the
number of B1 blocks in any c + Rc tile, c ∈ CX . Therefore, for N1 sufficiently large, the
total number of B1 blocks in tiles

τY
1 (φ(c))+ RτY

1 (φ(c))
, . . . , τY

N1
(φ(c))+ RτY

N1
(φ(c))

which are not in the range of φ exceeds the number of B1 blocks in c + Rc. We can thus
extend φ to an injective function φ : C1

X → C1
Y by mapping, for each c ∈ CX ,
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points in (c + Rc) ∩ (C1
X\(C

0
X + B0))

to points in
N1⋃
j=1

((τY
j (φ(c))+ RτY

j (φ(c))
) ∩ (C1

Y \(C
0
Y + B0))),

and then extend it linearly to φ : C1
X + B1

→ C1
Y + B1. This finishes the ‘forth’ part of our

back-and-forth argument.
The ‘back’ part of the argument is similar. At the moment, φ is defined on all B1 blocks

in X , while the range of φ consists of all B0 blocks and some B1 blocks in Y . In other
words, φ−1 is defined on some of the B1 blocks of Y , and we would like to extend φ−1 to
all blocks B1 in Y . We shall map B1 blocks of Y which are not yet in the domain of φ−1

onto B2 blocks in X . Each B1 block will be mapped (in a measure preserving way) onto
2d blocks B2. Since there is a uniform bound on the number of B1 blocks in a tile c̃ + Rc̃,
c̃ ∈ CY , and since each tile c + Rc, c ∈ CX , contains at least one B2 block not yet in the
domain of φ(because of item (b) and because the domain of φ currently consists of B1

rectangles only), there exists a sufficiently large M1 such that, for any c̃ ∈ CY , the number
of available B2 blocks in the tiles

τ X
1 (φ

−1(c̃))+ Rτ X
1 (φ

−1(c̃)), . . . , τ
X
M2
(φ−1(c̃))+ Rτ X

M1
(φ−1(c̃))

exceeds
2d
· |(c̃ + Rc̃) ∩ C1

Y |.

We may therefore extend φ in such a way that φ−1 is defined on all C1
Y + B1, and φ

preserves the Lebesgue measure on its domain. This ends the ‘back’ part.
The construction continues in the same fashion. The map φ is now defined on some B2

blocks in X and we extend it to all of C2
X + B2 in such a way that the image of a B2 block

in X is a B2 block in Y . In general, φ will satisfy

φ(Ck
X + Bk)⊆ Ck

Y + Bk and φ−1(Ck
Y + Bk)⊆ Ck+1

X + Bk+1.

From item (c), it is immediate that, in the limit, φ is a Borel isomorphism between X and
Y , and the construction ensures that φ : X→ Y is a Lebesgue orbit equivalence. �

9. Proof of the main theorem
THEOREM 9.1. Let Rd y X and Rd y Y be a pair of free non-smooth flows. These flows
are LOE if and only if |E(X)| = |E(Y )|.

Proof. Necessity was proved in Theorem 4.5. We prove sufficiency. The combination
of Theorems 7.2 and 8.1 almost works: we may select invariant Z X ⊆ X and ZY ⊆ Y
with a LOE φ : Z X → ZY and reduce the problem to finding a LOE between flows Rd y
X\Z X and Rd y Y\ZY which have no invariant measures. The only difficulty in applying
Theorem 8.1 to the latter is that X\Z X or Y\ZY may be smooth. Fortunately, this obstacle
is easy to overcome.

Let X0 ⊆ X and Y0 ⊆ Y be invariant subsets such that the restrictions Rd y X0 and
Rd y Y0 are not smooth but admit no pie measures. Such subsets can be selected as
follows. Pick a cocompact cross section C ⊆ X and select an invariant Borel subset
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C0 ⊆ C such that the equivalence relation EC0 is compressible, but not smooth (see, for
instance, [DJK94, Corollary 7.2]). Set X0 to be the saturation of C0, X0 = C0 + Rd . The
set Y0 ⊆ Y can be selected in a similar way.

Having picked such X0 and Y0, let X ′ = X\X0 and Y ′ = Y\Y0. Now apply Theorem 7.2
to flows Rd y X ′ and Rd y Y ′. As an output, we get a LOE φ : Z X ′→ ZY ′ between
subsets of uniformly full measure. Now consider the flows restricted to the complements:
that is,

Rd y X0 ∪ (X ′\Z X ′) and Rd y Y0 ∪ (Y ′\ZY ′).

These have no pie measures and are necessarily non-smooth, and hence we may apply
Theorem 8.1 to extend φ to a LOE between Rd y X and Rd y Y . �
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