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Abstract

The Bemstein-von Mises theorem, concerning the convergence of suitably normalized and centred pos-
terior density to normal density, is proved for a certain class of linearly parametrized parabolic stochastic
partial differential equations (SPDEs) as the number of Fourier coefficients in the expansion of the solu-
tion increases to infinity. As a consequence, the Bayes estimators of the drift parameter, for smooth loss
functions and priors, are shown to be strongly consistent, asymptotically normal and locally asymptoti-
cally minimax (in the Hajek-Le Cam sense), and asymptotically equivalent to the maximum likelihood
estimator as the number of Fourier coefficients become large. Unlike in the classical finite dimensional
SDEs, here the total observation time and the intensity of noise remain fixed.
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Keywords and phrases: stochastic partial differential equations, diffusion field, Bernstein-von Mises
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1. Introduction

Recently infinite dimensional stochastic differential equations (SDEs), like the sto-
chastic partial differential equations (SPDEs) are being paid a lot of attention in view
of their modeling applications in neurophysiology, turbulence, oceanography and
finance, see Ito [18], Walsh [34] and Kallianpur and Xiong [19], Holden et al. [12]
and Carmona and Rozovskii [10]. In view of this it becomes necessary to estimate the
unknown parameters in SPDEs.

Various methods of estimation in finite dimensional SDEs has been extensively
studied during the last three decades as the observation time tends to infinity (see,
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Liptser and Shiryayev [25], Basawa and Prakasa Rao [1], Prakasa Rao [33] and Ku-
toyants [24]) or as the intensity of noise tends to zero (see, Ibragimov and Has'minskii
[17], Kutoyants [22, 23]). On the other hand, this problem for infinite dimensional
SDEs is young. Loges [26] initiated the study of parameter estimation in such models.
When the length of the observation time becomes large, he obtained consistency and
asymptotic normality of the maximum likelihood estimator (MLE) of a real valued
drift parameter in a Hilbert space valued SDE. Koski and Loges [21] extended the
work of Loges [26] to minimum contrast estimators. Koski and Loges [20] applied
the work to a stochastic heat flow problem.

Huebner, Khasminskii and Rozovskii [14] introduced spectral method to study
consistency, asymptotic normality and asymptotic efficiency of MLE of a parameter
in the drift coefficient of an SPDE. This approach allows one to obtain asymptotics of
estimators under conditions which guarantee the singularity of the measures generated
by the corresponding diffusion field for different parameters. Unlike in the finite
dimensional cases, where the total observation time was assumed to be long (T -*• oo)
or intensity of the noise was assumed to be small (e -*• 0), here both are kept fixed.
Here the asymptotics are obtained when the number of Fourier coefficients (n) of the
solution of SPDE becomes large.

The spectral asymptotics for MLE was extended by Huebner and Rozovskii [15]
to more general SPDEs where the partial differential operators commute and satisfy
some order conditions. Piterberg and Rozovskii [29] studied the properties MLE of
a parameter in SPDE which are used to model the upper ocean variability in physical
oceanography. Piterbarg and Rozovskii (1996) studied the properties of MLE based on
discrete observations of the corresponding diffusion field. Huebner [13] extended the
problem to the ML estimation of multidimensional parameter. Lototsky and Rozovskii
[27] studied the same problem without the commutativity condition.

The Bernstein-von Mises theorem, concerning the convergence of suitably nor-
malised and centered posterior distribution to normal distribution, plays a fundamental
role in asymptotic Bayesian inference, see Le Cam and Yang [9]. In the i.i.d. case, the
theorem was first proved by Le Cam [8]. Since then the theorem has been extended
to many depended cases. Borwanker et al. [6] obtained the theorem for discrete time
Markov processes. For the linear homogeneous diffusion processes, the Bernstein-
von Mises theorem was proved by Prakasa Rao [31]. Prakasa Rao [32] extended the
theorem to a two parameter diffusion field. Bose [7] extended the theorem to the
homogeneous nonlinear diffusions and Mishra [28] to the nonhomogeneous diffu-
sions. As a further refinement in Bernstein-von Mises theorem, Bishwal [3] obtained
sharp rates of convergence to normality of the posterior distribution and the Bayes
estimators.

All these above works on Bernstein-von Mises theorem are concerned with finite
dimensional SDEs. Recently Bishwal [2] proved the Bernstein-von Mises theorem
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and obtained asymptotic properties of regular Bayes estimator of the drift parameter
in a Hilbert space valued SDE when the corresponding diffusion process is observed
continuously over a time interval [0, T]. The asymptotics are studied as T -> oo under
the condition of absolute continuity of measures generated by the process. Results
are illustrated for the example of an SPDE. The situation is analogous to the finite
dimensional SDEs, where the measures are absolutely continuous.

Our aim here is to use the spectral approach to study Bernstein-von Mises theorem
and Bayes estimation in parabolic SPDE.

2. Model and preliminaries

Let (ft, «^\ P) be a complete probability space on which is defined the parabolic
SPDE

(2.1) due(t,x) = Aeue(t,x)dt + dW(t,x), 0 < t < T, x e G

with Dirichlet boundary conditions

(2.2) u(O,x)

(2.3) DYu(t,x)\3C = 0 for all indices y with \y\ < m - 1,

where A9 = 0Ax + Ao, A{ and Ao are partial differential operators of orders my and
m2 respectively, Ae has order 2m = max(m!, m0), W(t, x) is a cylindrical Brownian
motion in L2([0, T] x G), where G is a bounded domain in Rd and u0 € L2(G). Here
9 e © c K is the unknown parameter to be estimated on the basis of the observations
of the field u9(t, x), t e [0, T],x G G. Let 9Q be the true value of the unknown
parameter.

Here u9(t, x) is the observation at time t at point x. In practice, it is impossible to
observe the field u9(t, x) at all points t and x. Hence, it is assumed that only finite
dimensional projections u" := u"'9 = {u\(t),..., ue

n(t)), t e [0, T] of the solution of
(2.1) are available. In other words, we observe the first n highest nodes in the Fourier
expansion

(=1

corresponding to some orthogonal basis {0,(x)}~,. We consider observation con-
tinuous in time t e [0, T]. Note that ue{t), i > 1 are independent one dimensional
Ornstein-Uhlenbeck processes (see Huebner and Rozovskii [15]). Since here the basic
set up is the same as in [15], for different terminology the reader is referred to [15].

The following conditions are assumed:
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(HI) mx >m-d/2.
(H2) The operators A { and Ao are formally self-adjoint, that is, for i = 0, 1,

/ Atuv dx = I uAMx for all u,v e C
JG JC

(H3) There is a compact neighbourhood 0 of 90 so that {A9, 9 € 0} is a family of
uniformly strongly elliptic operators.
(H4) There exists a complete orthonormal system {/i;}^ in L2(G) such that for every
i = 1,2,..., hi e W"\G) n C°°(G) and

A A = ki(6)hi and S£6h{ = /x,-(0)fcj for all 0 e 0 ,

where S£» is a closed self adjoint extension of Ae, Ae := (k(9)I - -S?e)
1/2m, k(9) is

a constant and the spectrum of the operator Ae consists of eigenvalues {A.,(0)}~, of
finite multiplicities and /x, = -2A.f" + k(9).
(H5) The operator A i is uniformly strongly elliptic and has the same system of eigen
functions {/i,}^, as ife.

For a > d/2, define the Hilbert space H~a as in Huebner and Rozovskii [15].
Let Pj be the measure generated by the solution {ue(t, x), t 6 [0, T], x e G] to the
problem (2.1M2.3) on the space ^ ( [0 , T]\ H~a) with the associated Borel a-algebra
9ST. Note that, under (HI), for different 9 the measures Pj are singular.

Consider the projection of H~" onto the subspace K". Let Pj'n be the measure
generated by un-e on #[ (0 , T]; K") with the associated Borel a-algebra S&n

T.
It is a classical fact (see Liptser and Shiryayev [25]) that for any 9 e 0 , the

measures Pj'n and P^n are mutually absolutely continuous with Radon-Nikodym
derivative (likelihood ratio) given by

jpT.n

(2.4) Zf (II) := - 4 - ( « n ) = exp (9 - 90) / (A,«"(*), du"(s))0
dr^ y J

- 90) /
Jo

\\AlU
n(s)\\lds

-(9-60) I
Jo

Maximizing Z*(M) with respect to 9 provides the MLE given by

£„ . = fo
T(AlU

n(s),du"(s)-Aoun(s)ds)o

The Fisher information /„ related to dPg/dP^ is given by

/„:=£«, I \\AlU
n(s)\\2

0ds.
Jo
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Define

|(f/4/8)rn2' , if in, > m - d/2;

j ( f /2)r iogn, if m, = i n - d / 2 ,

where /? = (w^ — m)/d + 1/2,

? := (27r)2(m'-m)

(7 . <I
2m,/d "

Note that In/\frn —>• 0 as n -> oo. Let <w be a real valued, non-negative loss function
of polynomial majorant defined on 1, which is symmetric co(0) = 0 and monotone
on the positive real line.

Under the conditions (H1)-(H5), Huebner and Rozovskii [15] showed that §n is
strongly consistent, asymptotically normally distributed with normalization ^n

1/2 and
asymptotically efficient with respect to the loss function co.

Suppose that Fl is a priori probability measure on (@, f^), where & is the a-algebra
of Borel subsets of ©. Assume that FI has a density n(-) with respect to the Lebesgue
measure and the density is continuous and positive in an open neighbourhood of 60.

The posterior density of 0 given in u" is given by

(2.6)

Let r = iAn
1/2(0 - 0"). Then the posterior density of tl

n
l2{6 - §") is given by

Let

(2.7) vn(r) :=

C, := f vn
J — oo

Clearly, p*{x \ u") = C;xvn{x)n{§n +

3. The Bernstein-von Mises theorem

Let K(-) be a non-negative measurable function satisfying the following two con-
ditions:
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(Kl) There exists a number r), 0 < r\ < 1, for which

K(x)e\p[-x2(l - r))/2}dx < oo.

(K2) For every c > 0 and S > 0

e-<*. j K(xi/l
n
/2)n(§" + x)dx - • 0 a.s. [P<J as n - • oo.

We need the following lemma to prove the Bernstein-von Mises theorem.

LEMMA 3.1. Under the assumptions (H1)-(H5) and (K1)-(K2):

(i) There exists <$o > 0 such that

[6]

lim K(r) dr = 0 a.s. [PJ.

dr=0 a.s.

(ii) For every S > 0,

lim j K(x)

PROOF. From (2.4) and (2.7), it is easy to check that

logvn(r) = - ^ r V ; ' I ||A,ii"(5)||2rf*.

Now (i) follows by an application of the dominated convergence theorem.
For every S > 0, there exists ( > 0 depending on S and fi such that

•/|r|>«tfi
K(r) dx

< e-(*" j ^ AT(T)W(5" + Vn~
1/2T) rfr + 7r(^) j ^ e~<2/2 dx

=• Fn + Gn.

By condition (K2), it follows that Fn -*• 0 a.s. [P^,] as n ->• oo for every 5 > 0.
Condition (Kl) implies that Gn —> 0 as n —>• oo. This completes the proof of the
lemma. D

Now we are ready to prove the generalized version of the Bernstein-von Mises
theorem for parabolic SPDEs.
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THEOREM 3.1. Under the assumptions (H1MH5) and (K1MK2), we have

lim /
n^ooJ-o

p*(x\un) - (l/2n)l/2e-z2/2 dx=0 a.s.

PROOF. From Lemma 3.1, we have

(3.1) lim / K(x) vn(x)n{9" dr=0 a.s.

Putting K(x) = 1 which trivially satisfies (Kl) and (K2), we have

(3.2) Cn= I vn(x)n(9" + x/r;l/2T)dT - • n(90)
J— oo

f e~*t2dx
J— oo

a.s.

Therefore, by (3.1) and (3.2), we have

K(r) 'W") ~ (l/2jr)!/Vr2/2 dx

K(t)

f
J-c

K(x) dx

dx

0 a.s.
D

THEOREM 3.2. Suppose (H1)-(H5) and fToo\0\rn(e)dd < oo for some non-
negative integer r hold. Then

lim I \x\r p\x\un) - (l/27i)l/2e-*2/2 dx = 0 a.s.

PROOF. For r = 0, the verification of (Kl) and (K2) is easy and the theorem
follows from Theorem 3.1. Suppose r > 1. LetK"(r) = |T|r,<5 > Oande > 0. Using
\a + b\r < 2r-\\a\r + \b\r), we have

*• f K(xtl'2)n{9n

J\z\>&

f n(x)\x-en\rdx

I n(x)\x\r dx + f n(x)\9n\rdx]
.J\T-6"\>8 J\T-6"\>S J

/ n(x)\x\rdx + \9"\r - > 0 a.s. [J
-•'-00 J

as n -> oo

from the strong consistency of 9" and hypothesis of the theorem. Thus the theorem
follows from Theorem 3.1. •
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REMARK 3.1. For r = 0 in Theorem 3.2, we have
/.OO

lim / P*(T\U") - (l/2jt)l/2e-zl/2 dx = 0 a.s. [PJ .
n-+°°J-oc

This is the classical form of Bernstein-von Mises theorem for parabolic SPDEs in its
simplest form.

As a special case of Theorem 3.2, we obtain Ee^f^iO" - 90)Y -»• £[£r] as
n —>• oo where £ ~ ^ ( 0 , 1).

4. Bayes estimation

As an application of Theorem 3.1, we obtain the asymptotic properties of a regular
Bayes estimator of 0. Suppose 1(6, (f>) is a loss function defined on 0 x 0. Assume that
1(9, </>) = l(\0 — 0|) > 0 and /(•) is non decreasing. Suppose that J is a non-negative
function on N and K(-) and G(-) are functions on K such that

(Bl) 7 ( « ) / ( T ^ " 1 / 2 ) < G(T) for all n;

(B2) J(n)l(z\jr~l/2) -*• K(r) as n -> oo uniformly on bounded subsets of R;
(B3) / ^ ^T(T + s)e~r2/2 dx has a strict minimum at s = 0;
(B4) G(-) satisfies (Kl) and (K2).

Let Bn(<j>) = jel(e,(t>)p(d\un)d0. A regular Bayes estimator 0" based on u" is
defined as 0" := arg inf^e0 Bn(cp). Assume that such an estimator exists.

The following theorem shows that MLE and Bayes estimators are asymptotically
equivalent as n —> oo.

THEOREM 4.1. Assume that (H1)-(H5), (K1)-(K2) and (B1)-(B4) hold. Then we
have

(i) Vn
1/2(0" - 0n) -+ 0 a.s. [Pa,] as n ^ oo,

(ii) lim J(n)Bn(8
n) = lim J(n)Bn(§") = — / K(x)e^l2dx a.s. [PJ.

" - • 0 0 B-»OO \27r/ J-oo

PROOF. The proof is analogous to Theorem 4.1 in Borwanker e/ a/. [6]. We omit
the details. •

COROLLARY 4.2. Under the assumptions of Theorem 4.1, we have

(i) 9" -*• 90 a.s. [P<)J ai n -*• oo.

(ii) Vr
n
1/2(6(n ~ Oo) % ^(0, 1) as n -> oo.

PROOF, (i) and (ii) follow easily by combining Theorem 4.1 and the strong consis-
tency and asymptotic normality results of the MLE in Huebner and Rozovskii [15]. •
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The following theorem shows that Bayes estimators are locally asymptotically
minimax in the Hajek-Le Cam sense, that is, equality is achieved in the Hajek-Le Cam
inequality.

THEOREM 4.3. Under the assumptions of Theorem 4.1, we have

lim lim sup Eco f/n
1/2(0n - 90)) = Eco(l-), -£?(£) = ,/f (0, 1),

where a>(-) is a loss function as defined in theorem earlier.

PROOF. The theorem follows from Theorem III.2.1 in Ibragimov and Khasminskii
[16] since here conditions (N1)-(N4) of the above mentioned theorem are satisfied
using Lemma 3.1 - Lemma 3.3 and local asymptotic normality (LAN) property
obtained in Huebner and Rozovskii [15]. •

5. Example

We illustrate the results of the previous sections through the following heat equation

du(t, x) - 0Au(t, x) = d W(t, x), t e [0, T], x e (0, 1)

u(O,x) = uo(x), J te(O, l )

ii(/,0) = « ( U ) = 0 , t€[O,T],

where u0 e L2(0, 1), W(t, x) is a cylindrical Brownian motion in L2(0, 1) and 9 > 0.
Here mi = ord(A) = 2, m0 = 0, m = (l/2)max(mi, m0) = 1, d = 1. So

m - d/2 = 1/2 < m\. Thus (HI) is satisfied. By standard arguments, the operator
—0A with zero boundary conditions extends to a self adjoint operator on L2(0, 1)
which we denote by -9A. The domain &{-GA) = W22(0,1) n WQ'2(0, 1). It is
readily checked that — 0 A is positive, so we can take k(6) — 0 and set A = ^/—0A. It
is a standard fact that 9(^-9 A) = W0

u(0, 1). Write/i, := V2sin(/7r;c). Obviously
the sequence hh i — 1, 2 , . . . , forms a complete orthonormal system in L2(0, 1) and
y/-9Ahj = Xj(9)hj where kt(9) = s[9ni. It is readily checked that for s € K, the
norm

« ll,:=
I

u(s)sin(jnx)dx

is equivalent to the norm of the Sobolev space W '̂2(0, 1). Let us choose a = 1. Obvi-
ously the system h~g := A.,7t, = y/97tiV2s\n(7rix), i = 1, 2 , . . . , is an orthonormal
basis in / /" ' . Hence assumptions (H2)-(H5) are satisfied.
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Take squared error loss function 1(0, <f>) = \0 — <p\2. Now for this heat equation
example all the results of Section 3 and Section 4 on posterior convergence and
asymptotics of Bayes estimators, which are posterior mean for squared error loss,
hold.

REMARK 5.1. (1) General set of conditions of posterior convergence through the
LAN property was given in Ghosal et al. [11] extending methods in Ibragimov and
Khasminskii [16]. For the model here, using the LAN property of the model along with
Lemma 3.1-Lemma 3.3 in Huebner and Rozovskii [15], one verifies the conditions in
Ghosal et al. [11] trivially and obtains the in probability version of the Bernstein-von
Mises theorem and asymptotic equivalence in probability of the MLE and the Bayes
estimators. However, we obtained the almost sure versions of these results.
(2) Large deviations and Berry-Esseen inequality for the MLE through the spectral

approach were recently obtained by Bishwal et al. [4]. Extension of this problem
to Bayes estimators remains to be investigated. Also to obtain rates of convergence
of the posterior distributions to normal distribution and bounds on the asymptotic
equivalence of the MLE and the Bayes estimators remains to be investigated.
(3) Sequential estimation in parabolic SPDEs using the spectral approach was stud-

ied by Bishwal and S0rensen [5].
(4) Nonparametric estimation of the coefficients of SPDEs is studied in Ibragimov

and Khasminskii [17].
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