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GEOMETRIC INEQUALITIES INVOLVING
THE STRETCH OF A SET

by J. N. LILLINGTON*
(Received 21st July 1975)

Introduction

A number of papers have been written concerning the properties of
triangles which circumscribe convex sets, see for example (1), (2), (3).

In this note we shall characterise two set functionals, one of which has
already been introduced in (6). This will enable us to produce some new
results in the spirit of those obtained in the papers mentioned above. These
two functionals are interesting in that although they are defined in a rather
abstruse manner, they turn out to have an intuitive geometric meaning,
namely that they are the minimal widths of certain circumscribing triangles.

Notation and definitions

Unless otherwise stated, all sets X are assumed to be compact convex
subsets of the Euclidean plane R. If x, y, z € R we define points w and ¢ as
follows: suppose

1) x, y, z are all distinct.
(a) If x, y, z are the vertices of a triangle each of whose angles is less
than %7 let t = w = p be the unique point p satisfying x/ﬁy =ipr =
ypx =im.
(b) If yx* say, is equal to 7 let w=1¢=x.
(c) If yx¥ say, is greater than 27 let w = x and let ¢ be the unique pointt
lying on the same side of yz as x such that )7& =zt

=%

=im
Otherwise

2) x, y, z are not all distinct and x = y say.
Then let w =t = x.

For any two points x', y' € R, let x’y’' denote the segment joining x’ and
y’' and also the distance between x' and y’. Let ¢(x,y,2z) and ¢(x,y, 2)

* This work was carried out while the author was a research student at Royal Holloway
College, London and is a revised version of part of the author’s thesis approved for the
Ph.D. degree.

t+If yxz = =, then strictly speaking ¢ is not distinct and can be one of two points which are
reflections of each other in yz. However, K(x, y, 2) is still well-defined.
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denote the set union of the segments wx, wy, wz and tx, ty, tz respectively.
We shall call w the centre of connexion of ¢(x,y,z) and t the centre of
revolution of Y(x,y, z). Further write

L(x,y,z)=wx+ wy+ wz,
and K(x, y, z) = tx + ty + tz if case 1(a) is applicable,
= —tx + ty + tz otherwise.

The reader will note that L(x, y, z) is the connected set of minimal length
(linear measure) containing x, y, z as defined in (6) and that w and ¢(x, y, z)
are also as defined in that paper. It is also convenient to write x'y’z’ to
denote the convex hull of any three points x’, y’, z'.

The stretch of x with respect to X is defined to be

L(X;x)=sup L(x, y, 2)

»nZEX

and the stretch of X is defined to be

L(X)=sup L(X; x)
x€X
Similarly, the equilateral stretch K(X; x) of x with respect X is defined by
using K(x, y, z) and the equilateral stretch K(X) of X follows.
If 3 is the class of compact sets in the plane we note that it follows
from definition that the functions L and K are continuous over % under
the Hausdorff metric.

Preliminary lemmas

Lemma 1. If x, y, ZzER, let t be the centre of revolution of y(x, y, z).
Let u be the third vertex of the equilateral triangle of uyz which lies on the
side of yz opposite to x with the convention that if y =2, then u=y = z.
Then

1) The line segments tx and ux lie on a line,
2) K(x,y, z) = ux.

Proof. By standard continuity arguments it is sufficient to prove the
lemma, with the assumption that x, y, z are the vertices of a triangle. The
case where x, y, z form the vertices of a triangle, each of whose angles is
less than 7 has already been proved in (4) on page 63. The proof of the
remaining case involves similar elementary geometric arguments and is
omitted.

Corollary. Let x, y, z be distinct points in R. Then, in the notation of
Lemma 1,
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K(x,y,2)>yz if ¥xz<im,
=yz if §xx=im,
<yz if §xr>im

Proof. Let A = yz. We note that ux = yz = A if and only if x lies on the
circle centre u and radius A. The corollary is then obvious.

Lemma 2. Let x, y, z be the vertices of a triangle T. Then the equilateral
triangle of maximal height which circumscribes T and whose boundary
contains the vertices of T is unique and has height K(x, y, z).

Proof. Suppose S is an equilateral triangle which circumscribes T and
whose boundary contains the vertices of T, of side-length s and area A. Let
Y(x, y, z) have centre of revolution f. We may assume the segments tx, ty,
tz make an acute angle @ with the sides of S containing x, y, z respectively,
whenever of course each segment is defined. Then if each angle of T is less
than 3,

2A = s(tx +ty +tz) sin 8.

Otherwise we may assume that the angle y/x\z say is greater than or equal to
. In this case

2A =5s(—tx +ty+1tz)sin 6.
Thus by definition
2A=5s-K(x,y,z)sin 6,

and the lemma is proved on noting that S has maximal height if and only if
1
=37.

Lemma 3. In the notation of Lemma 2, the triangle of maximal
minimal width which circumscribes T and whose boundary contains the
vertices of T, is unique, isosceles with its two equal sides at least as long as
the third side, and has minimal width L (x, y, z).

Proof. Let w be the centre of connexion of ¢(x,y,z). We define a
triangle Q as follows:

If each angle of T is less than 3w, let Q be the equilateral triangle
bounded by the lines through x, y, z perpendicular to wx, wy, wz respec-
tively.

If the angle ){x\z say of T is greater than or equal to 37 let Q be the
isosceles triangle bounded by the lines through y, z perpendicular to wy, wz
respectively and the external bisector of yxz.

Then in both cases Q is isosceles with its two equal sides at least as
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long as the third side and has minimal width L(x, y, z). Next, let S’ be a
triangle of maximal minimal width A which circumscribes T and whose
boundary contains the vertices of T. We note that S’ is not an infinite strip
of width A for if this were the case, then A would not exceed the diameter
of T, which in turn is less than L(x, y, z). But by definition A = L(x, y, 2).
Thus S’ is a proper triangle. Further for the same reason, each vertex of T
is contained in at most one side of S’. Thus if S’ is not isosceles with its
two equal sides at least as long as the third side then we may assume that
S’ has sides of length s,, s,, s; containing x, y, z in their relative interiors
respectively where
8§32 8,2 §,.

But then we may obtain a new triangle of minimal width greater than A, by

applying a suitably small rotation to the side of length s, about x. This

however contradicts the definition of $’ and so S’ has the stated property.
We may assume then that

$3= 8, = 5.
Thus if the area of S’ is A’, then
2A' = 5A <8, WX +5,° wy+ 53 wx
=< s5(wx + wy + wz)
=5, L(x, y, 2).

Hence it follows that
A=<L(x,y,2)

with equality if and only if S’ is the triangle Q as defined earlier. The
lemma is proved.

Note. We note that if x, y, z are not all distinct and say x = y# z then
the equilateral triangle of maximum height which circumscribes yz has
height yz = K(x, y, z) and the triangle of maximal minimal width with this
property also has minimal width yz = L(x, y,z). Thus Lemmas 2 and 3
remain true in this sense.

Remarks. Before stating the next lemma it is convenient to note the
following:

1) If L(X)=L(x,y,z) for x, y, zE€ X, then x, y, z are necessarily
contained in 3X (the frontier of X). Further x, y, z are collinear if and only
if X is a segment. This is an immediate consequence of the definition.

2) If K(X)=K(x,y,2z) for x,y, z€ X, then again x, y, z € dX. Also
either x, y, z form the vertices of a triangle, each of whose angles is less
than 7 or the points x, y, z are not all distinct. To see this suppose that
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§xz >3 where the points are assumed to be distinct. It then follows from
the Corollary to Lemma 1 that

K(X)=K(x,y,z) <yz=K(y, y, z) = K(X),

which is impossible. The statement follows. Following (6), we shall say that
a support line ! to X supports X regularly or that [ is a regular support line
to X if | meets X in a single point.

Lemma 4. Suppose K(X) = K(x, y, z) for some x,y, z € 3X. Then 1) If
X, y, z are the vertices of a triangle, let y(x, y, z) have centre of revolution t
and let v be any vertex of triangle xyz. Then if t# v the line through v
perpendicular to tv supports X regularly and if t =v then the external
bisector of the obtuse angle between the two lines of the triangle incident at
v supports X regularly.

2) If x, y, z are not all distinct we may assume x = y# z. Then all lines
through y or z which make an acute angle of iw with yz support X regularly.

Proof. 1) Suppose, without loss in generality, that v = x. On yz erect
the equilateral triangle uyz with u on the side of yz opposite to x. Let I be
the line through x perpendicular to tx if t# x and the external bisector of
yxz if t=x. By Lemma 1, [ is perpendicular to ux. Now if /| does not
support X regularly then there exists x' € X N/ on the side of yz opposite
to u and x’' # x. But then again by Lemma 1,

K(X)=K((x',y,z)=ux'">ux = K(x, y, z) = K(X)

which is contradictory. Thus the first part is proved.

2) Suppose x = y# z. It is sufficient only to consider the point y. Let I
be the line through y making an acute angle of i# with yz, and suppose !
does not support X regularly. Then there exists a point y' on X N/ and
y' # y. By erecting the equilateral triangle u'yy’ with u’ on the side of yy’
opposite to z and applying Lemma 1, it is easy to see that

KX)=K(', y,z)=u'z>yz=K(x,y, z) = K(X),

again contradicting the definition of K(X). Thus [/ is a regular support line
and the proof of the lemma is complete.

Lemma 5. If for any set X with a non-empty interior, L(X) = L(x, y, 2),
where x € X, if ¢(x,y, z) has centre of connexion w, and if v is any vertex
of triangle x, y, z then if w# v the line through v perpendicular to wv supports
X regularly and if w= v then the external bisector of the obtuse angle
between the two lines of the triangle incident at w supports X regularly.

Proof. This lemma was proved in detail in (6) and the proof is omitted.
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Geometric interpretation

We are now in a position to give the geometric interpretation of the
stretch and equilateral stretch of X.

Theorem 1. 1) The equilateral triangle of maximal height circumscribing
X has height K(X).

2) The triangle of maximal minimal width circumscribing X has minimal
width L(X).

Proof. If X is a segment then the theorem is true by the note after
Lemmas 2 and 3. Thus suppose that X has a non-empty interior.

We shall prove parts 1) and 2) simultaneously. Suppose that the
equilateral triangle S of maximal height circumscribing X has height A and
that the triangle S’ of maximal minimal width circumscribing X has minimal
width . We may assume the points x, y, z € X lie one on each side of S and
the points x', y', z' € 3X lie one on each side of S’. By Lemmas 2 and 3
respectively

A=< K(x,y,2) )
and
w =< L(x,y, 2). ¢))

Otherwise suppose K(X)= K(x,y,z) for some x, y, z€9X and L(X)=
L(x',y’, 2") for some x', y’, 2’ € 4X. Then by Lemmas 4 and S respectively,
there exists an equilateral triangle of height K(x, y, z) circumscribing X
and a triangle of minimal width L(x, y, z) circumscribing X. Thus

A=K, y,2) 3)
and
r = Lix,y, z). “@

Equations (1), (2), (3) and (4) imply the result. We also note that S’ has the
property stated in Lemma 3.
Before proving our next theorem we need another lemma.

Lemma 6. Let X be a compact set which is not necessarily convex and
suppose Y is the convex hull of X. Then

1) K(X)=K(Y),
2) L(X)=L(Y).

Proof. If Y is a segment the lemma is trivial and we suppose that Y
has a non-empty interior. If 1) is false then K(Y)> K(X). Thus we may
suppose K(x,y,z)=K(Y) where x€Y and x&€ X. By Lemma 4, there
exists a regular support line / to Y at x. Thus I N X =@. But this implies
that INY =@ which is contradictory. Thus K(Y)= K(X) and similarly
L(Y)= L(X).
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Corollary. Let x, y, zER.
1) (@) If x, y, z form the vertices of a triangle each of whose angles is less
than im,
K(xyz) = K(x, y, z) > max (xy, xz, yz).

(b) If y/x\z say, is equal to im or x, y, z are not distinct and x = y then
K(xyz) = K(x, y, z) = yz > max (xy, xz).
©) If )’/A"\Z say is greater than im, then
K(xyz) = yz > max (xy, xz, K(x, y, 2))
2) L(xyz)= L(x,y, z) = max (xy, xz, yz)
with equality if and only if xyz is a segment.

Proof. The proof follows for 1) by Lemma 6 and the Corollary to
Lemma 1. The proof for 2) is immediate from definition.

In view of Theorem 1, it is natural to ask the following question: For
any set X, what is the upper bound for the minimal widths of triangles
circumscribing X relative to the height of the maximal circumscribing
equilateral triangle? We prove

Theorem 2. Let A be the height of the maximal equilateral triangle
circumscribing X. Then every circumscribing triangle has minimal width
less than or equal to 2x(2++/3)™"2

Proof. By the Blaschke selection theorem, there exists a set Y satis-

fying
L(Y) L(X)

= sup .
K(Y) xexK(X)
Let T be the isosceles triangle xyz where y/x\z =37 and xy = xz. By the

Corollary to Lemma 6, L(T)=xy+ xz and K(T) = yz. Then calculation
gives

%)

LY)_LT)_ = 2

O R PR L ©

We may choose points x, y, z€ Y such that
L(xyz) = L(x, y, z) = L(Y).

Since also K(xyz) < K(Y) it follows from (5) that we may assume Y = xyz.
Now Y is not a segment and not a triangle each of whose angles is less
than or equal to 7 for if this were so then by the definition of L(x, y, 2)
and K(x, y, z) and the Corollary to Lemma 6,

L(Y) L(x,y,2) _
K(Y) K(xyz2)
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which contradicts (6). Thus we may suppose that Y is a triangle and
§xz >2m. We shall prove next that xy = xz.

On yz erect the equilateral triangle uy: with u on the side of yz
opposite to x. Suppose that the line ! through x perpendicular to ux makes
acute angles «, 8 with xy, xz respectively. Let x’ be a point on ! distant §
from x. (It is convenient to take § > 0 if x’ lies on the same side of ux as y
and § <0 otherwise). Calculation gives

ux' = ux + O(8%)
x'y =xy—8cosa+0(?
x'z =xz+8 cos B + O(8).

Then using the Corollary to Lemma 6

L(x'y2) _ x'y+x'z

K(x'yz) " max (ux', yz)
Xy +xz 8(cos B—cos a)

= + O(8?).
max (ux, yz) max (ux, yz) 3

_ L(Y)+8 (cos B —cosa)

= + 0(8%).
K(Y) max (ux, yz)

Hence by a suitable choice of 8 we may contradict the definition of Y in
(5) unless a = B. Since yx3 >ix7 it follows that xy = xz. Now if ¥xz > im,
then we may choose a point x” such that yx"z > 3w and the perimeter of x"yz
exceeds the perimeter of yxz. Then

L(x"yz) _ x"y+x"z >xy + xz
K(x"yz) yz yz

_ L(Y)

T K(Y)

which again contradicts (5). Thus %7 < y/x\z =i Now if yx/\z <im let I’ be
the external bisector of )fr\z, and let m’, n’ be the lines through y, z
perpendicular to ty, tz respectively. Choose points y', z' on m’, n' respec-
: : : o AN S ’ '

tively satisfying yxz <y'xz'<zw and yy'=2zz’. Then K(x,y,2z)=
K(x, y’, z'). Hence this implies

L(xy’z')  xy'+xz’' - Xy +xz
K(xy'z) K(x,y',z") Kix,y,2)

L)
T K(Y)Y
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which is again impossible. Thus we have shown that if Y is a triangle then Y is
a triangle xyz where ﬁc\z = and xy = xz. Hence equality holds in (6) and the
theorem is proved.

It is easy to see that although the result is best possible, there are many
extremal figures Y. We remark that we can also use a similar method to
give the upper bound for the minimal widths of triangles circumscribing a
set X in terms of the perimeter of X, see Theorem 1 in (2).

Following the definition of a completely stretched set in (6), we shall
say that a set X of equilateral stretch A is completely equilaterally stretched
if xZ X implies K(X; x)> A.

Theorem 3. The following statements are equivalent.
(a) K(X;x)=A for each x € 3X,
(b) X is completely equilaterally stretched with stretch A,
(c) X is a rotor for an equilateral triangle of height A.

Proof. In Theorem 3 in (6) it was shown that if X could be circum-
scribed by an equilateral triangle S of height A, one of whose sides
supported X at x for each x € 9X, then X was necessarily a rotor for S.
Thus by Lemma 4 it follows that (a) implies (c).

To show (¢) implies (b) suppose xZ X. Let x’ be the point of 34X nearest
x. Since X is a rotor for an equilateral triangle S, there is an orientation of
S such that one side s; of S supports X at x’ and is perpendicular to xx'.
Suppose that y’, z' are the points of contact of the other two sides s,, 55 of
S respectively in this orientation. If follows by Lemma 2 that

KX)=K{x',y',z)=A.

Further the equilateral triangle S’ bounded by the line through x parallel to
51, and the lines s,, s; clearly circumscribes xy’z’ and has height u > A.
Hence by the definition of K(X; x) and Lemma 2 it follows that

K(X;x)=K(x,y',2)=p> A = K(X).

Finally to show (b) implies (a) we can apply the same continuity argument
as was used in Theorem 1 in (6) to show that X completely stretched with
stretch A implies that L(X;x)=A for each x €9X. Thus the proof of
Theorem 3 is complete.

In (7) Fujiwara and Kakeya gave an analytic characterisation of the
rotors for an equilateral triangle. Theorem 3 is interesting in that the
characterisation depends on purely geometric notions. The reader will also
note that Theorem 3 is an analogue of Theorem 1 in (6) and in our next
theorem we state a result directly related to Theorem 2 in that paper.

https://doi.org/10.1017/50013091500026341 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500026341

252 J. N. LILLINGTON

Theorem 4. If S is the maximal equilateral triangle circumscribing X
then there exists a set Y which contains X and which is a rotor for S.

Proof. The proof that a set X of equilateral stretch A is contained in a
completely equilaterally stretched set Y of equilateral stretch A is identical
to the proof of Theorem 2 in (6). Theorem 4 then follows from Theorem 3.

For the remainder of this paper we shall write P (X), H(X) and A(X)
to denote the perimeter, minimal width and area of X respectively.

Corollary. If X has perimeter A\, minimal width & or area o then the
maximal equilateral triangle circumscribing X has height greater than or
equal to 3A[21r,38/2 or 30" 7'", respectively, with equality if and only if X
is a rotor for an equilateral triangle, a rotor for a regular hexagon, or a disc.

Proof. We have to show 1) K(X)/P(X)=3A/27w), 2) K(X)/H(X)=
3/2 and 3) (K(X)/A(X)=9/w with equalities as stated in the theorem.

To prove 1) we note that if K(X)/P (X) is minimal then, by Theorem 4,
X is necessarily a rotor for an equilateral triangle and so the result follows
by (7) page 106. Result 2) follows from 1) and the well known result
P(X)/H(X)= m with equality if and only if X is a set of constant width.
Finally result 3) follows from 1) and the well known isoperimetric
inequality P (X)*/A(X)= 47 with equality if and only if X is a disc.

Minimal Widths

We finish by giving two results concerning the minimal widths of
triangles circumscribing sets of constant width and sets which are rotors
for an equilateral triangle.

Theorem 5. Let X be a set of constant width A. Then every triangle
circumscribing X has minimal width at most A\/3 with equality only
possible if X is a Reuleaux triangle.

Proof. We shall show first that the triangle T of maximal minimal
width circumscribing X is necessarily equilateral.

If this is not so then we may assume there exist points x, y, z which
form the vertices of a triangle with ){x} >2m, where L(X)=L(x,y,2)=
xy + xz. (Otherwise K(X) = L(X).) Then it is clear, since X has diameter A
that xy + xz is smaller than or equal to the sum of the two equal sides of an
isosceles triangle with base A and base angles of ;mr. Hence

2A
xy+xzs< ;/—3 @)

But by (5) page 125, the radius of the incircle I of X is at least (1 —1/4/3)\.
Then if o is the centre of this circle we may choose points x’, y’, z' on I
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satisfying X'0y’' = 02’ = 70z’ = 2m. Then by definition
L(X)=L(x',y’, 2")

=3(1—-1/V/3)A

>2M\/3

=xy+xz by (7)

=L(X)
which is contradictory. We suppose then that the points x, y, z of 3X lie
one on each side of the equilateral triangle T of height L(X). Suppose x”,
y”, z" are the midpoints of the sides containing x, y, z respectively. Then
max (xy, xz, yz) is minimal, if x, y, z are allowed to vary on their respective
sides, if and only if x = x”, y =y” and z = z". Thus by calculation,

L(X) _ L(X) - L(X)
A H(X) max{xy,xz, yz)

<4/3, 6]

with equality if and only if x =x", y=1y", z=2" and
H(X) - x!lyll = x"ZII — yIIZH — A.

Finally if equality holds in (8), let Y be the Reuleaux triangle of constant
width A bounded by the small arcs x"y”, x"z", y"z" of radius A. Then by for
example Lemma 1, page 82 in (8), it follows that Y C X and hence that
X =Y since X and Y both have constant width A. The theorem is proved.

We now define the thin circular rotor for an equilateral triangle of
height A to be the set bounded by the closed convex curve consisting of
two circular arcs of radii A, and for which the distance between the two
angular points is equal to A.

Theorem 6. Let X be a set with minimal width A which is a rotor for an
equilateral triangle S. Then every triangle circumscribing X has minimal
width at most 2Q2++/3)"?A with equality only possible if X is the thin
circular rotor.

Proof. We prove first that if S has height u, then
p<Q2+v3)A ®

with equality if and only if x is the thin circular rotor. Let x, x’ be points for
which A =xx'. Let Y be the set bounded by the closed convex curve
consisting of two circular arcs of radius u which contain x and x’ respectively
and whose centres lie on the line containing xx'. We shall show next that Y
contains X. Suppose this is not so and that x” € X, x" € Y and, without loss in
generality, that x” lies on the same side of the bisector of xx’ as x. Then since X
is a rotor for an equilateral triangle of height u, there exist points y, z€ X
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such that
K(x,y,2)=K(X)=pn

and such that the line ux contains xx’ where u is the vertex of the
equilateral triangle uyz on the side of yz opposite to x. But then

K(X)=p=K(x,y,z)= ux
< ux"
=K(x", y,2)
s K(X)

which is contradictory. Thus Y contains X. Now if w > (2+/3)A then
calculation gives

P(Y)<2mul3
which implies

P (X) < 2muf3.

But this implies X is not a rotor for S, against hypothesis. Hence u <
(2++/3)A. Further if equality holds then P(Y)=2wu/3. Hence P(X)=
P(Y) and X =Y. Thus statement (9) follows. We show finally that

LX)<2u/Q+/3)'" (10)

with equality if and only if X is the thin circular rotor. Theorem 6 then
follows from statements (9) and (10).

We first note that no three points x, y, z in the frontier of X can lie on a
circle of radius greater than u. For suppose this is the case and y, x, z lie in
order on an arc, which we may suppose subtends an angle less than i at
the centre of the circle.

Suppose that p = K(X) = K(x, y’, z') say, and let u’ be the vertex of the
equilateral triangle u’y’z’ on the side of y’'z’ opposite to x. Then it is easy to
see that

max (u'y, u'z) > u'x = K(X).

In other words either K(y, y’, z') > K(X) or K(z, y', ") > K(X). But this is
impossible and so the statement is proved. The statement implies that if Y
is a circle of radius p containing any two points in 3X, then the small arc of
Y also lies in X. Now suppose L(X)=L(x,y,z) for x, y, z€ X. Then by
Theorem 2, it follows that

L(X) L(X) - L(xyz) - 2
n  K(X) Kxyz) Q+v3)"

with equality if and only if xyz is an isosceles triangle of diameter p and
with its two equal sides containing an angle of iw. Finally suppose that
equality holds and yz =A. By the statement proved in the previous
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paragraph the set Z bounded by the small arc yz of radii u is contained in
X and is precisely the thin circular rotor of S. Hence X = Z and the
theorem is proved.

Note

In this paper we have consistently used the fact that rotors for an
equilateral triangle all have the same perimeter. However this is not so for
the completely stretched sets. It would therefore be interesting to have a
proof of the following.

Conjecture. Let X be a completely stretched set with stretch A. Then
the perimeter of X is greater than 2A with equality if and only if X is a
segment. (If X is a segment the perimeter of X is defined to be twice its
length.)
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