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SINGULAR RATIONALLY CONNECTED THREEFOLDS
WITH NON-ZERO PLURI-FORMS

WENHAO OU

Abstract. This paper is concerned with singular projective rationally

connected threefolds X which carry non-zero pluri-forms, that is the reflexive

hull of (Ω1
X)
⊗m

has a non-zero global section for some positive integer m. If X

has Q-factorial terminal singularities, then we show that there is a fibration p

from X to P1. Moreover, we give a formula for the numbers of m-pluri-forms

as a function of the ramification of the fibration p.

§1. Introduction

Recall that a complex projective variety X is said to be rationally

connected if for any two general points in X, there exists a rational

curve passing through them (see [Kol96, Definition IV.3.2 and Proposition

IV.3.6]). It is known that if X is a smooth rationally connected variety, then

X does not carry any non-zero pluri-form, that is H0(X, (Ω1
X)
⊗m

) = {0} for

m> 0 (see [Kol96, Corollary IV.3.8]). It is a conjecture that the converse is

also true (see [Kol96, Conjecture IV.3.8.1]). For singular varieties, there are

also some analog results. The following theorems can be found in [GKP14]

and [GKKP11].

Theorem 1.1. [GKP14, Theorem 3.3] If X is a rationally connected

variety with factorial canonical singularities, then H0(X, (Ω1
X)[⊗m]) = {0}

for m> 0, where (Ω1
X)[⊗m] is the reflexive hull of (Ω1

X)⊗m.

The reader is referred to Definition 2.6 for the notion of a klt pair.

Theorem 1.2. [GKKP11, Theorem 5.1] If (X, D) is a klt pair such that

X is rationally connected, then H0(X, Ω
[∧m]
X ) = {0} for m> 0, where Ω

[∧m]
X

is the reflexive hull of Ωm
X .
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4 W. OU

Note that Ωm
X is a direct summand of (Ω1

X)⊗m, hence H0(X, (Ω1
X)[⊗m])

= {0} implies H0(X, Ω
[∧m]
X ) = {0}. However, there are examples of klt

rationally connected varieties whose canonical divisors are Q-effective

(see [Tot12, Example 10] or [Kol08, Example 43]). Moreover, Theorem 1.1 is

not true if the variety is not factorial. A counterexample is given in [GKP14,

Example 3.7]. In [Ou14], we classify all rationally connected surfaces X with

canonical singularities such thatH0(X, (Ω1
X)[⊗m]) 6= {0} for somem> 0. We

obtain the following theorem.

Theorem 1.3. [Ou14, Theorem 1.4] Let X be a rationally connected

surface with canonical singularities. Then H0(X, (Ω1
X)[⊗m]) 6= {0} for some

m> 0 if and only if there is a fibration p :X → P1 whose general fibers

are isomorphic to P1 such that
∑

z∈P1 ((m(p, z)− 1)/m(p, z)) > 2, where

m(p, z) is the smallest positive coefficient in the divisor p∗z.

In this paper, we study the case of threefolds. We are interested in the

structure of mildly singular rationally connected threefolds X which carry

non-zero pluri-forms, and we try to find out the source of these forms. If

f : X̄ →X is the Q-factorial model, then f is an isomorphism in codimension

1 and any pluri-forms of X lift to X̄. Hence, we can reduce to the case

where the singularities of X are Q-factorial. If the threefold has terminal

singularities, we prove the following result which is similar to Theorem 1.3.

Theorem 1.4. Let X be a projective rationally connected three-

fold with Q-factorial terminal singularities. Then H0(X, (Ω1
X)[⊗m]) 6=

{0} for some m> 0 if and only if there is a fibration p :X → P1

whose general fibers are smooth rationally connected surfaces such that∑
z∈P1 ((m(p, z)− 1)/m(p, z)) > 2, where m(p, z) is the smallest positive

coefficient in the divisor p∗z. Moreover, if this is the case, then for all m> 0,

we have

H0(X, (Ω1
X)[⊗m])∼=H0

(
P1, OP1

(
−2m+

∑
z∈P1

[(m(p, z)− 1)m

m(p, z)

]))
.

In particular, the number of m-pluri-forms depends only on the ramification

of p.

Construction 1.5. Thanks to Theorem 1.4, every rationally con-

nected threefold X with Q-factorial terminal singularities such that

H0(X, (Ω1
X)[⊗m]) 6= {0} for some m> 0 can be constructed as follows. There

is a fibration q : T →B from a normal threefold T to a smooth curve B which
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SINGULAR RATIONALLY CONNECTED THREEFOLDS WITH NON-ZERO PLURI-FORMS 5

has positive genus such that m(q, b) = 1 for all b ∈B. There is a finite group

G which acts on T andB such that q isG-equivariant. By taking the quotient

by G, we have B/G∼= P1 and T/G∼=X. For more details, see Section 3.

If the threefold X has canonical singularities, we also obtain some

necessary conditions for the existence of non-zero pluri-forms. As before, we

reduce to the case where X is Q-factorial. We have the following theorem.

Theorem 1.6. Let X be a projective rationally connected threefold with

Q-factorial canonical singularities which carries non-zero pluri-forms. Let

X 99KX ′ be the result of a minimal model program. Then there is always an

equidimensional fibration q :X ′→ Z with dim Z > 0 such that KZ + ∆ is Q-

effective. The divisor ∆ is defined by ∆ =
∑

i ((m(q, Di)− 1)/m(q, Di))Di,

where the Di are all the prime divisors in Z such that q∗Di is not reduced

and m(q, Di) is the smallest positive coefficient in q∗Di. More precisely, we

have the following two possibilities.

(1) The variety Z is a surface and q :X ′→ Z is a Mori fibration such that

there is a positive integer l such that l(KZ + ∆) is an effective divisor.

Moreover, the sections of OZ(l(KZ + ∆)) lift to sections of Ω
[⊗2l]
X′ .

(2) The variety Z is isomorphic to P1 and for any m> 0, we have

H0(X ′, (Ω1
X′)

[⊗m])∼=H0

(
P1, OP1

(
−2m+

∑
z∈P1

[(m(q, z)− 1)m

m(q, z)

]))
.

The difficulty in the case of canonical singularities is that the rational

map X 99K Z is not always regular. Moreover, even if it is, it may not be

equidimensional. If klt singularities are permitted for our threefolds, then

there exist other structures. We give an example of a rationally connected

threefold of general type in Example 2.15.

Outline of the paper. The main objective of this paper is to prove

Theorem 1.4. We do this in several steps. First, we consider a projective

rationally connected threefold X with Q-factorial canonical singularities

which carries non-zero pluri-forms. Since it is rationally connected and

has canonical singularities, its canonical divisor KX is not pseudo-effective.

Hence, if f :X 99KX∗ is the result of a minimal model program for X, then

KX∗ is not pseudo-effective either. Thus there is a Mori fibration p :X∗→ Z

where Z is a normal variety of dimension less than 3. However, since

X carries non-zero pluri-forms, we have h0(X∗, (Ω1
X∗)

[⊗m]) 6= 0 for some

m> 0. This implies that dim Z > 0 by [Ou14, Theorem 3.1]. Hence, either
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6 W. OU

dim Z = 1 or dim Z = 2. We treat these two cases separately in Sections 3

and 4. If dim Z = 1, then Z ∼= P1, and we show that

KP1 +
∑
z∈P1

m(p, z)− 1

m(p, z)
z

is Q-effective, which is the same condition as in Theorem 1.4. If dim Z = 2,

then we define the Q-divisor ∆ on Z as in Theorem 1.6. We prove that

either KZ + ∆ is Q-effective or there is a fibration X∗→ P1 such that we can

reduce to the situation of Section 3. In the last section, we assume that the

variety X has terminal singularities. In this case, there is always a fibration

from X∗ to P1 and we are always in the situation of Section 3. This fibration

induces a dominant rational map from X to P1. In the end, we prove that

this rational map is regular and complete the proof of Theorem 1.4.

§2. Preliminaries

Throughout this paper, we work over C, the field of complex numbers.

Unless otherwise specified, every variety is an integral C-scheme of finite

type. A curve is a variety of dimension 1, a surface is a variety of dimension 2

and a threefold is a variety of dimension 3. A projective variety is called

rationally chain connected if any two general points can be connected by a

chain of rational curves. By [HM07, Corollary 1.8], a projective variety with

klt singularities is rationally chain connected if and only if it is rationally

connected. For a normal variety X, let KX be a canonical divisor of X.

We denote the sheaf of Kähler differentials by Ω1
X and let Ω

[1]
X be its

reflexive hull. Denote
∧p Ω1

X by Ωp
X for p ∈ N. Let Ω

[∧p]
X (resp. (Ω1

X)[⊗p])

be the reflexive hull of Ωp
X (resp. (Ω1

X)⊗p). We say that a normal variety X

carries non-zero pluri-forms if H0(X, (Ω1
X)[⊗m]) 6= {0} for some m> 0. Let

Pic(X)Q = Pic(X)⊗Q, where Pic(X) is the Picard group of X. A Q-divisor

∆ on X is called Q-effective if there is a positive integer k such that kD is

a divisor and OX(kD) has a non-zero global section.

A fibration p :X → Z between normal quasi-projective varieties is a

dominant proper morphism such that every fiber is connected, that is

p∗OX
∼= OZ . If X → Z is just a proper morphism, then we have the Stein

factorization X → V → Z such that X → V is a fibration and V → Z is finite

(see [Har77, Corollary III. 11.5]). A Fano fibration is a fibration X → Z such

that −KX is relatively ample. A Mori fibration is a Fano fibration such that

the relative Picard number is 1.

https://doi.org/10.1017/nmj.2016.1 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.1


SINGULAR RATIONALLY CONNECTED THREEFOLDS WITH NON-ZERO PLURI-FORMS 7

Let p :X → Z be a morphism and D be a prime Q-Cartier Weil divisor in

Z. Let k be a positive integer such that kD is Cartier. Denote the Q-divisor

(1/k)p∗(kD) by p∗D. We define the multiplicity m(p, D) by

m(p, D) = min {coefficient of E in p∗D | E is an irreducible component of

p∗D which dominates D} .

By generic smoothness, there are only finitely many divisors D such that

m(p, D)> 1. Moreover, if p :X → Z is a morphism from a normal variety

to a smooth curve, then we define the ramification divisor R as
∑

z∈Z p
∗z −

(p∗z)red , where (p∗z)red is the sum of the irreducible components of p∗z.

2.1 Reflexive sheaves on normal varieties

In this subsection, we gather some properties of reflexive sheaves. For a

coherent sheaf F on a normal variety X, we denote by F ∗∗ the double dual

of F . The sheaf F is reflexive if and only if F ∼= F ∗∗. In particular, F ∗∗

is reflexive and we also call it the reflexive hull of F . Denote (F⊗m)∗∗ by

F [⊗m] and (
∧m F )∗∗ by F [∧m] for any m> 0. For two coherent sheaves F

and G , let F [⊗]G = (F ⊗ G )∗∗. The following proposition is an important

criterion for reflexive sheaves on normal varieties.

Proposition 2.1. [Har80, Proposition 1.6] Let F be a coherent sheaf

on a normal variety X. Then F is reflexive if and only if F is torsion-free

and for each open U ⊆X and each closed subset Y ⊆ U of codimension at

least 2, F |U ∼= j∗(F |U\Y ), where j : U \ Y → U is the inclusion map.

As a corollary of this proposition, we prove the following lemma.

Lemma 2.2. If ϕ :X 99KX ′ is a birational map between normal pro-

jective varieties such that ϕ−1 does not contract any divisor, then we have

a natural injection H0(X, (Ω1
X)[⊗m]) ↪→H0(X ′, (Ω1

X′)
[⊗m]) for any integer

m> 0.

Proof. Since the birational map ϕ−1 :X ′ 99KX does not contract any

divisor, it induces an isomorphism from an open subset W ′ of X ′ such that

codimX ′\W > 2 onto an open subset W of X. By Proposition 2.1, we have

H0(X ′, (Ω1
X′)

[⊗m])∼=H0(W ′, (Ω1
W ′)

[⊗m]) for any m> 0. Moreover, since W

is an open subset of X, we obtain H0(X, (Ω1
X)[⊗m]) ↪→H0(W, (Ω1

W )[⊗m])∼=
H0(W ′, (Ω1

W ′)
[⊗m])∼=H0(X ′, (Ω1

X′)
[⊗m]) for all m> 0.

The proof of the following lemma is left to the reader.
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8 W. OU

Lemma 2.3. Let 0→A →B→ C → 0 be an exact sequence of locally

free sheaves on a variety X. Then, for any m> 0, we have a filtration

of locally free sheaves B⊗m = R0 ⊇ · · · ⊇Rm+1 = 0 such that Ri/Ri+1 is

isomorphic to the direct sum of copies of A ⊗i ⊗ C⊗m−i for all 0 6 i6m.

From this lemma, we can deduce the following lemma which is very

important in the paper.

Lemma 2.4. Let A →B→ C be a complex of coherent sheaves on a

normal variety X. Assume that there is an open subset W of X with

codimX\W > 2 such that we have an exact sequence of locally free sheaves

0→A |W →B|W → C |W → 0 on W . If H0(X,A ⊗r[⊗]C⊗t) = {0} for all

t > 0 and r > 0, then H0(X,B[⊗m])∼=H0(X,A [⊗m]) for all m> 0.

Proof. On W , we have H0(W,A |⊗rW ⊗ C |⊗tW ) = {0} for all t > 0 and r > 0

by Proposition 2.1. If we fix m> 0, by Lemma 2.3, we have a filtration

B|⊗mW = R0 ⊇ · · · ⊇Rm+1 = 0 such that Ri/Ri+1 is isomorphic to the direct

sum of copies of A |⊗iW ⊗ C |⊗m−iW for all 0 6 i6m. Since H0(X,A |⊗rW ⊗
C |⊗tW ) = {0} for all t > 0 and r > 0, we have H0(W,Ri)∼=H0(W,Ri+1)

for 0 6 i6m− 1. Thus H0(W,B|⊗mW /A |⊗mW ) = {0} and H0(W, B|⊗mW )∼=
H0(W, A|⊗mW ). By Proposition 2.1, we have H0(X,B[⊗m])∼=H0(X,A [⊗m]).

One of the applications of the lemma above is the following, which gives

a relation between pluri-forms and fibrations.

Lemma 2.5. Let p :X → Z be a morphism between normal varieties.

Assume that general fibers of p do not carry any non-zero pluri-form. Then

H0(X, (Ω1
X)[⊗m])∼=H0(X, ((p∗Ω1

Z)sat)[⊗m]) for m> 0, where (p∗Ω1
Z)sat is

the saturation of the image of p∗Ω1
Z in Ω

[1]
X .

Proof. We have an exact sequence of coherent sheaves 0→F → Ω
[1]
X →

G → 0 on X, where F = (p∗Ω1
Z)sat and G is a torsion-free sheaf. In

particular, G is locally free in codimension 1. Let V be the smooth locus

of Z and let W = p−1(V ). If U is the largest open subset of W on which

F , Ω1
X and G are locally free, then codimX\U > 2 and we have an exact

sequence 0→F |U → Ω1
U → G |U → 0 of locally free sheaves on U .

If F is a general fiber of p|U , then F |F is the direct sum of OF and G |F is

isomorphic to Ω1
F . Since general fibers of p do not carry any non-zero pluri-

form, neither does F by Proposition 2.1. Hence, we have H0(U,F |⊗rU ⊗
G |⊗tU ) = {0} for all t > 0 and r > 0. By Lemma 2.4, we have an isomorphism
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from H0(U,F |⊗mU ) to H0(U, (Ω1
U )⊗m) for all m> 0. By Proposition 2.1, we

have H0(X, (Ω1
X)[⊗m])∼=H0(X,F [⊗m]) for all m> 0.

If X is a normal variety and E is a Weil divisor on X, then E is a

Cartier divisor on the smooth locus U of X and it induces an invertible

sheaf OU (E) on U . Let OX(E) be the push-forward of OU (E) on X. Then,

by Proposition 2.1, OX(E) is a reflexive sheaf on X since X is smooth in

codimension 1. Conversely, if F is a reflexive sheaf of rank 1 on X, it is

an invertible sheaf in codimension 1. There is a Weil divisor D on X such

that F ∼= OX(D). If X is Q-factorial, then for any 1-cycle α on X, we can

define the intersection number F · α=D · α= (1/k)(kD) · α, where k is a

positive integer such that kD is Cartier. This expression is independent of

the choice of D (see [Rei80, Appendix to Section 1] for more details).

2.2 Minimal model program

We recall some basic definitions and properties of the minimal model

program (MMP). A pair (X,∆) consists of a normal quasi-projective variety

X and a boundary ∆, that is a Q-Weil divisor ∆ = Σk
j=1djDj on X such

that the Dj are pairwise distinct prime divisors and all dj are contained in

[0, 1]. Recall the definition of singularities of pairs.

Definition 2.6. [KM98, Definition 2.34] Let (X,∆) be a pair with

∆ = Σk
j=1djDj . Let r : X̃ →X be a log resolution of singularities of (X,∆).

Assume that KX + ∆ is Q-Cartier, then we can write

K
X̃

+ r−1
∗ ∆ = r∗(KX + ∆) + ΣaiEi,

where the Ei are r-exceptional divisors. We call ai the discrepancy of Ei
with respect to (X,∆). Then (X,∆) is terminal (resp. canonical, klt) if

ai > 0 (resp. ai > 0, ai >−1 and dj < 1 for all j) for all i.

Remark 2.7. IfX is terminal, then it is smooth in codimension 2. IfX is

canonical, then KX is Cartier in codimension 2 (see [KM98, Corollary 5.18]).

For a klt pair (X,∆) such that X is Q-factorial, we can run a (KX + ∆)-

MMP and obtain a sequence of rational maps X =X0 99KX1 99K · · · such

that (Xi,∆i) is a klt pair and Xi is Q-factorial, where ∆i is the strict

transform of ∆. Every elementary step in an MMP is either a divisorial

contraction which is a morphism contracting an irreducible divisor or a flip

which is an isomorphism in codimension 1. More generally, if h :X → T is

a morphism, we can run an h-relative MMP such that for all i, there is
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10 W. OU

a morphism hi :Xi→ T with hi ◦ ϕi = h, where ϕi is the birational map

X 99KXi. For more details on the MMP, we refer to [KM98, Section 3].

One of the most important problems in the MMP is that if the sequence

of rational maps above terminates. If it does, we get the result of this h-

relative MMP X 99KX ′. Let ∆′ be the direct image of ∆. Then either

KX′ + ∆′ is relatively nef over T (that is, (KX′ + ∆′) · C > 0 for any curve

C in X ′ contracted by X ′→ T ) or we have a (KX′ + ∆′)-Mori fibration

g :X ′→ Z over T such that −(KX′ + ∆′) is g-ample. Thanks to [Kaw92,

Theorem 1], we know that any MMP for a klt pair (X,∆) such that dimX 6
3 terminates.

Lemma 2.8. Let ϕ :X 99KX ′ be an extremal divisorial contraction or

a flip. Assume that X has Q-factorial canonical singularities. If Y is an

irreducible closed subvariety in X ′ such that it is the center of a divisor

E over X ′ which has discrepancy 0, then ϕ−1 is a morphism around the

generic point of Y .

Proof. Assume the opposite. Then the discrepancy of E in X is strictly

smaller than the one in X ′ (see [KM98, Lemma 3.38]). This implies that X

does not have canonical singularities along the center of E in X, which is a

contradiction.

Proposition 2.9. Let X be a projective threefold which has canonical

singularities. Let X ′ be the result of an MMP for X and denote the birational

map X 99KX ′ by f . Let Γ be the normalization of the graph of f . Then there

is a natural isomorphism H0(X, (Ω1
X)[⊗m])∼=H0(Γ, (Ω1

Γ)[⊗m]) for all m> 0.

Proof. Since there is a natural birational projection p1 : Γ→X, we have

an injection from H0(Γ, (Ω1
Γ)[⊗m]) to H0(X, (Ω1

X)[⊗m]) by Lemma 2.2. Let

p2 : Γ→X ′ be the natural projection. Let σX ∈H0(X, (Ω1
X)[⊗m]) be a non-

zero element. Since X, Γ and X ′ are birational, σX induces a rational section

σΓ of (Ω1
Γ)[⊗m] and an element σX′ of H0(X ′, (Ω1

X′)
[⊗m]) (see Lemma 2.2).

In order to prove that σΓ is a regular section it is sufficient to prove that

σΓ does not have a pole along any p1-exceptional divisor. Let E be an

exceptional divisor for p1. Let C ⊆ E be a curve that is exceptional for p1,

then C is not contracted by p2 since the graph of f is included in X ×X ′
and the normalization map is finite. Hence, Y = p2(E)⊆X ′ is a curve and

f−1 is not regular around the generic point of Y . By Lemma 2.8, X ′ has

terminal singularities around the generic point of Y . Hence, it is smooth

around the generic point of Y since codimX′ Y = 2 (see [KM98, Corollary
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5.18]). Moreover, since T , X and X ′ are birational, the form σΓ is just the

pullback of σX′ by p2. Hence, σΓ does not have a pole along E.

2.3 Examples

We give some examples of rationally connected varieties which carry non-

zero pluri-forms. First, we give an example of such varieties which have

terminal singularities. For the construction of this example, we use the

method of Theorem 3.2.

Example 2.10. Let C1 = {[a : b : c] ∈ P2 | a3 + (a+ c)b2 + c3 = 0} be a

smooth elliptic curve in P2. Let X1 = {([a : b : c], [x : y : z : t]) ∈ P2 × P3 |
a3 + (a+ c)b2 + c3 = 0, (a2 + 2b2 + c2)x2 + (a2 + 3b2 + c2)y2 + (a2 + 4b2 +

3c2)z2 + (a2 + 5b2 + 6c2)t2 = 0}. Then, X1 is a smooth threefold and

we have an induced fibration p1 :X1→ C1 such that all fibers of p1

are smooth quadric surfaces which are Fano surfaces. Moreover, X1 has

Picard number 2 by the Lefschetz theorem (see [Laz04, Example 3.1.23]).

Hence, p1 is a Mori fibration. Moreover, since p1 is smooth, we have

H0(X1, (Ω
1
X1

)⊗2)∼=H0(C1, (Ω
1
C1

)⊗2) by Lemma 2.5. Let G be the group

Z/2Z and let g ∈G be the generator. We have an action of G on P2 × P3

defined by g · ([a : b : c], [x : y : z : t]) = ([a :−b : c], [−x :−y : z : t]). This

action induces an action of G on X1 and an action of G on C1 such that

p1 in G-equivariant. We have C1/G= P1. The action of G on X1 is free in

codimension 2 and it has exactly 16 fixed points. Since G= Z/2Z, the action

of G on X1 satisfies the condition of the first theorem in [Rei87, Section 5].

Thus, X =X1/G is a threefold which has Q-factorial terminal singularities.

We have a Fano fibration p :X → P1 induced by p1. Moreover, the Picard

number of X is not larger than the Picard number of X1. Hence, p is a

Mori fibration. Since general fibers of p are smooth quadric surfaces which

are rationally connected, X is rationally connected by [GHS03, Theorem

1.1]. In addition, H0(X, (Ω1
X)[⊗2])∼=H0(X1, (Ω

1
X1

)⊗2)G since X1→X is

étale in codimension 1. Moreover, H0(C1, (Ω
1
C1

)⊗2)G ∼=H0(P1, OP1)∼= C
(see [Ou14, Lemma 7.3]). Hence, we have H0(X, (Ω1

X)[⊗2])∼= C.

Remark 2.11. If X is a normal rationally connected threefold and if

X∗ is the result of an MMP for X, then H0(X, (Ω1
X)[⊗m]) may be strictly

included in H0(X∗, (Ω1
X∗)

[⊗m]) for some m> 0. For example, let X∗→ P1

be the variety described in the example above. Then X∗ carries non-zero

pluri-forms. Let X →X∗ be a resolution of singularities of X∗. Then X∗ is

the result of an MMP for X since X∗ has terminal singularities. However,
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since X is rationally connected and smooth, we have H0(X, (Ω1
X)[⊗m]) = {0}

for any m> 0 (see [Kol96, Corollary IV.3.8]).

We give two examples of rationally connected threefolds with canonical

singularities which carry non-zero pluri-forms. In both cases, there is always

a Mori fibration from the threefold X to a surface Z. In Example 2.12,

the base Z is a surface with klt singularities such that KZ ∼Q 0. In

Example 2.14, the base Z is isomorphic to P2, which does not carry any

non-zero pluri-forms.

Example 2.12. Let C be the curve in P2 defined by C = {[x1 : x2 :

x3] ∈ P2 | x3
1 + x3

2 + x3
3 = 0}. There exists an action of group G= Z/3Z on

C defined by g · [x1 : x2 : x3] = [ξx1 : x2 : x3], where g is a generator of G

and ξ is a primitive third root of unity. Let Z1 = C × C. Then there is an

induced action of G on Z1 which acts diagonally. We have that Z = Z1/G is

a klt rationally connected surface such that KZ is Q-linearly equivalent to

the zero divisor (see [Tot12, Example 10]). Let X1 = P1 × Z1 and define an

action of G on P1 by g · [y1 : y2]→ [ξy1 : y2], where [y1 : y2] are homogeneous

coordinates of P1. Then there is an induced action of G on the smooth

threefold X1 which acts diagonally. Since G= Z/3Z and this action is free

in codimension 2, this action satisfies the condition of [Rei80, Theorem 3.1].

Hence, X =X1/G has canonical singularities. We also have a Mori fibration

X → Z whose general fibers are isomorphic to P1. Since Z is rationally

connected, so is X by [GHS03, Theorem 1.1]. Moreover, since KZ is Q-

effective, we have H0(X, (Ω1
X)[⊗m]) 6= {0} for some m> 0 (see Section 4.2).

In the example above, the non-zero pluri-forms come from KZ , the

canonical divisor of the base surface. In the following example, −KZ is

ample. However, X still carries non-zero pluri-forms. These forms come

from the multiple fibers of the fibration X → Z. Before giving the example,

we first introduce a method to construct non-reduced fibers.

Construction 2.13. We want to construct a fibration p from a normal

threefold T with canonical singularities to a smooth surface S such that

p∗C = 2(p∗C)red , where C is a smooth curve in S.

Let T0 = P1 × S, where S is a smooth projective surface. Let p1, p2 be

the natural projections T0→ P1 and T0→ S. Let C ⊆ S be a smooth curve,

and let C0 = {z} × C be a section of p2 over C in T0, where z is a point of

P1. Let E0 = p∗2C, which is a smooth divisor in T0. We perform a sequence

of birational transformations of T0.
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First, we blow up C0, and we obtain a morphism T1→ T0 with exceptional

divisor E1. Denote still by E0 the strict transform of E0 in T1. If F is a fiber

of T1→ S over a point of C, then F = F1 ∪ F0, where Fi ⊆ Ei are rational

curves and KT1 · Fi =−1, Ei · Fi =−1.

Now we blow up C1, the intersection of E0 and E1. We obtain a morphism

T2→ T1 with exceptional divisor E2. Denote still by E0, E1 the strict

transforms of E0 and E1 in T2. If F is any set-theoretic fiber of T2→ S

over a point of C, then F = F0 ∪ F1 ∪ F2, where Fi ⊆ Ei are rational curves

and KT2 · Fi = 0, Ei · Fi =−2 for i= 0, 1, KT2 · F2 =−1, E2 · F2 =−1. Let

q be the fibration T2→ S.

We blow down E1 and E0 in T2. Let H be an ample Q-divisor such that

(H + E0) · F0 = 0. Since E0 · F1 = 0, there is a positive rational number b

such that (H + E0 + bE1) · F1 = 0. Moreover, (H + E0 + bE1) · F0 = 0 since

E1 · F0 = 0. Let A be a sufficiently ample divisor on S. Then the Q-divisor

D = q∗A+H + E0 + bE1 is nef and big. Moreover, any curve B which has

intersection number 0 with D must be contracted by T2→ S since A is

sufficiently ample. The curve B is also contained in E0 ∪ E1 since H is

ample. Since KT2 · F0 =KT2 · F1 = 0, there exists a large integer k such that

kD −KT2 is nef and big. Then, by the basepoint-free theorem (see [KM98,

Theorem 3.3]), there is a large enough integer a such that aD is Cartier and

|aD| is basepoint-free. The linear system |aD| induces a contraction which

contracts E0 and E1.

By contracting E0 and E1, we obtain a threefold T . Moreover, there is an

induced fibration p : T → S such that p∗C = 2(p∗C)red . Note that T2→ T

is a resolution of singularities and KT2 = f∗KT . Hence, V has canonical

singularities.

Now we construct the example.

Example 2.14. Let C = {[x : y : z] ∈ P2 | x6 + y6 + z6 = 0} be a smooth

curve in P2. Then 2KP2 + C is linearly equivalent to the zero divisor. Let

X0 = P1 × P2. By the method of Construction 2.13, we can construct a

fiber space p :X → P2 such that p∗C = 2(p∗C)red . Then X has canonical

singularities. Since general fibers of p are isomorphic to P1, X is rationally

connected by [GHS03, Theorem 1.1]. Moreover, since 2(KP2 + 1
2D) is an

effective divisor and p is equidimensional, we have H0(X, (Ω1
X)[⊗4]) 6= {0}

(see Section 4.2).

Note that in the three examples above, the variety X we constructed is

a rationally connected variety with canonical singularities. The divisor KX
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is not pseudo-effective and we always have a Mori fibration from X to a

variety Z. The non-zero pluri-forms of X come from the base Z. However,

in the following example, the variety we construct is a rationally connected

threefold with klt singularities whose canonical divisor is ample. Some non-

zero pluri-forms come from its canonical divisor.

Example 2.15. Let X1 be the Fermat hypersurface in P4 defined

x6
0 + x6

1 + · · ·+ x6
4 = 0. Then X1 is a smooth threefold such that KX1 is

ample. Moreover, the Picard number of X1 is 1 by the Lefschetz theorem

(see [Laz04, Example 3.1.23]). Let G be the group Z/6Z with generator

g. Define an action of G on P4 by g · [x0 : · · · : x4] = [ωx0 : ωx1 : x2 : x3 : x4],

where ω is a primitive sixth root of unity. This action induces an action

of G on X1 which is free in codimension 1. Denote the quotient X1/G by

X and the natural morphism X1→X by π. Then X has Q-factorial klt

singularities but does not have canonical singularities (see [Rei80, Theorem

3.1]). Now we prove that X is rationally connected. First, we prove that

X is uniruled. If w is a general point in X, then there is a point w1 ∈X1

such that π(w1) = w and the first two coordinates of w1 are both non-zero.

There are two hyperplanes in P4 passing through w1, H1 = {a2x2 + a3x3 +

a4x4 = 0} and H2 = {b2x2 + b3x3 + b4x4 = 0}, such that the intersection

C1 =H1 ∩H2 ∩X1 is a smooth curve of genus 10. Moreover, there are

exactly 6 points on C1, given by X1 ∩ {x2 = x3 = x4 = 0}, which are fixed

under the action of G. Hence, π|C1 : C1→ π(C1) = C is ramified exactly

at those 6 points with degree 6. By the ramification formula, g(C) = 1 +

2−1 × 6−1 × (2× 10− 2− 6× 5) = 0, where g(C) is the genus of C. Hence,

C is a smooth rational curve. This implies that X is uniruled. Since X has

Picard number 1, from the lemma below, we conclude that X is rationally

connected.

Lemma 2.16. Let X be a normal projective variety which is Q-factorial.

Assume that the Picard number of X is 1. Then X is rationally connected

if and only if it is uniruled.

Proof. Assume that X is uniruled and let π :X 99K Z be the MRC

fibration for X (see, for example, [Kol96, Theorem V.5.2]). We argue by

contradiction. Assume that dimX > dim Z > 0. Then there is a Zariski open

subset Z0 of Z such that π is regular and proper over Z0. Let C be a curve

contained in some fiber of π|Z0 . Let D be a non-zero effective Cartier divisor

on Z0. Let E0 = π∗D. Then E0 is a non-zero effective divisor on X0 = π−1Z0.

Let E be the closure of E0 in X, then E is a non-zero effective Q-Cartier
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Weil divisor on X. However, the intersection number of E and C is zero,

which contradicts the fact that X has Picard number 1.

§3. Fibrations over curves

3.1 Construction of rationally connected varieties carrying

non-zero pluri-forms

In this subsection, we give a method to construct rationally connected

varieties which carry non-zero pluri-forms (Theorem 3.2). Together with

Theorem 1.4, we see that every rationally connected threefold with Q-

factorial terminal singularities which carries non-zero pluri-forms can be

constructed by this method.

By Lemma 2.5, if general fibers of an equidimensional fibration

p :X → Z do not carry any non-zero pluri-forms, then for all m> 0, we

have H0(X, (Ω1
X)[⊗m])∼=H0(X, ((p∗Ω1

Z)sat)[⊗m]). Moreover,

H0(X, ((p∗Ω1
Z)sat)[⊗m])∼=H0(Z, p∗((p

∗Ω1
Z)sat)[⊗m]).

Hence, we would like to know what p∗((p
∗Ω1

Z)sat)[⊗m] is. In the case when

Z is a smooth curve, this is not difficult to compute. Note that if R is the

ramification divisor of p, then ((p∗Ω1
Z)sat)[⊗m] ∼= (p∗Ω1

Z)⊗m ⊗ OX(mR) for

m> 0. By the projection formula, we have

p∗((p
∗Ω1

Z)sat)[⊗m] ∼= (Ω1
Z)⊗m ⊗ p∗OX(mR).

Hence, it is sufficient to compute p∗OX(mR).

Lemma 3.1. Let p :X → Z be a fibration from a normal variety to

a smooth curve. Let z be a point in Z. Let D = p∗z − (p∗z)red . Then

p∗OX(mD)∼= OZ([(m(m(p, z)− 1))/m(p, z)]z) for any m> 0.

Proof. The problem is local and we may assume that Z is affine. We

know that p∗OW (mD) is an invertible sheaf. If θ is a section of p∗OW (mD),

then it is a rational function on Z whose pullback on W is a rational

function which can only have a pole along p∗z. Hence, θ can only have

a pole at z. Let d be the degree of the pole, then the pullback of θ in V

is a section of OW (mD) if and only if m(p, z)d 6m(m(p, z)− 1), that is,

d 6 [(m(m(p, z)− 1))/m(p, z)].

This relation between ramification divisor and pluri-forms gives us an

idea of how to construct rationally connected varieties which carry non-

zero pluri-forms. Note that if p :X → P1 is a fibration such that general
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fibers of p are rationally connected, then X is rationally connected by

[GHS03, Theorem 1.1]. Moreover, if general fibers of p do not carry any

non-zero pluri-forms, then from the discussion above, X carries non-zero

pluri-forms if and only if (Ω1
P1)⊗m ⊗ p∗OX(mR) has non-zero sections for

some m> 0, where R is the ramification divisor of p. However, Ω1
P1
∼=

OP1(−2) and p∗OX(mR)∼= OP1(
∑

z∈P1 [((m(p, z)− 1)m)/m(p, z)]), since

any two points in P1 are linearly equivalent. Hence, X carries non-zero

pluri-forms if and only if
∑

z∈P1 ((m(p, z)− 1)/m(p, z)) > 2.

Now we try to construct this kind of varieties by taking quotients. Let

T be a normal projective variety, let B be a smooth projective curve, and

let G be a finite commutative group. Assume that there are actions of G

on T and B. Assume that there is a G-equivariant fibration q : T →B. Let

pT : T → T/G, pB :B→B/G be natural projections and let p : T/G→B/G

be the induced fibration. Let Si, i= 1, . . . , r be all the G-orbits in B whose

cardinality is less than the cardinality of G. Let zi be the image of Si under

the map B→B/G. Then the zi are the points in B/G over which B→B/G

is ramified. Let Gi be the stabilizer of a point bi in Si. Then Gi acts on the

set-theoretic fiber q−1{bi}= Fi. If Ai is a component in Fi and the stabilizer

of a general point in Ai has cardinality di, then pT is ramified along Gi ·Ai
of degree di, where Gi ·Ai is the orbit of Ai under Gi. In this case, pT (Ai)

has coefficient eifi/di in p∗zi, where ei is the coefficient of Ai in q∗bi and fi
is the cardinality of Gi. Denote min{eifi/di |Ai a component in Fi} by si.

Then si is equal to m(p, zi). We have the following theorem.

Theorem 3.2. Let T be a projective normal variety, let B be a projective

smooth curve with positive genus, and let G be a finite commutative group.

Assume that they satisfy the following conditions.

(1) There is a fibration q from T to B such that for any general fiber Fq of q,

Fq is rationally connected and does not carry any non-zero pluri-forms.

Moreover, m(q, b) = 1 for all b ∈B.

(2) There exist actions of G on B and on T such that q is G-equivariant.

(3) The quotient B/G is isomorphic to P1.

Then the quotient X = T/G is a normal projective rationally connected

variety and there is a fibration p :X → P1. Moreover, if we define si,

i= 1, . . . , r as above, then X carries non-zero pluri-forms if and only if
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Σr
i=1((si − 1)/si) > 2. More precisely,

H0(X, (Ω1
X)[⊗m])∼=H0

(
P1, OP1

(
−2m+

r∑
i=1

[(si − 1)m

si

]))
for m> 0.

Proof. The fibration p :X → P1 is induced by q. Since general fibers

of q are rationally connected, general fibers of p are also rationally

connected. Hence, X is rationally connected by [GHS03, Theorem 1.1].

If Fp is a general fiber of p, then Fp does not carry any non-zero pluri-

forms either. Hence, H0(X, (Ω1
X)[⊗m]) is isomorphic to H0(P1, OP1(−2m)⊗

p∗OX(mR)) for m> 0, where R is the ramification divisor of p. How-

ever, since m(q, b) = 1 for all b ∈B, we have
∑r

i=1[((si − 1)m)/si] =∑
z∈P1 [((m(p, z)− 1)m)/m(p, z)] by the definition of si. Finally, we

have p∗OX(mR)∼= OP1(
∑r

i=1[((si − 1)m)/si]) and H0(X, (Ω1
X)[⊗m])∼=

H0(P1, OP1(−2m+
∑r

i=1[((si − 1)m)/si])) by Lemma 3.1.

Remark 3.3. Conversely, let p :X → P1 be a fibration such that general

fibers of p are rationally connected and do not carry non-zero pluri-

forms. If X carries non-zero pluri-forms, then X can be constructed by

the method described above. In fact, by the discussion above, we have∑
z∈P1 ((m(p, z)− 1)/m(p, z)) > 2. In particular, there are at least three

points in P1 such that the multiplicity of p is larger than 1 over these

points. Let z1, . . . , zr be all the points in P1 such that m(p, zi)> 1 for all

i. Since r > 3, there is a smooth curve B and a Galois cover pB :B→ P1

with Galois group G such that pB is ramified exactly over the zi and the

degree of ramification is mi at each point over zi (see [KO82, Lemma 6.1]).

Let T be the normalization of the fiber product X ×P1 B. Then we obtain

a natural fibration q : T →B such that m(q, b) = 1 for all b ∈B. Moreover,

G acts naturally on T and T/G∼=X.

3.2 The case of threefolds with canonical singularities

If p :X → Z is a Mori fibration from a threefold which has Q-factorial

canonical singularities to a smooth curve, then general fibers of p are Fano

surfaces which have canonical singularities. These surfaces do not carry any

non-zero pluri-forms by the following theorem.

Theorem 3.4. If S is a Fano surface which has canonical singularities,

then H0(S, (Ω1
S)[⊗m]) = {0} for all m> 0.
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Proof. Assume the opposite. If S′ is the result of an MMP for S, then

S′ is a Mori fiber space. By [Ou14, Theorem 3.1], S′ has Picard number 2

and we have a Mori fibration S′→ P1. Let pS be the composition of S→
S′→ P1. By [Ou14, Theorem 1.5], there is a smooth curve B of positive

genus and a finite morphism B→ P1 such that the natural morphism SB →
S is étale in codimension 1, where SB is the normalization of S ×P1 B.

Hence, SB is a Fano surface. Moreover, it has canonical singularities (see

[KM98, Proposition 5.20]). Therefore, it is rationally connected by [HM07,

Corollaries 1.3 and 1.5]. Hence, B is also rationally connected, which is a

contradiction since its genus is positive.

Thanks to this theorem, we obtain the following result.

Proposition 3.5. Let X be a rationally connected threefold which has

Q-factorial canonical singularities. Assume that X carries non-zero pluri-

forms. Let X∗ be the result of an MMP for X and assume that there is

a Mori fibration p :X∗→ P1. Let Y be the normalization of the graph of

X 99KX∗. Then Y can be constructed by the method of Theorem 3.2.

Proof. By Theorem 3.4 and Lemma 2.5, we know that every element in

the space H0(X∗, (Ω1
X∗)

[⊗m]) comes from the base P1, and so does every

element in H0(X, (Ω1
X)[⊗m]) by Lemma 2.2. We have a rational map X 99K

P1 induced by p. By Proposition 2.9, we know that H0(X, (Ω1
X)[⊗m])∼=

H0(Y, (Ω1
Y )[⊗m]). Moreover, we have a natural fibration g : Y → P1 which is

the composition of Y →X∗→ P1. If Fg is a general fiber of g, then there is a

birational morphism Fg→ S, where S is a general fiber of p :X∗→ P1. Since

S does not carry any non-zero pluri-forms by Theorem 3.4, neither does Fg
by Lemma 2.2. From Remark 3.3, we know that Y can be constructed by

the method of Theorem 3.2.

§4. Mori fibrations and non-zero pluri-forms

In this section, we study relations between Mori fibrations and non-zero

pluri-forms. We consider Mori fibrations from a normal threefold to a normal

surface. First, we recall the definition and some properties of slopes. Let X

be a normal projective Q-factorial variety. Let α be a class of 1-cycles in X.

For a coherent sheaf F of positive rank, we define the slope µα(F ) of F

with respect to α by

µα(F ) :=
det (F ) · α
rank (F )

,

https://doi.org/10.1017/nmj.2016.1 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.1


SINGULAR RATIONALLY CONNECTED THREEFOLDS WITH NON-ZERO PLURI-FORMS 19

where det (F ) is the reflexive hull of
∧rank F F . A class of movable curves

is a class of 1-cycles that has non-negative intersection number with any

pseudo-effective divisor. If α is a class of movable curves, then µmaxα (F ) =

sup{µα(G ) | G ⊆F a coherent subsheaf of positive rank} is well defined.

For any coherent sheaf F , there is a saturated coherent subsheaf G ⊆F

such that µmaxα (F ) = µα(G ). If E and F are two coherent sheaves of positive

rank, then µα(F ⊗ E ) = µα(F ) + µα(E ). For more detail, see [GKP14,

Appendix A]

4.1 General properties

Consider a Mori fibration p :X → Z from a normal rationally connected

threefold to a normal variety Z of positive dimension. Assume that X

has Q-factorial klt singularities. Let D1, . . . , Dk be all prime Weil divisors

in Z such that mi =m(p, Di)> 1. Let ∆ =
∑k

i=1 ((mi − 1)/mi)Di. Then

det((p∗Ω1
Z)sat)∼= OX(p∗(KZ + ∆)) (see Remark 4.5). Assume that X carries

non-zero pluri-forms and general fibers of p do not carry any non-zero

pluri-forms. If dim Z = 1, then KZ + ∆ is an effective Q-divisor of degree

−2 +
∑k

i=1 ((mi − 1)/mi) on P1 (see Section 3). The aim of this subsection

is to prove something analogous in the case when dim Z = 2. We prove that

if KZ + ∆ is not pseudo-effective, then there will be a fibration from Z to

P1. In this case, we have an induced fibration X → P1 and we are in the

same situation as in Section 3 (see Lemma 4.10). In order to do this, we run

an MMP for the pair (Z,∆). To this end, we prove the following proposition

which implies that the pair (Z,∆) is klt.

Proposition 4.1. Let p :X → Z be a Mori fibration from a Q-factorial

klt quasi-projective variety X to a normal variety Z. Let D1, . . . , Dk be

pairwise distinct prime Weil divisors in Z such that p∗Di =mi(p
∗Di)red

with mi > 2. Then the pair (Z,
∑k

i=1 ((mi − 1)/mi)Di) is klt.

Proof. Let D =D1 + · · ·+Dk. By [KMM87, Lemma 5-1-5], Z is Q-

factorial. Note that the problem is local in Z, and we may assume that

Z is affine.

We construct by induction a finite morphism ck : Zk→ Z which is ramified

over D such that c∗kDi =mi(c
∗
kDi)red for all i. Let k1 be the smallest positive

integer such that k1D1 is a Cartier divisor. By taking the k1th root of

the function defining the Cartier divisor k1D1, we can construct a finite

morphism c1,1 : Z1,1→ Z which is étale in codimension 1. Moreover, c∗1,1D1

is a reduced Cartier divisor (see [Mor88, Proposition-Definition 1.11]). By

https://doi.org/10.1017/nmj.2016.1 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.1


20 W. OU

taking the m1th root of the function defining the Cartier divisor c∗1,1D1, we

can find a finite morphism c1,2 : Z1→ Z1,1 which is ramified exactly over

D1 with ramification degree m1 (see [Laz04, Section 4.1B]). Let c1 = c1,2 ◦
c1,1 : Z1→ Z. Then c∗1D1 =m1(c∗1D1)red . Assume that we have constructed

a finite morphism cj : Zj → Z such that c∗jDi =mi(c
∗
jDi)red for any 1 6 i6 j

and c∗jDi is reduced for any i > j, where 1 6 j < k. Let E = c∗jDj+1. Then E

is a reduced divisor. By the same method as above, we can construct a finite

morphism d : Zj+1→ Zj which is ramified exactly over E with ramification

degree mj+1. Let cj+1 : Zj+1→ Z be the composition cj ◦ d. Then c∗j+1Di =

mi(c
∗
j+1Di)red for any 1 6 i6 j + 1 and c∗j+1Di is reduced for any i > j + 1.

By induction, we can construct the finite morphism ck.

We have KZk
= c∗k(KZ +

∑k
i=1 ((mi − 1)/mi)Di). Let Xk be the normal-

ization of X ×Z Zk. Then the natural projection cX :Xk→X is étale in

codimension 1 and KXk
= c∗XKX . Hence, Xk is klt by [KM98, Proposition

5.20]. Moreover,Xk→ Zk is a Fano fibration sinceX → Z is a Mori fibration.

Hence, there is a Q-divisor ∆k such that the pair (Zk,∆k) is klt by [Fuj99,

Corollary 4.7]. Since KZk
is Q-Cartier, Zk is klt (see [KM98, Corollary

2.35]). Therefore, the pair (Z,
∑k

i=1 ((mi − 1)/mi)Di) is also klt by [KM98,

Proposition 5.20].

In the remainder of this subsection, our aim is to prove the following

theorem.

Theorem 4.2. Let p :X → Z be a Mori fibration from a projective

normal threefold to a normal projective surface. Assume that X has Q-

factorial klt singularities. Let D1, . . . , Dk be all prime Weil divisors in Z

such that mi =m(p, Di)> 1. Let ∆ =
∑k

i=1 ((mi − 1)/mi)Di. If X carries

non-zero pluri-forms and KZ + ∆ is not pseudo-effective, then the result Z ′

of any MMP for the pair (Z,∆) has Picard number 2.

First, we would like to illustrate the idea of the proof in a simple case.

Let f : (Z,∆)→ (Z ′,∆′) be the result of an MMP for the pair (Z,∆).

Assume in a first stage that Z = Z ′. We argue by contradiction. Assume

that Z ′ has Picard number 1. Since general fibers of p are isomorphic to

P1, they do not carry any non-zero pluri-forms. By Lemma 2.5, the non-

zero pluri-forms of X come from (p∗Ω1
Z)sat. Since KZ + ∆ is not pseudo-

effective, we can prove that there is a rank-1 coherent subsheaf H of

(p∗Ω1
Z)sat such that H [⊗l] is an invertible sheaf which has non-zero global

sections for some positive integer l. Next, we can prove that H [⊗l] is

isomorphic to OX under the assumption that Z has Picard number 1 (by
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using Lemma 4.8). Let W →X be the normalization of the cyclic cover with

respect to the isomorphism H [⊗l] ∼= OX (see [KM98, Definition 2.52]). Let

W → V → Z be the Stein factorization, then V will be a klt Fano variety

(by Lemma 4.7). Moreover, H0(V, Ω
[1]
V ) 6= {0} (we use Lemma 4.9). This

contradicts [GKKP11, Theorem 5.1].

However, in general, Z ′ is different from Z and the fibration X → Z ′ is not

equidimensional. The idea of the proof is the same as above but the details

are more complicated. We work over an open subset Z0 of Z such that f |Z0

is an isomorphism and codim Z ′\f(Z0) > 2. For the complete proof of the

theorem, we need several lemmas.

Lemma 4.3. Let p :X → Z be an equidimensional morphism between

smooth varieties. Let n be the dimension of X, and let d be the dimension

of Z. Let D be a prime divisor in Z, and let E be a prime divisor in X such

that E is a component of p∗D. Assume that the coefficient of E in p∗D is k.

Then for any general point x ∈ E, there is an open neighborhood U ⊆X of

x such that (p∗Ωd
Z)sat|U ∼= OX(p∗KZ + (k − 1)E)|U , where (p∗Ωd

Z)sat is the

saturation of p∗Ωd
Z in Ωd

X .

Proof. We may assume that E is smooth around x and D is

smooth around p(x). There exist local coordinates (a1, a2, . . . , an) and

(b1, b2, . . . , bd) of X and Z around x and p(x) such that E is defined by

{a1 = 0}, D is defined by {b1 = 0} and p is given by (a1, a2, . . . , an) 7→
(ak1, a2, . . . , ad). With these coordinates, the natural morphism p∗Ω1

Z → Ω1
X

is given by

(db1, db2, . . . , dbd) 7→ (kak−1
1 da1, da2, . . . , dad)

and the image of the natural morphism p∗Ωd
Z → Ωd

X is generated by

p∗(db1 ∧ db2 ∧ · · · ∧ dbd) = (kak−1
1 da1) ∧ da2 ∧ · · · ∧ dad. Hence, (p∗Ωd

Z)sat

is generated by da1 ∧ da2 ∧ · · · ∧ dad. Since {a1 = 0} defines the divisor

E, we have (p∗Ωd
Z)sat|U ∼= OX(p∗KZ + (k − 1)E)|U for some open neigh-

borhood U of x.

Lemma 4.4. Let p :X → Z be an equidimensional morphism between

normal varieties. Assume that Z is Q-factorial. Let D1, . . . , Dr be all

the prime divisors in Z such that m(p, Di) is larger than 1. Write

det ((p∗(Ω1
Z))sat)∼= OX(M), where M is a divisor on X. Then M −

(p∗(KZ +
∑r

i=1 ((m(p, Di)− 1)/(m(p, Di)))Di)) is Q-effective.
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Proof. By Proposition 2.1, we only have to prove the assertion on an

open subset of X whose complement is of codimension at least 2. Hence, we

may assume that both X and Z are smooth and that
∑r

i=1 Di is smooth.

In this case, by Lemma 4.3, the divisor M is linearly equivalent to p∗KZ +∑r
i=1

∑si
j=1(ni,j − 1)Ei,j , where the Ei,1, . . . , Ei,si are the components of

p∗Di and ni,j is the coefficient of Ei,j in p∗Di. Since m(p, Di) is the smallest

integer among ni,1, . . . , ni,si , we have ni,j − 1 > ((m(p, Di)− 1)/m(p, Di)) ·
ni,j . Thus,

r∑
i=1

si∑
j=1

(ni,j − 1)Ei,j >
r∑
i=1

m(p, Di)− 1

m(p, Di)
p∗Di.

Remark 4.5. With the notation above, if in addition p is a Mori

fibration, then p∗Di is irreducible for all i since p has relative Picard number

1. In this case we obtain that

det ((p∗(Ω1
Z))sat)∼= OX

(
p∗
(
KZ +

r∑
i=1

m(p, Di)− 1

m(p, Di)
Di

))
.

Lemma 4.6. Let p :X → Z be an equidimensional fibration between

normal varieties. Let (p∗Ω1
Z)sat be the saturation of the image of p∗Ω1

Z in

Ω
[1]
X . Then p∗(((p

∗Ω1
Z)sat)[∧r])∼= Ω

[r]
Z for r > 0.

Proof. Let D be the sum of the divisors in Z over which p does not

have reduced fibers. Applying Proposition 2.1 several times, we can suppose

without loss of generality that Z is smooth and D is a simple normal crossing

divisor. Let M = p∗(((p
∗Ω1

Z)sat)[∧r]).

First, we prove that there is a natural injection from Ωr
Z to M . We

have an injection from p∗Ω1
Z to (p∗Ω1

Z)sat. Hence, the natural morphism

from (p∗Ω1
Z)∧r to ((p∗Ω1

Z)sat)[∧r] is generically injective. Since (p∗Ω1
Z)∧r is

without torsion, the natural morphism from (p∗Ω1
Z)∧r to ((p∗Ω1

Z)sat)[∧r] is

injective. Since p(X) = Z, we have an injection from p∗((p
∗Ω1

Z)∧r) to M .

By the projection formula, this implies that Ωr
Z is a subsheaf of M .

Now we prove that Ωr
Z
∼= M . Let W = p−1(Z\D). Then the morphism

p|W :W → Z\D is smooth in codimension 1. Thus,

((p∗Ω1
Z)sat)[∧r]|W ∼= p∗Ωr

Z |W

(see the proof of Lemma 4.3). Then we obtain M |Z\D ∼= Ωr
Z\D by the

projection formula. Let U be any open set in Z, and let β be any element
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of M (U), that is, a section of M |U . Then β is a rational section of Ωr
Z |U

which can only have a pole along D since M |Z\D ∼= Ωr
Z\D. However, by

the definition of M , β induces a regular section of Ωr
X on the smooth

locus of p−1(U). This implies that β does not have pole along D. Thus,

M (U) = Ωr
Z(U). Hence, Ωr

Z
∼= M .

Lemma 4.7. Let p :X → Z be an equidimensional fibration from a

normal variety X to a smooth variety Z. Let D1, . . . , Dr be all the

prime divisors in Z such that the multiplicity m(p, Di) is larger than 1.

If cX :X1→X is a finite morphism which is étale in codimension 1

and X1
p1−→ Z1

cZ−→ Z is the Stein factorization, then KZ1 6 c∗Z(KZ +∑r
i=1 ((m(p, Di)− 1)/m(p, Di))Di). That is, there is an effective Q-divisor

∆1 on Z1 such that

KZ1 + ∆1 = c∗Z

(
KZ +

r∑
i=1

m(p, Di)− 1

m(p, Di)
Di

)
.

Proof. If D is a prime divisor in Z, then p∗1c
∗
ZD = c∗Xp

∗D. Let E be

any irreducible component of c∗ZD. Since cX is étale in codimension 1,

by comparing the coefficients of E in p∗1c
∗
ZD = c∗Xp

∗D, the coefficient mE

of E in c∗ZD is not larger than m(p, D). This implies that (mE − 1) 6
mE · ((m(p, D)− 1)/m(p, D)). Now, from Lemma 4.3, we obtain KZ1 =

c∗ZKZ + Σs
j=1(mj − 1)Ej , where the Ej are all prime divisors along which

c∗Z is ramified, and mj is the degree of ramification of cZ along Ej . By the

discussion above, we have (mj − 1) 6mj · ((m(p, p(Ej))− 1)/m(p, p(Ej))).

Hence, KZ1 6 c∗Z(KZ +
∑r

i=1 ((m(p, Di)− 1)/m(p, Di))Di).

Lemma 4.8. Let p :X → Z be a Mori fibration from a normal threefold

X to a smooth surface Z. Let D1, . . . , Dr be all the prime divisors in

Z such that the multiplicity mi =m(p, Di) is larger than 1. Assume that

there is a projective Q-factorial variety V such that we have an open

embedding j : Z→ V with codim V \Z > 2. Assume further that the pair

(V,
∑r

i=1 ((mi − 1)/mi)D̄i) is klt, where D̄i is the closure of D̄i in V . If

F is a rank-1 reflexive subsheaf of Ω
[1]
X such that F [⊗m0] ∼= OX(p∗D0) for

some positive integer m0 and some divisor D0 on Z, then D̄0, the closure

of D0 in V , is not ample.

Proof. Assume the opposite. First, we assume further that m0 = 1 and

OZ(D0) has non-zero global sections. Let E = p∗D0, which is effective. Then

F = OX(E). Since general fibers of p are isomorphic to P1, which does not
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carry any non-zero pluri-forms, by Lemma 2.5, the injection OX(E) ↪→ Ω
[1]
X

factorizes through (p∗ΩZ)sat. Hence, by the projection formula, we have

an injection from OZ(D0) to p∗((p
∗Ω1

Z)sat). However, by Lemma 4.6, we

have p∗((p
∗Ω1

Z)sat) = Ω1
Z . By Proposition 2.1, we get an injection from

OV (D̄0) to Ω
[1]
V . Hence, by the Bogomolov–Sommese theorem (see [Gra15,

Corollary 1.3]), the Kodaira dimension of OV (D̄0) is not larger than 1.

Hence, D̄0 is not ample. We obtain a contradiction.

Now we treat the general case. We show that we can reduce to the previous

case. By replacing m0 with a large multiple, we may assume that D̄0 is

very ample. We may also assume that both D̄0 and p∗D0 are prime and

that the pair (V,
∑r

i=0 ((mi − 1)/mi)D̄i) is klt. Let cX :X1→X be the

normalization of the ramified cyclic cover with respect to F , m0 and p∗D0

(see [KM98, Definition 2.52]). Then cX is ramified over p∗D0 with degree m

and (c∗XF )∗∗ ∼= OX1(E), where E = (c∗Xp
∗D0)red . Moreover, over the smooth

locus of X, there is an injection of sheaves from c∗XΩ1
X to Ω1

X1
. Hence, by

Proposition 2.1, we have an injection OX1(E) ↪→ Ω
[1]
X1

.

Let X1
p1−→ Z1

cZ−→ Z be the Stein factorization. Let cV : V1→ V be the

normalization of V in the function field of X1. Then we obtain an open

embedding j1 : Z1→ V1 such that codim V1\Z1 > 2. If Fp is a general fiber

of p and if Fp1 is a general fiber of p1 which is mapped to Fp, then Fp1 → Fp
is étale. Since p is a Mori fibration, Fp is a smooth rational curve which is

simply connected. Hence, Fp1 → Fp is an isomorphism and Fp1
∼= P1. Hence,

cZ is of degree m0. Let H = (c∗ZD0)red . Since cZ ◦ p1 :X1→ Z has connected

fibers over D0, we have c∗ZD0 =m0H. Hence, E1 = p∗1H. Let H̄ be the

closure of H in V1. Then it is ample since cV is finite.

Note that cX |X1\E is étale in codimension 1 and c∗ZD0 =m0H. By

Lemma 4.7, we conclude that there is an effective Q-divisor ∆′1 in Z1

such that KZ1 + ∆′1 = p∗(KZ +
∑r

i=0 ((mi − 1)/mi)Di). Hence, if ∆1 is the

closure of ∆′1 in V1, thenKV1 + ∆1 = p∗(KV +
∑r

i=0 ((mi − 1)/mi)D̄i). This

implies that (V1,∆1) is klt by [KM98, Proposition 5.20 and Corollary 2.35].

Hence, p1 :X1→ Z1 satisfies the conditions in the lemma. There is an

injection from OX1(E) to Ω
[1]
X1

, and OX1(E)∼= OX1(p∗1H), such that H̄ is

ample in V1. We are in the same situation as in the first case. This leads to

a contradiction.

Lemma 4.9. Let p :X → Z be an equidimensional fibration such that

general fibers of p do not carry any non-zero pluri-forms. Assume

that Z is smooth and that there is an open embedding j : Z→ V such
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that codim V \Z > 2. Assume that H0(V, Ω
[r]
V ) = {0} for all r > 0. Then

H0(X, Ω
[r]
X ) = {0} for all r > 0.

Proof. Assume the opposite. Let F = (p∗Ω1
Z)sat be the saturation of

the image of p∗Ω1
Z in Ω

[1]
X . Since general fibers of p do not carry any non-

zero pluri-forms, we haveH0(X, Ω
[r]
X )∼=H0(X,F [∧r]) by Lemma 2.5. Hence,

there is an injection from OX to F [∧r]. By taking the direct image, we have

an injection from OZ to p∗(F [∧r]). By Lemma 4.6, p∗(F [∧r])∼= Ωr
Z . This

implies that H0(V, Ω
[r]
V ) 6= {0} by Proposition 2.1, which is a contradiction.

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We argue by contradiction. Let f : Z→ Z ′ be

the result of a (KZ + ∆)-MMP. Assume that Z ′ has Picard number

1. Set ∆′ = f∗∆. Then KZ′ + ∆′ is not pseudo-effective either. Thus,

−(KZ′ + ∆′) is ample. We know that there is a smooth open subset Z ′0 ⊆ Z ′
with codim Z ′\Z ′0 > 2 such that f−1 is an isomorphism from Z ′0 onto its

image. Let Z0 be f−1(Z ′0), which is an open subset in Z. Let X0 = p−1(Z0).

Since codim Z ′\Z ′0 = 2, there is a projective curve C ′0 in Z ′0 such that it

is an ample divisor in Z ′. Let C0 be the strict transform of C ′0 in Z0. Let α

be the class of the curve p∗C0 ∩H, where H is a very ample divisor in X.

Then the class α is movable and p∗α is proportional to the class of C0.

Since general fibers of p do not carry any non-zero pluri-forms, by

Lemma 2.5, we obtain that

H0(X, (Ω1
X)[⊗m])∼=H0(X, ((p∗Ω1

Z)sat)[⊗m])

for any m> 0, where (p∗Ω1
Z)sat is the saturation of the image of (p∗Ω1

Z) in

Ω
[1]
X . Hence, µmaxα ((p∗Ω1

Z)sat) > 0 and there is a coherent sheaf H saturated

in (p∗Ω1
Z)sat such that µα(H ) > 0.

However, since p|X0 is a Mori fibration and Z0 is smooth, the Q-Cartier

divisor which associates to the determinant of (p∗Ω1
Z)sat|X0 is equal to

p∗(KZ + ∆)|X0 by Remark 4.5. Hence,

det((p∗Ω1
Z)sat) · α= p∗(KZ + ∆) · α= (p ◦ f)∗(KZ′ + ∆′) · α < 0.

This implies that H 6= (p∗Ω1
Z)sat. If J is the quotient (p∗Ω1

Z)sat/H , then

rank J = rank H = 1 and H [⊗]J = det ((p∗Ω1
Z)sat). Thus, J · α < 0.
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Since H0(X, ((p∗Ω1
Z)sat)[⊗m]) 6= {0} for some m> 0, we have

H0(X,H ⊗s[⊗]J ⊗t) 6= {0}

for some s, t> 0 by Proposition 2.1 and Lemma 2.3. In this case, we have

s > t for (H [⊗]J ) · α < 0 and J · α < 0.

Let Fp be a general fiber of p. Then the class of Fp is movable. Hence,

(H [⊗s][⊗]J [⊗t]) · Fp > 0. Moreover, we have

(H [⊗]J ) · Fp = det((p∗Ω1
Z)sat) · Fp = 0.

This implies that H · Fp > 0 since s > t. However, since the restriction of

(p∗Ω1
Z)sat on Fp is isomorphic to OFp ⊕ OFp , we have H · Fp = 0.

Let k be the smallest positive integer such that H [⊗k] is invertible. Then

there is a Cartier divisor L in Z such that H [⊗k] ∼= OX(p∗L). Let L′ = f∗L.

Then L′ · C ′0 > 0 since µα(H ) > 0. Note that if L′ · C ′0 > 0, then L′ is ample

on Z ′ since Z ′ has Picard number 1. Hence, by Lemma 4.8, we can only

have L′ · C ′0 = 0, and L′ is numerically equal to the zero divisor since Z ′

has Picard number 1. By [AD14, Lemma 2.6], there is a positive integer k′

such that k′L′ is linearly equivalent to the zero divisor. Hence, OZ(k′L)|Z0
∼=

OZ0 and H [⊗kk′]|X0
∼= OX0 . Let l be the smallest positive integer such that

H [⊗l]|X0
∼= OX0 . Let c :W0→X0 be the normalization of the cyclic cover

with respect to the isomorphism H [⊗l]|X0
∼= OX0 (see [KM98, Definition

2.52]). Then c is étale in codimension 1. We have OW0
∼= (c∗H )∗∗ and there

is an injection (c∗H )∗∗ ↪→ (c∗Ω1
X0

)∗∗ ∼= Ω
[1]
W0

. Hence, H0(W0, Ω
[1]
W0

) 6= {0}.
Let W0→ V0→ Z ′0 be the Stein factorization. Let h : V → Z ′ be the

normalization of Z ′ in the function field of W0. Then there is an open

embedding from V0 to V such that codim V \V0 > 2. By Lemma 4.7, we

have KV0 6 (h∗(KZ′ + ∆′))|V0 . Since codim V \V0 > 2, there is an effective

Q-divisor ∆V in V such that KV + ∆V = h∗(KZ′ + ∆′). Thus the pair

(V,∆V ) is klt by [KM98, Proposition 5.20]. Moreover, −(KV + ∆V ) is ample

since −(KZ′ + ∆′) is ample, hence V is rationally connected by [HM07,

Corollary 1.13]. By [GKKP11, Theorem 5.1], we have H0(V, Ω
[1]
V ) = 0.

However, since general fibers of W0→ V0 are isomorphic to P1, which does

not carry any non-zero pluri-forms, we conclude that H0(W0, Ω
[1]
W0

) = {0}
from Lemma 4.9. This is a contradiction.

4.2 Proof of Theorem 1.6

The object of this subsection is to prove Theorem 1.6. We study Mori

fibrations X → Z such that X is a projective threefold with Q-factorial

https://doi.org/10.1017/nmj.2016.1 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.1


SINGULAR RATIONALLY CONNECTED THREEFOLDS WITH NON-ZERO PLURI-FORMS 27

canonical singularities and Z is a projective normal surface. Assume that X

carries non-zero pluri-forms. Then by Theorem 4.2, either the result Z ′ of

any (KZ + ∆)-MMP has Picard number 2 or (KZ + ∆) is pseudo-effective,

where ∆ is the Q-divisor defined in Theorem 4.2. We study the first case in

Proposition 4.10 and the second case in Proposition 4.12.

Proposition 4.10. Let p :X → Z be a Mori fibration from a projective

threefold to a projective surface such that X has Q-factorial canonical

singularities. Let ∆ be the divisor in Z defined in Theorem 4.2. Assume that

KZ + ∆ is not pseudo-effective. Let f : Z→ Z ′ be the result of a (KZ + ∆)-

MMP, and let ∆′ be the strict transform of ∆ in Z ′. Then there is a

(KZ′ + ∆′)-Mori fibration π′ : Z ′→ P1. Let π = π′ ◦ f , and let q = π ◦ p :

X → P1. Then we have H0(X, (Ω1
X)[⊗m])∼=H0(X, ((q∗Ω1

P1)sat)[⊗m]) for any

m> 0, where (q∗Ω1
P1)sat is the saturation of the image of q∗Ω1

P1 in Ω
[1]
X .

Proof. Let H = (q∗Ω1
P1)sat, and let F = (p∗Ω

[1]
Z )sat. Then we have an

exact sequence of coherent sheaves 0→H →F →J → 0, where J is a

torsion-free sheaf such that det F = H [⊗]J . Let α be a class of movable

curves in X whose image in Z is not zero and is proportional to the class

of general fibers of π : Z→ P1. Then H · α= 0. Moreover, we have

(H [⊗]J ) · α= det F · α= p∗(KZ + ∆) · α

by Remark 4.5. This intersection number is negative since for a general fiber

Fπ of π : Z→ P1, we have (KZ + ∆) · Fπ = (KZ′ + ∆′) · (f∗Fπ)< 0. Hence,

J · α < 0.

There is an open subset U of X with codimX\U > 2 such that we have an

exact sequence of locally free sheaves over U , 0→H |U →F |U →J |U → 0.

Since µα(H ⊗s ⊗J ⊗t)< 0 if t > 0, we have H0(U,H |⊗sU ⊗J |⊗tU ) = {0}
if t > 0 by Proposition 2.1. Hence, by Lemmas 2.5 and 2.4, we have

H0(X, (Ω1
X)[⊗m])∼=H0(X, (F )[⊗m])∼=H0(X, (H )[⊗m]) for any m> 0.

Example 4.11. We give an example of this kind of threefold. Let Z =

P1 × P1. Denote by p1, p2 the two natural projections from Z to P1. Let

z1, . . . , zr be r > 4 different points in P1, and let Ci = p∗1zi for i= 1, . . . , r.

Let X0 = P1 × Z. By the method of Construction 2.13, we can construct

a Mori fibration π :X → Z such that m(π, Ci) = 2 for i= 1, . . . , r. Note

that KZ + 1
2(C1 + · · ·+ Cr) is not pseudo-effective since it has negative

intersection number with general fibers of p1. Moreover, we have
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H0(X, (Ω1
X)[⊗2]) ∼= H0(P1, (Ω1

P1)⊗2 ⊗ OP1(C1 + · · ·+ Cr))

∼= H0(P1, OP1(−4 + r)) 6= {0}.

Now we treat the second case. Note that this is the case for Examples 2.12

and 2.14.

Proposition 4.12. Let p :X → Z be a Mori fibration from a projective

threefold to a projective surface. Assume that X has Q-factorial klt singular-

ities. Assume that (KZ + ∆) is pseudo-effective, where ∆ is the Q-divisor

defined in Theorem 4.2. Then X carries non-zero pluri-forms.

Proof. By the abundance theorem for log surfaces (see [AFKM92,

Theorem 11.1.3]), (KZ + ∆) is Q-effective. Hence, there is a positive integer

l such that l(KZ + ∆) is an effective Cartier divisor. This implies that

h0(X, (Ω1
X)[⊗2l]) is non-zero by Lemma 4.4.

We can now conclude Theorem 1.6.

Proof of Theorem 1.6. Let X∗→ Z be a Mori fibration. If Z is a curve,

then we are in the second case of the theorem. Assume that dim Z = 2.

If KZ + ∆ is Q-effective, then we are in the situation of Proposition 4.12.

If KZ + ∆ is not Q-effective, then by Proposition 4.10, there is a fibration

p :X∗→ P1 such thatH0(X∗, (Ω1
X∗)

[⊗m])∼=H0(X, ((p∗Ω1
P1)sat)[⊗m]) for any

m> 0. By Lemma 3.1, we have H0(X∗, (Ω1
X∗)

[⊗m])∼=H0(P1, OP1(−2m+∑
z∈P1 [((m(p, z)− 1)m)/m(p, z)])) for any m> 0.

§5. Proof of Theorem 1.4

In this section, we complete the proof of Theorem 1.4. First, we show that

if X is a rationally connected projective threefold with Q-factorial terminal

singularities, which carries non-zero pluri-forms, then there is a dominant

rational map from X to P1 (Lemma 5.2). To this end, we need the following

lemma.

Lemma 5.1. Let p :X → Z be a Mori fibration such that X has Q-

factorial terminal singularities and dim Z = dimX − 1. Then there exists an

open subset Z0 ⊆ Z with codim Z\Z0 > 2 such that every scheme-theoretic

fiber over Z0 is reduced.

Proof. By taking general hyperplane sections on Z, we reduce to the

case where Z is a smooth curve and p is a Fano fibration. In this case, X is

a surface with terminal singularities. Hence, X is smooth and the fibers of

p are reduced.
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Lemma 5.2. Let X be a rationally connected projective threefold with Q-

factorial terminal singularities such that H0(X, (Ω1
X)[⊗m]) 6= {0} for some

m> 0. Let f :X 99KX∗ be the result of an MMP for X. Then there is a

fibration p :X∗→ P1.

Proof. Note that X∗ is a Mori fiber space. Then we have a Mori fibration

q :X∗→ Z, where Z is a normal rationally connected variety. If dim Z = 1,

then we are done.

By Lemma 2.2, we know that X∗ carries non-zero pluri-forms. Hence,

dim Z > 0 by [Ou14, Theorem 3.1]. Assume that dim Z = 2. Then Z has

canonical singularities by [MP08, Corollary 1.2.8]. Hence, KZ is not pseudo-

effective by [Kol96, Corollary 1.11]. Moreover, by Lemma 5.1, m(q, D) = 1

for any effective divisor D on Z. Hence, by Theorem 4.2, if Z→ Z ′ is the

result of an MMP for Z, then Z ′ has Picard number 2. Hence, we have a

Mori fibration Z ′→ P1. Let p be the composition of X∗→ Z→ Z ′→ P1.

Then p is a fibration from X∗ to P1

With the notation as above, note that a general fiber F ′ of p :X∗→ P1 is

a smooth rationally connected surface. Hence, F ′ does not carry any non-

zero pluri-forms. Let U be the largest open subset in X over which f :X 99K
X∗ is regular. Then codimX\U > 2, codimX∗\f(U) > 2, and the rational

map p :X 99K P1 is regular over U . If F is a general fiber of U → P1, then

f(F )⊆ F ′, where F ′ is a general fiber of p. Moreover, codim F ′\f(F ) > 2.

Hence, f(F ) does not carry any non-zero pluri-forms and neither does F

by Lemma 2.2. The following lemma shows that the rational map X 99K P1

is regular. Moreover, general fibers of X → P1 are birational to the ones of

X∗→ P1 which are rationally connected. Hence, general fibers of X → P1

are rationally connected.

Lemma 5.3. Let X be a projective threefold with Q-factorial terminal

singularities. Assume that there is a non-constant rational map p :X 99K P1

which is regular over U such that codimX\U > 2. Assume that general fibers

of U → P1 do not carry any pluri-forms. If H0(X, (Ω1
X)[⊗m]) 6= {0} for some

m> 0, then p is regular.

Proof. Let Γ be the normalization of the graph of p. Let p1 : Γ→X,

p2 : Γ→ P1 be the natural projections. Then there is a natural injection

from H0(Γ, (Ω1
Γ)[⊗m]) to H0(X, (Ω1

X)[⊗m]) by Lemma 2.2. Let σ be a non-

zero element in H0(X, (Ω1
X)[⊗m]). Then σ induces a rational section σΓ of

(Ω1
Γ)[⊗m] on Γ. Let E be a p1-exceptional divisor. Then there is a curve
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in E which is contracted by p2 since dim E = 2> 1. Hence, this curve

is not contracted by p1 since the graph of p is included in X × P1 and

the normalization map is finite. Thus, p1(E) is a curve in X, and X is

smooth around the generic point of p1(E) since X is smooth in codimension

2 (see [KM98, Corollary 5.18]). Hence, σΓ does not have a pole along

E. This implies that we have an isomorphism from H0(Γ, (Ω1
Γ)[⊗m]) to

H0(X, (Ω1
X)[⊗m]) induced by p1.

Note that p−1
1 |U induces an isomorphism from U onto its image. If FU

is the fiber of p|U over a general point z, then p−1
1 (FU ) is an open subset

of FΓ, where FΓ is the fiber of p2 : Γ→ P1 over z. Since FU does not carry

any non-zero pluri-forms, neither does FΓ. By Lemma 2.5, this implies that

H0(Γ, (Ω1
Γ)[⊗m])∼=H0(Γ, ((p∗2Ω1

P1)sat)[⊗m]).

We first prove that p is regular in codimension 2. Assume the opposite.

Then there is a divisor D in Γ which is exceptional for p1 : Γ→X, and the

codimension of p1(D) in X is 2. Since X is smooth in codimension 2 (see

[KM98, Corollary 5.18]), X is smooth around the generic point of p1(D).

Thus, there is a smooth quasi-projective curve C in D such that Γ is smooth

along C and C is contracted to a smooth point of X by p1. Note that C

is horizontal over P1 under the projection p2 : Γ→ P1 for the same reason

as before. Let σ be a non-zero element in H0(Γ, (Ω1
Γ)[⊗m]). By the exact

sequence of locally free sheaves Ω1
Γ|C → Ω1

C → 0, σ induce an element σC in

H0(C, (Ω1
C)⊗m). On the one hand, C is horizontal over P1 and σ is non-zero

in H0(Γ, ((p∗2Ω1
P1)sat)[⊗m]), we have σC 6= 0. On the other hand, since C is

contracted to a smooth point in X, we obtain σC = 0 for σ is the pullback

of certain element in H0(X, (Ω1
X)[⊗m]). This is a contradiction.

Now we prove that p is regular. Let F1 and F2 be two different fibers of

U → P1. Then their closures in X are two Weil divisors and their intersection

is included in a closed subset of codimension at most 3. Hence, their

intersection is empty since X is Q-factorial. This implies that p is regular.

Together with Lemmas 2.5 and 3.1, we can conclude Theorem 1.4.

Proof of Theorem 1.4. By Lemmas 5.2 and 5.3, there is a fibration p :

X → P1 such that general fibers of p do not carry any non-zero pluri-forms.

Lemma 2.5 shows that all pluri-forms on X come from the base P1. Finally,

we obtain the formula in the theorem from Lemma 3.1.
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