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1. Introduction
In problems in the mathematical theory of elasticity related to the sym-

metric deformation of an infinite elastic solid with an external crack we
encounter the problem of determining an axisymmetric function <j)(p, z) which
is harmonic in the half-space z > 0 and satisfies the mixed boundary conditions

(1)

^ p>\, (2)
dz

on the plane boundary z = 0, where it is assumed that f(p) is continuously
differentiable in [1, oo). Further <j)-+0 as , / (p2 + z2)->oo.

In this note we shall reduce the solution of this mixed boundary value
problem to that of a simple pair of dual integral equations whose solution
we derive by an elementary method in § 2. By means of this solution we
construct an integral representation of the function <t>(p, z); its properties are
discussed in § 3. Finally, in § 4, we derive the form of the solution in certain
special cases.

2. The Dual Integral Equations
The integral

<Kp,z)= f r ' ^ o K ^ " ^ . ^ 0 , (3)
Jo

defines an axisymmetric harmonic function which tends to zero as

V(p2 + z 2 ) - + oo,

provided that the function ^(£) is such that the integrals (3) and

f
Jo
Jo

exist for z > 0. If we substitute this expression into equations (1) and (2) we find
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that the function \j/{£) satisfies the dual integral equations

(4)
Jo;o

F(p) = \l/{t)J 0(lp)d£, =/(p), p > l (5)
Jo

This pair of equations is a special case of a pair considered by Williams (1)
but it is of interest to note that the solution can be obtained by elementary
methods similar to those employed in an earlier paper (2).

To solve the equations (4) and (5) we let

i (6)
'i

where 0(<) is such that the integral converges; in particular this implies the
condition

lim 0(0 = 0 (7)
I->00

We first show that the form (6) automatically satisfies the first equation (4).
Substituting from (6) into the expression for G(p) and interchanging the order
of integrations, we find that

G{p) = (f>(t)dt Jo(Zp)cos

J i Jo
It is well-known (3, p. 405) that

f0' 0<'« (8)
Jo \(p2-t2) i , p>t>0

so that
fO,

G(p) =

f
Jo

showing that equation (4) is satisfied.
By an integration by parts we find from (6) that we may write

<K<D= -^( l ) sin I- fV(0sin«0<fr (10)

Substituting this expression for \f/(£) into the equation defining F(p) and inter-
changing the order of the integrations, we find that

f°° Jo(fr) sin m- f°° 4>\t)dt f
Jo Ji Jo

ftp) = -0(1) f Jo(fr) sin m- f 4>\t)dt f J0(Zp) sin
Jo J J

and making use of the standard result

I 0 ( p sin ({/>/{ = (11)
o [0, p>t>0,
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(3, p. 405) we find that when O g p < 1

and that, when p> 1,

Using this last result we find that <j>(f) must satisfy the integral equation

" " <j>\i)dtr
This is an equation of Abel type and it is easily shown that, if f(p) is con-
tinuously differentiate in [1, oo), it has the solution

Integrating this equation and making use of the condition (7), we obtain the
solution

Pf(p)dp ( 1 4 )

>J(p2—*2)
The solution to our mixed boundary value problem is therefore given by
equations (3), (6) and (14).

3. An Integral Representation of the Solution
If we substitute from equation (6) into equation (3), write the cosine in

its exponential form and make use of the result

f
Jo
)o

we obtain the solution

<KP, -i r
We shall now follow the procedure adopted by Green in his solution of

a similar boundary value problem (see (4), p. 172). We consider the function
defined by equation (15) assuming that the function <t>(t) is a real continuously
differentiable function in [1, oo) for which the integral (15) converges.

Since the integrand on the right-hand side of equation (15) is a continuous
function of p, z and / we may differentiate under the integral sign and verify
that <j>{p, z) is a solution of Laplace's equation.

We now introduce a function O(p, «) such that

5 ^ I (16)
2 )
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We can then write equation (14) in the form

. *) = ¥ J"
and if we integrate this expression by the rule for integrating by parts, we
obtain the relation

<Kp, Z) = -x^(l)[<D(P) z + 0-<D(p, z -Q]

», z + i0-O(p, z-it)W(t)dt.

The integrand occurring in the integral on the right-hand side of this equation
is a continuous function of p, z and t so that we may differentiate under the
integral sign to obtain the equation

1 l

-*1 r
By using a method almost identical with that employed by Green we can

show that d<f>/dz is continuous for normal approach to the region z = 0,
p> 1 as z-+0+ and that

, as z -> — 0 + .

If we substitute this expression into equation (2) we obtain the integral equation
(13) again, and the solution of this equation is given by equation (14). Hence
we have shown that the solution to our mixed boundary value problem is
given by equations (15) and (14).

4. Special Cases
In this section we shall derive the solutions of certain special problems

which arise in physical applications.

Case 4.1. We begin by considering the case in which

1 'Z(P)=(

[0, p>a.

From equation (14) we find that

t>a,
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from which it follows immediately that

iKO = — I y/\a2 — t2)cos (£i)dt, (18)

and that
! Co f / ~2 ,2 / ,,2_,2 ")

(19)+
a 2 - / 2

dt.

From equation (12) we find that

F(p) = 2- tdt 2 a 2 -
(a2-t2)(t2-p2)] « V 1 - /

and similarly from equation (9) we find that

The integral occurring in the expression for F(p) is elementary. We find
that

n n\jl-p

where a is defined by the relations

.(20)

sin a =

The integrals in the expressions for G(p) are easily expressed in terms of elliptic
integrals:

G(p) =

(-[E(pla)-E(pla,P)l \<p<a,
n

[E(a/p)-E(alp, y)]-

(21)

(a/p)-F(alp,y)], p>a

where ft = sm~\l/p), y = sin"1 (I/a), 0<P<in,

Case 4.2. We next consider the case in which

f(p) = p-m, m>\.

From equation (14) we find that

.(22)
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and from equation (6) that

'cos i
V^r(im) Ji

which is equivalent to

(23)

Equations (15) and (22) then give the expression

for the harmonic function <£.
From equation (12) we find that

r ( l m _ r ) f fro ")

VwIXim)! Ji I'
Expanding the integrand in powers of p2t~2 and integrating term by term we
obtain the expression

F(p)= fflm+*> 2F^Am; im + 1; p2)- ^ " ^ ( l - p 2 ) - * , Ogp<l. ...(25)

Similarly from equation (9) we find that, when p> 1,

a result which can be written in the form

l, (26)

where Br(i, 1 — im) denotes the incomplete beta function

i:10

In (5) we can find tables of the function Ix(p, q) = Bx(p, q)/B(p, q) which can
be used in the computation of G(p).

Case 4.3. These results take a simpler form in the case in which m = 2,
i.e. when/(p) = p~2. In this instance we have, from equation (14),

rl (27)
from which it follows that

£Ci«) (28)
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where, in the usual notation, Ci(^) denotes the cosine integral

cos udu.

Equation (3) then yields the form

<Kp,z)=- I"" Ci«yo«p)e-Sx<*£, (29)
Jo

for the harmonic function (j>, while equation (15) gives the form

Ci(O = — I u 1

From equation (12) we find that

and from equation (9) that

The integrations are elementary; carrying them out we obtain the expressions

F(p)= i - t i - ^ l - p 2 ) ] -

G(p) = - log [p + V(p 2 - l ) ] , P > 1 (32)
P

4.4. We now consider the case in which

JV)-«£=*>. o l (33)
2np

8(z) denoting the Dirac delta function of argument z. From equation (14)
we find that

° S
(34)

10, t>c,
and hence from equation (6) we obtain the expression

[*c cos i
(35)

From equation (9) we see that

where A = p i f l < p < c and A = c if p > c ; carrying out the integrations we

https://doi.org/10.1017/S0013091500014474 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014474


46 M. LOWENGRUB AND I. N. SNEDDON

find that
/ i
-j- [K(fi/c) — F(p/c, /})], 1 < p < c;
n° (36)

±-{K(clp)-F(clp,8)l p>c,
n2p

where /? is defined as in equation (21) above and 5 is defined by the relations
sin 8 = l/c, 0<8<$n.

Case 4.5. Finally we consider the case in which/(p) is defined by an integral
expression of the form

AP) = I"" ZKWoitpW (37)
Jo

where the function /(£) is the Hankel transform of order zero of/(p). From
equation (14) we derive the result

Carrying out the p-integration we obtain the formula

(38)= - r
* Jo
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