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Abstract

Let G be a group acting on a ring R. We study the problem of determining necessary and sufficient
conditions in order that the skew group ring RG be von Neumann regular. Complete characterizations
are given in some particular situations, including the case where all idempotents of R are central. For
a regular ring R admitting a G-invariant pseudo-rank function N, with G finite, we obtain a necessary
condition for RG being regular in terms of the induced action of G on the A?-completion of R.

1991 Mathematics subject classification (Amer. Math. Soc): primary 16S35; secondary 23B45.

Introduction

Associated to an action of a group G on a ring R, there are two rings: the fixed ring
RG and the skew group ring RG (see Section 1 for definitions). The relationship
between the structure of these three rings, R, RG and RG has been intensively studied
by many authors, see [11, 17, 19] for instance.

In this paper we study when the skew group ring is regular in the sense of von Neu-
mann. When the action is trivial the skew group ring is just the classical group ring
R[G], and it is well known that R[G] is regular if and only if R is regular, G is locally
finite and the order of any finite subgroup of G is invertible in R; this result is due to
contributions of Auslander [2], Connell [5] and Villamayor [21].
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168 Ricardo Alfaro, Pere Ara and Angel del Rio [2]

In the history of the study of skew group rings (or more generally crossed products)
there is Maschke's standard argument which has been extensively used when G is
finite and the order of G is invertible in R. This argument also works when the trace of
the center of R contains the unit of R, and allows us to obtain a sufficient condition for
RG to be regular. This extension was inspired by some results on separable functors;
see [13, 20]. In the first section we prove this extension and give general notation and
definitions.

In the second section we obtain some necessary conditions for RG to be regular.
Namely we prove that if RG is regular, then R is regular, G is locally finite and for
every finite subgroup H of G, 1 € tTH(R) and RH is regular. As a consequence,
the general problem can be reduced to the particular case of finite groups. In some
particular cases (R commutative or G-Galois actions) these necessary conditions are
also sufficient.

In the third section we study the particular case when R is abelian regular (that is,
regular with all idempotents central). In this case the necessary conditions turn out to
be sufficient. It is worth noting that RG is always abelian regular if R is abelian regular
(because every element of an abelian regular ring has a (unique) group inverse).

In the fourth section we start by giving necessary and sufficient conditions for RG
to be regular when R is regular right self-injective and G is finite. We show that
regular, semiprimitive and semiprime are equivalent conditions for the skew group
ring RG. In this particular case, Passman's results on semiprime crossed products
are useful. Finally we deal with pseudo-rank functions, obtaining that if N is a G-
invariant pseudo-rank function then there is a natural pseudo-rank function N on RG
and the action of G on R can be extended to its completion R under the topology
associated to N. Moreover, the completion of RG under N is homeomorphic under a
ring isomorphism to RG. This result allows us to give an example of a simple regular
ring R with a finite group G of outer automorphisms such that RG and RG are not
regular.

1. Sufficient Conditions

Throughout R will denote an associative ring with unity, Z(R) will denote the
center of the ring R, and G will stand for a group action on R, that is, there is a group
homomorphism a : G ->• Aut (/?). If r e R and g e G, then gr will stand for ag{r).

The skew group ring RG is a free left /?-module with basis G (that is, the elements
of RG are finite linear combinations Yl ec

 rg8> w*m h e ^ an(^ 8 e G) and product
given by (rg)(sh) — r(gs)gh. The fixed subring of R under G is RG = {r e
R\ gr = r, for all g e G}. If G is finite, the trace is the map trG : R - • RG, with
trG(r) = 5Z ec Sr- Note that if H is a subgroup of G and X is a G-invariant subset
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[3] Regular skew group rings 169

of R, then trG(X) c trw(X). Indeed, if x e X and A is a right transversal of H, then

The main interest of this paper is to obtain necessary and sufficient conditions for
RG to be regular. The case when G acts trivially on R was solved by Auslander [2],
Connell [5] and Villamayor [21]: the group ring R[G] is regular if and only if R is
regular, G is locally finite and the order of every finite subgroup of G is invertible in
R. In the general case it is well known that the sufficient conditions remain true.

PROPOSITION 1.1 (see [19, Prop. 17.2]). If R is regular, G is locally finite and the
order of any finite subgroup is invertible in R then RG is regular. The same is true
when we consider a crossed product R * G.

The converse does not hold as the following example shows:

EXAMPLE 1.2. Let A be a regular ring, n > 1, and set R = A". Let a be an
automorphism of R given by a cyclic permutation of order n on the factors of R. Put
G = (a). Then RG is regular (see Theorem 1.3 below) but \G\ — n is invertible in
R if and only if it is invertible in A.

Proposition 1.1 can be improved using Maschke's standard argument as follows:

THEOREM 1.3. Let G be a locally finite group acting on a regular ring R. Assume
that for every finite subgroup H ofG, 1 e trH(Z(R)). Then RG is regular.

PROOF. It is clear that it is enough to prove the theorem for G finite with 1 e
trG(Z(R)). Letr e Z(/?)besuchthattrG(r) = 1. Let /be a principal left ideal of RG.
Then / is a direct summand of RG as left R-modules. Let p e Horn R(RG, I) be a
projection. Then f(m) = ^2geG grp(g~lm) is a projection and / € HomRG(RG, I).
It follows that RG is a regular ring.

In Section 3 we will give an example of a regular skew group ring RG with G
finite such that 1 does not belong to tr(Z(/?)).

2. Necessary conditions

In this section we give some necessary conditions for RG to be regular. We
then prove that in some particular cases these conditions are also sufficient, and also
give some examples which show that these necessary conditions are not sufficient in
general.

Let G be a group acting on a ring R. We can consider R as a right RG-module by
restriction of scalars and as a left /?G-moduleby the rule (rg)-s = r(ss) for r, s € R,
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g € G; so R is an (RG, /?G)-bimodule. Let A : RG -*• R be the canonical bimodule
homomorphism given by A(^geG agg) = ^,g€G ag. When G is finite n will denote
the element X!«eG 8 m RG-

The following lemmas are well known:

LEMMA 2.1. Assume G is finite. For any a e RG, an — A(a)n.

LEMMA 2.2. Let X be a set of generators ofG. Then {x - l\x e X) is a set of
generators o/Ker (A) as a left RG-module.

PROOF. If J2geGag8 e Ker(A), then ^cas8 = EgeGag8 - EgeGag =
J2gzGag(8 ~ !)• Thus is — Ms e G) generates Ker(/4). Consider now (g - 1)
as an element of RGG = RG[G]. Then, by [18, Lemma 3.1.1], {x - l\x 6 X}
generates the augmentation ideal of RG[G] and hence (g — 1) € J^xex ^ G (^ — 1) f°r

all g G G.

LEMMA 2.3 ([11, Prop. 0.3]). RG is canonically isomorphic to End (RGR).

Now we can give the necessary conditions:

THEOREM 2.4. Let G be a group acting on a ring R. Assume that RG is regular.
Then the following conditions hold:

(a) For every subgroup HofG,RHis regular. In particular R is regular.
(b) G is locally finite.
(c) For every finite subgroup H ofG, 1 e trH(/?).
(d) For every finite subgroup H ofG, RH is regular.

PROOF, (a) is trivial. By (a) we can assume that G is finitely generated. By
Lemma 2.2, Ker(A) is finitely generated; therefore RCR = /?G/Ker(A) is finitely
presented and hence projective. Let A' : R -> RG be the split homomorphism of A.
Set A'(I) = E*eG

 ahh. Then for any g e G,

A'(l) = A'(g.l) = gA'(l) =
heG AeG AeG

Thus agh = g(ah) for all g, h e G and hence ag ^ 0 for any g e G. We conclude
that G is finite and this proves (b). Moreover, 1 = AA'(1) — tr(ac), where e is the
unit of G, so (c) follows. Finally, since RGR is finitely generated projective and RG
is regular, RG = End (RGR) is regular.

By Theorem 2.4 the problem of studying when RG is regular can be reduced to
the case when G is finite. Moreover the case when R is commutative is completely
solved by Theorems 1.3 and 2.4. Explicitly:
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COROLLARY 2.5. Assume R is commutative. RG is regular if and only if R is
regular, G is locally finite and 1 e trH(R)for every finite subgroup HofG.

REMARK. When R is not commutative, a similar result is not possible. Indeed, let
G be a finite group and let A be a gr-regular G-graded ring (that is, every graded
left A-module is flat, see [14]); also assume A is not regular. (For example a group
ring S[G]with S regular, G finite and \G\ not invertible in 5.) Then G acts on the
smash product R = A#G, and RG = M|G|(A) is not regular although R is regular
and 1 = tr(p,) ([4, 3]).

Theorem 2.4 also has some consequences for the regularity of crossed products.
A crossed product R * G is a G-graded ring A (that is, a ring with a decomposition
into additive subgroups A = ®g g G Ag such that AgAh c Agk, for every g, h e G),
in which Ae = R and Ag contains an invertible element for every g e G.

COROLLARY 2.6. If R * G is a regular crossed product, then G is torsion.

PROOF. For any subgroup H of G, R * H is also regular, therefore it is enough to
prove that if G is cyclic, then it is finite. For that we use the fact that any crossed
product on a cyclic group can be expressed as a skew group ring using a diagonal
change of basis. Now, by Theorem 2.4 (b), G is cyclic and locally finite, and hence
finite.

REMARK. It would be interesting to know if in regular crossed products the group
must be locally finite.

From Theorem 2.4 we have that if RG is regular and G is finite, then RG is regular.
But if G is not finite, the regularity of RG does not imply the regularity of RG, as the
following example shows:

EXAMPLE 2.7. Let A" be a field of characteristic 0, 5 = M2(K) and P
•(-!?)•

Consider a, the inner automorphism of S defined by P. Let N denote the set of natural
numbers; for any element x € 5N and any n € N, xn will denote the n-th entry of x.
Let R be the following subring of the product ring SN:

R = {JC e SH\ there exists n e N such that xn = xn+k for all k e N }.

For every n € N consider the automorphism of R given by:

i) if 1 < m < 2n and m is even,
if 1 < m < 2n and m is odd,
if m = 1,
if In < m.
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If any element of SN is represented by a column vector with matrix entries, then on

can be represented by the N x N matrix:

( o
a"1

0
0

0

0
0
a
0

0

0 ..
0 ..
0 . .

a"1 . .

0 . .

0

. 0

. 0

. 0

. 0

. a"1

a
0
0
0

0

O

I I

Indeed on(x) = Anx for any x e SN. Let G be the subgroup of Aut (/?) generated by

K | « € N}.

G is locally finite. To prove this it is enough to show that for every n e N,

CT, , a2, . • ., on generates a finite group. Let kx, k2,..., kp e [1,2,... ,n). Then

(akp • • • ak2akl (x))m = Ppio^ • • • oklokx (x))rp where

rB — m and

•p

= 1

= m - 1 and pp = a("' r

= 2kp a n d f}p = a

T h u s (akp • • • ak2akl(x))m =$,,-•• fi2P\(xn), w h e r e

r, = ri+1 and /?, = 1
r, = r , + 1 - l and ft = a(-')r'+

r, = 2kj and ft = a

if 2kp < m,
if 1 ^ m < 2kp,
if m = 1.

if 2kj < ri+

if l^r , - + 1

if r,+1 = 1.

If ft and ft+1 are not 1, then they are inverse to each other because in this case
r, and r,+) have different parity and therefore ft • • - f tA is equal to either 1, a or

a"1. It is now clear that akp • • • aklakl can be represented by a matrix I ), where

A e M2n(S) has only one non-zero entry in each row and column and this non-zero
entry is either 1, a, or a"1. Since there are only a finite number of such matrices,
(au • • • ,an) is finite.

RG is regular. This follows from Proposition 1.1.
ftG is not regular. Indeed, if x e RG, then there exists n e N such that xn — xn+h

for every h € N. let k e N be such that n + 1 < 2k; then xn = xn+l = a(xn)

or xn = xn+x = a~l(xn) and hence xn = ( , 1 for some a, b e K. But in this
\b a)

case Xj — I I for every / e N. Thus RG is isomorphic to I ( 1 |<a, 4> e AT

which is not regular.
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The necessary conditions of Theorem 2.4 turn out to be sufficient when the action
is G -Galois. The action is said to be G-Galois if RRG is finitely generated projective
and the canonical homomorphism RG —>• End (RRG) is a ring isomorphism. This is
equivalent to G being finite and RnR = RG. (See [6,16].) If R is simple, G is finite,
and the action is outer, then RG is simple and consequently the action is G-Galois.

PROPOSITION 2.8. Let Rbea ring with G-Galois action. RG is regular if and only
if Rc is regular. Furthermore, in this case RG and RG are Morita equivalent.

PROOF. We already know that if RG is regular, then RG is regular. Assume RG is
regular; then RG = End (RRc) is also regular [8, Theorem 1.7]. In this case 1 e tr(fl),
hence RRG is a progenerator and therefore RG and RG are Morita equivalent.

REMARK. Unfortunately Proposition 2.8 cannot be generalized to an arbitrary group
action. Indeed, let K be a field of characteristic 2 and let R = M2(K). Consider G to
be the group of invertible matrices in M2(Z2) acting on R by conjugation. It is easy to

verify that RG = { ̂  ^ \a € K j and tr ^ J °jj) = ( J ° ) . If RG is regular

then RH is also regular, where H is the subgroup generated by I I. Hence RH is

also regular; but this is not the case because /?// = | l I |a, 6 G AT L Therefore

RG is not regular.

We finish this section with another special case where we have a complete charac-
terization of regular skew group rings.

PROPOSITION 2.9. Assume that any non-trivial element of G has order 2 and that
R is an algebra over afield K. Then RG is regular if and only if RH is regular and
1 e trH(R)for every finite subgroup H of G.

PROOF. We already know that the necessary conditions hold. In the other direction,
from the assumption on G, we know that G is abelian and locally finite. Therefore, in
order to prove that RG is regular, it is enough to assume that G is finite and isomorphic
to a finite direct product of copies of the group with two elements. Moreover, if K
has characteristic different from 2, then the claim follows from Proposition 1.1.

Assume K has characteristic 2. We will finish the proof by induction on the order of
G. Assume |G | = 2 and let r e /?withtr(/?) = I;thenr7r+7r(gr) = land hence the
action is G-Galois. The regularity of RG follows from Proposition 2.8. Now assume
that 2 < |G|. There exist two subgroups H and L with \H\ = 2 and G = H x L.
Then H acts on RL by ha = hah~l. By the induction hypothesis RL is regular and
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obviously 1 6 trH(RL). Moreover, RG = (RL)H. Therefore it only remains to show
that (RL)H is regular. Note that RH is L-invariant and (RL)H = (RH)L, furthermore
for every subgroup L' of L, (RH)L = RHxL' is regular, and if ixHxU{r) = 1, then
trL-(tr//(r)) = \xHxU{r) = 1 and trw(r) e R". Therefore (R")L is regular by the
induction hypothesis.

3. Abelian regular rings

In this section we present another case in which the necessary conditions are also
sufficient.

Let R be an abelian regular ring as in [8] (that is, R is a regular ring and all
idempotents are central). Let G be a finite group acting on R and let B = B(R) be
the boolean algebra of idempotents of R, with operations evf = e + f — ef and
e A / = ef. Clearly ag{e v / ) = ag(e) v ag(f) and og(e A / ) = ag(e) A og(f)\
therefore G acts on B and BG = B(RG). Since BG c Z(RG), for every prime
ideal m of BG we can consider the central localizations (RG)m = (RG)Bo\m and /?m.
Obviously /?m is contained in (RG)m, Rm is G-invariant and (RG)m = RmG.

PROPOSITION 3.1. With the above conditions, Rm is regular and 0 and 1 are the
unique idempotents of(Rm)G.

PROOF. Let <t>m : R -»• Rm be the canonical map. If e 6 BG\m then e(e - 1) = 0
and hence <j>m{e) = </>m(l) = 1. Therefore r/e = (j>m(.r)4>m(e)-1 = <j>m{r) and hence
4>m is epic. We now show that Ker {<j>m) = mR. If x € m, then 1 — x 6 BG\m
and (1 — x)x = 0; thus (j>m(x) = 0. Now let x € Ker ($m). Then ejc = 0 for some
e € BG\m; and thus x = (1 - e)x and l - « e m . Therefore #m = R/Rm. If /> is an
idempotent of R/Rm which is fixed by the action of G, then there exists e 6 B such
that e = p. Since p is fixed, e can be chosen in BG (otherwise we can change it by
/ = VseG °«(e)) ^ d m u s « e m o r l - e £ « . But p = e, so p = 0 or p = 1.

LEMMA 3.2. Lef G be a finite group acting on an abelian regular ring R such
that the only fixed idempotents are 0 and 1. Then R is semisimple artinian. In fact,
R = D", where D is a division ring and the action of G on R permutes transitively
the factors of D".

PROOF. First we will see that R has minimal idempotents. If not, for every non-
zero idempotent / e R there are orthogonal non-zero idempotents / i and f2 such that
/ = fi + f2. Now V? 6 G

 CT«(/i) = 1- So there exists x eG such that f2ax-> (/,) # 0,
and then gi = f2ax-\ (/i) and g2 = f\ are non-zero orthogonal idempotents such that
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&x(gi) < gi- We can construct in this way, by induction, two sequences of non-zero
idempotents {/1,*} and {f2,k} such that for all k e N, fhk and f2ik are orthogonal,
/i,*+i < A* and/2,i+i < /i,iandor,t(/i,t) < /2,* for some xk € G. Observe that all
xk must be different; thus since G is finite we obtain a contradiction and there exists
a minimal idempotent.

Let e be a minimal idempotent of /?. If D = e/?, then D is a division ring.
Therefore, if et, e2, •. •, en are the different elements of the form og(e) for some
g e G, we can express R = e{R ® e2R (B • • • ® enR = D" and the action of G
permutes transitively the factors.

THEOREM 3.3. Let R be an abelian regular ring and let G be a finite group acting
on R. If\ € tr(/?), then RG is regular.

PROOF. Firstly we note that (RG)m is regular for any m e Spec (flG). This is
because (RG)m = RmG, Rm has no fixed idempotents other than 0 and 1 and then,
by Lemma 3.2, Rm and hence RmG is artinian. By [19, Theorem 27.7] RmG is also
semiprime and hence it is regular.

Let x e RG and set I — {f e BG|there exists y e RG such that fx = xyx).
Clearly if / € /, the corresponding element y can be chosen in f(RG). If e € BG

and / 6 /, put yx = ey e RG; thus efx — xyxx. On the other hand, if f\, f2 e I,
f\X = xytx and f2x = xy2x by taking y = y{ + (1 — f\)y2 one has:

(/i v f2)x = (fi + f2- f\f2)x = xyxx +x{\- fi)y2x = xyx

So / is an ideal of BG. It only remains to prove that I = BG. If not, let m be a maximal
ideal of BG containing /. Since (RG)n is regular, there exists y e RG such that
(j>m{x) — (j>m{x)(j)m{y)(f)m(x). Thus there exists e e BG\m such that e(x — xyx) = 0.
S o c e / C m which yields a contradiction.

We finish with an example showing that RG regular does not imply that 1 e
tr(Z(fl)) in general.

EXAMPLE 3.4. Let K = I2(t) be the field of fractions of I2[t] and consider the
automorphism o : K —> K for which a{t) = t + 1. Let D be the classical ring
of quotients of the skew polynomial ring K[x, a]. The automorphism a extends to
an automorphism a of D by setting CT(JC) = x. Consider the group G = (a); since
tr(O = 1 and D is abelian regular, DG is regular but tr(Z(Z))) does not contain 1.

4. G -invariant pseudo-rank functions

In this section we first obtain a characterization of the regular skew group rings
RG, where G is a finite group acting on a regular right self-injective ring R. Then we
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give a new necessary condition for certain skew group rings to be regular.
If R is a regular ring and N is a G -invariant pseudo-rank function on R, we can

extend N to RG following techniques of [10,1]. We also can extend G to an action on
the N -completion R of R. Generalizing a result of Kado [10, Theorem 7], we show
that RG = RG where RG is the completion of RG with respect to the extension of N.
This implies that if RG is regular, then so is RG. Since R is regular and self-injective,
this gives us a useful tool to prove that certain skew group rings are not regular. As an
application we construct a certain skew group ring RG which is not regular, where R
is a simple regular ring and G is an outer group of automorphisms which has order 2.
An example of such a skew group ring was given in [9, Prop. 8.2], but it turns out that
their example gives a regular skew group ring. If R is a ring, J(R) will denote the
Jacobson radical of R,

PROPOSITION 4.1. Let G be a finite group acting on a regular right self-injective
ring R. The following conditions are equivalent:

(a) RG is regular.
(b) RG is semiprimitive.
(c) RG is semiprime.

PROOF. The proofs that (a) implies (b) implies (c) are well known. Assume RG
is semiprime. By [19, Theorem 4.2] J(RG)lGl c J(R)G — 0. Moreover, RG is
regular right self-injective (see [12]) and consequently RG = RG/J(RG) is regular
and right self-injective.

One can see, by using the techniques in [19, Section 18], that, for a regular right
self-injective ring R and a finite group G acting on R, RG is semiprime if and only
if the centralizer CRG{R) of R in RG is semiprime; and the latter is a finite extension
of C = Z(R). If, in addition, R is prime, then CRG(^) is isomorphic to C'tGuu,]
where Gum is the normal subgroup of G consisting of elements that act by inner
automorphisms, and C'[Ginn] is some twisted group ring of Ginn over C. See [19,
Lemma 12.4].

Let R be any ring. A pseudo-rank function on R is a map N : R —>• [0, 1] such
that:

(a) N(x + y) <N(x) + N(y);
(b) N(xy) < min(N(x), N(y));
(c) N(e + f) = N(e) + N(f) for any two orthogonal idempotents e, f e R;
(d) N(l) = l.

A rank function is a pseudo-rank function with the additional property:

(e) N(x) = 0 if and only if x = 0.
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When R is a regular ring, Condition (a) follows from (b), (c) and (d). If R is a ring
with pseudo-rank function N the rule 8(x, y) = N(x — y) defines a pseudo-metric
on R, which is a metric if and only if A? is a rank function. Since the operations on
R are continuous in the pseudo-metric, the (Hausdorff) completion R of R becomes
a ring called the N -completion of R. If R is regular then R is a unit-regular, left and
right self-injective ring: see [8, Theorem 19.7]. Let G be a group acting on a ring R.
A pseudo-rank function N on R is called G-invariant if N( gr) = N(r) for all r e 7?,
g € G. It is easy to prove that if the action of G is inner or locally inner (in the sense
that for every x e R, g e G there exists a unit M e # such that gx = u~xxu), then
every pseudo-rank function on R is G-invariant. If N is a G-invariant pseudo-rank
function on R, the action of G can be extended to the completion R in the obvious
way.

Denote by P (R) the set of all pseudo-rank functions on a regular ring R. Then P (R)
is a compact convex subset of RR; moreover, there exists an affine homeomorphism
P(R) = S(K0(R), [/?]), where S(K0(R), [/?]) is the state space of the partially
pre-ordered abelian group KO(R) with order-unit [/?]; see [8, Propositions 16.17
and 17.12].

If G is a group acting on a ring R, the rule N 8(x) = N(sx) defines an action
of G on P(R) by affine homeomorphisms. Similarly we can define an action of G
on S(KO(R), [R]) such that the canonical affine homeomorphism from P(R) onto
S(KO(R), [R]) is G-equivariant. If G is finite we can see, as in [1, Theorem 3], that
there exists an affine embedding from S(KO(R), [R])G into S(KO(RG), [RG]).

It is obvious that, if R admits a unique pseudo-rank function N, then N is G-
invariant for any group G acting on R. Note also that if N is a pseudo-rank function
on R, then No = |G|"' Yl €G Ns isa G-invariant pseudo-rank function on R.

The following result was obtained by Kado [10] in the special case that \G\~l e R
and N is an extreme point in P(R). For a Cauchy sequence {xm} in X, [x(/:)] will
denote its equivalence class in the completion X.

THEOREM 4.2. Let G be a finite group acting on a regular ring R and let N be
a G-invariant pseudo-rank function on R. Let N be the rank function obtained by
extending N to R. Then:

(a) N induces a pseudo-rank function N on RG and the N-completion of RG is
isomorphic to RG.

(b) The rank function induced by N on RG corresponds with the natural extension
of N to RG under the isomorphism in (a).

PROOF. AS in [10, 1] we can define N in the following way:

N(x) = \G\-ls([xRGR]), x eRG
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where 5 is the state corresponding to the pseudo-rank function A' in the affine homeo-
morphism P(R) = S(K0(R), [/?]). Set n = \G\ and note that RG = R" as right
^-modules. We will see that the Af-topology on RG is the same as the product
topology on R". In order to show this, we need the following:

Claim 1. s([(£geCagg)RGRl) < T,geGs([agRGR]) where a, e R for all g e G.

Claim!. For all a e R, s([aRGR]) = \G\N(a).

Proof of claim 1: We have (£geGagg)RG < EgeG(asS)RG = HgzcasRG and

g€G(agRG)R is isomorphic to a direct summand of @geG(agRG)R since
geG(agRG) R is projective. We conclude that s([(£,geG agg) RGR ])< £ g € G s &agRGR]).

Proof of claim 2: Observe that RG = ® G gR and obviously gRR = RR by left
multiplication by g. Now aRGR = @geGagR = ®geGg(s~'a)R = ®g€G(g"a)R.
Consequently s([aRGR]) = ^Gs([(^a)R]) = Egsc

N(g"a) = \G\N(a) since
N is G -invariant.

To see that the isomorphism RG = R" is a homeomorphism, it suffices to show
that for sequences {ag

k)}%Ll for each g e G, lim^oo E g e c a
g

k)S = 0 in the N-metric
if and only if lim^oc af} = 0 in the A'-metric for all g e G.

Assume first that lim^oo a(
g

k) = 0 in the A'-metric. By using Claims 1 and 2, we
compute:

E
E

geG

and it follows that Af (]T^eG ag
k)g) -> 0 as k -> oo.

Now assume that lim^^oo J2gzG a(
g

k)S = 0 in the A -̂metric. Fix h € G and
observe that (^geGaf)g)R < @geGag

k)gR- Consider the canonical projection
QgeGa™gR - • a(k)hR. The restriction of this map to (Eg e G<>.?)* 8 i v e s u s

an onto homomorphism of R-modules (£lg€Gaf)g)R ->• a(
h

k)hR. Since a^hR is a
projective /?-module, a^hR is isomorphic to a direct summand of (£,g€G ag

k)g)R.
Consequently:

It follows that linifr-Kx, Nia^) = 0. Since this holds for every h e G, we have proved
our statement about the topologies.
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In particular we see that a sequence {^2geG
agk)s} ls a Cauchy sequence in the

N-topology if and only if {a^}} is a Cauchy sequence in the N-topology for all g e G.

Consequently the map RG -> RG which sends E g e G
 af *#] t o I ^ e c ^ f ']#> *s w e ^

defined and a ring isomorphism. It is now straightforward to see that the natural
extension of N to RG corresponds to the extension of the (G-invariant) rank function
N to RG under the isomorphism defined above.

COROLLARY 4.3. Let G be a finite group acting on a regular ring R and N be a
G-invariant pseudo-rank function on R.
(a) If RG is regular, then RG is regular.
(b) If RG is regular, then J(RG) c Ker (N). If, in addition, N is a rank function

then RG is semiprimitive.

PROOF, (a) If RG is regular, then so is its completion with respect to a pseudo-rank
function. By Theorem 4.2 we have RG = RG, so we deduce that RG is regular,
(b) By [19, Theorem 4.2] we have J(RG)n = 0 where n = \G\. Let x e J(RG).
There exists a sequence {yk} in RG such that the limit of {N(x — xykx)} is 0. Now
we have N(x) = N(x - (xyk)

nx) < nN(x — xykx). It follows that x e Ker (N) and
consequently J(RG) c Ker(N).

We shall use Corollary 4.3 to obtain an example of a simple regular ring with an
outer action such that the skew group ring is not regular. Such an example was offered
in [9, Prop. 8.2], but in fact it gives a regular ring as we now show:

The correct form of the fixed ring should be

* n „
and if [a] € J¥ with P e An = M2-(F) such that [a][P][a] = [a], then it is

easy to see that [a] L,p, p , ^ps )[<«] = M and the fixed ring is regular.

Furthermore since the action is G-Galois, the skew group ring is also regular.
For a non-regular skew group ring we give the following example, which is a

variation of the one given in [9]:

EXAMPLE 4.4. A simple regular ring with an outer action such that the skew group
ring is not regular:

Let F be the field with two elements. For any n > 1 let Rn = Mt(n){F) where
t{\) — 1 andr(n-r-l) = 2"t(n). Foranyn > 1 consider the diagonal map \j/n : Rn ->•
Rn+l and the canonical map </>„ : Rn -*• R = limn>! Mnn)(F). Clearly R is a simple
regular ring.
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For any n > 1 define kn G Rn by k^ = 1 and kn =

( I 0 . . . 0 I
0 I . . . 0 0

where the

\ 0 0 . . . 0 I
matrix is decomposed into t(n — 1)-blocks in Rn and / denotes the identity matrix.
Define xn by induction as follows: xx = 1 € Ri and

xn+\ —

xn 0 . . . 0 knxn \
0 xn . . . 0 0

V o o ... o xn )
It is easy to see that Xn commutes with xn and that x\ = \ for all n > 1. Now define
an automorphism a of 7? as follows:

o(<f>n(A)) = 0n (A e Rn).

Since kn+i e CRn+l (isn(Rn)), it is easy to see that a is a well defined automorphism of
order two on R, and clearly o is outer; furthermore let G = (a).

Let N be the unique rank function on R, given by N((pn(A)) = rank(A)/t(n)
for A € Rn. The rank function N is G-invariant and a extends to an automorphism
a of R. Since A^(0n+1(xn+1) — </>„(.*„)) = 1/2", we see that {$„(*„)} is a Cauchy
sequence in R. Now put x = lim,,_).oo0nO;,,) e R. It is clear that a is an inner
automorphism of R, given by conjugation by x. Since the center of R is isomorphic
to F (see [7, Theorem 2.8(c)]), and Ginn = G on R, we obtain that C'[Ginn] = F[G]
is not semiprime. It follows from [19, Lemma 18.8(ii)] that RG is not semiprime and
consequently not regular. Finally, Corollary 4.3(a) implies that RG is not regular.

REMARK. Note that in the previous example RG is not regular and 1 e
Indeed, the first is a consequence of Proposition 2.8, and an element of trace 1 is
^3 {a)) where a>, decomposed in 2-blocks, is given by

x 0 0 v
0 x 0 0
0 0 x 0
0 0 0 x

where
(\ o\ /o o\

It follows that RG and RG are Morita equivalent. In particular RG is a simple ring
and its completion with respect to the rank function N restricted to RG is RG which is
a self-injective non-regular ring.

Finally we obtain a result which implies that in Example 4.4 the ring RG is neither
left nor right P. P. (A ring R is said to be left P. P. if every cyclic left ideal is projective.)
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PROPOSITION 4.5. Let G be a finite group acting on a regular ring R. If RG is a

left P.P. ring, then Rc is regular.

PROOF. Let r e RG. Since P = (RG)(nr) is a projective flG-module, the map

RG -»• P given by right multiplication by nr splits. Let cp : P —»• RG be a

splitting for this map. Write <p(nr) = ]T e G agg. As in the proof of Theorem 2.4,

ag = gai for all g e G. Set a = ax. Thus a e rR(lR(r)) = rR and consequently

a = rb for some b e R. Note that nr = <p(nr)nr = na • nr = ntr(a)r. So
r = tr(a)r = tr(rb)r = rtr(fo)r. It follows that /?G is regular.

It was claimed in [15, Corollary 4] that, for a simple ring S and a finite group

G of outer automorphisms of 5, SG is a simple ring if and only if the homological

dimension of any left S G -module A coincides with the homological dimension of A

viewed as an 5-module. However, the ring R of Example 4.4 gives a counterexample

to this claim. Indeed, every cyclic left ideal of RG is projective as a left R-module

because R is regular, but it follows from Proposition 4.5 that at least one cyclic left

ideal of RG is not projective as an RG-module.
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