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In this paper, we give necessary and sufficient conditions for the rigidity of the
perimeter inequality under Schwarz symmetrization. The term rigidity refers to the
situation in which the equality cases are only obtained by translations of the
symmetric set. In particular, we prove that the sufficient conditions for rigidity
provided in M. Barchiesi, F. Cagnetti and N. Fusco [Stability of the Steiner
symmetrization of convex sets. J. Eur. Math. Soc. 15 (2013), 1245-1278.] are also
necessary.
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1. Introduction

Symmetrization procedures have a wide range of applications in modern analysis,
geometric variational problems and optimization. Understanding the behaviour of
functional and perimeter inequalities under symmetrization allows to prove the
existence of symmetric minimisers of geometric variational problems, and to provide
comparison principles for solutions of PDEs (see, for instance [9, 14, 15, 16, 19,
21, 22, 24, 25] and the references therein).

Examples of set symmetrizations under which the volume is preserved and
the perimeter does not increase include Steiner symmetrization, Ehrhard sym-
metrization, circular and spherical symmetrization. We say that rigidity holds for
a perimeter inequality if the set of extremals is trivial. Showing rigidity can lead to
proving the uniqueness of minimisers of variational problems. For example, proving
the rigidity of Steiner’s inequality for convex sets was substantial in the celebrated
proof of the Euclidean isoperimetric inequality by De Giorgi (see, [10, 11]).

Later on, the study of rigidity was revived in the seminal paper of Chleb́ık,
Cianchi and Fusco (see [8]), where the authors gave the sufficient conditions for
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rigidity of Steiner’s inequality, also for sets that are not convex. Henceforth, neces-
sary and sufficient conditions for rigidity for Steiner’s inequality have been obtained
in [5] in the case where the distribution function is a special function of bounded
variation with locally finite jump set. In the Gauss space, necessary and sufficient
conditions for rigidity of Ehrhard’s inequality are given in [6]. In the last two papers,
the results are stated in terms of essential connectedness. For an expository article
of the aforementioned rigidity results, we refer to [4]. In [7], the authors provided
the necessary and sufficient conditions for rigidity for perimeter inequality under
spherical symmetrization, while in [20], sufficient conditions for rigidity have been
given for the anisotropic Steiner’s perimeter inequality. We further point out that,
regarding the smooth case, the authors in [18] proved sufficient conditions for rigid-
ity of perimeter inequality in warped products, for a wide class of symmetrizations,
including Steiner, Schwarz and spherical symmetrization.

The literature about Steiner’s perimeter inequality of a higher codimension is less
explored. Particularly, sufficient conditions for rigidity for any codimension have
been provided in [2], through a comprehensive analysis of the barycenter func-
tion. The problem of a complete characterization (that is, necessary and sufficient
conditions) for the rigidity of generic higher codimensions, however, remains open.

A special case of interest is where the codimension is equal to (n− 1). In this case,
Steiner’s symmetrization of codimension (n− 1) is usually referred to as Schwarz
symmetrization.

The purpose of this paper is to provide necessary and sufficient conditions for
rigidity of equality cases for the perimeter inequality under Schwarz symmetriza-
tion. In particular, we prove that the sufficient conditions for rigidity shown in [2]
are also necessary. Our results are established by following techniques developed in
[7].

In the remainder of this introductory section, we recall the setting of the problem,
and we state our main results.

1.1. Schwarz symmetrization

For n � 2 with n ∈ N, we label each point x ∈ R
n as x = (z, w), where z ∈ R

and w ∈ R
n−1.

Given a measurable set E ⊂ R
n and z ∈ R, we define the (n− 1)-dimensional

slice of E at z as

Ez := {w ∈ R
n−1 : (z, w) ∈ E}. (1.1)

For a Lebesgue measurable function � : R → [0, ∞), we say that the set E is
�-distributed if

�(z) = Hn−1(Ez) for H1-a.e. z ∈ R, (1.2)

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure in R
n.

We can associate to � the function r� : R → [0, ∞), which is such that

�(z) = Hn−1
(
Bn−1(0, r�(z)

)
, for H1-a.e. z ∈ R,

where Bn−1(w, ρ) denotes the open ball in R
n−1 with radius ρ and centred at

w ∈ R
n−1.
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Rigidity for the perimeter inequality 3

Figure 1. The symmetric set F� (left) of an �-distrubuted set E (right) in case of n = 3.
Note that, in general the slices of the set E do not need to be disks.

Note that r�(z) is the radius of an (n− 1)-dimensional ball whose measure is
�(z), and can be explicitly written as

r�(z) =
(
�(z)
ωn−1

)1/n−1

for H1-a.e. z ∈ R, (1.3)

where we set ωn−1 := Hn−1(Bn−1(0, 1)).
If E ⊂ R

n is �-distributed, then the Schwarz symmetric set F� of E with respect
to the axis {w = 0} is defined as

F� :=
{
x = (z, w) ∈ R × R

n−1 : |w| < r�(z)
}

; (1.4)

see Figure 1.
This is the �-distributed set whose cross sections are (n− 1)-dimensional open

balls centred at the z axis. We notice that the Schwarz symmetric set F� of an
�-distributed set E depends only on the function �, and not on the particular �-
distributed set E under consideration.

Due to Fubini’s theorem, Schwarz symmetrization preserves the volume, i.e. if E
is �-distributed and Hn(E) <∞, it turns out that Hn(E) = Hn(F�). Moreover, the
perimeter inequality under Schwarz symmetrization holds, that is

P (F�) � P (E)for every �-distributed set E ⊂ R
n, (1.5)

see, for instance, [3]. Here, P (E) stands for the perimeter of E in R
n (see §

2.4). Additionally, a localized version of (1.5) holds, that is, if E is a set of finite
perimeter, then

P (F�;B × R
n−1) � P (E;B × R

n−1), (1.6)

for every Borel set B ⊂ R, see [2, Theorem 1.1].
The inequality (1.6) is well-known in the literature (see, for instance, [3], where

this is proved through a careful approximation by polarizations). In [2], one can
find an alternative and direct proof, which allowed the authors to give sufficient
conditions for rigidity of Steiner’s inequality of a general higher codimension k,
where 1 < k � n− 1.
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Figure 2. Rigidity (RS) fails, since the (reduced) boundary ∂∗F� of F� has a non-negligible
flat vertical part, thus violating (RS). Note that the function � is discontinuous at z̃, so
that also (1.10) is violated.

1.2. Rigidity for perimeter inequality under Schwarz symmetrization

We shall now describe the main objective of the present paper. Given a Lebesgue
measurable function � : R → [0, ∞), such that F� is a set of finite perimeter and
finite volume, we define the class of equality cases of (1.6) as

K(�) = {E ⊂ R
n : E is �-distributed and P (F�) = P (E)}. (1.7)

Due to the invariance of the perimeter under translations along a direction τ ∈
R

n−1, as well as the definition of the symmetric set F�, the following inclusion is
always true:

K(�) ⊃ {E ⊂ R
n : Hn(E�(F� + (0, τ))) = 0 for some τ ∈ R

n−1}, (1.8)

where � denotes the symmetric difference of sets. We say that rigidity holds for
(1.6) if the opposite inclusion is also satisfied, i.e.

K(�) = {E ⊂ R
n : Hn(E�(F� + (0, τ)) = 0 for some τ ∈ R

n−1}. (RS)

1.3. State of the art

Let us now give an account of the available results in the literature for the rigidity
of (1.6). In general, not all equality cases of (1.6) can be written as a translation
of the symmetric set F�. This can happen, for instance, if the (reduced) boundary
∂∗F� of F� contains flat vertical parts. In such a case, we can find an �-distributed
set E which preserves perimeter under symmetrization, and it is not equivalent to
(a translation of) the symmetric set F�; see Figure 2.

In order to rule out this issue, the authors in [2] localized the problem, by
considering an open set Ω ⊂ R, and imposing the following condition:

Hn−1({(z, w) ∈ ∂∗F� : νF�
w (z, w) = 0} ∩ (Ω × R

n−1)) = 0, (1.9)

where νF�
w (z, w) denotes the w-component of the measure-theoretic outer unit nor-

mal to the symmetric set F�. It turns out that (1.9) is related to the regularity of
the function �. Note that, in general, if E is a set of finite perimeter in R

n, then
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Figure 3. Rigidity (RS) fails, since the set {�∧ > 0} is disconnected by a point z̃ ∈ R,
where �(z̃) = 0, thus, violating (1.11).

either F� is equivalent to R
n, or � is a function of Bounded Variation in R (see

proposition 2.2).
In [2, Proposition 3.5], the authors showed that (1.9) is equivalent to asking that

� is a Sobolev function in Ω, as explained below.

Proposition 1.1. Let � : R → [0, ∞) be a measurable function, such that F� is a
set of finite perimeter and finite volume in R

n and let Ω ⊂ R be an open set. Then

Hn−1({(z, w) ∈ ∂∗F� : νF�
w (z, w) = 0} ∩ (Ω × R

n−1)) = 0

if and only if

� ∈W 1,1(Ω). (1.10)

Even if condition (1.9) (or, equivalently, (1.10)) is satisfied, rigidity can still be
violated. In particular, this can happen when the symmetric set F� is not connected
in a suitable measure-theoretic way, despite the fact that it can be connected from
a topological point of view; see Figure 3.

Note that, once condition (1.9) [or, equivalently, (1.10) is imposed, we have that
� ∈W 1,1(Ω), and since Ω is a one-dimensional set, � is absolutely continuous in Ω.
Therefore the condition imposed in [2] to rule out situations as in Figure 3 can be
written as

�∗(z) > 0 for all z ∈ Ω, (1.11)

where �∗ denotes the Lebesgue representative of �, see [2, condition (1.4)].
It turns out that (1.9) and (1.11) are sufficient for rigidity (see [2, Theorem 1.2]),

as explained below.

Theorem 1.2. Let � : R → [0, ∞) be a measurable function, such that F� is a set of
finite perimeter and finite volume. Let Ω ⊂ R be a connected open set, and suppose
that (1.9) and (1.11) are satisfied. If

P (F�; Ω × R) = P (E; Ω × R),

then E ∩ (Ω × R) is equivalent to (a translation along R
n−1) of F� ∩ (Ω × R). Here,

P (E; Ω × R) denotes the relative perimeter of E in Ω × R.
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1.4. The main result

Our contribution is to show that conditions (1.9) and (1.11) are also necessary
for rigidity. As we have already observed, the proof of the theorem 1.2 requires
the localization of the problem in an open and connected set Ω ⊂ R, to impose
the condition (1.10). We will show that this can be avoided. We also notice that,
if F� is a set of finite perimeter and finite volume, in general, we only have that
� ∈ BV (R) and this means that � may be discontinuous. Therefore, we need to
rephrase condition (1.11) in terms of the approximate lim inf �∧ of � at every point
z ∈ R, see § 2. We are now able to state our main result. Below, J̊ denotes the
interior of J .

Theorem 1.3. Let � : R → [0, ∞) be a measurable function, such that F� is a set of
finite perimeter and finite volume. Then, the following statements are equivalent:

(i) (RS) holds true;

(ii) {�∧ > 0} is a (possibly unbounded) interval J and � ∈W 1,1(J̊).

As we have already pointed out, the proof of the direction (ii) =⇒ (i) of theorem
1.3 relies on the proof of [2, Theorem 1.2]. We will prove that the converse
(i) =⇒ (ii) is also true. We highlight the fact that our approach is not based on a
comprehensive use of a general perimeter formula for sets E ⊂ R

n satisfying equality
in (1.6), as it appears in [6]. On the contrary, inspired by the techniques developed
in [7], we analyse the properties of the function � and we provide a careful study of
the transformations that can be applied on the symmetric set F�, without creating
any perimeter contribution.

To this end, the rest of the paper is structured as follows. In § 2, we fix the
notation, build the necessary background and we gather some preliminary results
that appeared in the literature. In § 3, we show the direction (i) =⇒ (ii) of
theorem 1.3, by studying the properties of the distribution function �, and exploiting
counterexamples where rigidity is violated.

2. Background and proof of the theorem 1.3 (ii) =⇒ (i)

In this section, we will recall the necessary machinery, which will be used throughout
the paper. The interested reader could refer to [1, 2, 12, 13, 17, 23].

We fix n ∈ N with n � 2. For each x ∈ R
n, we write x = (z, w), with z ∈ R and

w ∈ R
n−1. The standard Euclidean norm will be denoted by | · | in R, R

n−1 or
R

n depending on the context. For 1 � m � n, we will denote the m-dimensional
Hausdorff measure in R

n by Hm. For every radius ρ > 0 and x ∈ R
n we write Bρ(x)

for the open ball of R
n with radius ρ and centred at x. The volume of the unit ball

in R
n is denoted as ωn, i.e., ωn := Hn(B1(0)). Note that throughout the paper,

in case of balls in different dimensions, we will denote the corresponding ball in
dimension m with radius ρ centred at w ∈ R

m by writing Bm(w, ρ).
Now, for x ∈ R

n and ν ∈ ∂B1(0), we set

H+
x,ν= {y ∈ R

n : 〈(y − x), ν〉 � 0}
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and

H−
x,ν = {y ∈ R

n : 〈(y − x), ν〉 � 0} .

Let {Ej}j∈N be a sequence of Lebesgue measurable sets in R
n with Hn(Ej) <∞

for every j ∈ N, and let E ⊂ R
n be a Lebesgue measurable set with Hn(E) <∞.

We say that {Ej}j∈N converges to E as j → ∞ and we write

Ej → E if Hn(Ej�E) → 0 as j → ∞,

where � stands for the symmetric difference of sets. Additionally, if E1, E2 ⊂ R
n

are Lebesgue measurable sets, we say that

E1 ⊂Hn E2 if Hn(E1\E2) = 0,

and

E1 =Hn E2 if Hn(E1�E2) = 0.

Moreover, the characteristic function of a Lebesgue measurable set E ⊂ R
n will be

denoted by χE .

2.1. Density points

Let E ⊂ R
n be a Lebesgue measurable set and x ∈ R

n. We define the lower and
upper n-dimensional densities of E at x as

θ∗(E, x) = lim inf
ρ→0+

Hn(E ∩Bρ(x))
ωnρn

, and θ∗(E, x) = lim sup
ρ→0+

Hn(E ∩Bρ(x))
ωnρn

,

respectively. The maps x �−→ θ∗(E, x) and x �−→ θ∗(E, x) are Borel functions (even
in case where E is Lebesgue non-measurable, see [23, Chapter 1, Remark 3.1]) and
they coincide Hn-a.e. in R

n. Hence, the n-dimensional density of E at x is defined
as the Borel function

θ(E, x) = lim
ρ→0+

Hn(E ∩Bρ(x))
ωnρn

, for Hn-a.e. x ∈ R
n.

For each s ∈ [0, 1], we define the set of points of density s with respect to E as

E(s) := {x ∈ R
n : θ(E, x) = s}

The essential boundary ∂eE of E is defined as the set

∂eE := R
n\(E(0) ∪ E(1))
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2.2. Approximate limits of measurable functions

Let g : R
n → R be a Lebesgue measurable function. We define the approximate

upper limit g∨(x) and the approximate lower limit g∧(x) of g at x ∈ R
n as

g∨(x) = inf
{
s ∈ R : x ∈ {g > s}(0)

}
= inf

{
s ∈ R : x ∈ {g < s}(1)

}
(2.1)

and

g∧(x) = sup
{
s ∈ R : x ∈ {g < s}(0)

}
= sup

{
s ∈ R : x ∈ {g > s}(1)

}
, (2.2)

respectively. We highlight the fact that both g∨ and g∧ are Borel functions and they
are defined for every x ∈ R

n with values in R ∪ {±∞}. In addition, if g1 : R
n → R

and g2 : R
n → R are measurable functions such that g1 = g2 Hn-a.e. on R

n, then
it turns out that

g∧1 (x) = g∧2 (x) and g∨1 (x) = g∨2 (x) for every x ∈ R
n.

The approximate discontinuity set Sg of g is defined as

Sg := {g∧ �= g∨},

and satisfies Hn(Sg) = 0. Moreover, even if g∧, g∨ could take values ±∞ on Sg, it
turns out that the difference g∨ − g∧ is well-defined in R ∪ {±∞} for every point
x ∈ Sg. In the light of the above considerations, the approximate jump [ g ] of g is
the Borel function [ g ] : R

n → [0, ∞] defined as

[ g ](x) :=

{
g∨(x) − g∧(x), if x ∈ Sg

0, elsewhere.

Let E ⊂ R
n be a Lebesgue measurable set. We will say that s ∈ R ∪ {±∞} is the

approximate limit of g at x with respect to E, denoted by s = aplim(g, E, x), if

θ({|g − s| > ε} ∩ E, x) = 0, for every ε > 0 (s ∈ R), (2.3a)

θ({g < M} ∩ E, x) = 0, for every M > 0 (s = +∞), (2.3b)

and

θ({g > −M} ∩ E, x) = 0, for every M > 0 (s = −∞). (2.3c)

We will say that x ∈ Sg is a jump point of g if there exist ν ∈ ∂B1(0) such that

g∨(x) = aplim(g,H+
x,ν , x) and g∧(x) = aplim(g,H−

x,ν , x).

In this spirit, we define the approximate jump direction νg(x) of g at x as νg(x) := ν.
The set of approximate jump points of g is denoted by Jg. Note that Jg ⊂ Sg and
νg : Jg → ∂B1(0) is a Borel function.
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2.3. Functions of bounded variation

Let Ω ⊂ R
n be an open set. We denote by C1

c (Ω; Rn) and by Cc(Ω; Rn) the
class of C1 functions with compact support and the class of all continuous func-
tions with compact support from Ω to R

n, respectively. We also recall the Sobolev
space W 1,1(Ω), that is, the space of all functions g ∈ L1(Ω), whose distributional
derivative Dg belongs to L1(Ω).

Given g ∈ L1(Ω), the total variation of g in Ω is defined as

|Dg|(Ω) = sup
{∫

Ω

g(x) div T (x) dx : T ∈ C1
c (Ω; Rn), |T | � 1

}
.

We then define the space of functions of bounded variation in Ω, denoted by BV (Ω),
as the set of functions g ∈ L1(Ω) such that |Dg|(Ω) <∞. In addition, we will say
that g ∈ BVloc(Ω), if g ∈ BV (Ω′) for every Ω′ ⊂⊂ Ω. If g ∈ BV (Ω), due to Radon-
Nikodym decomposition of Dg with respect to Hn, we have

Dg = Dag +Dsg,

where Dag and Dsg are mutually singular measures and Dag � Hn. The density of
Dag with respect to Hn will be denoted as ∇g, and we have that ∇g ∈ L1(Ω, R

n)
with Dag = ∇g dHn. Additionally, it turns out that Hn−1(Sg\Jg) = 0 and [ g ] ∈
L1

loc(Hn−1 Jg), see [1, Theorem 3.78]. The jump part of g is the R
n-valued Radon

measure given by

Djg = [ g ]νgdHn−1 Jg. (2.4)

Finally, the Cantorian part Dcg of Dg is defined as the R
n-valued Radon measure

Dcg = Dsg −Djg,

and is such that |Dcg|(N) = 0 for every set N ⊂ R
n, which is σ-finite with respect

to Hn−1, see [1, Proposition 3.92].
Note, that in the special case n = 1, if (a, b) ⊂ R is an open interval, every

g ∈ BV (a, b) can be decomposed as the sum

g = ga + gj + gc, (2.5)

where ga ∈W 1,1(a, b), gj is a purely jump function (that is, Dgj = Djgj) and
gc is a purely Cantorian function (that is, Dgc = Dcgc), see [1, Corollary 3.33].
Moreover, if g is a good representative (see [1, Theorems 3.27, 3.28]), then the total
variation |Dg| of Dg can be written as

|Dg|(a, b) = sup

{
M∑
i=1

|g(xi+1) − g(xi)| : a < x1 < x2 < · · · < xM < b

}
(2.6)

where the supremum is taken over all M ∈ N and over all possible partitions of the
interval (a, b) with a < x1 < x2 < · · · < xM < b.
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2.4. Sets of locally finite perimeter in the Euclidean space

Let n, m ∈ N with 1 � m � n. Let also E ⊂ R
n be an Hm-measurable set. We

say that E is a countably Hm-rectifiable set if there exists a countable family of
Lipschitz functions (gj)j∈N, where gj : R

m → R
n, such that E ⊂Hm

⋃
j∈N

gj(Rm).
In addition, if Hm(E ∩K) <∞ for every compact set K ⊂ R

n, we say that E is a
locally Hm-rectifiable set.

Let E ⊂ R
n be a Lebesgue measurable set. We say that E is a set of locally finite

perimeter in R
n if there exists an R

n-valued Radon measure μE , such that∫
E

∇ψ(x) dx =
∫

Rn

ψ(x) dμE , for every ψ ∈ C1
c (Rn).

Note that, E is a set of locally finite perimeter if and only if χE ∈ BVloc(Rn). If
G ⊂ R

n is a Borel set, then the relative perimeter of E in G is defined as

P (E;G) := |μE |(G).

When G = R
n, we ease the notation to P (E) := P (E; Rn).

The reduced boundary ∂∗E of E is the set of all x ∈ R
n such that

νE(x) = lim
ρ→0+

μE(Bρ(x))
|μE |(Bρ(x))

exists and belongs to ∂B1(0).

The Borel function νE : ∂∗E → ∂B1(0) is usually referred to as the measure-
theoretic outer normal to E. Due to Lebesgue-Besicovitch derivation theorem and
[1, Theorem 3.59], it holds that the reduced boundary ∂∗E of E is a locally
(n− 1)-rectifiable set in R

n and

μE = νEHn−1 ∂∗E,

so that ∫
E

∇ψ(x) dx =
∫

∂∗E

φ(x)νE(x) dHn−1(x) for every ψ ∈ C1
c (Rn).

Thus, for every Borel set G ⊂ R
n we have that

P (E;G) = |μE |(G) = Hn−1(G ∩ ∂∗E).

Finally, if E is a set of locally finite perimeter, it holds

∂∗E ⊂ E(1/2) ⊂ ∂eE, (2.7)

and additionally, thanks to Federer’s theorem (see e.g., [1, Theorem 3.61] or
[17, Theorem 16.2]), we have that

Hn−1(∂eE \ ∂∗E) = 0, (2.8)

which implies that the essential boundary ∂eE of E is locally Hn−1-rectifiable
in R

n.
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2.5. Preliminary results

In this final subsection, we state some results which will be useful in the following.
The first significant result relates to the set Ez defined in (1.1). Namely, as it

turns out, for H1-a.e z ∈ R, Ez is a set of finite perimeter and its reduced boundary
∂∗(Ez) enjoys an advantageous property. These facts follow due to a variant of a
result by Vol’pert [26], which is provided in [2, Theorem 2.4].

Proposition 2.1 Vol’pert. Let E be a set of finite perimeter in R
n. Then for

H1-a.e. z ∈ R the following hold true:

(i) Ez is a set of finite perimeter in R
n−1;

(ii) Hn−2((∂∗E)z�∂∗(Ez)) = 0.

Thanks to (ii) above, we will often write ∂∗Ez instead of (∂∗E)z or ∂∗(Ez). The
next result presents a crucial regularity property of the function �, and it can be
found in [2, Lemma 3.1].

Proposition 2.2. Let E be a set of finite perimeter in R
n. Then either �(z) = ∞

for H1-a.e. z ∈ R, or �(z) <∞ for H1-a.e. z ∈ R and Hn(E) <∞. In the latter
case, we have � ∈ BV (R).

We present the following auxiliary inequality, which is a special case of
[2, Proposition 3.4].

Proposition 2.3. Let � : R → [0, ∞) be a measurable function, such that F� is a
set of finite perimeter and finite volume. Let E ⊂ R

n be an �-distributed set and let
f : R → [0, ∞] be a Borel measurable function. Then∫

∂∗E

f(z) dHn−1(x) �
∫

R

f(z)
√

(Hn−2(∂∗Ez))2 + |∇�(z)|2 dz +
∫

R

f(z) d|Ds�|(z),
(2.9)

Moreover, if E = F�, the equality holds in (2.9).

A straightforward consequence of the above result is the following.

Corollary 2.4. Let � : R → [0, ∞) be a measurable function, such that F� is a set
of finite perimeter and finite volume. Then

P (F�;B × R
n−1) =

∫
B

√
(Hn−2(∂∗(F�)z))2 + |∇�(z)|2 dz + |Ds�|(B), (2.10)

for every Borel set B ⊂ R.

For sake of completeness, we close this preliminary section by presenting the
proof of theorem 1.3 (ii) =⇒ (i).

Proof of theorem 1.3 (ii) =⇒ (i). Suppose that (ii) holds. Since � ∈W 1,1(J̊), by
proposition 1.1, the condition (RS) is satisfied with Ω = J̊ . In addition, since J is
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one-dimensional, � is absolutely continuous in J̊ and therefore,

�∧(z) = �∨(z) = �∗(z) > 0 for all z ∈ J̊ ,

where �∗ stands for the Lebesgue representative of �. Thus, it turns out that (1.11)
is true. Therefore, due to theorem 1.2, (i) follows. �

3. Proof of the theorem 1.3 (i) =⇒ (ii)

We start our analysis with the following lemma, which will be extensively used in
the sequel.

Lemma 3.1. Let � : R → [0, ∞) be a measurable function, such that F� is a set of
finite perimeter and finite volume. Let also r� be defined as in (1.3) and consider
z̄ ∈ R. Then

(∂∗F�)z̄ =Hn−1 Bn−1(0, r∨� (z̄))\Bn−1(0, r∧� (z̄)). (3.1)

Proof. The proof is divided into two steps.

Step 1: We prove

(∂∗F�)z̄ ⊂ Bn−1(0, r∨� (z̄))\Bn−1(0, r∧� (z̄)). (3.2)

To this end, it is enough to prove that

r∧� (z̄) � |w| for every w ∈ (∂∗F�)z̄ (3.3a)

and

r∨� (z̄) � |w| for every w ∈ (∂∗F�)z̄. (3.3b)

First, we prove (3.3a). To achieve that, we observe that (3.3a) will follow by
proving the implication:

r∧� (z̄) > |w| =⇒ (z̄, w) ∈ F
(1)
� ,

or equivalently,

r∧� (z̄) > |w| =⇒ (z̄, w) ∈ (Rn\F�)(0).

To this aim, let w ∈ R
n−1 be such that r∧� (z̄) > |w|, and let δ > 0 be such that

r∧� (z̄) = |w| + δ.

Let now ρ̄ ∈ (0, δ/2]. Then,

|w − w′| < ρ̄ � δ

2
for every (z′, w′) ∈ Bρ̄((z̄, w)).

By virtue of the triangle inequality, we have

r∧� (z̄) = |w| + δ � |w′| − |w − w′| + δ > |w′| + δ

2
,
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so that

r∧� (z̄) − δ

2
> |w′| for every (z′, w′) ∈ Bρ̄((z̄, w)). (3.4)

Now, thanks to (3.4) and the definition of F�, we have

(Rn\F�) ∩Bρ̄((z̄, w))

⊂
{

(z′, w′) ∈ R × R
n−1 : r∧� (z̄) − δ

2
> |w′| � r�(z′)

}
∩Bρ̄((z̄, w)).

Hence, for every ρ ∈ (0, ρ̄), we have

Hn((Rn\F�) ∩Bρ((z̄, w)))

=
∫ z̄+ρ

z̄−ρ

Hn−1((Rn\F�) ∩Bρ((z̄, w)) ∩ {z = ζ}) dζ

�
∫ z̄+ρ

z̄−ρ

χ{r�<r∧
� (z̄)− δ

2}(ζ)Hn−1((Rn\F�) ∩Bρ((z̄, w)) ∩ {z = ζ}) dζ

=
∫

(z̄−ρ,z̄+ρ)∩{r�<r∧
� (z̄)− δ

2}
Hn−1((Rn\F�) ∩Bρ((z̄, w)) ∩ {z = ζ}) dζ.

Now, for ρ ∈ (0, ρ̄) and for every ζ ∈ (z̄ − ρ, z̄ + ρ), we observe that,

Bρ((z̄, w)) ∩ {z = ζ} ⊂ {
(z, w0) ∈ R × R

n−1 : z = z̄ and w0 ∈ Bn−1(w, ρ)
}
.

Therefore, for ρ ∈ (0, ρ̄) we obtain

Hn((Rn\F�) ∩Bρ((z̄, w)))

�
∫

(z̄−ρ,z̄+ρ)∩{r�<r∧
� (z̄)− δ

2}
Hn−1(Bn−1(w, ρ)) dζ

= ωn−1ρ
n−1

∫
(z̄−ρ,z̄+ρ)∩{r�<r∧

� (z̄)− δ
2}

1 dζ

= ωn−1ρ
n−1 H1((z̄ − ρ, z̄ + ρ) ∩

{
r� < r∧� (z̄) − δ

2

}
).

Finally, we have

lim
ρ→0+

Hn((Rn\F�) ∩Bρ((z̄, w)))
ωnρn

� ωn−1

ωn
lim

ρ→0+

H1((z̄ − ρ, z̄ + ρ) ∩ {
r� < r∧� (z̄) − δ

2

}
)

ρ

= 0,

where in the last equality we make use of the definition of r∧� (z̄), see (2.2). This
shows (3.3a). Employing an analogous argument, it can be shown that

r∨� (z̄) < |w| =⇒ (z̄, w) ∈ F
(0)
� .
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Figure 4. A graphical illustration of Step 1 for n = 3.

This implies (3.3b), and finally proves (3.2). For a graphical illustration of Step
1, see Figure 4.

Step 2: We conclude the proof. We first observe that by corollary 2.4 with B = {z̄},
we obtain

Hn−1((∂∗F�)z̄) = Hn−1(∂∗F� ∩ {z = z̄})
= Hn−1(∂∗F� ∩ ({z̄} × R

n−1))

= P (F�; {z̄} × R
n−1)

= �∨(z̄) − �∧(z̄)

= Hn−1(Bn−1(0, r∨� (z̄))) −Hn−1(Bn−1(0, r∧� (z̄)))

= Hn−1(Bn−1(0, r∨� (z̄))
∖
(Bn−1((0, r∧� (z̄)))).

Finally, recalling that, by Step 1

(∂∗F�)z̄ ⊂ Bn−1(0, r∨� (z̄))\Bn−1(0, r∧� (z̄)),

we obtain

(∂∗F�)z̄ =Hn−1 Bn−1(0, r∨� (z̄))\Bn−1(0, r∧� (z̄))

=Hn−1 Bn−1(0, r∨� (z̄))\Bn−1(0, r∧� (z̄)),

which concludes the proof. �

Now, we can show that if the set {�∧ > 0} fails to be a (possibly unbounded)
interval, then rigidity is violated.
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Proposition 3.2. Let � : R → [0, ∞) be a measurable function, such that F� is a set
of finite perimeter and finite volume, and let r� be defined as in (1.3). Suppose that
the set {�∧ > 0} is not an interval. That is, suppose that there exists z̄ ∈ {�∧ = 0}
such that

(−∞, z̄) ∩ {�∧ > 0} �= ∅ and (z̄,+∞) ∩ {�∧ > 0} �= ∅.
Then, rigidity is violated. More precisely, setting E1 := F� ∩ {z < z̄} and
E2 = F�\E1, then

E := E1 ∪ ((0, τ) + E2) ∈ K(�) for every τ ∈ R
n−1.

Proof. Let E1, E2 and E be as in the statement. Let also τ ∈ R
n−1. First of all,

note that, since {z < z̄} is open and E ∩ {z < z̄} = F� ∩ {z < z̄}, we have

E(s) ∩ {z < z̄} = (E ∩ {z < z̄})(s) = (F� ∩ {z < z̄})(s) = F
(s)
� ∩ {z < z̄}

for every s ∈ [0, 1]. In accordance of that, we infer

∂∗E ∩ {z < z̄} = ∂∗F� ∩ {z < z̄}. (3.5)

In the same fashion, for every τ ∈ R
n−1, we obtain

∂∗E ∩ {z > z̄} = ∂∗((0, τ) + F�) ∩ {z > z̄}
= ((0, τ) + ∂∗F�) ∩ {z > z̄}
= (0, τ) + (∂∗F� ∩ {z > z̄}). (3.6)

Hence, due to (3.5) and (3.6), we have

P (E) = Hn−1(∂∗E ∩ {z < z̄}) + Hn−1(∂∗E ∩ {z = z̄}) + Hn−1(∂∗E ∩ {z > z̄})
= Hn−1(∂∗F� ∩ {z < z̄}) + Hn−1(∂∗E ∩ {z = z̄})

+ Hn−1((0, τ) + (∂∗F� ∩ {z > z̄}))
= Hn−1(∂∗F� ∩ {z < z̄}) + Hn−1(∂∗E ∩ {z = z̄}) + Hn−1(∂∗F� ∩ {z > z̄}).

As a consequence, in order to complete the proof, we need to show that

Hn−1(∂∗E ∩ {z = z̄}) = Hn−1(∂∗F� ∩ {z = z̄}). (3.7)

In what will follow, without loss of generality we assume that

r∨� (z̄) = aplim(r�, (−∞, z̄), z̄) and r∧� (z̄) = aplim(r�, (z̄,+∞), z̄) = 0. (3.8)

We divide the proof of (3.7) in several steps.

Step 1: We show that

(∂∗E)z̄ ⊂ Bn−1(0, r∨� (z̄)) ∪ {τ}. (3.9)

To this end, it suffices to prove that

|w| � r∨� (z̄) for every w ∈ (∂∗E)z̄\{τ}. (3.10)
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Step 1a: We show that

|w| > r∨� (z̄) =⇒ (z̄, w) ∈ E
(0)
1 .

To this aim, suppose that there exists δ > 0 such that

|w| = r∨� (z̄) + δ.

Then, by arguing as in Step 1 of lemma 3.1, for every ρ̄ ∈ (0, δ/2) we obtain

|w′| > r∨� (z̄) +
δ

2
for every (z′, w′) ∈ Bρ̄((z̄, w)).

So, by the definition of E1, we have

E1 ∩Bρ̄((z̄, w)) = F� ∩ {z < z̄} ∩Bρ̄((z̄, w))

⊂
{

(z′, w′) ∈ R × R
n−1 : z′ < z̄ and r∨� (z̄) +

δ

2
< |w′| < r�(z′)

}
∩Bρ̄((z̄, w)).

Thus, for every ρ ∈ (0, ρ̄), by similar calculations as in Step 1 of lemma 3.1,
we obtain

lim
ρ→0+

Hn(E1 ∩Bρ((z̄, w)))
ωnρn

� 1
ωn

lim
ρ→0+

∫
(z̄−ρ,z̄)∩{r�>r∨

� (z̄)+ δ
2}

Hn−1(F� ∩Bρ((z̄, w)) ∩ {z = ζ}) dζ

� ωn−1

ωn
lim

ρ→0+

H1((z̄ − ρ, z̄) ∩ {
r� > r∨� (z̄) + δ

2

}
)

ρ

= 0,

where in the latter inequality (3.8) has been used.

Step 1b: We show that

{z = z̄}\{(z̄, τ)} ⊂ ((0, τ) + E2)(0). (3.11)

To this aim, suppose that ε := |w − τ | > 0. We will prove that (z̄, w) ∈
((0, τ) + E2)(0). Recalling the argument which was used in the proof of (3.4),
we choose ρ̄ ∈ (0, ε/2) such that

|w′ − τ | > ε

2
for every (z′, w′) ∈ Bρ̄((z̄, w)).

Then, we have

((0, τ) + E2) ∩Bρ̄((z̄, w))

= ((0, τ) + (F� ∩ {z � z̄})) ∩Bρ̄((z̄, w))

⊂
{

(z′, w′) ∈ R × R
n−1 : z′ � z̄,

ε

2
< |w′ − τ | < r�(z′)

}
∩Bρ̄((z̄, w)).
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Now, for ρ ∈ (0, ρ̄) and for every ζ ∈ (z̄ − ρ, z̄ + ρ), we note that,

Bρ((z̄, w)) ∩ {z = ζ} ⊂ {
(z, w0) ∈ R × R

n−1 : z = z̄ and w0 ∈ Bn−1(w, ρ)
}
.

Thus, for every ρ ∈ (0, ρ̄),

Hn((0, τ) + E2) ∩Bρ((z̄, w))) �
∫

(z̄,z̄+ρ)∩{r�> ε
2}

Hn−1(Bn−1(w, ρ)) dζ

= ωn−1ρ
n−1

∫
(z̄,z̄+ρ)∩{r�> ε

2}
1 dζ

= ωn−1ρ
n−1 H1((z̄, z̄ + ρ) ∩

{
r� >

ε

2

}
).

Based on this, by (3.8) we infer that

lim
ρ→0+

Hn((0, τ)) + E2) ∩Bρ((z̄, w)))
ωnρn

� ωn−1

ωn
lim

ρ→0+

H1((z̄, z̄ + ρ) ∩ {
r� >

ε
2

}
)

ρ

= 0,

which proves (3.11).

Step 1c: To conclude the proof of Step 1, we observe that, by Step 1a and 1b, as
well as by the definition of E, it follows that

{
(z̄, w) ∈ R × R

n−1 : |w| > r∨� (z̄)
} ∖

{(z̄, τ)} ⊂ E
(0)
1 ∩ ((0, τ) + E2)(0) = E(0).

Therefore,

(∂∗E)z̄ ⊂ R
n−1

∖
(
{
w ∈ R

n−1 : |w| > r∨� (z̄)
} ∖

{τ})

= Bn−1(0, r∨� (z̄)) ∪ {τ},
which shows (3.9).

Step 2: Finally, we show (3.7). Note that, thanks to Step 1, lemma 3.1 and
perimeter inequality (1.6), we have

P (E; {z = z̄}) = Hn−1(∂∗E ∩ {z = z̄}) = Hn−1((∂∗E)z̄)

� Hn−1(Bn−1((0, r∨� (z̄)))

= Hn−1(∂∗F� ∩ {z = z̄})
= P (F�; {z = z̄}) � P (E; {z = z̄}),

which makes our proof complete. �

We will now show that, if the jump part Dj� of D� is non-zero, then rigidity is
violated.
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Figure 5. A graphical illustration of Step 1 for n = 2.

Proposition 3.3. Let � : R → [0, ∞) be a measurable function, such that F� is a
set of finite perimeter and finite volume, and let r� be defined as in (1.3). Suppose
that � has a jump at some point z̄ ∈ R. Then rigidity is violated. More precisely,
setting E1 := F� ∩ {z < z̄} and E2 := F�\E1, then

E := E1 ∪ ((0, τ) + E2) ∈ K(�)

for every τ ∈ R
n−1 such that

0 < |τ | < r∨� (z̄) − r∧� (z̄). (3.12)

Proof. Let E1, E2 and E be as in the statement. Let also τ ∈ R
n−1 be such that

(3.12) is satisfied. It is not restrictive to assume that

r∨� (z̄) = aplim(r�, (−∞, z̄), z̄) and r∧� (z̄) = aplim(r�, (z̄,+∞), z̄). (3.13)

By an analogous argument as in the beginning of the proof of proposition 3.2, we
obtain

P (E) = Hn−1(∂∗F� ∩ {z < z̄}) + Hn−1(∂∗E ∩ {z = z̄}) + Hn−1(∂∗F� ∩ {z > z̄}).
Hence, in order to complete the proof, we finally need to show that

Hn−1(∂∗E ∩ {z = z̄}) = Hn−1(∂∗F� ∩ {z = z̄}). (3.14)

We divide the proof of (3.14) into further steps.

Step 1: We prove that

(∂∗E)z̄ ⊂ Bn−1(0, r∨� (z̄))\Bn−1(τ, r∧� (z̄)). (3.15)

In order to show (3.15), it suffices to prove that

r∧� (z̄) � |w − τ | for every w ∈ (∂∗E)z̄ (3.16a)

and

r∨� (z̄) � |w| for every w ∈ (∂∗E)z̄. (3.16b)
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First, let us prove (3.16a). To achieve that, we observe, due to (2.7), our claim
will follow if we prove that

|w − τ | < r∧� (z̄) =⇒ (z̄, w) ∈ (Rn\E)(0). (3.17)

To this end, suppose that w ∈ R
n−1 is such that |w − τ | < r∧� (z̄). Then, we

observe that

R
n\E = ((Rn\E) ∩ {z < z̄}) ∪ ((Rn\E) ∩ {z � z̄}).

Now, arguing as in Step 1 of proposition 3.2, we infer that

lim
ρ→0+

Hn((Rn\E) ∩Bρ((z̄, w) ∩ {z < z̄})
ωnρn

= 0. (3.18)

Hence, to complete the proof of the claim, it remains to show that

lim
ρ→0+

Hn((Rn\E) ∩Bρ((z̄, w) ∩ {z � z̄)}
ωnρn

= 0. (3.19)

Then there exists δ > 0 such that

|w − τ | + δ = r∧� (z̄).

Let now ρ̄ ∈ (0, δ/2]. Then, for each (z′, w′) ∈ Bρ̄((z̄, w))

r∧� (z̄) � |w′ − τ | − |w − w′| + δ > |w′ − τ | − δ

2
+ δ = |w′ − τ | + δ

2
,

so that

r∧� (z̄) − δ

2
> |w′ − τ | for every (z′, w′) ∈ Bρ̄((z̄, w)). (3.20)

Then, employing (3.20) and the definition of the set E, we infer

(Rn\E) ∩Bρ̄((z̄, w)) ∩ {z � z̄}

⊂
{

(z′, w′) ∈ R × R
n−1 : z � z̄, r∧� (z̄) − δ

2
> |w′ − τ | � r�(z′)

}
∩Bρ̄((z̄, w)).

Moreover, we note that for ρ ∈ (0, ρ̄) and for every ζ ∈ (z̄ − ρ, z̄ + ρ), we have

Bρ((z̄, w)) ∩ {z = ζ} ⊂ {
(z, w0) ∈ R × R

n−1 : z = z̄ and w0 ∈ Bn−1(w, ρ)
}
.

As a consequence, for ρ ∈ (0, ρ̄) we obtain

Hn((Rn\E) ∩Bρ((z̄, w)) ∩ {z � z̄})

�
∫

(z̄,z̄+ρ)∩{r�<r∧
� (z̄)− δ

2}
Hn−1(Bn−1(w, ρ)) dζ

= ωn−1ρ
n−1

∫
(z̄,z̄+ρ)∩{r�<r∧

� (z̄)− δ
2}

1 dζ

= ωn−1ρ
n−1H1((z̄, z̄ + ρ) ∩

{
r� < r∧� (z̄) − δ

2

}
).
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Then, thanks to (3.13), we infer

lim
ρ→0+

Hn((Rn\E) ∩Bρ((z̄, w)) ∩ {z � z̄})
ωnρn

� ωn−1

ωn
lim

ρ→0+

H1((z̄, z̄ + ρ) ∩ {
r� < r∧� (z̄) − δ

2

}
)

ρ
= 0,

where (2.3b) has been employed. This proves (3.19). Then, combining (3.18)
and (3.19), (3.17) follows, and thus the proof of (3.16a) is complete.
Now, for (3.16b), arguing again as in Step 1 of proposition 3.2, we have

|w| > r∨� (z̄) =⇒ (z̄, w) ∈ E
(0)
1 . (3.21)

Making use of similar arguments as above, it can be shown that

|w| > r∨� (z̄) =⇒ (z̄, w) ∈ ((0, τ) + E2)(0), (3.22)

which, shows (3.16b), and in turn (3.15). For a graphical illustration of Step
1, see Figure 5.

Step 2: We conclude the proof. From (3.12), we infer that

Bn−1(τ, r∧� (z̄)) ⊂ Bn−1(0, r∨� (z̄)).

As a consequence, thanks to Step 1, lemma 3.1 and perimeter inequality (1.6),
we have

P (E; {z = z̄}) = Hn−1(∂∗E ∩ {z = z̄}) = Hn−1((∂∗E)z̄)

� Hn−1(Bn−1((0, r∨� (z̄))\Bn−1(τ, r∧� (z̄)))

= �∨(z̄) − �∧(z̄)

= P (F�; {z = z̄})
� P (E; {z = z̄}).

From this, we deduce (3.14), which completes the proof. �

We are going to prove now that if the Cantorian part Dc� of D� is non-zero, then
rigidity is violated.

Proposition 3.4. Let � : R → [0, ∞) be a measurable function, such that F� is a
set of finite perimeter and finite volume. Let also r� be as in (1.3). Suppose that
Dc� �= 0. Then rigidity is violated.

Proof. With no loss of generality, we assume that � is a purely Cantorian function.
Indeed, one can decompose � as

� = �a + �j + �c, (3.23)

where �a ∈W 1,1(R), �j is purely jump function and �c is purely Cantorian. In the
case of �j �= 0, the result becomes trivial since, due to proposition 3.3, rigidity
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is violated. Now, note that, in the generic case where � �= �c, due to (3.23), the
argument of the proof can be repeated just to the Cantorian part �c of �. Thus, in
what will follow, we assume that

D� = D�c = Dc�.

In addition, due to proposition 3.2, we can assume that {�∧ > 0} is an interval,
otherwise, the result becomes trivial. Since � is purely Cantorian, there exists
a continuous representative of �. From now on, we work with this continuous
representative, which is still denoted by �.

Note now that, since � is continuous, there exists a, b > 0 such that J :=
(a, b) ⊂⊂ {�∧ > 0} and

�(z) > 0, for every z ∈ J. (3.24)

Since Dc� �= 0, we can assume that |Dc�|(J) > 0.
We now fix λ ∈ (0, 1), and we define the function g : R → R as

g(z) =

⎧⎪⎨⎪⎩
0, if z ∈ (−∞, a)
λ(r�(z) − r�(a)), if z ∈ [a, b]
λ(r�(b) − r�(a)), if z ∈ (b,+∞).

.

Let us fix a unit vector e ∈ R
n−1. We define the set

E :=
{
(z, w) ∈ R × R

n−1 : |w − g(z)e| < r�(z)
}
. (3.25)

One can observe that we cannot obtain E using a single translation on F� along
R

n−1. We are going to prove now that E ∈ K(�). We divide the proof in several
steps.

Step 1: We construct a sequence {�k}k∈N, where �k : J → [0, ∞), which satisfies
the following properties:
(i) rk

� (z) −→ r�(z), as k → ∞ for every z ∈ J ,

(ii) D�k = Dj�k for every k ∈ N,

(iii) lim
k→∞

P (F�k ;J × R
n−1) = P (F�;J × R

n−1).

By (2.6) and since � is continuous, we have

|D�|(J) = sup

{
N−1∑
i=1

|�(zi+1) − �(zi)| : a < z1 < z2 < · · · < zN < b

}
,

where the supremum runs over N ∈ N and over all z1, z2, . . . , zN with a <
z1 < z2 < · · · < zN < b. From that, for every k ∈ N there exist Nk ∈ N and
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zk
1 , . . . , z

k
N with a < zk

1 < · · · < zk
N < b such that

|D�|(J) �
Nk−1∑
i=1

|�(zk
i+1) − �(zk

i )| + 1
k

(3.26)

and

|zk
i+1 − zk

i | <
1
k
, for every i = 1, . . . , Nk − 1.

It is not restrictive to assume that the partitions are increasing in k, i.e.

{zk
1 , · · · , zk

Nk
} ⊂ {zk+1

1 , · · · , zk+1
Nk+1} for every k ∈ N.

We define now for every k ∈ N

�k(z) :=
Nk∑
i=0

�(zk
i )χ[zk

i ,zk
i+1)

(z), z ∈ J, (3.27)

where we set zk
0 := a and zk

Nk+1 := b. Moreover, we set

rk
� (z) :=

(
�k(z)
ωn−1

)1/n−1

for every z ∈ J and for every k ∈ N.

Note that, by definition, rk
� = r�k and rk

� ∈ BV (J). By the continuity of �, we
infer that

�k(z) −→ �(z) uniformly for all z ∈ J̄ . (3.28)

Hence, since the map η �−→ (η/ωn−1)1/n−1 is continuous in (0, ∞), we infer
that (i) holds true. Moreover, by (3.27), (ii) holds also true.
For (iii), thanks to (3.28), we infer that

lim
k→∞

Hn−2((∂∗F�k)z) = Hn−2((∂∗F�)z) for all z ∈ J. (3.29)

In addition,

|D�k|(J) =
Nk∑
i=0

|�(zk
i+1) − �(zk

i )|

= |�(zk
1 ) − �(a)| +

Nk−1∑
i=0

|�(zk
i+1) − �(zk

i )| + |�(b) − �(zk
Nk

)|. (3.30)

Now, using (3.26), we obtain

|D�|(J) − 1
k

�
Nk−1∑
i=1

|�(zk
i+1) − �(zk

i )| � |D�|(J).

https://doi.org/10.1017/prm.2024.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.59


Rigidity for the perimeter inequality 23

Combining the above inequality with (3.30) and recalling again the continuity
of �, we infer that

|Dc�|(J) = |D�|(J) = lim
k→∞

Nk−1∑
i=0

|�(zk
i+1) − �(zk

i )|

= lim
k→∞

|D�k|(J) = lim
k→∞

|Ds�k|(J). (3.31)

Finally, recalling corollary 2.4 and employing (3.29), we obtain

lim
k→∞

P (F�k ;J × R
n−1) = lim

k→∞
(
∫

J

Hn−2((∂∗F�k)z) dz + |Ds�k|(J))

=
∫

J

Hn−2((∂∗F�)z dz + |Ds�|(J)

= P (F�;J × R
n−1),

which proves (iii).

Step 2: For k ∈ N, we will construct a �k-distributed set Ek satisfying

P (Ek;J × R
n−1) = P (F�k ;J × R

n−1).

As a consequence of (3.) in Step 1, for k ∈ N we infer that Drk
� = Djrk

� and
that the jump set of r�k is a finite set. In particular,

Drk
� =

Nk∑
i=1

(r�(zk
i ) − r�(zk

i−1))δzk
i
,

where, for each i ∈ {1, 2, . . . , Nk}, δzk
i

denotes the Dirac delta measure con-
centrated at the point zk

i . Let us now fix λ ∈ (0, 1) and we define iteratively
the family of sets {Ek

i }Nk
i=1 ⊂ J × R

n−1 as

Ek
1 := [F�k ∩ ({z < zk

1}\{z < a})] ∪ [λ(r�(zk
1 ) − r�(a))e

+ (F�k ∩ ({z < b}\{z < zk
1}))]

Ek
2 := [Ek

1 ∩ {z < zk
2}] ∪ [λ(r�(zk

2 )

− r�(zk
1 ))e+ (Ek

1 \{z < zk
2})]

...

Ek
Nk

:= [Ek
Nk−1 ∩ {z < zk

Nk
}] ∪ [λ(r�(zk

Nk
) − r�(zk

Nk−1))e

+ (Ek
Nk−1\{z < zk

Nk
})],
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Figure 6. A graphical illustration of the set Ek
Nk

in Step 2.

see Figure 6. Applying proposition 3.3 for each i ∈ {1, . . . , Nk}, we infer that

P (Ek
1 ;J × R

n−1) = P (Ek
2 ;J × R

n−1) = · · · = P (Ek
Nk

;J × R
n−1)

= P (F�k ;J × R
n−1).

Note now, that for i ∈ {1, 2, · · · , Nk} the general term of the above family of
sets can be written as

Ek
i = [F�k ∩ {z < zk

1}\{z < a}] ∪ [λ(r�(zk
1 ) − r�(a))e

+ (F�k ∩ ({z < zk
2}\{z < zk

1}))]
∪ [λ(r�(zk

2 ) − r�(a))e+ (F�k ∩ ({z < zk
3}\{z < zk

2}))]
∪ · · · ∪ [λ(r�(zk

Nk
) − r�(a))e+ (F�k ∩ ({z < b}\{z < zk

Nk
}))].

Therefore, if we set

Ek := Ek
Nk

=
{
(z, w) ∈ J × R

n−1 : |w − λ(r�k(z) − r�k(a))e| < r�k(z)
}
,

(3.32)
we conclude that

P (Ek;J × R
n−1) = P (F�k ;J × R

n−1), for every k ∈ N.

Step 3: We claim now, that

Ek −→ Ẽ in J × R
n−1

for some �-distributed set Ẽ satisfying

P (Ẽ;J × R
n−1) = P (F�;J × R

n−1).

Indeed, thanks to (3.) of Step 1, it turns out that

rk
� (z) −→ r�(z) for H1-a.e. z ∈ J.

As a result, recalling (3.32) and if Ẽ is defined as

Ẽ :=
{
(z, w) ∈ J × R

n−1 : |w − λ(r�(z) − r�(a))e| < r�(z)
}
, (3.33)

it follows that Ẽ is �-distributed and Ek −→ Ẽ in J × R
n−1.
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Finally, by Step1, Step 2, lower semicontinuity of perimeter with respect to L1

convergence (see e.g. [17, Theorem 12.15]) and perimeter inequality (1.6), we
obtain

P (F�;J × R
n−1) � P (Ẽ;J × R

n−1) � lim inf
k→∞

P (Ek;J × R
n−1)

= lim inf
k→∞

P (F�k ;J × R
n−1) = lim

k→∞
P (F�k ;J × R

n−1)

= P (F�;J × R
n−1),

and thus,

P (Ẽ;J × R
n−1) = P (F�;J × R

n−1).

Step 4: Now consider the set E defined in (3.25). By previous steps, it turns out
that E is �-distributed, and furthermore

E =Hn (F� ∩ {z < a}) ∪ [Ẽ ∩ ({z < b}\{z < a})] ∪ [λ(r�(b) − r�(a))e

+ (F�\{z < b})].

Since J × R
n−1 = (a, b) × R

n−1 = {z < b}\{z < a} and using similar argu-
ment as in the proof of proposition 3.2, we have

P (E) = P (E; {z < a}) + P (E; {z = a}) + P (E; {z < b}\{z < a})
+ P (E; {z = b}) + P (E; {z > b})

= P (F�; {z < a}) + P (E; {z = a}) + P (Ẽ; {z < b}\{z < a})
+ P (E; {z = b}) + P (F�; {z > b})

= P (F�; {z < a}) + P (E; {z = a}) + P (F�; {z < b}\{z < a})
+ P (E; {z = b}) + P (F�; {z > b}),

where Step 3 has been employed.
In addition, an analogous argument as in Step 1 of the proof of proposition 3.3
shows that

P (E; {z = a}) = P (E; {z = b}) = 0.

As a consequence, we infer

P (E) = P (F�; {z < a}) + P (F�; {z < b}\{z < a}) + P (F�; {z > b})
= P (F�).

Therefore, E ∈ K(�). In the light of this, the proof is completed. �

We can now show the implication (i) =⇒ (ii) of theorem 1.3.

Proof of theorem 1.3: (i) =⇒ (ii). We assume that (ii) is false. Namely, suppose
that either the set {�∧ > 0} is not an interval or {�∧ > 0} is an interval and
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� /∈W 1,1({�∧ > 0}). Then, if {�∧ > 0} is not an interval, by proposition 3.2, we
have that rigidity is violated. On the other hand, if � /∈W 1,1({�∧ > 0}) then, by
propositions 3.3 and 3.4, rigidity is also violated. This contradiction completes our
proof. �

Acknowledgements
The author wishes to express his gratitude to his Ph.D advisor Filippo Cagnetti
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