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Analytical investigations of heat transfer during the vertical impingement of an
unsubmerged axisymmetric liquid jet on a horizontal plate have been limited to the regions
ahead of the jump. This limitation is due to the complex flow physics in the jump region
arising from sudden changes in the flow field. This is addressed in here by extending the
averaging theory (AT) introduced by Bohr et al. (Phys. Rev. Lett., vol. 79, issue 6, 1997,
pp. 1038–1041) which was further developed by Watanabe et al. (J. Fluid Mech., vol.
480, 2003, pp. 233–265), to describe the heat transfer problem in circular hydraulic jumps
including separation. The applicability of the resulting theory to determine the temperature
field in the jump region is evaluated using the data available in the literature and also by
means of fully resolved numerical solutions. Good agreement is observed for moderate
Prandtl numbers. However, for sufficiently high Prandtl numbers, deviations become
notable. The reasons for the deviations according to their relevance are (i) monotonically
decreasing temperature profile inherent to the AT, whereas the fully resolved numerical
solutions exhibit a local maximum in the temperature profile away from the plate; and
(ii) inapplicability of the concept of dividing the flow field into a region affected and a
region unaffected by heat transfer according to the thermal boundary layer thickness. This
concept leads to the overestimation of the temperature close to the wall and to the existence
of a threshold Prandtl number, for which the thermal boundary layer thickness does not
meet the free surface anymore. Around this threshold Prandtl number, the temperature
field shows a discontinuous behaviour.
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Figure 1. Schematic illustration of a circular jet impinging vertically upon a horizontal plate subjected to a
constant heat flux (CHF) (q̇). Various flow structures, type 0 to type IIb, can occur depending on the strength
of the jump. Finally the jump can also become unstable with air entrainment.

1. Introduction

Free-surface liquid jet impingement is a practical cooling method in a wide range of
technical applications. The design of jet-impingement cooling systems requires a good
knowledge of the flow field on the target surface. Such a flow is schematically shown in
figure 1, where the liquid spreads out from the stagnation region in a thin radial film and
undergoes a sudden increase in the film height, called circular hydraulic jump (CHJ), at
the jump radius, rj. The CHJs pose a major challenge in the analysis of jet impingement
problems, because they exhibit different flow structures depending on the strength of the
jump. Based on the interface curvature and the flow structure in the jump region, the
following classification of CHJs can be inferred from the literature (see also figure 1):

(i) type 0 – CHJ without any reversal flow in the jump region (Liu & Lienhard 1993;
Ellegaard et al. 1996);

(ii) type Ia – CHJ with a single separation bubble on the wall (Ellegaard et al. 1996);
(iii) type Ib – CHJ with a single roller underneath the interface (Askarizadeh et al.

2020, 2021);
(iv) type IIa – CHJ with a roller underneath the interface and a separation bubble directly

afterwards on the wall (Liu & Lienhard 1993; Ellegaard et al. 1996);
(v) type IIb – double CHJ containing both a roller and a separation bubble (Liu &

Lienhard 1993; Bush, Aristoff & Hosoi 2006; Askarizadeh et al. 2020);
(vi) the unstable CHJ with air entrainment (Liu & Lienhard 1993; Ellegaard et al. 1996).

Unfortunately, there is currently no comprehensive theory that characterises all types
of CHJs and reflects the flow structure in the jump region. A typical approach in
the investigation of CHJs is to reduce the Navier–Stokes equations to boundary layer
equations (BLEs), since the radial thin film flow has a very small height compared with
the radial dimensions. The main difference in comparison with regular BLEs is that an
additional equation to determine the height of the film is required. Furthermore, this
height determines the pressure term in the radial momentum equation. Such BLEs for
thin film flows were numerically solved by Higuera (1994) and de Vita et al. (2020) for
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two-dimensional planar flows and also for radially spreading axisymmetric flows (Higuera
1997). The latter is of interest in this study.

A common approach to analytically describe the axisymmetric jump problem, is to find
descriptions for the flow before and after the jump and to connect these by a discontinuous
change of the flow variables at the jump position (Watson 1964; Bohr, Dimon &
Putkaradze 1993). However, such an approach is not able to reproduce the internal
structure of CHJs. In this context, Bohr, Putkaradze & Watanabe (1997) introduced an
averaging theory (AT) in which a third-order polynomial is assumed for the radial velocity
profile over the film height, whose coefficients depend on the radius. The coefficients
are determined using the boundary conditions (BCs), evaluation of the radial momentum
equation on the plate and the radial momentum equation integrated over the height of the
film. The chosen order of the polynomial together with the conditions for determining
the coefficients lead to a non-self-similar velocity profile along the radius. The hereby
achieved flexibility of the velocity profile results in a model which is able to render the flow
structures ahead, in and after the jump region of the type Ia (Bohr et al. 1997; Watanabe,
Putkaradze & Bohr 2003).

Being able to describe the flow field in the jump region, the introduced AT (Bohr et al.
1997) can be used to study heat transfer in CHJs of type Ia. So far, jet impingement heat
transfer has been thoroughly studied from the stagnation point (Liu, Gabour & Lienhard
1993; Rohlfs et al. 2014) up to the jump position (Liu & Lienhard 1989; Liu, Lienhard &
Lombara 1991) and corresponding correlations for determining the heat transfer coefficient
have been proposed. However, theoretical analysis of the heat transfer problem in the jump
region has not yet been reported. In addition, relevant numerical (Sung, Choi & Yoo 1999;
Askarizadeh et al. 2020) and experimental (Ishigai et al. 1977; Stevens 1988) studies on
heat transfer in the jump region are seldom in the literature. The complicated flow physics
in the jump region, the lack of a comprehensive theory to determine the flow structure of
CHJs, and a possible laminar to turbulent transition through the jump (Ishigai et al. 1977)
can be pointed out as reasons for the little available information on heat transfer in the
jump region. In this regard, the AT introduced by Bohr et al. (1997) is further developed in
this study to describe heat transfer in CHJs of type Ia. The extended AT, called AT for heat
transfer (ATHT), is then compared with fully resolved numerical simulations (FRNSs) to
show the applicability of the model to predict the temperature field in the jump region.

2. Problem statement

This section briefly presents the conservation equations describing the flow and heat
transfer in radial thin film flows. The governing equations are simplified by applying
boundary layer (BL) assumptions and physical constraints inherent to thin-layer film flows.
This set of simplified equations together with the BCs will be used in the following section
to develop a model for determining the flow and temperature fields.

2.1. Conservation equations
For an axisymmetric, incompressible, steady state thin film flow with constant fluid
properties, the governing equations can be written in cylindrical coordinates as follows:

∂(r̃ũ)

∂ r̃
+ ∂(r̃w̃)

∂ z̃
= 0, (2.1)

979 A41-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1055


R. Solana Gómez, T. Bohr, S. Nielsen, W. Rohlfs, R. Kneer and H. Askarizadeh

ũ
∂ ũ
∂ r̃

+ w̃
∂ ũ
∂ z̃

= − 1
ρ

∂ p̃
∂ r̃

+ ν

(
∂2ũ
∂ r̃2 + ∂

∂ r̃

(
ũ
r̃

)
+ ∂2ũ

∂ z̃2

)
, (2.2)

ũ
∂w̃
∂ r̃

+ w̃
∂w̃
∂ z̃

= − 1
ρ

∂ p̃
∂ z̃

+ ν

(
∂2w̃
∂ r̃2 + 1

r̃
∂w̃
∂ r̃

+ ∂2w̃
∂ z̃2

)
− g, (2.3)

where the tilde signifies dimensional variables; r̃ and z̃ represent the radial and axial
coordinates, respectively; v = ũêr + w̃êz is the velocity field with êr and êz as unit
vectors; ρ stands for the density; ν is the kinematic viscosity; g depicts the gravitational
acceleration; p indicates the pressure.

The thermal energy conservation equation can be expressed as follows (Schlichting &
Gersten 2006):

ũ
∂T̃
∂ r̃

+ w̃
∂T̃
∂ z̃

= k
ρcp

(
∂2T̃
∂ r̃2 + 1

r̃
∂T̃
∂ r̃

+ ∂2T̃
∂ z̃2

)
+ ε̃

ρcp
, (2.4)

where T̃ is the temperature, cp the specific thermal capacity, k the thermal conductivity
and ε the viscous dissipation term, which can be represented by

ε̃

ρ
= ν

{
2

[(
∂ ũ
∂ r̃

)2

+
(

ũ
r̃

)2

+
(

∂w̃
∂ z̃

)2
]

+
(

∂ ũ
∂ z̃

+ ∂w̃
∂ r̃

)2
}

. (2.5)

2.2. Boundary layer equations for radial thin film flows
The thin film thickness, compared with the radial dimension of the flow, suggests that
(2.1)–(2.5) can be simplified to BLEs. Detailed information on the simplification by means
of dimensional analysis can be found in Watanabe et al. (2003). The simplified equations
describing the flow are

∂ (ur)
∂r

+ ∂ (wr)
∂z

= 0, u
∂u
∂r

+ w
∂u
∂z

= −dh
dr

+ ∂2u
∂z2 , (2.6a,b)

where all variables are non-dimensionalised using the following characteristic scales
introduced by Bohr et al. (1993):

r∗ =
(

q5

ν3g

)1/8

, z∗ =
(

qν

g

)1/4

, u∗ =
(

qνg3
)1/8

,

w∗ =
(

ν3g
q

)1/4

, p∗ = ρ
(

qνg3
)1/4

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.7)

In (2.6), h denotes the film height non-dimensionalised using the characteristic vertical
length scale z∗, and in (2.7) q is defined as q = Q/(2π), where Q indicates the volume
flux of the film. Note that q should not be confused with q̇, which denotes the heat flux
imposed on the plate.

To simplify the heat transfer equation, (2.4), a dimensionless temperature needs to be
introduced. In this study, two classical thermal BCs are investigated: (i) a constant heat
flux (CHF) (q̇), and (ii) a constant plate temperature (CPT) (T0). For the case of a CHF,
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the dimensionless temperature reads

θ = k
q̇ · z∗

(
T̃ − Tf

)
= T̃ − Tf

θ∗
(2.8)

and for the case of a CPT,

θ = T̃ − Tf

T0 − Tf
= T̃ − Tf

θ∗
. (2.9)

In both cases Tf is the reference temperature signifying the liquid temperature before heat
transfer from the plate to the liquid takes place. Additionally, a Reynolds number is defined
as Re = (u∗z∗)/ν. The thermal energy equation can then be reformulated as follows:

u
∂θ

∂r
+ w

∂θ

∂z
= 1

Pr

[
∂2θ

∂z2 + 1
Re2

(
1
r

∂θ

∂r
+ ∂2θ

∂r2

)]
+ r∗

ρcpθ∗u∗
ε̃, (2.10)

where Pr = ν/a denotes the Prandtl number and a = k/(ρcp) signifies the thermal
diffusion coefficient. The last term in (2.10) is the dimensionless dissipation of kinetic
energy that can be written as

r∗
ρcpθ∗u∗

ε̃ = Ec

Re2

{
2

[(
∂u
∂r

)2

+
(u

r

)2 +
(

∂w
∂z

)2
]

+
(

Re
∂u
∂z

+ 1
Re

∂w
∂r

)2
}

, (2.11)

where Ec = u2∗/(cpθ∗) is the Eckert number. Equations (2.6a) and (2.6b) are based on
the assumption that the Reynolds number is large, which will be used here as well.
Furthermore, the assumption of a high heat flux transferred from the plate leads to a small
Eckert number, so that dissipation can be neglected, resulting in the following simplified
dimensionless energy equation:

u
∂θ

∂r
+ w

∂θ

∂z
= 1

Pr
∂2θ

∂z2 . (2.12)

Note that due to the assumed constant thermophysical properties, ((2.2), (2.3) and
consequently (2.6)) are independent of temperature. Hence, the predicted flow field is
not affected by temperature. In reality, an influence of the inhomogeneous temperature
field through, for example, buoyancy forces originated by the temperature dependency of
the density, might influence the flow field. Typically, the Boussinesq approximation is
used to evaluate the buoyancy effect. This approximation adds an additional force to the
otherwise unchanged terms in the momentum equations (Schlichting & Gersten 2006).
For the simplified set of equations treated in this study, this means that the equation for the
pressure resulting from (2.3) ∂p/∂y = −1 must be extended as follows:

∂p
∂y

= −1 + βθ∗θ, (2.13)

where β represents the thermal expansion coefficient. Since the non-dimensional
temperature is of the order of unity, βθ∗ � 1 needs to hold for buoyancy effects to be
negligible.

979 A41-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1055


R. Solana Gómez, T. Bohr, S. Nielsen, W. Rohlfs, R. Kneer and H. Askarizadeh

2.3. Boundary conditions
To fully describe the problem, BCs need to be specified. For the flow field, the no-slip
condition holds on the plate surface, the shear stress disappears on the interface, and the
flux conservation must hold at any radius. These conditions can be expressed as follows:

u|z=0 = w|z=0 = 0,
∂u
∂z

∣∣∣∣
z=h

= 0, r
∫ h

0
u dz = 1. (2.14a–c)

For the temperature field, the temperature gradient is assumed to vanish on the free
surface due to the small conductivity of the gas phase in comparison with the liquid phase.
This assumption might be inaccurate for lower Prandtl numbers, because the thermal BL
thickness may meet the free surface and the temperature gradient at the interface may
become important. However, as the results show, the proposed ATHT works well for low
Prandtl numbers where the thermal BL thickness has already reached the free surface
before the jump. The deviations in the temperature field predicted by ATHT compared
with numerical simulations are at sufficiently high Prandtl numbers (discussed in § 4.2).
Thus, the assumption of a negligible temperature gradient at the interface does not lead to
observed deviations. In addition, two classical thermal BCs for the plate are considered:
(i) a CHF and (ii) a CPT. The dimensionless form of these conditions is

∂θ

∂z

∣∣∣∣
z=h

= 0,
∂θ

∂z

∣∣∣∣
z=0

= −1, θ |z=0 = 1. (2.15a–c)

3. Solution method

This section presents the AT introduced by Bohr et al. (1997) to approximate the solution
of the flow field described by the set of (2.6) and the BCs (2.14). Then, the AT is further
developed to approximate the solution of (2.12) with the BCs (2.15) and to describe
heat transfer. Developing such an AT implies assuming a profile for the quantities that
shall be described, i.e. velocity and temperature. This profile has to be chosen so that
it fulfils the BCs and the BLEs at specific positions along the film height, while still
containing an unknown parameter. This parameter is finally determined by imposing
that equations derived by integrating the BLEs along the film height are satisfied. The
described methodology fits into the category of integral methods for the approximate
solution of BLEs first introduced by von Kármán (1921) and Pohlhausen (1921).

3.1. Averaged flow equations
Integrating the momentum BLE over the film height leads to the following averaged
equation:

1
hr

d
dr

(
r
∫ h

0
u2 dz

)
= −dh

dr
− 1

h
∂u
∂z

∣∣∣∣
z=0

. (3.1)

Furthermore, introducing the average radial velocity v(r) = h−1 ∫ h
0 u(r, z) dz allows us to

represent the flux conservation equation, which can be interpreted as the averaged mass
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conservation equation, and the averaged momentum equation as

vhr = 1, (3.2)

v
d(Gv)

dr
= −dh

dr
− 1

h
∂u
∂z

∣∣∣∣
z=0

, (3.3)

G = 1
h

∫ h

0

(u
v

)2
dz, (3.4)

where G is the ratio of radial momentum fluxes resulting from u(r, z) and its average over
the flow height, v(r), respectively. In order to derive a model capable of reproducing CHJs
including a separation bubble, the radial velocity is assumed to be a polynomial of the
form

u(r, z) = v(r)f (r, η) = v(r)·
[
C0(r) + C1(r)η + C2(r)η2 + C3(r)η3

]
, η = z

h
.

(3.5a,b)

Equation (2.14) provides three conditions for determining the coefficients of the above
polynomial, leaving one undetermined coefficient. This coefficient is chosen to be the
so-called shape parameter, λ(r), introduced by Bohr et al. (1997). The radial velocity
profile then takes the following form:

u(r)(r, z) = v(r)f (r, η) = 1
hr

[
(λ+ 3)η − 5λ+ 3

2
η2 + 4λ

3
η3
]
. (3.6)

To fully describe the velocity field, h(r) and λ(r) must be determined. An ordinary
differential equation (ODE) for h(r) can be obtained by evaluating the momentum BLE
(2.6b) on the plate surface while using the velocity profile (3.6). This results in

dh
dr

= ∂2u
∂z2

∣∣∣∣
z=0

⇒ dh
dr

= −5λ+ 3
rh3 . (3.7)

Note that G is only a function of λ for the velocity profile (3.6), G = 1/105λ2 − 1/15λ+
6/5. Applying this to (3.3), replacing v through (3.2) with (hr)−1, and inserting the ODE
(3.7) as well as the velocity profile (3.6) in (3.3) gives the following relation for λ(r):

dλ
dr

= 1
dG
dλ

[
4λr
h

+ G
h4 − (5λ+ 3)

rh4

]
. (3.8)

3.2. Averaged energy equations
Similar to the AT for the flow, instead of solving the thermal BL equation, (2.12), the
integral of this equation over the film height will be used, which reads∫ h

0

(
u
∂θ

∂r
+ w

∂θ

∂z
= 1

Pr
∂2θ

∂z2

)
dz ⇒ 1

r
d
dr

(
r
∫ h

0
uθ dz

)
= − 1

Pr
∂θ

∂z

∣∣∣∣
z=0

. (3.9)

Note that (3.2) and the kinematic condition at the free surface, dh/dr = (u/w)z=h are
employed to derive (3.9). The kinematic condition is a condition the flow field needs to
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fulfil. However, it does not need to be imposed in the hydrodynamic problem as it holds
if (2.14c) holds. Introducing an average temperature as

ϑ(r) = 1
v(r)h(r)

∫ h(r)

0
uθ dz, (3.10)

equation (3.9) results in

1
r

dϑ

dr
= − 1

Pr
∂θ

∂z

∣∣∣∣
z=0

. (3.11)

For the case of a CHF, (2.15b) can be directly inserted into (3.11), which results in the
right-hand side of (3.11) being just 1/Pr. Therefore, (3.11) can be integrated from 0 to r
leading to the following equation:

ϑ(r) = r2

2 Pr
. (3.12)

Interestingly, the resulting equation for a CHF (3.12) is an algebraic equation, while
for the case of a CPT the ODE (3.11) needs to be used. Therefore, an additional initial
condition (IC) is required when dealing with a CPT. This difference results from the
possibility of integrating (3.11) when the heat flux, which is related to the temperature
gradient at the plate, is known along the entire radial domain. Physically interpreted, the
amount of heat transported with the flow is known for all radial positions. If a CPT is
assumed, this information, however, is unknown and an IC, which then fixes the amount of
heat transported with the flow at the initial radius of the investigated domain of integration,
becomes necessary.

For the selection of the radial velocity profile, the AT assumes that the viscous BL
has already reached the film surface (Bohr et al. 1997; Watanabe et al. 2003). This is
supported by the study of Watson (1964), where an analytic model of the viscous BL
growth was used to show that the BL reaches the film surface relatively close to the
stagnation region. Such an assumption cannot be made for modelling the temperature
as the thickness of the thermal BL with respect to that of the viscous BL depends on
the Prandtl number. Therefore, cases when the thermal BL δT is equal to the film height
(thermally developed/fully diffused) and when δT is smaller than the film height (thermally
developing) are separately treated in the following sections. As in the description of the
flow, polynomials are used to describe the temperature profile along the height.

3.2.1. Fully developed thermal boundary layer (δT = h)
For this case the temperature profile reads

θ = A0(r) + A1(r)η + A2(r)η2 + A3(r)η3 + A4(r)η4, (3.13)

where η has been defined in (3.5a,b). The BCs given in (2.15) and the evaluation
of the thermal BLE (2.12) on the plate surface, showing A2(r) = 0, provide three
conditions to determine five coefficients of the temperature profile given in (3.13). The two
undetermined coefficients are then represented by the free-surface temperature (θ |z=h =
θs) and the plate temperature (θ |z=0 = θ0), in case of a CHF, or by the free-surface
temperature (θ |z=h = θs) and the dimensionless plate heat flux (∂θ/∂z|z=0 = −q̇(r)).

979 A41-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1055


Averaging theory for heat transfer . . .

The temperature profile can be expressed, depending on the BC imposed at the plate, a
CHF or a CPT, as follows:

CHF θ = θ0

(
1 − 4η3 + 3η4

)
− h

(
2η4 − 3η3 + η

)
+ θs

(
4η3 − 3η4

)
,

CPT θ =
(

1 − 4η3 + 3η4
)

− hq̇(r)
(

2η4 − 3η3 + η
)

+ θs

(
4η3 − 3η4

)
.

⎫⎪⎬
⎪⎭ (3.14)

Substituting the respective temperature profile (3.14) together with the velocity profile
(3.6) in (3.11) or (3.12) results in

θ0 + (θ0 − θs) M(λ) − hN(λ) = 1
2

r2

Pr
, (3.15)

for a CHF or
d (q̇(r)h)

dr
= 1

N(λ)

[
ζ1q̇(r)h + ζ2 (1 − θs)

]
(3.16)

for a CPT, where

ζ1 = 6rM(λ)

Pr h f (r, η = 1)

[
2 − q̇(r)h − 2θs

]
ζ2 = dM(λ)

dr
− 12rM(λ)

Pr h f (r, η = 1)
. (3.17a,b)

In both cases, CHF and CPT, the functions N(λ) and M(λ) are determined as

M(λ) =
∫ 1

0
f (r, η)

(
3η4 − 4η3

)
dη

= 1
30
λ− 19

35
,

N(λ) =
∫ 1

0
f (r, η)

(
2η4 − 3η3 + η

)
dη

= 1
168
λ+ 41

280
.

⎫⎪⎪⎬
⎪⎪⎭

(3.18)

To close the system of equations, evaluation of the thermal BLE, (2.12), at the free
surface is used, as follows:

u
dθs

dr
= 1

Pr h2
∂2θ

∂η2

∣∣∣∣
η=1

. (3.19)

Inserting the velocity profile (3.5a,b) and the respective temperature profile (3.14) into the
above equation leads to

CHF
dθs

dr
= 6r

Pr h f (r, η = 1)
[2(θ0 − θs) − h],

CPT
dθs

dr
= 6r

Pr h f (r, η = 1)
[2(1 − θs) − q̇(r)h].

⎫⎪⎪⎬
⎪⎪⎭ (3.20)

3.2.2. Developing thermal boundary layer (δT < h)
For this case, a temperature profile of the form

θ =
{

A0(r) + A1(r)ηT + A2(r)η2
T + A3(r)η3

T + A4(r)η4
T for z < δT

0 for z ≥ δT
(3.21)

is assumed, where ηT = z/δT . As the thermal BL thickness is smaller than the height of the
film, the partial derivative ∂θ/∂z already vanishes at the height z = δT . Furthermore, the
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thermal BLE (2.12) is evaluated at z = δT . Consequently, the two following equations hold:

∂θ

∂z

∣∣∣∣
z=δT

= 0,
∂2θ

∂z2

∣∣∣∣
z=δT

= 0. (3.22a,b)

The above conditions together with the respective condition at the plate (2.15b,c),
evaluation of the thermal BLE (2.12) on the plate, and θ |z=δT = 0 allow the determination
of all but one coefficient in (3.21):

CHF θ = δT(1
2 − ηT + η3

T − 1
2η4

T),

CPT θ = 1 − 2ηT + 2η3
T − η4

T .

}
(3.23)

Introducing Φ = δT/h, using η = ΦηT and inserting the velocity profile, (3.6), and the
temperature profile for a CHF, (3.23), into (3.12) results in

hΓ (Φ, λ) = 1
2

r2

Pr
, (3.24)

where

Γ (Φ, λ) = Φ2
∫ 1

0
f (r, ηT)

(
1
2

− ηT + η3
T − 1

2
η4

T

)
dηT

= λ+ 3
30

Φ3 − 5λ+ 3
168

Φ4 + λ

140
Φ5. (3.25)

For the case of a CPT, the velocity profile, (3.6), and the respective temperature profile,
(3.23), are inserted into (3.11), leading to

dΦ

dr
= 1

∂ξ(Φ, λ)

∂Φ

[
2r

Φh Pr
− ∂ξ(Φ, λ)

∂λ

dλ
dr

]
with ξ(Φ, λ) = λ+ 3

15
Φ2 − 5λ+ 3

84
Φ3 + λ

70
Φ4.

(3.26)

Note, the reason for using a fourth-order instead of a third-order polynomial for the
determination of the temperature field has been discussed in Appendix A.

3.3. Numerical solution of the AT
The simplified hydrodynamic problem described by the ODEs (3.7) and (3.8) can be
solved as a boundary value problem, prescribing hi and hend at two different radii ri and
rend before and after the jump, respectively. A thorough analysis of the equations and
the solution properties can be found in Watanabe et al. (2003). In order to cope with the
stiffness of the system of equations, a relaxation method (Press et al. 2007) is used in this
study, which was first successfully applied to type Ia CHJs by Nielsen (2015). Details on
this method can be found in Press et al. (2007). An exemplary visualisation of the resulting
flow is shown in figure 2, where a recirculation bubble is formed on the plate surface in
the jump region in a clockwise direction.

Once h(r) and λ(r) are known, the results can be used to solve the heat transfer problem.
If a CHF is prescribed as the BC at the plate, this means that (3.15) and (3.20) or (3.24)
shall be solved depending on whether the thermal BL thickness has reached the flow
height. If a CPT is imposed, a solution of (3.16) and (3.20) or (3.26) will be required.
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Figure 2. Streamlines in the region of the hydraulic jump determined by the AT. The working fluid is water:
ρ = 998.2 kg m−3; μ = 10.03 × 10−4 kg (ms)−1; cp = 4182 J (kg K)−1; Pr = 6.991. The volume flow rate is
Q = 15 ml s−1.

As it is initially not known which region of the flow field can be described by which
equations, values for Φ are determined on the entire domain using (3.24) or (3.26). Solving
(3.24) implies determining the roots of a fifth-order polynomial and the only physically
relevant ones are those located between 0 and 1. Depending on the values of λ, h and r
there will either be a single one or none in this interval. Solving (3.26) means solving a
first-order ODE, therefore, an IC is required. For the investigations presented in the next
section of this study, Φ(ri) was chosen by fixing the Nusselt number at ri.

After determining Φ, the first radius is determined, to which Φ > 1 applies.
Thenceforward, the set of (3.15) and (3.20) is used, starting with an IC θs = 0. For the
case of a CPT, an additional IC for q̇(r) is needed. For this, the equality of the temperature
profiles determined with (3.23) and (3.14) is used. This equality is guaranteed where the
thermal BL meets the free surface. The resulting condition is q̇(r) = 2/h.

If Φ > 1 already applies for ri, it means that the thermal BL has reached the film surface
before ri. Consequently, (3.15) and (3.20) or (3.16 and (3.20), depending on the thermal
BC, are solved from ri onwards.

To carry out the solution, the initial value of θs and, if necessary, that of q̇(r) must still
be determined. For the case of a CHF condition, this can be done, for example, by solving
(3.7), (3.8) and (3.24) in the direction of decreasing r until the radius rT is found, for
which the thermal BL reaches the film height. Equations (3.15) and (3.20) can then be
solved from this new initial radius onwards using the initial condition θs = 0.

Note that rT decreases if the Prandtl number decreases. For Pr � 1, the thermal BL will
eventually reach the film surface before the viscous BL does. In such a case, the assumption
of a fully viscous BL is not valid around rT . It is therefore reasonable that this approach
will not be valid for very small Prandtl numbers. Moreover, this approach cannot be used
for the case of a CPT as the equation determining Φ, (3.26), is not an algebraic equation
and an initial value for θs as well as q̇(r) needs to be chosen.

The entire process to compute the parameters describing the temperature field, i.e. δT ,
θ0 and θs, is shown in the flowchart provided in figure 3. The algorithm for solving the
AT for heat transfer was implemented in MATLAB and is freely accessible under the link
given in the Supplementary data.

4. Results

In the following, the results of the ATHT are compared with the available studies on the
heat transfer in CHJs with a separation bubble. Validation of the original AT introduced
by Bohr et al. (1997) with the numerical study of Higuera (1997), experimental study of
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Solve for Φ in

the entire domain

Φ > 1 for any r

Determine first

position for which

Φ > 1 (r1
Φ>1

)

Solve for θ0/q.(r) and

θs from r1
Φ>1 

to rend

Constant heat f lux: Determine
rT, i.e. the value around
which Φ becomes larger
than 1 by solving for ℎ, λ

and Φ in the upstream direction
Constant plate temperature:

Choose initial value for θs

Solve for θ0/q.(r) and

θs from rT/ri to rend

Temperature field
is determined by
θ0/q.(r) and θs in

the entire domain

Temperature field

is determined by Φ

between ri and r1
Φ>1

and by θ0/q.(r) and

θs between r1
Φ>1 

and

rend, respectively

Temperature field is

determined by Φ in

the entire domain

NoYes

NoYes r1
Φ>1 

= ri

Figure 3. Flowchart of the solution method for the heat transfer problem.

Duchesne, Lebon & Limat (2014) and also with analytical approaches for upstream and
downstream regions of the jump is presented in Appendix B.

4.1. Evaluation of the ATHT: comparison with Sung et al. (1999)
The first comparison is with the numerical results presented by Sung et al. (1999), where
the simulated region starts at a radius of ri = 10 mm before the jump and ends after the
jump at a radius of rend = 100 mm. Sung et al. studied four cases with different volume
flow rates. The height at the starting radius ri is equal for all cases.

Figure 4 shows the comparison of the flow heights (figure 4a) and the Nusselt number
profiles for both thermal BCs, a CHF (figure 4b) and a CPT (figure 4c). The film heights in
figure 4(a) before and after the jump as well as the jump location are well captured by the
AT. However, the sudden increase in the film height predicted by the AT is steeper than
that of the numerical simulations. In addition, the small decrease in the film height just
before the jump in the numerical results, called capillary ripple, cannot be captured by the
AT. These differences can be ascribed to the neglect of surface tension in the AT.
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Figure 4. Comparison of the heights (a) and the Nusselt number profiles (b) predicted by the AT to the results
presented by Sung et al. (1999). The working fluid in all cases is water: ρ = 998.2 kg m−3; μ = 10.03 ×
10−4 kg (ms)−1; cp = 4182 J (kg K)−1; Pr = 6.991. Results for four different volume fluxes Q = 15, 20, 25
and 30 ml s−1 are shown. The solutions were initialised at a radius of ri = 10 mm with an initial height of
hi = 0.2 mm and constant temperature and radial velocity across the film height. Accordingly, the range of the
entrance Reynolds numbers is Rehi = Q/(2πriν) ≈ 237.59–475.18. For the AT, apart from the initial height,
the final heights were fixed at a radius of rend = 100 mm for the four different cases in the order of increasing
volume flux as hend = 1.55 mm, 1.60 mm, 1.63 mm and 1.68 mm, respectively. Sung et al. (1999) used the
definition of Nuhi = qwhi/[(T0 − Ti)k] for the Nusselt number, where Ti is the temperature across the film
height at ri. According to the notations in this study, the equivalent definition for the Nusselt number reads
Nuhi = hi/(θ0), with hi denoting the non-dimensional height at ri. Note that the ICs for the temperature field
determined by the ATHT in the order of increasing volume flow rate for the case of a CPT are Nu = 5.12, 5.44,
5.53 and 6.11, respectively. These hold for a radius of r = 10.8 mm, because the Nusselt number at the initial
radius, ri, was not exactly extractable from the original work by Sung et al. (1999).

Figures 4(b) and 4(c) present the Nusselt number profiles over the entire radial range for
a CHF imposed on the plate and a CPT, respectively. The Nusselt number curves are well
predicted for both cases by the ATHT with related deviations from the numerical results
of the same order as the deviations seen for the height profiles.

Note that the Nusselt number curves bend upwards close to the initial radius ri (see
figure 4b). This is because Sung et al. imposed a constant temperature along the height at
ri and used this temperature as the reference temperature for calculating the heat transfer
coefficient. It means that the Nusselt numbers tend to infinity if r → ri and it can be
interpreted as if the heat transfer between the plate and the flow starts at radius ri. The
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Figure 5. Comparison of the height profile (a) and the Nusselt number profiles in the case of a CHF (b) and
in the case of a CPT (c) predicted by the AT with that of the FRNS following Askarizadeh et al. (2020). The
working fluid is ethylene–glycol (antifreeze) mixed with water with a kinematic viscosity of ν = 10−5 m2 s−1

and a volume flow rate of Q = 30 ml s−1 emerges from a nozzle with a diameter of d = 5 mm. The entrance
Reynolds number of the jet is Red = 4Q/π dν ≈ 764 and the Prandtl number is Pr ≈ 164. Comparisons were
carried out for four Pr numbers: Pr = 7, 50, 100 and 164. For the AT, the BCs are hi = 0.60 mm at ri = 5 mm
and hend = 3.1 mm at rend = 40 mm. Askarizadeh et al. (2020) used the definition of Nud = q̇(r)·d/[(T0 −
Tf )k] for the Nusselt number, where the inlet diameter of the jet (d = 5 mm) was used as characteristic length.
The equivalent definition with the notation used in this study is Nud = d/(θ0z∗). Figure 5(a) also shows the
variation of the shape parameter, which indicates sudden changes of the radial velocity profile in the jump
region. This is used in § 4.3.2 to describe the convective effects in the jump region. The abscissa and ordinate
are made dimensionless applying the nozzle diameter. The ICs for the temperature field determined by the
ATHT in the order of increasing Prandtl number for the case of a CPT are Nu = 22.35, 43.33, 54.70 and 64.63,
respectively. These hold for a radial position of r/d = 2. This point was chosen because the flow field predicted
by the FRNS for r/d < 2 is still influenced by the stagnation zone.

same behaviour is reproduced with the ATHT for the CHF condition by replacing (3.12)
with ϑ = (r2 − r2

i )/(2 Pr). For the case of a CPT, the Nusselt number at the first data point
is used as IC so no adaptation was necessary.

Figure 4(c) shows that the Nusselt number drops slightly below zero for the two cases
with lower volume flow rates, i.e. 15 ml s−1 and 20 ml s−1 (see the first two profiles
from the left side in the inset of figure 4c). The reason is the following: when a constant
temperature is considered as the thermal BC, the Nusselt number is proportional to the heat
transmitted from the plate to the fluid. A negative Nusselt number, therefore, means that
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heat is being transmitted from the fluid to the plate. This behaviour should not happen in
this case because the inlet temperature of the flow is lower than the plate temperature. Such
errors can be attributed to the solution method that only satisfies the averaged conservation
equations but cannot guarantee physical values in the entire domain. However, the Nusselt
number profiles presented by Sung et al. (1999) are otherwise well captured.

4.2. Evaluation of the ATHT: comparison with Askarizadeh et al. (2020)
The second comparison is with the numerical study by Askarizadeh et al. (2020), who
analysed several CHJs with different internal structures (type Ia to IIb, see also figure 1).

Figure 5 shows the variation of the flow height h(r) and that of the shape parameter
λ(r) with radius (figure 5a) and also those of the Nusselt number profiles (figure 5b,c) for
a CHJ of type Ia together with the results obtained applying the ATHT. Nusselt number
profiles are presented for different Prandtl numbers, Pr = 7, 50, 100 and 164, and these
for the two thermal BCs, CHF (figure 5b) and CPT (figure 5c).

The Nusselt number profile for Pr = 164 determined by FRNS is also to be found
in Askarizadeh et al. (2020). Note that all the results obtained by FRNS have been
calculated again in this study, including the case of a CPT that was not treated by
Askarizadeh et al. (2020). Following Askarizadeh et al., numerical simulations have been
carried out in this study by solving the Navier–Stokes equations under the assumption
of a laminar, incompressible, immiscible two-phase flow using the SMICFoam (smooth
interface compression) solver (Rohlfs, Figueiredo & Pischke 2020). This solver was
developed to fix the shortcomings of the standard interFoam solver of the open field
operation and manipulation (OpenFOAM) library in the presence of sudden changes in
the pressure field and in the interface. See Appendix C for more details on the numerical
solution.

Figure 5(a) shows that the height profile is well captured by the AT, suggesting that
the flow field should also have been well captured. A more detailed comparison of the
predicted flow fields will be given in § 4.3.1. Concerning the heat transfer characteristics
in the jump region, figures 5(b) and 5(c) show that the ATHT is capable of correctly
predicting the Nusselt number for Pr = 7. However, for higher Prandtl numbers, e.g.
Pr = 164, the ATHT underestimates the Nusselt number from the beginning of the jump
onwards, while correctly predicts the Nusselt number before the jump. This holds true
regardless of the imposed BC.

For the case of a CHF, figure 5(b) indicates that the Nusselt number predicted by
the ATHT increases again in the final segment of the jump region for the two higher
Prandtl numbers, Pr = 100 and 164. Such an increase is not seen for the two lower Prandtl
numbers. This is because of the existence of a threshold value for the Prandtl number
(Prth), above which the thermal BL predicted by the ATHT does not reach the film surface
throughout the flow field and there is no transition from a region described by (3.24) to a
region described by (3.15) and (3.20).

For the presented cases in figure 5(b), the threshold Prandtl number is Prth ≈ 52.
Figure 6(a) indicates that for a Prandtl number slightly lower than Prth, the thermal BL
reaches the free surface, while it stays below the free surface throughout the flow field
for higher Prandtl numbers than Prth. Figure 6(b) shows that the Nusselt number profiles
signify the same qualitative difference shown in figure 5(b) for Pr = 7 and 164, i.e. the
different behaviour of the ATHT in the prediction of the Nusselt number depending on the
Prandtl number. Although the two Prandtl numbers are close to each other, the resulting
Nusselt number curves in the jump region differ from each other, since different sets of
equations must be solved for determining the temperature field. Concluding, there exists
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Figure 6. Comparison of the thermal BLs (a) and Nusselt number profiles (b) predicted by the ATHT for two
Prandtl numbers slightly higher and lower than Prth = 52. The flow conditions are the same as in figure 5. The
abscissa and ordinate are made dimensionless applying the diameter of the nozzle (d = 5 mm), from which the
jet emerges.

a discontinuous behaviour of the solution with respect to the Prandtl number, because
different sets of equations are needed to determine the temperature field.

For the case of a CPT (figure 5c), discontinuity in the solution procedure was not
observed. In fact, the ATHT predicts the thermal BL to reach the surface before the jump or
in the jump region for all cases shown. Increasing the Prandtl number further, a threshold
Prandtl number can also be found for the case of a CPT.

4.3. Physical insights into the ATHT
To further analyse the accuracy of the ATHT and understand the differences compared
with the FRNS, four additional investigations are carried out. First, the flow structure
obtained by the two methods will be compared. Second, the predicted temperature field
will be compared for different Prandtl numbers. Third, the flow field predicted by the
FRNS is used as input for the ATHT to study the temperature field while avoiding
possible inaccuracies in the prediction of the flow field properties by the AT. Finally, the
thermal BLE (2.12) will be used to investigate the influence of the Prandtl number on the
temperature field and the applicability of the AT.

4.3.1. Flow field and velocity profile in the jump region
To signify the differences between the flow fields in the jump region resulting from the AT
and FRNS, figure 7 is shown in addition to figure 5(a), where the good agreement in the
prediction of the height profile suggests that the flow field can also be captured well.

Figures 7(a) and 7(c) show the streamlines plotted on the temperature field for Pr =
164 and for the case of a CHF BC. There is good agreement between the FRNS and AT
in predicting the leading edge of the separation bubble. However, the separation bubble
predicted by the AT is smaller and the kink in the height profile is closer to the leading
edge of the separation bubble. This results in a smaller cross-sectional area above the
separation bubble, through which the main flow must pass, and consequently in higher
positive velocities over the separation bubble. Hence, negative velocities in the separation
bubble must also be higher, because higher positive velocities make the separation bubble
circulate faster (see figures 7b and 7d).

Comparing figures 5(b) and 7 shows that the strongest change in the Nusselt number
takes place at the leading edge of the separation bubble. Thus, a good prediction of this
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Figure 7. Comparison of the streamlines (a,c) and velocity profiles (b,d) in the jump region. Streamlines are
plotted on the temperature field: FRNS (a); AT (b). Temperature field is presented for the case of Pr = 164, for
which the AT does not properly capture the temperature field. Velocity profiles in the jump region and at the
centre of the separation bubble obtained by the FRNS (c) and AT (d) signify the differences in the captured
flow fields. The abscissa and ordinate are made dimensionless applying the nozzle diameter d = 5 mm, from
which the jet emerges.

leading edge is important to correctly predict the heat transfer characteristics in the jump
region.

As a conclusion, the flow height is well captured (figure 5a), the separation bubble can
be resolved in the jump region and the position of its leading edge is well determined
(figure 7a,c) applying AT. However, there are dissimilarities between the flow field
obtained in comparison with that of FRNS (figure 7a). This is in due to the neglect of
surface tension effects and due to the assumed velocity profile in the AT. As the flow field
is crucial to determining the temperature field, the dissimilarities in the flow fields can also
lead to dissimilarities in the temperature fields.

4.3.2. Temperature field and temperature profile in the jump region
The temperature distribution in the jump region determined by ATHT is examined in more
detail in this section by making comparisons with the one determined by FRNS for two
different Prandtl numbers, Pr = 7 and 164 (figure 8).

The temperature fields obtained by the FRNS exhibit significant differences in the jump
region for low and high Prandtl numbers. For low Prandtl numbers (figure 8c), where the
thermal BL thickness has already reached the free surface before the jump, the temperature
profiles remain monotonically decreasing throughout the jump. However, the situation is
different for high Prandtl numbers (figure 8d), where the thermal BL thickness does not
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Figure 8. Comparison of the temperature fields and profiles in the jump region obtained from the AT (a,b),
and from the FRNS (c,d). The flow conditions are the same as those given in figure 5 for Pr = 7 and Pr =
164. The abscissa and ordinate are made dimensionless applying the nozzle diameter d = 5 mm, from which
the jet emerges. The temperature profiles resulted from the AT (a,b), regardless of the Prandtl number, are
monotonically decreasing from the plate onwards, while those of the FRNS (c,d) exhibit a local maximum
away from the plate for high Prandtl numbers. In the FRNS δT is defined as the line where θ = 10−6 holds.

reach the free surface across the jump. In this case, the temperature profiles in the jump
region exhibit a local maximum away from the plate; an important feature not captured
by the ATHT. After the jump, this maximum disappears and a monotonically decreasing
profile is seen again. Such a maximum in the temperature profile occurs because of the
following: first, the highest temperatures occur at the leading edge of the separation bubble
due to the vanishing flow velocity in the radial direction; and second, the generated heat in
this region is transported by the separated flow that circumvents the separation bubble
leading to the local maximum in the temperature profile. For high Prandtl numbers,
i.e. when the influence of diffusive heat transfer is low, this transported heat reaches a
region over the separation bubble not affected by diffusive heat transfer from the plate.
Furthermore, the higher the Prandtl number, the longer it takes for the transported heat to
be transferred to adjacent streamlines.

In the ATHT, however, the selected temperature profile remains monotonically
decreasing and concave over the entire flow regardless of the Prandtl number. This can
also be deduced from the simple temperature profile (3.23). As a result, the ATHT captures
the temperature field for Pr = 7 (figure 8a) but not completely for Pr = 164 (figure 8b).
Besides, the missing local maximum away from the plate that can be seen in the FRNS
(figure 8d), the temperature is overestimated in the jump region, leading to the previously
shown underestimation of the Nusselt number (figure 5b).

The behaviour of the thermal BL thickness also differs from the one predicted by
the FRNS. First, the thermal BL reaches the free surface at smaller values of the radial
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coordinate in the ATHT than in the FRNS for small Pr numbers (figure 8a,c). This location
is equal to r/d ≈ 3 for AHAT and ≈4 for FRNS in this case. Second, for Pr = 164, the BL
thickness shows a more pronounced increase at the leading edge of the separation bubble
and decreases more strongly after the separation bubble in the ATHT than in the FRNS.

The overestimation of the plate temperature in the jump region as well as the curve of the
thermal BL thickness in the ATHT (figure 8b) can be explained by the fact that the ATHT
adopts the concave and monotonically decreasing profile (3.23), whose only variable is δT ,
to satisfy the integral energy equation (3.12). As there is a backflow close to the plate and
no local temperature maximum away from it in the ATHT, higher temperatures over the
entire height are required to balance the negative heat flux, which means an increase in the
thermal BL thickness. This phenomenon is further strengthened by overestimation of the
velocities in the separation bubble shown in figure 7. Since there is no heat flux transported
in the negative radial direction after the separation bubble, the predicted temperatures
decrease again together with the thermal BL thickness. This decrease is much stronger
than the one in the FRNS.

4.3.3. Averaging theory using the full Navier–Stokes velocity field
In order to rid the ATHT of the possible shortcomings in predicting the velocity field,
which may lead to inaccuracies in predicting the temperature field, the heat transfer
problem was studied with the ATHT using the flow field determined by the FRNS.

Figures 9(a) and 9(b) show the temperature fields obtained in this way for Pr = 7
and Pr = 164, respectively. Compared with figure 8, the temperature field for Pr = 7 is
reasonably predicted by this approach. This is comprehensible as this case was already
well predicted by the ATHT (see figure 5b as well).

For Pr = 164, the increase in BL thickness in the initial region of the jump is not as
steep as when the flow field is determined by the AT, and the behaviour of the thermal
BL thickness (figure 9b) is closer to the results of the FRNS alone (figure 8d). However, a
stronger decrease in the final part of the recirculation bubble is still seen in the results of
ATHT.

Figures 9(c) and 9(d) present the Nusselt number profiles for both Prandtl numbers (7
and 164) using the three approaches (FRNS, FRNS–ATHT and ATHT). Figure 9(c) shows
the entire radial range, for which the ATHT has been applied and figure 9(d) depicts the
near jump region for a better illustration of the largest variations in the Nusselt number.

Note, the ATHT does not correctly reproduce the values and especially the slope of
the Nusselt number profiles for small radii as shown in figure 9(c). The result of the
FRNS–ATHT approach, however, is close to the FRNS in this region, because the flow
in the FRNS is still affected by the stagnation region, an effect that is not captured in the
AT (this is the case in figures 5 and 6 as well, while a stagnation region does not exist in
the study of Sung et al. (1999) investigated in figure 4), and hence the resulting velocity
profiles cannot be captured by the AT. Nevertheless, both simplified methods, ATHT and
FRNS–ATHT, are capable of well describing the Nusselt number profiles before the jump
regardless of the Prandtl number, while they only capture the profile correctly for Pr = 7
from the jump onwards.

Note, the separation bubble predicted by the FRNS is longer than the one predicted
by the AT (see figure 7a,c). Accordingly, using the FRNS flow field in the ATHT
(FRNS–ATHT) leads to a longer region with small Nusselt number in the jump region
in comparison with ATHT (figure 9d). Taking a closer look at the jump region (figure 9d),
an influence of the flow field on the steepness the of the sudden decrease in the Nusselt
number is observed. The drop predicted by the ATHT is steeper and occurs in a shorter
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Figure 9. (a,b) Temperature fields and profiles determined by the ATHT using the flow field determined by
the FRNS. (c,d) Nusselt number profiles for Pr = 7 and 164 determined by the FRNS, by the FRNS and ATHT
(FRNS–ATHT), and by the ATHT alone. Nusselt number profiles over the entire radial range (c), and over the
jump region (d).

radial range than that of the FRNS–ATHT. This can be traced to the changes in the flow
field, occurring much faster in case of the ATHT (see figure 7). In addition, comparing
the FRNS with FRNS–ATHT, the sudden decrease in the Nusselt number predicted by the
FRNS–ATHT happens prior to that of FRNS.

In general, using the FRNS velocity field in the ATHT improves the predictions before
the jump. However, in and after the jump region, the failure of the ATHT in the prediction
of the temperature field for high Prandtl numbers cannot still be reduced in the jump region
because this failure is caused by the concave nature of the temperature profile.

4.3.4. Influence of the Prandtl number on the temperature field in the jump region
To study the influence of the Prandtl number in more detail, the thermal BLE (2.12) is
examined. For this, the radial velocity is reformulated as u(r, η) = v(r)·g(r, η), with η =
z/h. Here v(r) is once again the average radial velocity defined as v(r) = h−1 ∫ h

0 u(r, z) dz.
Inserting u(r, η) into the continuity equation (2.6a) and integrating the resulting equation
from 0 to z, the vertical velocity component can be obtained as follows:

w(r, η) = dh
dr

uη − 1
r

∫ η

0

∂g
∂r

dη̂. (4.1)

Note that the no-slip condition w(r, 0) = 0, (3.2) and the transformation from the (r, z)
coordinate system to the (r, η) coordinate system have been used to derive (4.1) (see
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Appendix D). Applying the same transformation to the thermal BLE (2.12) leads to

u
∂θ

∂r
−
[

1
rh

∫ η

0

∂g
∂r

dη̂

]
∂θ

∂η
= 1

Pr h2
∂2θ

∂η2 . (4.2)

From (4.1) it can be derived that the lines along which η is constant describe streamlines
if the integral term in (4.1) is zero. For this, the equations describing streamlines and lines
along which η is constant are compared:

dz
dr

∣∣∣∣
Streamline

= w
u

, (4.3)

dz
dr

∣∣∣∣
η=const.

= η
dh
dr

. (4.4)

If (4.1) is inserted in (4.3), under the assumption that the integral term in (4.1) is zero, the
right-hand side of (4.4) is recovered. The integral term is clearly zero at η = 0. Replacing
the radial velocity using u(r, η) = v(r)·g(r, η) in the definition of v(r) shows that the
integral term is also zero at η = 1. Therefore, the free surface is a streamline, as enforced
by the kinematic BC. Furthermore, all lines, along which η is a constant, are streamlines if
∂g/∂r = 0, i.e. when the radial velocity profile is self-similar. In general, analytical models
can successfully describe the regions before and after the jump using self-similar profiles.
This self-similar behaviour upstream and downstream of the jump region is also recovered
by the AT. To see this, the function g(r, η) can be replaced by the function f (r, η) defined
in (3.6). Equations (4.1) and (4.2) can then be written as follows:

w = dh
dr

uη − 1
r

dλ
dr

∫ η

0

∂f
∂λ

dη̂, (4.5)

u
∂θ

∂r
−
[

1
rh

dλ
dr

∫ η

0

∂f
∂λ

dη̂

]
∂θ

∂η
= 1

Pr h2
∂2θ

∂η2 . (4.6)

The integral term in these equations becomes negligible when dλ/dr ≈ 0. The
distribution of λ(r) in figure 5(a) shows that this occurs before and after the jump region.
If the lines of constant η are streamlines, the advective heat transfer will occur along such
lines and the term containing ∂θ/∂η disappears. Furthermore, the conductive heat transfer
occurs only in the vertical direction, which leads to a concave temperature profile along
the vertical axis and may be approximated by a polynomial. This is done in this work and
has also been done in the relevant studies (Liu & Lienhard 1989; Liu et al. 1991). However,
due to the recirculation zone in the jump region, transformation of the z axis in such a way
that streamlines are represented by constant values of the transformed coordinate is not
possible. Therefore, the convective term including ∂θ/∂η becomes relevant. Furthermore,
the contributions of conduction will be confined to a small region for a high Prandtl
number and heat transport in vertical direction will be dominated by convection (the
second term on the left-hand side of (4.2)). This is why the AT can correctly predict
the Nusselt number in the jump region for low Prandtl numbers but leads to deviations in
comparison with the FRNS for high Prandtl numbers.

4.3.5. The role of thermal boundary layer
Based on the previous discussions it is also interesting to re-evaluate the concept of
the thermal BL thickness as employed in the context of the ATHT. The concept is
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based on the observation that the highest gradients in the temperature occur close to
the boundary where the heat flux is applied, while no relevant gradients exist sufficiently
away from the boundary. The region with significant temperature gradients is where the
conductive heat transfer in the wall normal direction is significant. In simplified models
such as Liu & Lienhard (1989) and Liu et al. (1991), a thermal BL thickness δT is
introduced which separates a region described by a certain profile and a region with a
homogeneous temperature. It is important to note that this thickness is not a magnitude
which results from the BLEs, it is imposed in the models used to approximate it. Therefore,
when performing numerical simulations, an arbitrary condition, e.g. θ = 10−6, is used to
determine the thermal BL thickness.

Figure 8 shows that this concept becomes inapplicable in the recirculation region. The
local maximum away from the plate seen in figure 8(d) originates from heat transported
by the separated flow from the leading edge of the separation bubble. Around this local
maximum, conduction becomes important and this region is not strongly affected by the
region close to the plate for enough high Prandtl numbers. Thus, a region not strongly
affected by conduction from the plate lies between the plate and the local maximum. In
fact, for high Prandtl numbers, Pr → ∞, and away from the leading and trailing edges of
the separation bubble, the heat transfer between the plate and the liquid occurs in a region
very close to the wall where the velocity depends linearly on the vertical coordinate and a
solution such as the one determined by Leveque (1928) should describe the heat transfer.
Consequently, dividing the flow only into two sections by means of a single parameter
δT , one being affected by heat transferred from the plate while the other is not, no longer
seems to be possible. Especially if temperature is described by a simple profile which is
adapted to satisfy the integral thermal BLE. Therefore, future models should separately
treat the region close to the plate, which transports heat in negative radial direction, and
the region around the local maximum for high Prandtl numbers.

For low Prandtl numbers, conduction outweighs convection transporting heat in the
vertical direction. Thus, the heat transported with the recirculating flow rapidly diffuses
over the height and the influence of the plate engulfs the entire recirculation bubble,
making the concept of the thermal BL applicable as the comparison of the figures 8(a)
and 8(c) indicates.

A criterion for determining a range of Prandtl numbers, for which the ATHT is
applicable, is derived in Appendix E.

5. Conclusion

To analytically describe the heat transfer problem in CHJs with a separation bubble, the
AT introduced by Bohr et al. (1997) and further developed by Watanabe et al. (2003)
was extended for heat transfer, called ATHT. The extended theory was compared with
numerical studies available in the literature. Following Askarizadeh et al. (2020), FRNSs
were also carried out in this study to compare the ATHT for a wide range of Prandtl
numbers. Accordingly, heat transfer characteristics predicted by the ATHT in the jump
region were discussed for different Prandtl numbers. For low Prandtl numbers, e.g. Pr = 7,
temperature field and Nusselt number profile in the jump region were predicted quite well.
However, for high Prandtl numbers, e.g. Pr = 164, the developed ATHT underestimates
the Nusselt number in the jump region. The main reason for the discrepancies is the
inaccuracy of ATHT in capturing the temperature field that occurs when convective
heat transfer contributes significantly to the vertical transport of heat, especially at the
beginning of the jump region (leading edge of the separation bubble). This is rooted
in: (i) the selected temperature profiles (see § 4.3.2); and (ii) the inapplicability of the
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concept of thermal boundary layer thickness (see § 4.3.4) in the jump region. A criterion
for the evaluation of a critical Prandtl number, Prcrit, below which, i.e. Pr < Prcrit, the
ATHT can predicts the heat transfer characteristics in the jump region, was introduced
in Appendix E. In addition, the influence of using the velocity field predicted by the
FRNSs in the ATHT on the predicted temperature field was investigated. However, the
expected improvement in predictions by ATHT was suppressed by the selected temperature
profile. Notably, a discontinuous behaviour around a threshold Prandtl number (Prth) was
observed in the ATHT because of the need for solving two different sets of equations
to describe the temperature field. In general, the ATHT gives good results for moderate
Prandtl numbers, Pr < Prcrit, while being simple and having low computational costs.
Further modifications on the model, e.g. on the assumed velocity and temperature profiles,
may allow us to improve its validity for higher Prandtl numbers and to suppress the
discontinuous behaviour.

Supplementary data. The algorithm implemented in MATLAB together with a detailed description is
published by the RWTH library under DOI 10.18154/RWTH-2023-11532.
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Appendix A. Fourth versus third-order polynomial for the temperature profile in the
ATHT

In this appendix, ATHT derived using a third-order polynomial is compared with the one
using a fourth-order polynomial for the case of a CHF BC. The resulting temperature
profiles for the thermally developing (§ 3.2.2) and fully developed (§ 3.2.1) cases are

θ =
{

δT(2
3 − ηT + 1

3η3
T) for z < δT

0 for z ≥ δT
(A1)

and
θ = θ0(1 − 4η3 + 3η4) − h(η − 3η3 + 2η4) + θs(4η3 − 3η4), (A2)
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Figure 10. Comparison of the Nusselt numbers determined by the FRNS and ATHT using a third-order and a
fourth-order polynomial for the case of a CHF condition and Pr = 7. Details on the flow conditions are given
in the caption of figure 5.

respectively. The equation for determining Φ reads

hΓ (Φ, λ) = 1
2

r2

Pr
, (A3)

where

Γ (Φ, λ) = λ+ 3
5

Φ2 − 5λ+ 3
18

Φ3 + 2λ
21

Φ4. (A4)

The same equation is obtained using a fourth-order polynomial as well (see (3.24)).
However, Γ represents a different integral. The equation for determining θ0 is

θ0 = r2

2 Pr
+ h

(
61

120
− 41

2520
λ

)
. (A5)

Figure 10 shows that the resulting model using a third-order polynomial is also capable
of predicting the Nusselt number. However, a fourth-order profile results in a better
comparison in the jump region.

Note, the temperature profile for the developed/fully diffused region (δT = h) resulting
from a third-order polynomial is less flexible than the one from a fourth-order polynomial.
Using a third-order polynomial, the shape of the temperature profile is fixed and is simply
displaced by changing θ0 such that the averaged heat transfer equation, (3.9), is satisfied.
Using a fourth-order polynomial, on the other hand, the shape of the profile changes such
that the interface temperature fulfils the thermal BLE, (2.12). As figure 11 shows, such a
relation for the temperature at the interface is needed to avoid unrealistic changes of the
temperature close to the interface across the jump.

Appendix B. Validation of the original AT presented by Bohr et al. (1997)

This appendix is dedicated to the validation of the original AT introduced by Bohr et al.
(1997) for solving the flow field in the jump region with a separation bubble. For this
purpose, the AT is compared with numerical (Higuera 1997) (figure 12), experimental
(Duchesne et al. 2014) (figure 13) and analytical Watson (1964) studies.
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Figure 11. Comparison of the temperature fields/profiles determined by the ATHT using a third-order and a
fourth-order polynomial for the case of a CHF condition and Pr = 7. Details on the flow conditions are given
in the caption of figure 5.

0.4 AT

Higuera (1997)

0.2
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0
0 0.2 0.4 0.6 0.8 1.0

Figure 12. Comparison of the AT with the numerical study by Higuera (1997). The dimensionless start and end
radii and heights are ri = 0.13, rend = 1, hi = 0.008 and hend = 0.4, respectively. The non-dimensionalisation
was performed according to Higuera (1997).

1.00
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Duchesne et al. (2014)
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Figure 13. Comparison of the AT with the experimental study by Duchesne et al. (2014). Details on the
experimental data are given in § C.1.5. For the AT, the start and end radii and heights are ri/d = 1.33,
rend/d = 44.22, hi/d = 0.15 and hend = 0.5, respectively. The diameter of the nozzle is equal to d = 3.2 mm,
from which the jet emerges.
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Figure 14. Verification of a constant Froude number at the jump exit claimed by Duchesne et al. (2014).
Except for the values of the volume flow rate Q, all other conditions of the flow are given in § C.1.5.

B.1. Comparison with numerics
Higuera (1997) solved BLEs numerically for an axisymmetric CHJ with a separation
bubble. Figure 12 shows that the AT accurately reproduces the height profile before and
after the jump; however, in the jump region deviations are seen. Since Higuera (1997)
solved the BLEs numerically, the assumed velocity profile in the AT is the main reason
for deviations. Nevertheless, the jump position, leading edge and height of the separation
bubble are accurately predicted by the AT; while the length of the separation bubble is
approximately half of that predicted by the numerical results.

B.2. Comparison with experiments
Comparison with the experimental study by Duchesne et al. (2014) in figure 13 reveals that
the AT accurately predicts the height profile before and after the jump for the silicon oil
jet with a surface tension of σ = 20 mN m−1, see figure 13(a). The trend of the variation
of the height profile in the jump region is also well captured, see figure 13(b); however,
the jump position is a bit underestimated, see the left-hand inset in figure 13(a). A same
validation study for the AT was carried out by Nielsen (2015), where the relaxation method
(Press et al. 2007), used in this study, was applied to the CHJ problem for the first time.

Note, the validation study for the FRNS presented in § C.1.5 uses the same experimental
data, where the entire jet (emerging from the nozzle up to the edge of the plate) has been
simulated. For the AT, however, only the film flow over the plate is solved.

B.2.1. Froude number scaling
Duchesne et al. (2014) calculated the critical Froude number from experimental data at the
jump exit and claimed that this Froude number is essentially constant. This observation can
also be verified by the AT that was carried out by Nielsen (2015). The results are presented
in figure 14.

The critical Froude number was calculated by Duchesne et al. (2014) as follows:

Fr = UJ√
gHJ

= Q

2πRJ g1/2H3/2
J

, (B1)
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where RJ is the jump radius, g gravitational acceleration, UJ averaged flow velocity at RJ ,
and HJ height of the jump. Duchesne et al. (2014) proposed to determine HJ either by
extracting it directly from the experimental data or by using the following correlation:

H(r) =
[

H4
∞ + 6νQ

πg
ln
(

R∞
r

)]1/4

, (B2)

where H∞ is the liquid thickness at the disk perimeter at r = R∞ and ν the kinematic
viscosity. Duchesne et al. (2014) found a constant Froude number independent of the
method used for determining HJ . Nielsen (2015) compared the Froude numbers computed
using the experimental values of HJ with the Froude numbers at the jump predicted by the
AT. The jump radius was determined by Nielsen (2015) as the radius with the highest slope
in the height profile and the height of the jump as the largest value of the height profile.

B.3. Comparison with analytical studies
Watanabe et al. (2003) carried out asymptotic analysis of the equations of the AT, (3.7) and
(3.8), for small and large radii, i.e. for upstream and downstream of the jump. Upstream of
the jump, Watanabe et al. (2003) derived the following equations:

h = 4
5G(−3/5)

r2 + C1

r
, (B3)

λ = −3
5

+ h4

5
− 105

272
r3h3, (B4)

where G was introduced in (3.4).
Watson (1964) studied the region upstream of the jump neglecting hydrostatic pressure,

which is a valid assumption considering the high velocity of the film flow and small heights
upstream of the jump. A self-similar solution for the velocity profile and the following
correlation for the film height were obtained by Watson (1964):

π

3
√

3

r3 + l3

r
. (B5)

This correlation has been non-dimensionalised according to (2.7). The length parameter
l was determined by Watson (1964) by matching the region in which the velocity BL
thickness has not yet reached the free surface to the fully viscous region (described by
the similarity solution found by Watson (1964)). If the constant C1 in (B3) is set to
C1 = 4/(5G(−3/5)l3, the factor of (B3) is only 6 % higher than the one of (B5). The
velocity profiles determined by Watson (1964) and by the AT for λ = −3/5 are provided
in figure 15(a) showing a good agreement. Note, λ = −3/5 is a good approximation for
the jump position (see figure 5a).

Downstream of the jump, λ tends to 0 (Watanabe et al. 2003). The velocity profile is
then identical to the Poiseuille-type flow determined by balancing the pressure terms and
viscous terms in the BLE for the radial momentum, which is f (r, η) = 2η(1 − 0.5η) (see
figure 15). For the height profile downstream of the jump, Watanabe et al. (2003) found
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Figure 15. Comparison of the velocity profiles determined by the AT in upstream (a) and downstream (b) of
the jump region with the analytical approximations of Watson (1964) (a) and a Poiseuille-type flow (b).
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Figure 16. Variation of h(r) and λ(r) for a flow extended close to the singularity in the AT.

the following expression:

h = (C − ln(r))1/4, (B6)

where C is an unknown constant. Assuming a height h∞ to be known at a radius r∞,
C can be determined resulting in

h =
(

h4
∞ + ln

(r∞
r

))1/4
. (B7)

This correlation is identical to the one determined by Duchesne et al. (2014) for the region
downstream of the jump and shows that the AT includes a point for which the height of
the film vanishes. This can be interpreted as the radial position for which the liquid falls
off the edge of the plate. This singularity in the AT coincides with the outer BC used by
Higuera (1994) for the investigation of planar hydraulic jumps. Figure 16 shows profiles of
h and λ for a flow extended to a radius close to its singularity. While h drops down to 0, λ
diverges away from 0.

Appendix C. Fully resolved numerical simulations

A detailed description of the numerical method used in this study can be found in Rohlfs
et al. (2020) and Askarizadeh et al. (2021). This appendix presents the most important
aspects of the solution procedure needed to reproduce the results.
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C.1. Numerical methodology

C.1.1. Governing equations
Under the assumption of a laminar immiscible free-surface flow, the fully incompressible
Navier–Stokes equations in the volume-of-fluid (VOF) approach (Hirt & Nichols 1981) can
be expressed using the Einstein summation convention for continuity, momentum, volume
fraction (α) and temperature (T) as follows, respectively:

∂ui

∂xi
= 0, (C1)

∂ρui

∂t
+ uj

∂ρui

∂xj
= − ∂p

∂xi
+ ν

∂2ρui

∂xj∂xj
+ f σ

i + f g
i , (C2)

∂α

∂t
+ ∂αui

∂xi
= 0, (C3)

∂T
∂t

+ uj
∂T
∂xj

= a
∂2T

∂xj∂xj
. (C4)

In (C2), f σ indicates surface tension forces incorporated through the continuum surface
force model (Brackbill, Kothe & Zemach 1992):

f σ = σκ∇α. (C5)

The surface curvature κ is estimated from the divergence of the interface normal vector n̂:

κ = −∇ · n̂, (C6)

where n̂ is obtained from normalising the gradient of the volume fraction,

n̂ = ∇α

‖∇α‖ . (C7)

Note that the numerical approach benefits from solving an interface compression scheme
together with the scalar transport equation of volume fraction (C3) to overcome the
interface smearing caused by numerical diffusion. The interface comparison scheme reads

∂α

∂t
+ ∂αui

∂xi
+ ∂ui,rα(1 − α)

∂xi
= 0, (C8)

where ui,r signifies the artificial compression velocity.
In the VOF approach, the volume fraction values are employed in the following manner

to calculate any required property, ξ , for the mixed fluid:

ξ = αξl + (1 − α)ξg, (C9)

where the subscripts l and g stand for the liquid and gas, respectively. The indicator
function α accounts for the volume fraction of the liquid phase.

C.1.2. Simulations
Numerical simulations are carried out using the interFoam solver of the OpenFOAM
library (Jasak 1996; Ubbink 1997; Rusche 2002), which is a finite-volume implementation
of the VOF method (Hirt & Nichols 1981). It solves the advection of the volume fractions
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Figure 17. Computational domain and BCs together with the qualitative grid cells distribution in axial and
radial directions.

and the Navier–Stokes equations for mass and momentum to obtain the interface of two
immiscible and incompressible fluids.

The finite-volume method captures the interface through mixed cells that contain both
fluids. The divergence of the interface normal vector is then used by the solver to obtain the
curvature of the interface, which is applied to calculate the interfacial forces. The resulting
interfacial forces are converted into cell-averaged volume forces through the continuum
surface force method (Brackbill et al. 1992).

Due to some accuracy limitations inherent to the interFoam solver caused by artificial
oversharpening of the interface (Deshpande, Anumolu & Trujillo 2012), a limiter has been
introduced that amends the interface compression scheme (Rohlfs et al. 2020). This limiter
is included in the SMICFoam solver whereby interfacial forces are calculated using the
continuum surface stress method (Lafaurie et al. 1994). A detailed description of the solver
together with its validation has been given by Rohlfs et al. (2020).

C.1.3. Computational domain and BCs
The computational domain and BCs are shown in figure 17(a) and the qualitative grid
distribution in figure 17(b). The wall group with the no-slip condition consists of a
circular impinged plate under a CHF, an obstacle at the end of the impinged plate with
a variable height and a constant length of 10 mm (length of the obstacle), and an upper
wall that stands for the outer diameter of the nozzle. The dimensionless height and
length of the obstacle are ho/d and lo/d = 2 (d is the nozzle diameter), respectively. The
numerical procedures are similar to those provided in Rohlfs, Pischke & Scheid (2017)
and Askarizadeh et al. (2019, 2020, 2021). For the surrounding condition where the static
atmospheric pressure is specified and either an inflow or an outflow may occur, a velocity
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Figure 18. Independence of the interface profile (a) and the Nusselt number profile for the case of Pr = 164
(b) from the grid resolution. The parameters of the grid study are the dimensionless nozzle-to-plate distance
H/d = 2, dimensionless plate radius R/d = 8, dimensionless obstacle height ho/d = 0.2, entrance Reynolds
number Rei = 4Q/νπd = 764, entrance Weber number Wei = Re2

i ρν2/σd = 288 and a parabolic inlet
velocity profile. Further details on the flow conditions are given in figure 5.

inlet/outlet BC is applied in which the patch normal velocity is calculated according to the
pressure gradient. At the inlet, a fully developed parabolic velocity profile in conjunction
with static atmospheric pressure is imposed.

C.1.4. Verification
To verify the independence of numerical results from the grid with a uniform distribution
of cells in both directions, figure 18 is provided. The independence can be seen in the
insets of figures 18(a) and 18(b), where the variations in the hydraulic jump region have
been magnified showing the eligibility of the grid resolution with a dimensionless cell size
equal to �r/d = �z/d = 2.5 × 10−3.

C.1.5. Validation
To show the validity of the fully resolved numerical simulations, figure 19 is provided
comparing the variation of the interface over the radius. The insets in the figure magnify
the comparison before, in and after the jump and show good agreement between the
numerical and experimental results for the jump radius and for the upstream and
downstream heights of the flow, demonstrating the validity of the numerical approach.

Appendix D. Derivation of the normal velocity component

The axial velocity profile is determined using the continuity equation (2.6a):

∂ur
∂r

+ ∂wr
∂z

= 0. (D1)

Integrating this equation from 0 to z and solving it for w taking into account the no-slip
condition, w(r, 0) = 0, results in

w = −1
r

∫ z

0

∂ur
∂r

dz∗. (D2)
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Figure 19. Comparison of the fully resolved numerical simulations with the experimental study by Duchesne
et al. (2014) for the interface of a laminar oil jet. The working fluid is silicon oil at room temperature (ν =
20 cSt, σ = 20 mN m−1 and ρ = 0.96 g cm−3). The oil jet emerges from a circular nozzle with the diameter
of d = 3.2 mm as a fully developed flow. The volume flow rate is Q = 17 cm3 s−1 and the jet impinges normally
on a circular plate with a diameter of 30 cm, which is located 4 cm below the nozzle. The entrance Reynolds
number of the oil jet is Re = 4Q/π dν ≈ 338.204.

Replacing the radial velocity with u(r, η) = v(r)·g(r, η), where η = z/h, (D2) can be
rewritten as

w = −1
r

∫ z

0
vg + r

∂vg
∂r

dz∗ = −1
r

∫ z

0
vg + rg

dv

dr
+ rv

∂g
∂r

dz∗. (D3)

To describe the derivative dv/dr, the relation rhv = 1 is applied:

dv

dr
= d

dr

(
1
rh

)
= − 1

(rh)2

(
h + r

dh
dr

)
. (D4)

Additionally, the partial derivative (∂g/∂r) needs to be transformed from the (r, z)
coordinate system into the (r, η) coordinate system:

∂g
∂r

∣∣∣∣
z=const.

= ∂g
∂r

∣∣∣∣
η=const.

+ ∂g
∂η

∣∣∣∣
r=const.

· ∂η

∂r

∣∣∣∣
z=const.

, (D5)

where
∂η

∂r

∣∣∣∣
z=const.

= ∂

∂r

( z
h

)∣∣∣∣
z=const.

= − z
h2

∂h
∂r

= −η

h
dh
dr

. (D6)

In the following, the partial derivatives are expressed in the (r, η) coordinate system, but
the indexes used in (D5) will be omitted for the sake of simplicity. Inserting (D4) and (D5)
in (D3) leads to

w = −1
r

∫ z

0
vg + rg

(
− 1

(rh)2

(
h + r

dh
dr

))
− rv

η

h
dh
dr

∂g
∂η

+ 1
h

∂g
∂r

dz∗. (D7)

Replacing v in this equation with (rh)−1 and simplifying the result yields

w = −1
r

∫ z

0
− 1

h2
dh
dr

(
g + η

∂g
∂η

)
+ rv

∂g
∂r

dz∗, (D8)
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which can be transformed into

w = −1
r

∫ z

0
− 1

h2
dh
dr

∂gη

∂η
+ rv

∂g
∂r

dz∗ = −h
r

∫ η

0
− 1

h2
dh
dr

∂gη

∂η
+ 1

h
∂g
∂r

dη∗. (D9)

This finally leads to the desired equation,

w = 1
rh

dh
dr

gη − 1
r

∫ η

0

∂g
∂r

dη∗ = dh
dr

uη − 1
r

∫ η

0

∂g
∂r

dη∗. (D10)

Appendix E. Derivation of a critical Prandtl number for the applicability of the
ATHT

In this appendix, a critical Prandtl number is derived, below which (i.e. for Pr < Prcrit)
the ATHT is applicable for the determination of the Nusselt number in the jump region.
The main difference in the results of the ATHT in comparison with the FRNS is the shape
of the temperature profile for high Prandtl numbers (see figure 8) in the jump region. As
argued in §§ 4.3.2, 4.3.4 and 4.3.5, this profile possesses a local maximum away from
the plate that cannot be predicted by the ATHT. This local maximum occurs when the
advection of heat in the vertical direction, starting from the leading edge of the separation
bubble, becomes relevant. This means, a critical Prandtl number (Prcrit), below which
advection of heat in vertical direction does not play a major role in the formation of the
temperature profile in the jump region and, hence, the ATHT can be applied, must exist.

A possible criterion to assess if the influence of heat conduction is strong enough such
that heat transfer in the jump region is not dominated by advection is whether the thermal
BL thickness reaches the free surface before the jump. If this is the case, ATHT works well
for the determination of heat transfer characteristics in the jump region. This condition
is, therefore, used as the criterion for determining the critical Pr number, Prcrit for the
applicability range of the ATHT. Correlations for Prcrit are derived for both considered
BCs in this study: a CHF and a CPT.

E.1. Constant heat flux
For the determination of an approximate value for Prcrit, the flow height before the jump,
h(r), is approximated using the following asymptotic expression derived by Watanabe et al.
(2003), which is in good agreement with that of presented by Watson (1964):

h = 4
5G(λ)

r3 + l3

r
. (E1)

Furthermore, λ = −3/5 is assumed, which is a good approximation in the region before
the jump (see figure 5a). In the context of the AT, l can be determined such that (E1)
satisfies the initial BC:

l3 = 5G(−3/5)

4
rihi − r3

i . (E2)

To determine the position of the jump, the condition r ≈ 1 introduced by Bohr et al.
(1993) is used, where r is non-dimensionalised using the reference values in (2.7).
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Figure 20. Comparison of the Nusselt numbers averaged over the surface from the jump onwards determined
by FRNS and ATHT for the case of (a) a CHF and (b) a CPT. In the case of a CPT, the IC for q̇(r) has been
chosen such that Nur/d=2 = Nur/d=2,Pr=7·(Pr/7), where Nur/d=2,Pr=7 is the value for the Nusselt number at
the position r/d = 2 determined by FRNS for Pr = 7. When required, the initial value of θs is set to 0. For all
Prandtl numbers, for which FRNS were carried out, the ATHT was also determined fixing the Nusselt number
at r/d = 2 to the value determined by the FRNS. The results are represented by the blue crosses. Different
scenarios for the determination of the IC have no influence on the final results.

Substituting r, h and λ in (3.24) and using the condition of δT/h = 1, i.e. Φ = 1, Prcrit
can be determined as follows:

Prcrit = 5G(−3/5)

8Γ (1, −3/5)(1 − l3)
. (E3)

To evaluate the applicability of this relation, FRNS of the case investigated in figure 5
has been carried out for several Prandtl numbers in the range of 1 ≤ Pr ≤ 164 and the
resulting averaged Nusselt number is compared with the ATHT in figure 20(a). For all
cases, the Nusselt number is averaged according to

Nud = 2
r2

end − r2
λ

∫ rend

rλ
Nudr dr, (E4)

where, rλ was chosen to be the radius with the highest gradient in λ(r), which can be
interpreted as the jump radius. This coincides with the position where the Nusselt number
drops suddenly. The final radius was chosen so that r̃end = 7.5d to prevent the influence of
the obstacle used in the FRNS on the Nusselt number.

The averaged Nusselt numbers over the Prandtl number for the case of a CHF BC
are shown in figure 20(a). Results show that the ATHT agrees well with the FRNS for
Pr < Prcrit. For Pr > Prcrit, Nud predicted by the FRNS continuously increases, while
that of the ATHT starts to gradually deviate from the results of FRNS. This is due to the
underestimation of the Nusselt number in the jump region by the ATHT.

Note, the value of Prcrit depends on the temperature profile selected in the ATHT.
However, figure 20 shows that using a fourth-order polynomial, this value can be
determined appropriately. Furthermore, using lower-order polynomials, whose parameters
are determined by fewer conditions, e.g. a third-order polynomial, will only lead to smaller
values for Prcrit.
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Averaging theory for heat transfer . . .

E.2. Constant plate temperature
Following a similar approach, a correlation is derived for the case of a constant plate
temperature. Again, (E1) and λ = −3/5 are used. In this case, (3.26) needs to be solved.
Using dλ/dr = 0 and rearranging the terms in (3.26) results in

Φ
∂ξ

∂Φ

dΦ

dr
= 2

h Pr
. (E5)

Integrating this relation from ri (the initial radius for the given case) to rj (jump radius)
leads to

Prcrit = 5G(−3/5)

6
ln

(
r3

j + l3

r3
i + l3

)
(8/75)Φ3

j − (6/875)Φ5
j

(8/75)Φ3
i − (6/875)Φ5

i
. (E6)

The condition of rj = 1 is again used for the jump position. At this position, Φ must
become equal to 1. For ri, a value for Φ is still required. A conservative estimation to
bound Prcrit at most is Φi = 0. Substituting these conditions into (E6) leads to

Prcrit = 13125G(−3/5)

1572
ln

(
r3

j + l3

r3
i + l3

)
. (E7)

Figure 20(b) shows the average Nusselt number from the jump onwards, defined
according to (E4) for the case of a CPT. Similar to the case of a CHF (figure 20a), good
agreement between the predictions of FRNS and ATHT is observed for small Prandtl
numbers, in this case for Pr < Prcrit ≈ 22. Notably, the average Nusselt number predicted
by the ATHT approaches a constant value for increasing Prandtl numbers while the one
predicted by the FRNS keeps increasing.

Comparison of figures 20(a) and 20(b) shows that the agreement between the FRNS and
the ATHT is better for the case of CHF conditions. The reason is the following: ATHT is
based on integrals of the conservation equations. For the heat transfer problem, this means
the total amount of heat transported by the flow, left-hand side of (3.11), is balanced by
the heat transferred from the plate to the liquid, right-hand side of (3.11). For a CHF
condition, the heat transferred from the plate is a known quantity while for the case of
a CPT it depends on the determined temperature profiles. Thus, deviation caused by the
chosen profile will be more significant. Notably, the used criterion for Prcrit seems to
overestimate the critical Prandtl number.
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