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Abstract. In this paper, we study Hardy spaces associated with non-negative self-
adjoint operators and develop their vector-valued theory. The complex interpolation
scales of vector-valued tent spaces and Hardy spaces are extended to the endpoint
p = 1. The holomorphic functional calculus of L is also shown to be bounded on the
associated Hardy space H1

L(X). These results, along with the atomic decomposition
for the aforementioned space, rely on boundedness of certain integral operators on the
tent space T1(X).
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1. Introduction. The theory of Hardy spaces associated with operators has been
extensively studied in the recent years. Indeed, the cases of elliptic operators on �n

[16,17], non-negative self-adjoint operators on doubling metric measure spaces [15] and
Hodge–Dirac operators on Riemannian manifolds (with doubling volume measure)
[4] are all well understood by now.

In the above-mentioned cases, the Hardy spaces are defined in terms of conical
square functions, which has the benefit of allowing a direct connection with tent spaces.
These were first introduced by Coifman, Meyer and Stein in [10] and have since become
a central tool in Harmonic Analysis. Their theory extends without much difficulty to
doubling metric measure spaces (see [1, 27]).

The aim of this paper is to study such Hardy spaces for functions that take
their values in an infinite dimensional Banach space. This is not a completely new
development; the theory of vector-valued Hardy spaces associated with bisectorial
operators on �n was initiated by Hytönen, van Neerven and Portal in [20], which
is the main inspiration for this article. However, their theory covers only the range
1 < p < ∞, mainly because not all of the classical scalar-valued tent space techniques
carry over to vector-valued setting. A new method, suitable for vector-valued tent
spaces, was introduced by the author in [22], which allowed to extend the theory to
p = 1. In this article, we study the case of vector-valued Hardy spaces associated with
non-negative self-adjoint operators on certain doubling metric measure spaces and
develop the corresponding theory of tent spaces.

The main result concerning interpolation (Theorem 6 and Corollary 7) extends
Theorem 4.7 from [20] to the lower endpoint.
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MAIN RESULT 1. The complex interpolation scale of vector-valued tent spaces Tp(X)
extends to p = 1.

Actually, also the other endpoint T∞(X) is included in the interpolation scale as
a consequence of the duality T1(X)∗ � T∞(X∗) (Theorem 5, cf. [22, Theorem 14]).
The ‘classical’ proof of the duality [10, Theorem 1(b)] becomes available in the vector-
valued setting after a more direct definition of tent spaces which does not rely on
completions (see Section 3 and Appendix A).

Instead of the ‘embedding method’ from [13] and [22] (which for p = 1 and p = ∞
is of a strictly Euclidean nature), the proof of Main result 1 is based on a geometric
assumption on the underlying space, namely the cone covering property. It is meant as
an abstraction of the proof technique rather than a genuine geometric property, and the
framework of metric measure spaces is chosen primarily to highlight the flexibility of
this method. In [22], it was proven for �n and in [2] it is shown to hold, more generally,
on complete (connected) Riemannian manifolds of non-negative sectional curvature.

The communication between tent spaces and Hardy spaces happens by means of
integral operators. In the vector-valued setting, the boundedness of integral operators
on tent spaces relies on the change of aperture [20, Theorems 4.3 and 5.6]. We obtain
a change of aperture inequality on T1(X) from the atomic decomposition, the proof of
which also relies on the cone covering property, and extend the integral operators to
T1(X) following closely the proof from [20].

We then arrive at the second main result (Theorems 12 and 14), which extends
Theorem 7.10 and Corollary 7.2 from [20] to the endpoint p = 1:

MAIN RESULT 2. The complex interpolation scale of vector-valued Hardy spaces
Hp

L(X) extends to p = 1. Moreover, L has a bounded H∞-functional calculus on H1
L(X).

It is well understood that the tent space atomic decomposition can be turned into
atomic or molecular decomposition of the Hardy space (see Theorem 17):

MAIN RESULT 3. Functions in a dense subspace of H1
L(X) admit decompositions into

atoms.

As a corollary, the ‘square function Hardy space’ H1
�(X) associated with the (non-

negative) Laplacian � on �n coincides with the classical ‘atomic Hardy space’. The
presented framework also covers the case when L is the Laplace–Beltrami operator on
a complete (connected) Riemannian manifold with non-negative sectional curvature.

The vector-valued tent space theory makes use of pointwise estimates, which
imposes two limitations to the current understanding. First, in order to have atomic
decompositions and interpolation for tent spaces, we rely on the cone covering property
of the underlying metric space. Secondly, for non-self-adjoint operators, it is by no
means clear how to obtain molecular decompositions for the associated Hardy spaces.
The difficulty arises in the attempt to interpret the molecular decay condition by means
of integral operators on tent spaces.

2. Preliminaries.

2.1. Notation. Random variables are taken to be defined on a fixed probability
space whose expectation is denoted by �. Given a Banach space X the duality pairing
between ξ ∈ X and ξ ∗ ∈ X∗ is written as 〈ξ, ξ ∗〉. By α �ε β, it is meant that there exists
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a constant Cε (depending on a parameter ε) such that α ≤ Cεβ. Quantities α and β

are comparable, α � β, if α � β and β � α.

2.2. Stochastic integration and γ -radonifying operators. We first recall some facts
about stochastic integration of functions with values in a (complex) Banach space (see
[26] for details).

Let (�, ν) be a σ -finite measure space and assume that a random measure W
associates to each set A ⊂ � of finite measure, a Gaussian random variable W (A) so
that
� �W (A)2 = ν(A),
� if A and A′ are disjoint sets, then W (A) and W (A′) are independent and W (A ∪ A′) =

W (A) + W (A′).
The stochastic integral with respect to W is defined by linearly extending

´
�

1A dW =
W (A) to simple functions and then by density to whole of L2(�). Observe, that the
‘Itô isometry’

�
∣∣∣ ˆ

�

u dW
∣∣∣2

=
ˆ

�

|u|2 dν

holds for u ∈ L2(�). Moreover, if X is a Banach space, we can take the tensor extension
to L2(�) ⊗ X by defining

ˆ
�

u ⊗ ξ dW =
ˆ

�

u dW ⊗ ξ,

for u ∈ L2(�) and ξ ∈ X . Two crucial properties of the vector-valued stochastic integral
are
� Covariance domination: If two functions u, v ∈ L2(�) ⊗ X satisfy

ˆ
�

|〈v(·), ξ ∗〉|2 dν �
ˆ

�

|〈u(·), ξ ∗〉|2 dν

for all ξ ∗ ∈ X∗, then

�
∥∥∥ ˆ

�

v dW
∥∥∥2

� �
∥∥∥ ˆ

�

u dW
∥∥∥2

.

� Khintchine–Kahane inequality: For all 1 ≤ p, q < ∞ and every u ∈ L2(�) ⊗ X , we
have

(
�
∥∥∥ ˆ

�

u dW
∥∥∥p)1/p

�

(
�
∥∥∥ ˆ

�

u dW
∥∥∥q)1/q

.

Recall that a Banach space X is said to have type r ∈ [1, 2] if for any (finite)
collection {ξk} of vectors in X we have

(
�
∥∥∥ ∑

k

εkξk

∥∥∥2)1/2
�

( ∑
k

‖ξk‖r
)1/r

,
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where the Rademacher variables εk are independent and attain values ±1 with equal
probability 1/2. In terms of stochastic integrals, if X has type r, then

(
�
∥∥∥ ∑

k

ˆ
�

uk dW
∥∥∥2)1/2

�
( ∑

k

�
∥∥∥ ˆ

�

uk dW
∥∥∥r)1/r

,

whenever uk are disjointly supported functions in L2(�) ⊗ X . Indeed, the random
variables

´
�

uk dW are independent and symmetric, and therefore identically
distributed with ε′

k

´
�

uk dW when (ε′
k) is an independent sequence of Rademacher

variables. Using Khintchine–Kahane inequality and type r of X , we may then infer
that(

�
∥∥∥ ∑

k

ˆ
�

uk dW
∥∥∥2)1/2

�

(
��′

∥∥∥ ∑
k

ε′
k

ˆ
�

uk dW
∥∥∥r)1/r

�
( ∑

k

�
∥∥∥ ˆ

�

uk dW
∥∥∥r)1/r

.

The space of ‘stochastically integrable’ functions is not, in general, complete, but
can be described in terms of γ -radonifying operators (see [25] for a survey):

DEFINITION. A densely defined linear operator u from L2(�) to X is said to be γ -
radonifying if it can be approximated by finite rank operators in the norm

‖u‖γ (L2(�),X) = sup
(

�
∥∥∥ ∑

k

γkuhk

∥∥∥2)1/2
,

where the supremum is taken over finite orthonormal systems {hk} in the domain of u.
Here, the γk are independent standard Gaussian random variables.

REMARKS.
� Observe that if ‖u‖γ (L2(�),X) < ∞, then u extends to a bounded operator.
� If X does not contain an isomorphic copy of c0, then every operator u with

‖u‖γ (L2(�),X) < ∞ can be approximated by finite rank operators and is thus γ -
radonifying [25, Theorem 4.2].

� The space γ (L2(�), X) of γ -radonifying operators is complete.

Now, γ -norms of finite rank operators correspond to stochastic integrals of
functions in the sense that every u = ∑

k uk ⊗ ξk ∈ L2(�) ⊗ X defines an operator

L2(�) → X : h �→
∑

k

( ˆ
�

ukh dν
)
ξk

(also denoted by u) for which

‖u‖γ (L2(�),X) =
(

�
∥∥∥ ˆ

�

u dW
∥∥∥2)1/2

.

2.3. The UMD-property. Most of our results rely on the assumption that X
has UMD, which by definition is a requirement for unconditionality of martingale
differences (see [9]). It can also be described in terms of various square functions, such
as the Littlewood–Paley square function: X has UMD if and only if for any 1 < p < ∞

https://doi.org/10.1017/S0017089515000415 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000415


VECTOR-VALUED TENT SPACES AND HARDY SPACES 693

we have

�
∥∥∥ ∑

k∈�

εkPkf
∥∥∥

Lp(�n;X)
� ‖f ‖Lp(�n;X),

where P̂kf (ξ ) = 1Ak (ξ )̂f (ξ ) defines a frequency cut-off to the cubical annulus Ak =
{ξ ∈ �n : 2k ≤ |ξj| < 2k+1}. A one-dimensional version of this result first appeared in
[8] and an extension to higher dimensions can be found in [28] (see also [23, Section 4]).
As a consequence, one has the Mihlin multiplier theorem (see [28, Proposition 3] or
[23, 4.6 Theorem]) which can be applied in showing that the (non-negative) Laplacian
� has a bounded H∞-functional calculus on Lp(�n; X), that is, for every bounded
holomorphic function φ in a sector {ζ ∈ � \ {0} : | arg ζ | < σ } with σ > 0, the Fourier
multiplier

φ̂(�)f (ξ ) = φ(|ξ |2)̂f (ξ ),

defines a bounded operator φ(�) on Lp(�n; X). On the other hand, boundedness of
such functional calculus for the Laplacian on Lp(�n; X) is sufficient for X to have UMD,
as was proven in [12] by considering the imaginary powers arising from φ(ζ ) = ζ is,
with s ∈ �. The Mihlin multiplier theorem was extended to the atomic Hardy space
H1

at(�
n; X) in [18] (see page 712 for the definition). It should also be mentioned that,

more generally, any generator of a positive contraction semigroup on an Lp-space has
a bounded H∞-functional calculus on Lp(X) when X has UMD (see [14]). The general
theory of H∞-functional calculus for sectorial operators was developed by McIntosh
and collaborators in [24] and [11].

Our need for UMD is two-fold. In the main example (on page 711), we follow [20,
Theorem 8.2] and make use of vector-valued Calderón–Zygmund theory in studying
Lp-boundedness of the conical square function

Sf (x) =
(

�
∥∥∥¨

|x−y|<t
(t2�)Ne−t2�f (y) dW (y, t)

∥∥∥2)1/2
,

where W is a random measure arising from dy dt
tn+1 . In accordance with the discussion

above, this contains the essence of UMD. In addition, we rely on UMD in the form of
a vector-valued Stein’s inequality, which is central to our proof of the basic tent space
properties (see Proposition 1 and the references therein).

3. Tent spaces. Let (M, d, μ) be a complete doubling metric measure space. This
means that there exist a number n > 0 such that for every ball B ⊂ M,

μ(αB) � αnμ(B),

whenever α ≥ 1. Furthermore, for all x, y ∈ M and all r > 0 we have

μ(B(x, r)) �
(

1 + d(x, y)
r

)n0

μ(B(y, r)),

where 0 ≤ n0 ≤ n. We fix n and n0 to be smallest such numbers. In what follows, we
write V (y, t) = μ(B(y, t)). By rB, we refer to the radius of a ball B.
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3.1. Definition of and basic properties tent spaces. We equip the upper half-
space M+ = M × (0,∞) with a random measure W arising from dμ(y) dt

tV (y,t) and write

α(x) = {(y, t) ∈ M+ : d(x, y) < αt} for the cone of aperture α ≥ 1 at x ∈ M. Note
that functions in scalar-valued tent spaces,1 being locally square-integrable, can be
seen to act as linear functionals on the space L2

c(M+) of compactly supported square-
integrable functions on M+. It is therefore natural to define vector-valued tent spaces
to consist of linear operators from L2

c(M+) to X . We use 1K synonymously for the
indicator function and the corresponding projection operator. Integration on M+ is
denoted by the double integral

˜
and integral averages on M are abbreviated byffl

B dμ := μ(B)−1
´

B dμ. Let X be a (complex) Banach space.

DEFINITION. Let 1 ≤ p < ∞ and α ≥ 1. The tent space Tp
α(X) consists of linear

operators u : L2
c(M+) → X for which

� the map x �→ u1
α (x) is strongly measurable from M to γ (L2(M+), X),
� ‖u‖Tp

α (X) = ‖Aαu‖Lp < ∞, where Aαu(x) = ‖u1
α (x)‖γ (L2(M+),X).

REMARKS.
� For every 1 ≤ p < ∞ and α ≥ 1, the tent space Tp

α(X) is complete and contains
L2

c(M+) ⊗ X as a dense subspace (see Appendix A). From Propositions 1 and 4
it follows that, under our typical assumptions on X and M, the tent spaces with
different apertures α coincide for any fixed 1 ≤ p < ∞.

� Let 1 ≤ p < ∞. Note that if u ∈ Tp and ξ ∈ X , then

A (u ⊗ ξ )(x) =
(

�
∥∥∥¨


(x)
u dW ⊗ ξ

∥∥∥2)1/2
=

(¨

(x)

|u(y, t)|2 dμ(y) dt
tV (y, t)

)1/2
‖ξ‖,

and so Tp ⊗ X is a dense subspace of Tp(X). Here and in what follows, by omitting
the parameter α we refer to α = 1.

� The most fundamental difference to the scalar-valued tent spaces is that, unless X
is a Hilbert space, we no longer have T2(X) = L2(M+,

dμ dt
t ; X).

For x ∈ M and r > 0, let 
r(x) = {(y, t) ∈ 
(x) : t < r} denote a truncated cone.

DEFINITION. The tent space T∞(X) consists of linear operators v : L2
c(M+) → X for

which
� the map x �→ v1
r(x) is strongly measurable from M to γ (L2(M+), X) for every

r > 0,
� the norm

‖v‖T∞(X) = sup
B

(  
B

A rBv(x)2 dμ(x)
)1/2

< ∞,

where A rv(x) = ‖v1
r(x)‖γ (L2(M+),X) and the supremum is taken over all balls B ⊂ M.

1Familiarity with the basics of scalar-valued tent spaces is assumed; see [1, 10].
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REMARK. For scalar-valued functions, the T∞-norm is comparable with a more
familiar expression. Indeed, if v ∈ T∞ and ξ ∈ X , then

‖v ⊗ ξ‖T∞(X) = sup
B

( 
B

¨

rB (x)

|v(y, t)|2 dμ(y) dt
tV (y, t)

dμ(x)
)1/2

‖ξ‖

� sup
B

( 1
μ(B)

¨
T(B)

|v(y, t)|2 dμ(y) dt
t

)1/2
‖ξ‖,

where we made use of the observation that for each ball B ⊂ M and every x ∈ B we have

rB (x) ⊂ T(3B) := M+ \ ⋃

x �∈3B 
(x). Consequently, T∞ ⊗ X is a subspace of T∞(X)
(but not dense).

The following proposition presents three basic properties of tent spaces in the case
1 < p < ∞. An efficient way to handle this range by embedding into vector-valued
Lp-spaces was discovered in [13].

PROPOSITION 1. Let 1 < p < ∞ and suppose that X has UMD.
� Change of aperture: for every u ∈ L2

c(M+) ⊗ X, we have ‖Aαu‖Lp �p αn‖A u‖Lp

whenever α ≥ 1.
� Duality: the isomorphism Tp(X)∗ � Tp′

(X∗) is realized by the pairing

〈u, v〉 =
¨

M+
〈u(y, t), v(y, t)〉 dμ(y) dt

t
, u ∈ Tp ⊗ X, v ∈ Tp′ ⊗ X∗,

for which |〈u, v〉| � ‖u‖Tp(X)‖v‖Tp′ (X∗).
� Complex interpolation: we have [Tp0 (X), Tp1 (X)]θ = Tp(X), where 1 < p0 ≤ p1 < ∞

and 1/p = (1 − θ )/p0 + θ/p1.

Proof. We content ourselves with a sketch of the proof. For more details, see [20,22]
and the references therein. The isometry

Jα : Tp
α(X) ↪→ Lp(M; γ (L2(M+), X)), Jαu(x) = u1
α (x)

embeds Tp
α(X) as a complemented subspace of Lp(M; γ (L2(M+), X)). The associated

projection is given by

NαF(x; y, t) = 1B(x,αt)(x)
 

B(y,t)
F(z; y, t) dμ(z), F ∈ Lp(M) ⊗ L2(M+) ⊗ X.

Note that NαF(x; y, t) = Aα
B(y,t)Fy,t(x), where Fy,t stands for the function M → X :

x → F(x; y, t) and

Aα
Bf = 1αB

 
B

f dμ

is a localized averaging operator associated with a ball B ⊂ M. Consequently,

‖NαF‖Lp(M;γ (L2(M+),X)) � γ (Aα
B : B ⊂ M)‖F‖Lp(M;γ (L2(M+),X)),
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where γ (·) is the γ -bound of the family {Aα
B}B⊂M on Lp(M; X), i.e. the smallest constant

Cp so that

�
∥∥∥ ∑

k

γkAα
Bk

fk

∥∥∥2

Lp(M;X)
≤ C2

p�
∥∥∥ ∑

k

γkfk

∥∥∥2

Lp(M;X)

for any (finite) collections of balls Bk ⊂ M and functions {fk} ⊂ Lp(M; X).
In order to calculate the γ -bound, we approximate Aα

B by dyadic averaging
operators. Recall that a dyadic system on a M is a collection D = {Dk}k∈�, where each
Dk is a partition of M into sets of finite positive measure, such that the containment
relations

Q ∈ Dk, Q′ ∈ Dk′ , k′ ≥ k =⇒ Q′ ⊂ Q or Q ∩ Q′ = ∅
hold. By Stein’s inequality (see [20, Lemma 3.1] and the references therein), the families
{AQ}Q∈D of localized dyadic averaging operators

AQf = 1Q

 
Q

f dμ

are γ -bounded on Lp(M; X) when 1 < p < ∞.
In [19], it is shown that one can choose a finite number of dyadic systems on M so

that every ball B ⊂ M is contained in a dyadic cube QB from one of the dyadic systems,
with diam (QB) � diam (B). Therefore, we may write

Aα
Bf = 1αB

μ(QαB)
μ(B)

AQαB (1Bf ),

and hence

γ (Aα
B : B ⊂ M) � μ(QαB)

μ(B)
� αn,

with a constant depending on p.
The claim of change of aperture now follows from the identity Jαu = NαJu. Duality

and complex interpolation follow from the corresponding results for complemented
subspaces of vector-valued Lp-spaces. �
REMARK. It should be pointed out that in the proof above the γ -bounds of the families
{AQ}Q∈D and {Aα

B}B⊂M on Lp(M; X) tend to infinity as p → 1, and, therefore, so does
the p-dependent constant obtained by this method for the change of aperture.

3.2. Cone covering property. We now elaborate the additional geometric
assumption on M (originating from [22]), which we use to extend Proposition 1 to
the endpoint p = 1. Given a σ ∈ (0, 1) we define the extension of an open set E ⊂ M
by

Eσ =
{

x ∈ M : sup
B�x

μ(B ∩ E)
μ(B)

> σ

}
.

Note that Eσ is open and satisfies μ(Eσ ) � σ−1μ(E) by the weak type (1, 1) inequality
for the Hardy–Littlewood maximal function. Recall that the tent T(E) over an open
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set E ⊂ M is given by

T(E) = {(y, t) ∈ M+ : B(y, t) ⊂ E} = M+ \
⋃
x �∈E


(x).

CONE COVERING PROPERTY. There exists a σ ∈ (0, 1) such that every bounded open
set E ⊂ M satisfies the following: For every x ∈ E, there exist x1, . . . , xN ∈ M \ E, with
N depending only on M, such that


(x) \ T(Eσ ) ⊂
N⋃

m=1


(xm).

When M has the cone covering property, σ will be fixed and we write Eσ = E∗.

LEMMA 2. Suppose that M has the cone covering property. Let u ∈ L2
c(M+) ⊗ X and

write E = {x ∈ M : A u(x) > λ} for a λ > 0. Then

A (u1M+\T(E∗))(x) � λ for all x ∈ M.

Proof. If x ∈ M \ E, then

A (u1M+\T(E∗))(x) ≤ A u(x) ≤ λ

by the definition of E. Let then x ∈ E. Since E is a bounded open set, we may use
the cone covering property to pick x1, . . . , xN ∈ X \ E (with N depending only on the
dimension of M) such that


(x) \ T(E∗) ⊂
N⋃

m=1


(xm).

We can then estimate

A (u1M+\T(E∗))(x) =
(

�
∥∥∥¨


(x)\T(E∗)
u dW

∥∥∥2)1/2
≤

N∑
m=1

(
�
∥∥∥¨


(xm)
u dW

∥∥∥2)1/2
≤ Nλ,

as required. �
REMARK. In [2, Appendix B], we have shown that every complete (connected)
Riemannian manifold with non-negative sectional curvature has the cone covering
property. The lemma above should be compared with [2, Lemma 4.4]. Notice, that
in the vector-valued setting, Bernal’s convex reduction argument [6] is not available,
which means that interpolation and change of aperture for T1(X) cannot be deduced
from the reflexive range as in the scalar-valued case, and this forces us to use the cone
covering property.

3.3. Atomic decomposition. The main result of [22] was the atomic decomposition
for T1(X) on �n, which also relies on the cone covering property. The proof generalizes
directly to our setting.
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DEFINITION. An a ∈ T1(X) is called an atom associated with ball B ⊂ M if a1T(B) = a
(i.e. a is ‘supported’ in T(B)) and ‖a‖T2(X) ≤ μ(B)−1/2.

THEOREM 3 (Atomic decomposition). Suppose that M has the cone covering
property. Then, every u ∈ T1(X) can be decomposed into atoms ak so that

u =
∑

k

λkak,

where the sum converges in T1(X) and the scalars λk satisfy∑
k

|λk| � ‖u‖T1(X).

Moreover, if u ∈ (T1 ∩ T2) ⊗ X, then the sum converges also in T2(X).

This allows us to extend the change of aperture estimate from Proposition 1 to
T1(X).

PROPOSITION 4. Suppose that X has UMD and that M has the cone covering property.
Let α ≥ 1. Then, given any ε > 0, we have

‖Aαu‖L1 �ε αn+ε‖A u‖L1

for every u ∈ L2
c(M+) ⊗ X.

Proof. Note first that if a is an atom associated with a ball B ⊂ M, then ‖a‖Tp(X) ≤
μ(B)−(1−1/p) for 1 ≤ p ≤ 2 as an immediate consequence of ‖a‖T1(X) ≤ 1. Secondly, for
any ball B, 
α(x) intersects T(B) exactly when x ∈ αB. Thus, given an ε > 0 we may
write 1 − 1/p = ε with a p > 1 and argue as follows:

‖Aαa‖L1 =
ˆ

αB
Aαa(x) dμ(x) ≤ μ(αB)1−1/p

( ˆ
αB

Aαa(x)p dμ(x)
)1/p

�p μ(αB)1−1/pαn‖a‖Tp(X) ≤
(μ(αB)

μ(B)

)1−1/p
αn = αn+ε,

where in the third step we used Proposition 1. The claim follows by the Atomic
decomposition. �

THEOREM 5. Suppose that X has UMD and that M has the cone covering property.
Then, T1(X)∗ = T∞(X∗).

Proof. To see that every v ∈ T∞(X∗) induces a bounded linear functional � on
T1(X), note first that for any ball B ⊂ M,

‖v1T(B)‖T2(X∗) =
( ˆ

B
A (v1T(B))(x)2 dμ(x)

)1/2

≤
( ˆ

B
A rBv(x)2 dμ(x)

)1/2
≤ μ(B)1/2‖v‖T∞(X∗).

By the Atomic decomposition, it suffices to define the action of � on atoms: if a is an
atom in T(B) we set �a = 〈a, v1T(B)〉 so that

|�a| ≤ |〈a, v1T(B)〉| ≤ ‖a‖T2(X)‖v1T(B)‖T2(X∗) ≤ ‖v‖T∞(X∗).
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This does not depend on B in the sense that if a is an atom in both T(B) and T(B′),
then 〈a, v1T(B)〉 = 〈a, v1T(B′)〉.

Let � ∈ T1(X)∗. For every open E ⊂ M, we have 
(x) ∩ T(E) �= ∅ exactly when
x ∈ E so that A (u1T(E)) is supported in E and ‖u1T(E)‖T1(X) ≤ μ(E)1/2‖u1T(E)‖T2(X)

whenever u ∈ T2(X). Hence, � restricts to a bounded linear functional �E on the
closed (complemented) subspace T2

E(X) = {u1T(E) : u ∈ T2(X)} of T2(X). Since X has
UMD, T2

E(X)∗ = T2
E(X∗) (by Proposition 1) and there exists a vE ∈ T2

E(X∗) so that
�Eu = 〈u, vE〉 for all u ∈ T2

E(X) and

‖vE‖T2(X∗) � ‖�E‖T2
E (X)∗ ≤ μ(E)1/2‖�‖T1(X)∗ .

Moreover, vE1T(E∩E′) = vE′1T(E∩E′) because for every u ∈ T2(X) we have
〈u, vE1T(E∩E′)〉 = �(u1T(E∩E′)) = 〈u, vE′1T(E∩E′)〉. Consequently, vEh = vE′h for all h ∈
L2(K) whenever K ⊂ T(E ∩ E′) = T(E) ∩ T(E′) and we may define a linear operator
v : L2

c(M+) → X by vh = vEh when h ∈ L2(K) with K ⊂ T(E).
To see that ‖v‖T∞(X∗) � ‖�‖T1(X)∗ note first that for any ball B ⊂ M, we have


(x; rB) ⊂ T(3B) whenever x ∈ B. Therefore,

( 
B

A rBv(x)2 dμ(x)
)1/2

≤ 1
μ(B)1/2

(ˆ
B

A (v3B)(x)2 dμ(x)
)1/2

≤ ‖v3B‖T2(X∗)

μ(B)1/2
� ‖�‖T1(X)∗ ,

and so ‖v‖T∞(X∗) � ‖�‖T1(X)∗ . On the other hand, by the Atomic decomposition,
‖�‖T1(X)∗ is obtained by testing against atoms. Now, if a is an atom in T(B), then

|�a| = |〈a, vB〉| ≤ ‖a‖T2(X)‖vB‖T2(X∗) ≤ 1
μ(B)1/2

(ˆ
B

A vB(x)2 dμ(x)
)1/2

≤
(  

B
A rBv(x)2 dμ(x)

)1/2
≤ ‖v‖T∞(X∗).

�
REMARK. That every v ∈ T∞(X∗) induces a bounded linear functional on T1(X)
follows also from the inequality

¨
M+

|〈u(y, t), v(y, t)〉| dμ(y) dt
tV (y, t)

� ‖u‖T1(X)‖v‖T∞(X∗), u ∈ T1 ⊗ X,

where v is assumed to be a function. This can be proved as in [21] and [10].

3.4. Interpolation. Our first main result extends the complex interpolation scale
of vector-valued tent spaces [20, Theorem 4.7] to the endpoint p = 1. The argument
presented here fills the gap in the proof of [10, Lemma 5] (see also [1, Remark 3.20])
by using the cone covering property.

THEOREM 6. Suppose that X has type r ∈ (1, 2] and that M has the cone covering
property. Then

[T1(X), Tr(X)]θ = Tp(X), where
1
p

= 1 − θ

(
1 − 1

r

)
.
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Proof. We first check that [T1(X), Tr(X)]θ ⊂ Tp(X). Let ϒ : S → T1(X) + Tr(X)
be a function that2

� is analytic in the strip S = {ζ ∈ � : 0 < Re ζ < 1},
� is continuous and bounded on S,
� has ‖ϒ(is)‖T1(X) � 1 and ‖ϒ(1 + is)‖Tr(X) � 1 for all s ∈ �.
Denote Y = γ (L2(M+), X) and recall the embedding Tp(X) ↪→ Lp(M; Y ) given by
Ju(x) = u1
(x). Then, J ◦ ϒ : S → L1(M; Y ) + Lr(M; Y ) and we may rely on complex
interpolation for vector-valued Lq-spaces to see that

‖ϒ(θ )‖Tp(X) = ‖J ◦ ϒ(θ )‖Lp(M;Y )

≤ max
{

sup
s∈�

‖J ◦ ϒ(is)‖L1(M;Y ), sup
s∈�

‖J ◦ ϒ(1 + is)‖Lr(M;Y )

}
= max

{
sup
s∈�

‖ϒ(is)‖T1(X), sup
s∈�

‖ϒ(1 + is)‖Tr(X)

}
,

which shows that [T1(X), Tr(X)]θ is boundedly contained in Tp(X).
We now show that [T1(X), Tr(X)]θ ⊃ Tp(X): Let u ∈ L2

c(M+) ⊗ X with ‖u‖Tp(X) =
1 and consider the open sets

Ek = {x ∈ M : A u(x) > 2k}, k ∈ �.

Write Ak = T(E∗
k) \ T(E∗

k+1) and define the interpolating function as in [10, Lemma 5]
by

ϒ(ζ ) =
∑
k∈�

2k(υ(ζ )p−1)u1Ak , where υ(ζ ) = 1 − ζ

(
1 − 1

r

)
,

so that ϒ(θ ) = u. What remains is to check that ‖ϒ(is)‖T1(X) � 1 and ‖ϒ(1 +
is)‖Tr(X) � 1 for all s ∈ �.

Let s ∈ � and note first that |2k(υ(is)p−1)| ≤ 2k(p−1). Hence, by triangle inequality

‖ϒ(is)‖T1(X) ≤
∑
k∈�

2k(p−1)‖u1Ak‖T1(X),

where

‖u1Ak‖T1(X) =
ˆ

E∗
k

A (u1Ak )(x) dμ(x) � 2kμ(E∗
k),

according to Lemma 2. Consequently,

‖ϒ(is)‖T1(X) �
∑
k∈�

2kpμ(E∗
k) � ‖u‖p

Tp(X).

For a given s ∈ �, we now estimate the second quantity

‖ϒ(1 + is)‖r
Tr(X) =

ˆ
M

(
�
∥∥∥¨


(x)

∑
k∈�

2k(υ(1+is)p−1)u1Ak dW
∥∥∥2)r/2

dμ(x).

2The reader is referred to [5, Chapter 4] for details on complex interpolation.
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Noting that |2k(υ(1+is)p−1)| ≤ 2k(p/r−1) we argue using type r of X :

(
�
∥∥∥ ∑

k∈�

¨

(x)

2k(υ(1+is)p−1)u1Ak dW
∥∥∥2)1/2

≤
( ∑

k∈�

2k(p−r)�
∥∥∥¨


(x)
u1Ak dW

∥∥∥r)1/r
.

Therefore, by Lemma 2,

‖ϒ(1 + is)‖r
Tr(X) �

∑
k∈�

2k(p−r)
ˆ

E∗
k

�
∥∥∥¨


(x)
u1Ak dW

∥∥∥r
dμ(x)

�
∑
k∈�

2k(p−r)
ˆ

E∗
k

A (u1Ak )(x)r dμ(x)

�
∑
k∈�

2kpμ(E∗
k) � ‖u‖p

Tp(X),

as required. �
REMARK. It is clear that for 1 ≤ p < ∞, the tent spaces Tp(X) embed continuously
into L1

loc(M; γ (L2(M+), X)). Another possible choice for an ambient space, one that
is suitable also for T∞(X), is the space of linear operators u : L2(M+) → X equipped
with the seminorms ‖u1K‖γ (L2(M+),X) with K ⊂ M+ ranging over compact subsets of
M+.

COROLLARY 7 (Complex interpolation). Suppose that X has UMD and that M has
the cone covering property. Let 1 ≤ p0 ≤ p1 ≤ ∞. Then

[Tp0 (X), Tp1 (X)]θ = Tp(X), where
1
p

= 1 − θ

p0
+ θ

p1
.

Proof. By Proposition 1, the claim is true for 1 < p0 ≤ p1 < ∞. First, take r > 1
so that X has type r. The statement then follows for p0 = 1 and p1 = r from Theorem
6. For p0 = 2 and p1 = ∞, we argue by duality. Note that 1/p = (1 − θ )/2 implies that
1/p′ = 1 − θ ′ + θ ′/2 for θ ′ = 1 − θ . Then

[T2(X), T∞(X)]θ = [T1(X∗), T2(X∗)]∗θ ′ = Tp′
(X∗)∗ = Tp(X)

by reflexivity of X and Proposition 1. The full statement now follows by reiteration
(and its converse). �

3.5. Integral operators on tent spaces. We will then consider integral operators
on tent spaces. Given an operator-valued kernel K : (0,∞) × (0,∞) → L (L2(M)), we
define

Su(·, t) =
ˆ ∞

0
K(t, s)u(·, s)

ds
s

, t > 0, u ∈ L2
c(M+) ⊗ X.

The following result extends [20, Corollary 5.1] to T1(X). In the statement and the
proof, the only difference to the Euclidean setting is that we might no longer have
μ(B(x, t)) � tn, and therefore have to assume more decay from the kernel.
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THEOREM 8. Suppose that X has UMD and that M has the cone covering property.
Assume that the kernel satisfies for all t, s > 0 the estimate

‖1E′K(t, s)(1Ef )‖L2 � min
( tα

sα
,

sβ

tβ

)(
1 + d(E, E′)

max(t, s)

)−γ

‖1Ef ‖L2 (1)

whenever E, E′ ⊂ M are measurable and f ∈ L2(M), and that γ > 3n/2 and α, β > n.
Then S is bounded on Tp(X) for every 1 ≤ p < ∞.

Proof. Let u ∈ L2
c(M+) ⊗ X . We closely follow the proofs of [20, Propositions 5.4

and 5.5] and split the operator S into two parts

S∞u(·, t) =
ˆ ∞

t
K(t, s)u(·, s)

ds
s

and S0u(·, t) =
ˆ t

0
K(t, s)u(·, s)

ds
s

.

The operator S∞: We estimate A (S∞u) pointwise by a sum of A2k+1 u’s. In order to
do this, fix an x ∈ M and write

S∞u(·, t) =
∞∑

k=0

ˆ ∞

t
K(t, s)(1Ck(x,s)u(·, s))

ds
s

=:
∞∑

k=0

uk(·, t),

where Ck(x, s) = B(x, 2k+1s) \ B(x, 2ks) for k ≥ 1 and C0(x, s) = B(x, 2s). The desired
estimate (

�
∥∥∥¨


(x)
uk dW

∥∥∥2)1/2
� 2−kδ

(
�
∥∥∥¨


2k+1 (x)
u dW

∥∥∥2)1/2
,

with δ > 0 follows by Covariance domination once we have established that for all
ξ ∗ ∈ X∗,

(¨

(x)

|〈uk(y, t), ξ ∗〉|2 dμ(y) dt
tV (y, t)

)1/2
� 2−kδ

(¨

2k+1 (x)

|〈u(y, t), ξ ∗〉|2 dμ(y) dt
tV (y, t)

)1/2
,

where

〈uk(·, t), ξ ∗〉 =
〈ˆ ∞

t
K(t, s)(1Ck(x,s)u(·, s))

ds
s

, ξ ∗
〉
=
ˆ ∞

t
K(t, s)(1Ck(x,s)〈u(·, s), ξ ∗〉) ds

s
.

For a fixed ξ ∗ ∈ X∗ denote û(·, s) = 〈u(·, s), ξ ∗〉. When (y, t) ∈ 
(x), we have
V (y, t) � V (x, t) and so

Ik(x) : =
(¨


(x)

∣∣∣ˆ ∞

t
K(t, s)(1Ck(x,s)û(·, s))(y)

ds
s

∣∣∣2 dμ(y) dt
tV (y, t)

)1/2

�
( ˆ ∞

0

(ˆ ∞

t
‖1B(x,t)K(t, s)(1Ck(x,s)û(·, s))‖L2

ds
s

)2 dt
tV (x, t)

)1/2
.

For s > t, we have d(B(x, t), Ck(x, s)) � 2ks (when k ≥ 1) and so by (1),

‖1B(x,t)K(t, s)(1Ck(x,s)û(·, s))‖L2 �
( t

s

)α

2−kγ ‖1B(x,2k+1s)û(·, s)‖L2 .
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Therefore, (ˆ ∞

t
‖1B(x,t)K(t, s)(1Ck(x,s)û(·, s))‖L2

ds
s

)2

�
ˆ ∞

t

( t
s

)2ε ds
s

ˆ ∞

t

( t
s

)2(α−ε)
4−kγ ‖1B(x,2k+1s)û(·, s)‖2

L2

ds
s

,

where the first integral on the right-hand side is bounded by a constant (depending on
ε).

Plugging this in, we get

Ik(x) � 2−kγ
( ˆ ∞

0

ˆ ∞

t

( t
s

)2(α−ε)
‖1B(x,2k+1s)û(·, s)‖2

L2

ds
s

dt
tV (x, t)

)1/2

=
(ˆ ∞

0
‖1B(x,2k+1s)û(·, s)‖2

L2

ˆ s

0

( t
s

)2(α−ε) dt
tV (x, t)

ds
s

,

where the integration limits are obtained from the identity 1(t,∞)(s) = 1(0,s)(t).
To estimate the inner integral, we proceed as follows:

ˆ s

0

( t
s

)2(α−ε) dt
tV (x, t)

=
∞∑

j=0

ˆ 2−j s

2−(j+1)s

( t
s

)2(α−ε) dt
tV (x, t)

≤
∞∑

j=0

1
V (x, 2−(j+1)s)

ˆ 2−j s

2−(j+1)s

( t
s

)2(α−ε) dt
t

�
∞∑

j=0

2nj

V (x, s)
2−j(α−ε)

= 1
V (x, s)

∞∑
j=0

2−j(α−ε−n) ≤ 1
V (x, s)

,

where ε is chosen small enough so that α − ε > n.
We have now established

Ik(x) � 2−kγ
( ˆ ∞

0

ˆ
B(x,2k+1s)

|û(y, s)|2 dμ(y)
ds

sV (x, s)

)1/2
.

For y ∈ B(x, 2k+1s), we have

1
V (x, s)

≤
(

1 + d(x, y)
s

)n0 1
V (y, s)

� 2n0k 1
V (y, s)

and so

Ik(x) � 2−k(γ−n0/2)
(¨


2k+1 (x)
|û(y, s)|2 dμ(y) ds

sV (y, s)

)1/2
.

In other words, we have shown that

A (S∞u)(x) ≤
∞∑

k=0

A uk(x) �
∞∑

k=0

2−k(γ−n0/2)A2k+1 u(x). (2)
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The operator S0: To estimate A (S0u)(x) by a sum of A2k+m+2 u(x)’s for a fixed x ∈ M,
we write

S0u(·, t) =
∞∑

k,m=0

ˆ 2−mt

2−(m+1)t
K(t, s)(1Ck(x,t)u(·, s))

ds
s

.

For a fixed ξ ∗ ∈ X∗, we again write û(·, s) = 〈u(·, s), ξ ∗〉 and estimate as above:

Ik,m(x) : =
(¨


(x)

∣∣∣ ˆ 2−mt

2−(m+1)t
K(t, s)(1Ck(x,t)û(·, s))

ds
s

∣∣∣2 dμ(y) dt
tV (y, t)

)1/2

�
( ˆ ∞

0

( ˆ 2−mt

2−(m+1)t
‖1B(x,t)K(t, s)(1Ck(x,t)û(·, s))‖L2

ds
s

)2 dt
tV (x, t)

)1/2
.

By (1), we have

‖1B(x,t)K(t, s)(1Ck(x,t)û(·, s))‖L2 �
( s

t

)β

2−kγ ‖1B(x,2k+1t)û(·, s)‖L2

and so by Hölder’s inequality,

(ˆ 2−mt

2−(m+1)t
‖1B(x,t)K(t, s)(1Ck(x,t)û(·, s))‖L2

ds
s

)2
�
ˆ 2−mt

2−(m+1)t

( s
t

)2β

4−kγ ‖1B(x,2k+1t)û(·, s)‖2
L2

ds
s

.

Plugging this in, we obtain

Ik,m(x) � 2−kγ 2−mβ
( ˆ ∞

0

ˆ 2−mt

2−(m+1)t
‖1B(x,2k+1t)û(·, s)‖2

L2

ds
s

)1/2

≤ 2−kγ 2−mβ

ˆ ∞

0

ˆ
B(x,2k+m+2s)

|û(y, s)|2μ(y)
ˆ 2m+1s

2ms

dt
tV (x, t)

ds
s

,

where the exchange of the order of integration is justified by the fact that if 2−(m+1)t <

s ≤ 2−mt, then 2ms ≤ t < 2m+1s and B(x, 2k+1t) ⊂ B(x, 2k+m+2s).
When y ∈ B(x, 2k+m+2s), we have

ˆ 2m+1s

2ms

dt
tV (x, t)

≤ 1
V (x, 2ms)

�
(

1 + d(x, y)
2ms

)n0 1
V (y, 2ms)

� 2kn0

V (x, s)

and so

Ik,m(x) � 2−k(γ−n0/2)2−mβ
(¨


2k+m+2 (x)
|û(y, s)|2 dμ(y) ds

sV (y, s)

)1/2
.

Again, by Covariance domination, we obtain

A (S0u)(x) �
∞∑

k,m=0

2−k(γ−n0/2)2−mβA2k+m+2 u(x). (3)
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The operator S: Let 1 ≤ p < ∞. We bring together the estimates for S∞ and S0.
From (2), we obtain using change of aperture (Propositions 1 and 4)

‖A (S∞u)‖Lp �
∞∑

k=0

2−k(γ−n0/2)‖A2k+1 u‖Lp �ε

∞∑
k=0

2−k(γ−3n/2−ε)‖A u‖Lp .

Moreover, from (3) we obtain in a similar fashion that

‖A (S0u)‖Lp �
∞∑

k,m=0

2−k(γ−n0/2)2−mβ‖A2k+m+2 u‖Lp �ε

∞∑
k,m=0

2−k(γ−3n/2−ε)2−m(β−n−ε)‖A u‖Lp .

Consequently, choosing ε small enough so that γ − ε > 3n/2 and β − ε > n we get

‖Su‖Tp(X) ≤ ‖S∞u‖Tp(X) + ‖S0u‖Tp(X) � ‖u‖Tp(X).

�

4. Hardy spaces. We make the following assumptions:
� Let (M, d, μ) be a complete doubling metric measure space and assume that it has

the cone covering property.
� Let L be a non-negative self-adjoint operator on L2(M) and assume that it generates

an analytic semigroup (e−tL)t>0, which satisfies the following off-diagonal estimates:
There exists a constant c such that for every t > 0 we have

‖1E′e−tL(1Ef )‖L2 � exp
(

− d(E, E′)2

ct

)
‖1Ef ‖L2

whenever E, E′ ⊂ M and f ∈ L2(M). Sets E and E′ in such a context are assumed,
without separate mention, to be measurable. Denote by D(L) and R(L) the domain
and the range of L on L2(M).

� Let X be a UMD space.
Recall that on a complete (connected) Riemannian manifold with non-negative

sectional curvature the volume measure is doubling with respect to the geodesic
distance. Moreover, the Laplace–Beltrami operator on such a space satisfies the off-
diagonal estimates, regardless of curvature. See [4, Section 1] and [15, Section 3.1] for
further discussion and references.

4.1. Definition and basic properties. We now define the Hardy spaces and express
the conical square function in terms of the tent space norm:

DEFINITION. Let 1 ≤ p < ∞ and let N be a positive integer. The Hardy space Hp
L,N(X)

associated with L is defined as the completion of R(L) ⊗ X with respect to

‖f ‖Hp
L,N (X) := ‖QNf ‖Tp(X), where QNf (y, t) = (t2L)Ne−t2Lf (y), f ∈ R(L) ⊗ X.

REMARK. Note that by the scalar-valued theory (see [15, Section 4.1]), QNf ∈ T2 ⊗ X
whenever f ∈ R(L) ⊗ X .
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Recall the Calderón reproducing formula (the proof of which follows by spectral
theory): For every positive integer N, there exists a constant c such that

f = c
ˆ ∞

0
(t2L)2Ne−2t2Lf

dt
t

whenever f ∈ R(L) ⊗ X .
We now define, for each positive integer N, the mapping

πNu =
ˆ ∞

0
(t2L)Ne−t2Lu(·, t)

dt
t

, u ∈ T2 ⊗ X,

with which the reproducing formula can be written as f = cπNQNf . Here, the integral
is understood as a limit in L2 of the integrals

´ R
ε

as ε → 0 and R → ∞. In what follows,
Fubini’s theorem applied to this integral is interpreted by first considering the finite
integrals

´ R
ε

and then using Lebesgue’s dominated convergence to pass to the limit.
Note that QN and πN are formally adjoint in the sense that for f ∈ R(L) ⊗ X and

v ∈ T2 ⊗ X∗ we have

〈QNf, v〉 =
ˆ ∞

0

ˆ
M

〈(t2L)Ne−t2Lf (·), v(·, t)〉 dμ
dt
t

=
ˆ ∞

0

ˆ
M

〈f (·), (t2L)Ne−t2Lv(·, t)〉 dμ
dt
t

=
ˆ

M
〈f (·),

ˆ ∞

0
(t2L)Ne−t2Lv(·, t)

dt
t

〉 dμ

= 〈f, πNv〉.
In order to make use of Theorem 8 in proving, for instance, the boundedness

of πN from Tp(X) to Hp
L(X) (and the boundedness of the H∞-functional calculus of

L on Hp
L(X)), we need some off-diagonal estimates of the form (1) for the kernels

of our integral operators. There is an abundance of such estimates in the literature
and a suitable version of Lemma 10 could be obtained directly from sophisticated
results like [17, Lemma 2.40]. However, taking into account the simplicity of our
situation, we can afford to give some indication of the proof. The first off-diagonal
estimate in the following lemma can be found, for instance, in [15, Proposition 3.1].
The second estimate, which is a special case of [17, Lemma 2.28], contains the heart
of the functional calculus in the sense that there and only there the holomorphicity
of φ is put to use. Note that when φ is a bounded holomorphic function in a sector
{ζ ∈ � \ {0} : | arg ζ | < σ } we can define φ(L)f by spectral theory for all f ∈ R(L) ⊗ X .

LEMMA 9. Let k be a non-negative integer and let φ be a bounded holomorphic
function in a sector. For all E, E′ ⊂ M and every f ∈ L2(M), we have the exponential
off-diagonal estimate

‖1E′ (t2L)ke−t2L(1Ef )‖L2 � exp
(

− d(E, E′)2

ct2

)
‖1Ef ‖L2 , t > 0,

and the polynomial off-diagonal estimate

‖1E′φ(L)(t2L)ke−t2L(1Ef )‖L2 � ‖φ‖∞
(

1 + d(E, E′)2

t2

)−k
‖1Ef ‖L2 , t > 0.
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LEMMA 10. Let N, N ′ ≥ 1 and let φ be a bounded holomorphic function in a sector.
Then for all E, E′ ⊂ M and every f ∈ L2(M), we have

‖1E′(t2L)Ne−t2Lφ(L)(s2L)N ′
e−s2L(1Ef )‖L2

� ‖φ‖∞ min
( t2N

s2N
,

s2N ′

t2N ′

)(
1 + d(E, E′)

max(t, s)

)−2(N+N ′)
‖1Ef ‖L2

whenever t, s > 0.

Proof. We make use of the fact that off-diagonal estimates (both exponential and
polynomial) are stable under compositions in the sense of [17, Lemma 2.22] and [3,
Lemma 6.2]. For t ≤ s, the result follows by writing

(t2L)Ne−t2Lφ(L)(s2L)N ′
e−s2L =

( t
s

)2N
e−t2Lφ(L)(s2L)N+N ′

e−s2L

and applying Lemma 9 separately for (e−t2L)t>0 and (φ(L)(s2L)N+N ′
e−s2L)s>0. Similarly,

for s ≤ t we write

(t2L)Ne−t2Lφ(L)(s2L)N ′
e−s2L =

( s
t

)2N ′

φ(L)(t2L)N+N ′
e−t2Le−s2L

and applying Lemma 9 for (φ(L)(t2L)N+N ′
e−t2L)t>0 and (e−s2L)s>0. �

For a real number α, we denote by �α� the largest integer not greater than α.

PROPOSITION 11. Let 1 ≤ p < ∞. For every N ≥ �n/2� + 1, πN defines a bounded
surjection from Tp(X) onto Hp

L,N(X).

Proof. For boundedness, it suffices to consider the integral operator

QNπNu =
ˆ ∞

0
(t2L)Ne−t2L(s2L)Ne−s2Lu(·, s)

ds
s

,

the kernel of which, by Lemma 10, satisfies the estimate (1) with γ = 4N > 3n/2 and
α = β = 2N > n.

Surjectivity follows immediately from the facts that, by definition, QN is an
isometric embedding (into a complete space), and cπN is its continuous left inverse
on the dense set R(L) ⊗ X . �

The following theorem is a part of our second main result and can be thought of
as an extension of Theorem 7.10 in [20] to the endpoint p = 1:

THEOREM 12. Let 1 ≤ p < ∞. Then
� Hp

L,N(X) = Hp
L,N ′(X) =: Hp

L(X) whenever N, N ′ ≥ �n/2� + 1,
� L has a bounded H∞-functional calculus of any angle on Hp

L(X), that is, if φ is a
bounded holomorphic function in a sector, then

‖φ(L)f ‖Hp
L(X) � ‖φ‖∞‖f ‖Hp

L(X)

for all f ∈ R(L) ⊗ X.
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Proof. Assume that φ is a bounded holomorphic function in a sector. We use the
reproducing formula to write

QNφ(L)f (·, t) = (t2L)Ne−t2Lφ(L)f

= c
ˆ ∞

0
(t2L)Ne−t2Lφ(L)(s2L)2N ′

e−2s2Lf
ds
s

=
ˆ ∞

0
K(t, s)QN ′f (·, s)

ds
s

.

By Lemma 10, the kernel

K(t, s) = c(t2L)Ne−t2Lφ(L)(s2L)N ′
e−s2L

satisfies estimate (1) with parameters γ > 3n/2 and α, β > n and a constant depending
on ‖φ‖∞.

The first statement follows by considering φ identically one. �

PROPOSITION 13. Let 1 < p < ∞. Then Hp
L(X)∗ � Hp′

L (X∗) and the duality is realized
via

〈f, g〉 =
ˆ

M
〈f (x), g(x)〉 dμ(x), f ∈ R(L) ⊗ X, g ∈ R(L) ⊗ X∗.

Proof. Fix an N ≥ �n/2� + 1 and abbreviate Q and π for QN and πN . The pairing
in the statement arises from the identification of Hp

L(X) as the complemented subspace
QHp

L(X) = QπTp(X) of Tp(X). The projection Qπ on Tp(X) has the adjoint (Qπ )∗ =
π∗Q∗ = Qπ on Tp(X)∗ � Tp′

(X∗) and therefore

Hp
L(X)∗ � (QπTp(X))∗ � QπTp′

(X∗) � Hp′
L (X∗).

�

REMARK. From Theorem 5, it follows that bounded linear functionals on H1
L(X) are

of the form f �→ 〈Qf, v〉, where v ∈ T∞(X∗). We will not attempt to describe H1
L(X)∗

as a space of functions on M.

The other part of our second main result extends the complex interpolation scale
of vector-valued Hardy spaces to the endpoint p = 1 (cf. Corollary 7.2 in [20]):

THEOREM 14. Let 1 ≤ p0 ≤ p1 < ∞. Then

[QHp0
L (X), QHp1

L (X)]θ = QHp
L(X), where

1
p

= 1 − θ

p0
+ θ

p1
.

Proof. This follows from interpolation of tent spaces (Corollary 7) along with
boundedness of the projection Qπ (Proposition 11 and the proof of Proposition 13)
by means of interpolation of complemented subspaces (see [20, Corollary 7.2] and the
references therein). �
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4.2. Atoms. In order to transfer the atomic decomposition from T1(X) to H1
L(X),

we proceed as in [15, Subsection 4.3]. Relying on the self-adjointness of L we may define,
as in [15, Lemmas 3.5 and 4.11]3, a family (�t)t>0 uniformly bounded operators on
L2(M) such that
� for all positive integers N, N ′, there exists a constant c such that

f = c
ˆ ∞

0
(t2L)N+N ′

�te−t2Lf
dt
t

, f ∈ R(L) ⊗ X,

� for all non-negative integers k, the family ((t2L)k�t)t>0 of bounded operators on
L2(M) has finite speed of propagation in the sense that if t ≤ d(E, E′) for some
E, E′ ⊂ M, then 1E′(t2L)k�t(1Ef ) = 0 whenever f ∈ L2(M).

We now define the operators

Q̃Nf (y, t) = (t2L)N�tf (y), f ∈ R(L) ⊗ X,

and

π̃N ′u =
ˆ ∞

0
(t2L)N ′

�tu(·, t)
dt
t

, u ∈ T2 ⊗ X,

with which the new reproducing formula can be written as f = cπN ′Q̃Nf = cπ̃N ′QNf .

PROPOSITION 15. Let 1 ≤ p < ∞. The operators Q̃N : Hp
L(X) → Tp(X) and π̃N :

Tp(X) → Hp
L(X) are bounded whenever N ≥ �n/2� + 1.

Proof. Again, it suffices to view Q̃N and π̃N as integral operators. Indeed,

Q̃Nf (·, t) = Q̃NπNQNf (·, t) = c
ˆ ∞

0
(t2L)N�t(s2L)Ne−s2LQNf (·, s)

ds
s

and

QN π̃Nu = c
ˆ ∞

0
(t2L)Ne−t2L(s2L)N�su(·, s)

ds
s

.

To see that the kernels of these integral operators satisfy (1), one argues as in Lemma 10
with (t2L)N�t replacing (t2L)Ne−t2L. Note that the exponential off-diagonal estimates
are immediate from the fact that 1E′(t2L)k�t(1Ef ) = 0 when t ≤ d(E, E′). �
DEFINITION. A function m ∈ L2(M) ⊗ X is said to be an L-atom of order K associated
with a ball B ⊂ M if there exists a function m̃ ∈ D(LK ) ⊗ X , such that
� m = LK m̃,
� supp m ⊂ B,
� ‖(r2

BL)km̃‖H2
L(X) ≤ r2K

B μ(B)−1/2, k = 0, 1, . . . , K .

REMARK. It is not clear if all L-atoms belong to H1
L(X) as in the scalar-valued setting

(see [15, Proposition 4.4]).

3More precisely, we put �t = φ̂(t
√

L), where φ is smooth and compactly supported around 0 in �. The
desired properties are expressed in equations (4.21) and (3.12) in [15].
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PROPOSITION 16. Let a ∈ T1 ⊗ X be an atom in T(B) for a ball B ⊂ M and let K be
a positive integer. Then π̃N+K a ∈ H1

L(X) is an (constant multiple of an) L-atom of order
K in 2B whenever N ≥ �n/2� + 1.

Proof. Choosing

m̃ =
ˆ rB

0
t2(N+K)LN�ta(·, t)

dt
t

∈ D(LK ) ⊗ X

we obtain

LK m̃ =
ˆ rB

0
(t2L)N+K�ta(·, t)

dt
t

= π̃N+K a,

as usual (cf. [15, Lemma 4.11]).
To see that supp π̃N+K a ⊂ 2B, it suffices to note that for all t ≤ rB we have

supp a(·, t) ⊂ B and thus also

1M\2B(t2L)N+K�ta(·, t) = 0.

For the size condition, we pair (r2
BL)km̃ with an arbitrary g ∈ R(L) ⊗ X∗ and

estimate as follows:∣∣∣ ˆ
M

〈(r2
BL)km̃(·), g(·)〉 dμ

∣∣∣ =
∣∣∣ ˆ

M

〈 ˆ rB

0
t2(N+K)r2k

B LN+k�ta(·, t)
dt
t

, g(·)
〉

dμ

∣∣∣
=

∣∣∣ ˆ rB

0
t2(N+K)r2k

B

ˆ
M

〈a(·, t), LN+k�tg(·)〉 dμ
dt
t

∣∣∣
≤ r2K

B

¨
M+

|〈a(·, t), (t2L)N+k�tg(·)〉| dμ dt
t

� r2K
B ‖a‖T2(X)‖Q̃N+kg‖T2(X∗)

� r2K
B μ(B)−1/2‖g‖H2

L(X∗).

The required norm estimate follows then by duality (Proposition 13). �
THEOREM 17. Every f ∈ R(L) ⊗ X in H1

L(X) can be written, for any positive integer
K, as a sum of L-atoms mk ∈ H1

L(X) of order K so that

f =
∑

k

λkmk,

where the sum converges in both H1
L(X) and L2(X), and the scalars λk satisfy∑
k

|λk| � ‖f ‖H1
L(X).

Moreover, if H2
L(X) = L2(X), then the sum converges also in L1(X).

Proof. Let K be a positive integer. Given an f ∈ R(L) ⊗ X in H1
L(X), we fix an

N ≥ �n/2� + 1 and decompose QNf ∈ T1 ⊗ X into atoms ak by Theorem 3 so that

QNf =
∑

k

λkak and
∑

k

|λk| � ‖QNf ‖T1(X) � ‖f ‖H1
L(X),
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where the sum for QNf converges in both T1(X) and T2(X). Consequently, for a
constant c we have

f = cπ̃N+K QNf = c
∑

k

λkπ̃N+K ak, (4)

where, by Proposition 16, π̃N+K ak are (constant multiples of) L-atoms of order K and
the sum converges in both H1

L(X) and H2
L(X).

Assuming that H2
L(X) = L2(X), we see that L-atoms are uniformly bounded in

L1(X). Indeed, an L-atom m ∈ L2(M) ⊗ X associated with a ball B satisfies

‖m‖L1(X) ≤ μ(B)1/2‖m‖L2(X) � μ(B)1/2‖m‖H2
L(X) ≤ 1.

The right-hand side of (4) is therefore absolutely summable in L1(X) and converges in
L1(X) to a limit which must coincide with its limit in L2(X), that is, f . �

COROLLARY 18. Suppose that H2
L(X) = L2(X). For every f ∈ L2(M) ⊗ X, we have

� ‖f ‖Lp(X) � ‖f ‖Hp
L(X) when 1 ≤ p ≤ 2,

� ‖f ‖Hp
L(X) � ‖f ‖Lp(X) when 2 ≤ p < ∞.

Proof. Every f ∈ L2(M) ⊗ X in H1
L(X) admits, by Theorem 17, an L1(X)-

convergent decomposition into L-atoms (which are uniformly bounded in L1(X)) and
so

‖f ‖L1(X) ≤
∑

k

|λk| � ‖f ‖H1
L(X).

By interpolation (Theorem 14), we have ‖f ‖Lp(X) � ‖f ‖Hp
L(X) when 1 ≤ p ≤ 2.

The second inequality ‖f ‖Hp
L(X) � ‖f ‖Lp(X) for 2 ≤ p < ∞ follows from the first by

duality:

‖f ‖Hp
L(X) � sup{|〈f, g〉| : g ∈ L2(M) ⊗ X∗, ‖g‖Hp′

L (X∗)
≤ 1}

� sup{|〈f, g〉| : g ∈ L2(M) ⊗ X∗, ‖g‖Lp′ (X∗) ≤ 1} � ‖f ‖Lp(X).

�

REMARK. We refrain from addressing the question whether Hp
L(X) embeds in Lp(X)

for 1 ≤ p ≤ 2 (or vice versa for 2 ≤ p < ∞). This subtle matter has been discussed at
length in [3].

EXAMPLE. Let L = � be the (non-negative) Laplacian on M = �n with the Lebesgue
measure. For functions f ∈ L2(�n) ⊗ X , we have

QNf (y, t) = (t2�)Ne−t2�f (y) =
ˆ

�n
�t(y − z)f (z) dz,

where the Fourier transform of the Schwartz function �t is given by

�̂t(ξ ) = (t2|ξ |2)Ne−t2|ξ |2 , ξ ∈ �n.
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As in the proofs of [20, Theorems 8.2 and 4.8], this gives rise to a singular integral
operator

Tf (x) =
ˆ

�n
K(x, z)f (z) dz

with an operator-valued kernel K(x, z) ∈ L (X, γ (L2(�n+1
+ ), X)) so that

‖f ‖Hp
�(X) � ‖Tf ‖Lp(γ (L2(�n+1

+ ),X))

for test functions f ∈ C∞
c (�n) ⊗ X .

In the proof of [20, Theorem 4.8], T is shown to be a Calderón–Zygmund operator
and thus for 1 < p < ∞ we have

‖f ‖Hp
�(X) � ‖f ‖Lp(X).

Moreover, the same inequality holds for X∗, namely

‖g‖Hp
�(X∗) � ‖g‖Lp(X∗),

and therefore Hp
�(X) = Lp(X) when 1 < p < ∞.

Let us also remark that H1
�(X) coincides with the atomic Hardy space H1

at(X)
which is defined to consist of functions f ∈ L1(X) that can be expressed as sums of
(classical) atoms mk so that

f =
∑

k

λkmk and ‖f ‖H1
at(X) = inf

∑
k

|λk| < ∞.

Here, a classical atom is a function m ∈ L2(X) which is supported in a ball B ⊂ �n and
satisfies ˆ

B
m(x) dx = 0 and ‖m‖L2(X) ≤ |B|−1/2.

Indeed, as a Calderón–Zygmund operator, T is bounded from H1
at(X) to

L1(γ (L2(�n+1
+ ), X)), and thus for all f ∈ C∞

c (�n) ⊗ X with zero mean we have

‖f ‖H1
�(X) � ‖f ‖H1

at(X).

On the other hand, every L-atom m is (a constant multiple of) a classical atom since
ˆ

�n
m(x) dx =

ˆ
�n

�m̃(x) dx = 0 and ‖m‖L2(X) � ‖m‖H2
�(X) ≤ |B|−1/2.

Theorem 17 then guarantees that every f ∈ L2(�n) ⊗ X in H1
�(X) satisfies

‖f ‖H1
at(X) � ‖f ‖H1

�(X).

REMARK. For a wide class of Schrödinger operators L = � + V with non-negative
potentials V on �n (including the harmonic oscillator with V (x) = |x|2), it has been
shown by Betancor et al. [7] that the conical square function estimate

‖QPf ‖Tp(X) � ‖f ‖Lp(X), QPf (y, s) = s
√

Le−s
√

Lf (y),
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associated with the Poisson semigroup, holds for 1 < p < ∞ whenever X is a UMD
space. Such operators L satisfy the off-diagonal estimates (see [15, Chapter 8]) and
are therefore within the framework of this article. That ‖f ‖Hp

L(X) � ‖QPf ‖Tp(X) follows
again by means of integral operators on tent spaces (cf. the proof of Theorem 12).
Indeed, the reproducing formula

f = c
ˆ ∞

0
(s

√
L)2N+1e−2s

√
Lf

ds
s

is valid (by spectral theory) and the kernel

K(t, s) = (t2L)Ne−t2L(s
√

L)2Ne−s
√

L

satisfies the required estimate (1) when N ≥ �n/2� + 1, which can be seen with the aid
of [15, Lemma 4.15]. As in the example above, we can then argue by duality to see that
Hp

L(X) = Lp(X) for 1 < p < ∞.

A. Completeness and dense subspaces of tent spaces.

PROPOSITION 19. For every 1 ≤ p < ∞ and α ≥ 1, the tent space Tp
α(X) is complete

and contains L2
c(M+) ⊗ X as a dense subspace.

We follow the classical proof of the corresponding scalar-valued result (see [10,
Section 1] and [1, Lemma 3.3 and Proposition 3.4]). For simplicity, we omit the α as it
is immaterial for the proofs and abbreviate ‖ · ‖γ for ‖ · ‖γ (L2(M+),X).

LEMMA 20. Let 1 ≤ p < ∞ and u ∈ Tp(X). Then

(1) ‖u‖Tp(X) = supK ‖u1K‖Tp(X), where the supremum is over compact K ⊂ M+,
(2) infK ‖u1Kc‖Tp(X) = 0, where the infimum is over compact K ⊂ M+,
(3) for every compact K ⊂ M+, there exists a constant cK such that

c−1
K ‖u1K‖Tp(X) ≤ ‖u1K‖γ ≤ cK‖u‖Tp(X).

Proof. For the first claim, write 
(x; ε) = {(y, t) ∈ 
(x) : ε < t < 1/ε} and note that
as ε tends to zero, the increasing sequence ‖u1
(x;ε)‖γ tends to ‖u1
(x)‖γ . Therefore,

‖u‖Tp(X) = lim
ε→0

( ˆ
M

‖u1
(x;ε)‖p
γ dμ(x)

)1/p

= sup
ε,B

( ˆ
B

‖u1
(x;ε)‖p
γ dμ(x)

)1/p

≤ sup
K

‖u1K‖Tp(X),

because whenever x is in a ball B ⊂ M and ε > 0, the cone 
(x; ε) is contained in a
compact K ⊂ M+.

The second claim follows by monotone convergence after choosing an increasing
(and exhausting) sequence of compact subsets K so that for every x ∈ M the decreasing
sequence A (u1Kc )(x) = ‖u1Kc∩
(x)‖γ tends to zero.
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To prove the right-hand side in the inequality of the third claim, write S(K) = {x ∈
M : 
(x) ∩ K �= ∅} and observe that A (u1K )(x) ≤ ‖u1K‖γ to obtain

‖u1K‖Tp(X) =
( ˆ

S(K)
A (u1K )(x)p dμ(x)

)1/p
≤ μ(S(K))1/p‖u1K‖γ .

The left-hand side in the inequality of the third claim follows by choosing a finite
number N(K) of (small) balls B so that K ⊂ ⋃

B(B × (0,∞)) =:
⋃

B B+ and so that for
every x ∈ B we have K ∩ B+ ⊂ 
α(x). Then for each B, we have ‖u1K∩B+‖γ ≤ A u(x)
when x ∈ B and therefore

‖u1K‖γ ≤
∑

B

‖u1K∩B+‖γ ≤
∑

B

( 
B

A u(x)p dμ(x)
)1/p

≤ N(K)
infB μ(B)1/p

‖A u‖Lp = cK‖u‖Tp(X)

�
Proof of Proposition 19. Let (uk) be a Cauchy sequence in Tp(X). For each compact

K ⊂ M+, we now see by (3) of Lemma 20 that (uk1K ) is a Cauchy sequence in
γ (L2(M+), X) and therefore converges to a uK . Setting u = uK on each L2(K) results
in a well-defined linear operator from L2

c(M+) to X .
To see that u is in Tp(X), fix a compact K ⊂ M+ and observe that for each k,

‖u1K‖Tp(X) ≤ ‖(u − uk)1K‖Tp(X) + ‖uk1K‖Tp(X) ≤ cK‖(u − uk)1K‖γ + ‖uk‖Tp(X).

Choosing k large enough, we see that ‖u1K‖Tp(X) � 1 independently of K , which means
that u ∈ Tp(X).

In order to show that uk converges to u in Tp(X), let ε > 0. Choose then a number
N so that ‖uk − uN‖Tp(X) < ε for all k ≥ N and, by (2) of Lemma 20, a compact K so
that ‖(u − uN)1Kc‖Tp(X) < ε. Then for all k ≥ N,

‖u − uk‖Tp(X) ≤ ‖(u − uk)1K‖Tp(X) + ‖(u − uN)1Kc‖Tp(X) + ‖(uk − uN)1Kc‖Tp(X)

≤ cK‖(u − uk)1K‖γ + 2ε,

where the first term on the right tends to zero as k → ∞.
Finally, the density of L2

c(M+) ⊗ X in Tp(X) follows by approximating u by u1K

in Tp(X) and then u1K by a finite rank operator u′1K in γ (L2(M+), X). �
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