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Abstract. In this paper, we study Hardy spaces associated with non-negative self-
adjoint operators and develop their vector-valued theory. The complex interpolation
scales of vector-valued tent spaces and Hardy spaces are extended to the endpoint
p = 1. The holomorphic functional calculus of L is also shown to be bounded on the
associated Hardy space H}(X). These results, along with the atomic decomposition
for the aforementioned space, rely on boundedness of certain integral operators on the
tent space 7' (X).
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1. Introduction. The theory of Hardy spaces associated with operators has been
extensively studied in the recent years. Indeed, the cases of elliptic operators on R”
[16,17], non-negative self-adjoint operators on doubling metric measure spaces [15] and
Hodge-Dirac operators on Riemannian manifolds (with doubling volume measure)
[4] are all well understood by now.

In the above-mentioned cases, the Hardy spaces are defined in terms of conical
square functions, which has the benefit of allowing a direct connection with tent spaces.
These were first introduced by Coifman, Meyer and Stein in [10] and have since become
a central tool in Harmonic Analysis. Their theory extends without much difficulty to
doubling metric measure spaces (see [1,27]).

The aim of this paper is to study such Hardy spaces for functions that take
their values in an infinite dimensional Banach space. This is not a completely new
development; the theory of vector-valued Hardy spaces associated with bisectorial
operators on R” was initiated by Hytonen, van Neerven and Portal in [20], which
is the main inspiration for this article. However, their theory covers only the range
1 < p < oo, mainly because not all of the classical scalar-valued tent space techniques
carry over to vector-valued setting. A new method, suitable for vector-valued tent
spaces, was introduced by the author in [22], which allowed to extend the theory to
p = 1. In this article, we study the case of vector-valued Hardy spaces associated with
non-negative self-adjoint operators on certain doubling metric measure spaces and
develop the corresponding theory of tent spaces.

The main result concerning interpolation (Theorem 6 and Corollary 7) extends
Theorem 4.7 from [20] to the lower endpoint.
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MAIN RESULT 1. The complex interpolation scale of vector-valued tent spaces TP (X)
extends top = 1.

Actually, also the other endpoint 7°°(X) is included in the interpolation scale as
a consequence of the duality 7!(X)* ~ T°°(X*) (Theorem 5, cf. [22, Theorem 14]).
The ‘classical’ proof of the duality [10, Theorem 1(b)] becomes available in the vector-
valued setting after a more direct definition of tent spaces which does not rely on
completions (see Section 3 and Appendix A).

Instead of the ‘embedding method’ from [13] and [22] (which forp = 1 and p = oo
is of a strictly Euclidean nature), the proof of Main result 1 is based on a geometric
assumption on the underlying space, namely the cone covering property. It is meant as
an abstraction of the proof technique rather than a genuine geometric property, and the
framework of metric measure spaces is chosen primarily to highlight the flexibility of
this method. In [22], it was proven for R” and in [2] it is shown to hold, more generally,
on complete (connected) Riemannian manifolds of non-negative sectional curvature.

The communication between tent spaces and Hardy spaces happens by means of
integral operators. In the vector-valued setting, the boundedness of integral operators
on tent spaces relies on the change of aperture [20, Theorems 4.3 and 5.6]. We obtain
a change of aperture inequality on T (X) from the atomic decomposition, the proof of
which also relies on the cone covering property, and extend the integral operators to
T'(X) following closely the proof from [20].

We then arrive at the second main result (Theorems 12 and 14), which extends
Theorem 7.10 and Corollary 7.2 from [20] to the endpoint p = 1:

MAIN RESULT 2. The complex interpolation scale of vector-valued Hardy spaces
HY(X) extends to p = 1. Moreover, L has a bounded H*-functional calculus on H}(X).

It is well understood that the tent space atomic decomposition can be turned into
atomic or molecular decomposition of the Hardy space (see Theorem 17):

MAIN RESULT 3. Functions in a dense subspace of H} (X) admit decompositions into
atoms.

As a corollary, the ‘square function Hardy space’ H} (X) associated with the (non-
negative) Laplacian A on R” coincides with the classical ‘atomic Hardy space’. The
presented framework also covers the case when L is the Laplace—Beltrami operator on
a complete (connected) Riemannian manifold with non-negative sectional curvature.

The vector-valued tent space theory makes use of pointwise estimates, which
imposes two limitations to the current understanding. First, in order to have atomic
decompositions and interpolation for tent spaces, we rely on the cone covering property
of the underlying metric space. Secondly, for non-self-adjoint operators, it is by no
means clear how to obtain molecular decompositions for the associated Hardy spaces.
The difficulty arises in the attempt to interpret the molecular decay condition by means
of integral operators on tent spaces.

2. Preliminaries.

2.1. Notation. Random variables are taken to be defined on a fixed probability
space whose expectation is denoted by E. Given a Banach space X the duality pairing
between £ € X and £* € X* is written as (£, £*). By @ <, B, it is meant that there exists
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a constant C, (depending on a parameter ¢) such that « < C,8. Quantities « and 8
are comparable, o ~ 8,iffa < gand B8 < «.

2.2. Stochastic integration and y -radonifying operators. We first recall some facts
about stochastic integration of functions with values in a (complex) Banach space (see
[26] for details).

Let (€2, v) be a o-finite measure space and assume that a random measure W
associates to each set A C € of finite measure, a Gaussian random variable W (A4) so
that

o EW(A) =v(4),

e if 4 and A’ are disjoint sets, then W (A4)and W (A') are independentand W (4 U A') =
W(A4)+ w(4').

The stochastic integral with respect to W is defined by linearly extending fQ lydW =

W(A) to simple functions and then by density to whole of L?(R2). Observe, that the

‘Ito isometry’
2 2
[E‘/udW‘ =/|u| dv
Q Q

holds for u € L*($2). Moreover, if X is a Banach space, we can take the tensor extension
to L*(Q) ® X by defining

/u®§-‘dW=/udW®$,
Q Q

foru € L>(Q)and £ € X. Two crucial properties of the vector-valued stochastic integral
are

 Covariance domination: If two functions u, v € L*(Q) ® X satisfy

/ [(w(), 7 dv < / [(u(-), £*)1* dv
Q Q

for all £* € X*, then

2 2
[EH/deWH g[EH/QudWH .

e Khintchine—Kahane inequality: For all 1 < p, g < oo and every u € L*(Q) ® X, we

have
([EH/QudWHp>l/p;<[EH/QudW ")”q.

Recall that a Banach space X is said to have type r € [1, 2] if for any (finite)
collection {&;} of vectors in X we have

(g ;sksk\f)m (X )’
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where the Rademacher variables ¢ are independent and attain values £1 with equal
probability 1/2. In terms of stochastic integrals, if X has type r, then

(52 fmaw]) " (2] fueom])

whenever u; are disjointly supported functions in L*(22) ® X. Indeed, the random
variables fQ up dW are independent and symmetric, and therefore identically
distributed with &} [, ux dW when (g) is an independent sequence of Rademacher
variables. Using Khintchine—Kahane inequality and type r of X, we may then infer

that
r) 1/r

(IS fwan])" = (] et fuan])" < (Se] fwaw

The space of ‘stochastically integrable’ functions is not, in general, complete, but
can be described in terms of y-radonifying operators (see [25] for a survey):

172

172

DEFINITION. A densely defined linear operator u from L*(Q2) to X is said to be y-
radonifying if it can be approximated by finite rank operators in the norm

N 12
llull, 2@, x) = sup <[EH Z Yiuhy H ) ,
k

where the supremum is taken over finite orthonormal systems {/} in the domain of u.
Here, the y; are independent standard Gaussian random variables.

REMARKS.

* Observe that if [lull, z2q),x) < o0, then u extends to a bounded operator.

e If X does not contain an isomorphic copy of ¢y, then every operator u with
llully 20, x) < oo can be approximated by finite rank operators and is thus y-
radonifying [25, Theorem 4.2].

e The space y(L*(R2), X) of y-radonifying operators is complete.

Now, y-norms of finite rank operators correspond to stochastic integrals of
functions in the sense that every u = >, ux ® & € L*(2) ® X defines an operator

Q) — X: he Z(/ ukhdv)ék
T Q
(also denoted by u) for which

2\ 1/2
lelly 220,30 = (EH / ”dWH ) '
Q

2.3. The UMD-property. Most of our results rely on the assumption that X
has UMD, which by definition is a requirement for unconditionality of martingale
differences (see [9]). It can also be described in terms of various square functions, such
as the Littlewood—Paley square function: X has UMD if and only if forany 1 < p < oo
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we have

f|San

U](RVI;X) ~ ”f”[/)(R"’X)’

where F;}" &) =1 Ak(é)}"\(é) defines a frequency cut-off to the cubical annulus 4; =
(EeR: 2k < & < 25*1}. A one-dimensional version of this result first appeared in
[8] and an extension to higher dimensions can be found in [28] (see also [23, Section 4]).
As a consequence, one has the Mihlin multiplier theorem (see [28, Proposition 3] or
[23, 4.6 Theorem]) which can be applied in showing that the (non-negative) Laplacian
A has a bounded H*-functional calculus on I7(R"; X), that is, for every bounded
holomorphic function ¢ in a sector {¢ € C\ {0} : |arg¢| < o} with o > 0, the Fourier
multiplier

(A (E) = p(IEP(E),

defines a bounded operator ¢(A) on LZ(R"; X). On the other hand, boundedness of
such functional calculus for the Laplacian on L7(R"; X) is sufficient for X to have UMD,
as was proven in [12] by considering the imaginary powers arising from ¢(¢) = ¢*,
with s € R. The Mihlin multiplier theorem was extended to the atomic Hardy space
H!(R"; X) in [18] (see page 712 for the definition). It should also be mentioned that,
more generally, any generator of a positive contraction semigroup on an ”-space has
a bounded H*-functional calculus on Z7(X) when X has UMD (see [14]). The general
theory of H*-functional calculus for sectorial operators was developed by McIntosh
and collaborators in [24] and [11].

Our need for UMD is two-fold. In the main example (on page 711), we follow [20,
Theorem 8.2] and make use of vector-valued Calderon-Zygmund theory in studying
L7-boundedness of the conical square function

12

so=(e] || earermans.o])

where W is a random measure arising from ‘i{ﬂ’. In accordance with the discussion

above, this contains the essence of UMD. In addition, we rely on UMD in the form of
a vector-valued Stein’s inequality, which is central to our proof of the basic tent space
properties (see Proposition 1 and the references therein).

3. Tent spaces. Let (M, d, u) be a complete doubling metric measure space. This
means that there exist a number #n > 0 such that for every ball B C M,

waB) S " u(B),

whenever @ > 1. Furthermore, for all x, y € M and all » > 0 we have

d(x, y)\m
w8 ) < (14 D) iy,

where 0 < ng < n. We fix n and ny to be smallest such numbers. In what follows, we
write V(y, t) = w(B(y, t)). By rp, we refer to the radius of a ball B.
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3.1. Definition of and basic properties tent spaces. We equip the upper half-
space Mt = M x (0, 0o) with a random measure W arising from dtV((y})f; and write
Co(x) ={(y, 1) € M* : d(x,y) < at} for the cone of aperture a > 1 at x € M. Note
that functions in scalar-valued tent spaces,! being locally square-integrable, can be
seen to act as linear functionals on the space L2(M ™) of compactly supported square-
integrable functions on M. It is therefore natural to define vector-valued tent spaces
to consist of linear operators from L2(M*) to X. We use 1x synonymously for the
indicator function and the corresponding projection operator. Integration on M™ is
denoted by the double integral [[ and integral averages on M are abbreviated by
fpdu :== w(B)™" [,du. Let X be a (complex) Banach space.

DEFINITION. Let 1 <p < oo and « > 1. The tent space T%(X) consists of linear
operators u : L2(M*) — X for which

e the map x > ulr,(y is strongly measurable from M to y (L* (M), X),
lullroxy = 1 Fatllr < 0o, where Sy u(x) = l|ulr,wlly 2@+, x)-

REMARKS.

e Forevery 1 <p < oo and « > 1, the tent space T4(X) is complete and contains
LX(M*)® X as a dense subspace (see Appendix A). From Propositions 1 and 4
it follows that, under our typical assumptions on X and M, the tent spaces with
different apertures « coincide for any fixed 1 < p < oo.

e Letl <p < oo.Notethatifu € 77 and & € X, then

vwe o= (€| [ waweel)" = ([ woor F25) e

and so 77 ® X is a dense subspace of 77(X). Here and in what follows, by omitting
the parameter o we refer to o = 1.

e The most fundamental difference to the scalar-valued tent spaces is that, unless X
is a Hilbert space, we no longer have 7%(X) = L*(M*, %4 ),

Forxe M andr > 0,let I'"(x) = {(y, ) € ['(x) : t < r} denote a truncated cone.

DEFINITION. The tent space T°°(X) consists of linear operators v : L2 (M*) — X for
which

 the map x > vl is strongly measurable from M to y(L*(M™*), X) for every
r>0,
e the norm

12
ol =sup £ &0 du) " < o0
B B

where &/ "v(x) = ||[v1ryll,z2(ar+),x) and the supremum is taken over all balls B C M.

I Familiarity with the basics of scalar-valued tent spaces is assumed; see [1,10].
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REMARK. For scalar-valued functions, the 7°°-norm is comparable with a more
familiar expression. Indeed, if v € T* and & € X, then

B , du(y)di 12
v ® &l = sup ]i //F o 1000 ZEE o) e

< sup (@ //T(B) w0 0 LOLY By,

where we made use of the observation that for each ball B C M and every x € B we have
I"s(x) c T(3B) := M ™\ ngw I'(x). Consequently, 7°° ® X is a subspace of 7°°(X)
(but not dense).

The following proposition presents three basic properties of tent spaces in the case
1 < p < o0o. An efficient way to handle this range by embedding into vector-valued
L7-spaces was discovered in [13].

PROPOSITION 1. Let 1 < p < 0o and suppose that X has UMD.

¢ Change of aperture: for every u € L2(M*)® X, we have || yuly <p | ull s
whenever a > 1.
e Duality: the isomorphism TP(X)* ~ TP (X*) is realized by the pairing

(u,v):// (u(y,t),v(y,t))w, ueT?®X, vel’ @ X*,
M+

Jor which |(u, v)| < llullreco 1Vl 70 (x+)-
e Complex interpolation: we have [T?(X), TP'(X)]p = TP(X), where 1 < py < p; < 00

and1/p = (1 —6)/po+0/p1.

Proof. We content ourselves with a sketch of the proof. For more details, see [20,22]
and the references therein. The isometry

Jo : THX) > D(My(LAMT), X)), Joul(x) = ulr, o

embeds 7% (X) as a complemented subspace of L?(M; y(L*(M*), X)). The associated
projection is given by

NuF (6 1) = Laan(®) ][ Fy0du@), FeP(M)® (M) ® X.
B, 1)

Note that N, F(x;y, 1) = A4
x — F(x;y,t)and

"é(y_ [)Fy,,(x), where F), stands for the function M — X :

AL = 1, ][ fdu
B
is a localized averaging operator associated with a ball B ¢ M. Consequently,

INeFll sy 2aiy, xy S V(A 2 B C M)F| oary (z2m+),3))
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where y () is the y-bound of the family {A4%} s on LP(M; X), i.e. the smallest constant
C, so that

2 2
| o ndshl = GE| s
Xk: VA fi vorn = & Xk: Vilk ot
for any (finite) collections of balls By € M and functions {f;} C L”(M; X).

In order to calculate the y-bound, we approximate A% by dyadic averaging
operators. Recall that a dyadic system on a M is a collection 2 = {Zy}rez, where each
9 1s a partition of M into sets of finite positive measure, such that the containment
relations

0cY, 0e€Yy, K>k = QcCQ or ONQ =0

hold. By Stein’s inequality (see [20, Lemma 3.1] and the references therein), the families
{Ap}peo of localized dyadic averaging operators

AQf=1Q][Qfdu

are y-bounded on I”(M; X) when 1 < p < oo.

In [19], it is shown that one can choose a finite number of dyadic systems on M so
that every ball B C M is contained in a dyadic cube Qp from one of the dyadic systems,
with diam (Qp) < diam (B). Therefore, we may write

u(Qun)

AW = lan= )

Ag,s(18/),

and hence

/'L(QaB) < 0

y(Ag:BC M) S <d,
B 1(B)

with a constant depending on p.

The claim of change of aperture now follows from the identity J,u = N,Ju. Duality
and complex interpolation follow from the corresponding results for complemented
subspaces of vector-valued I”-spaces. Il

REMARK. It should be pointed out that in the proof above the y-bounds of the families
{Ao}oeo and {A%}pcar on LP(M; X) tend to infinity as p — 1, and, therefore, so does
the p-dependent constant obtained by this method for the change of aperture.

3.2. Cone covering property. We now claborate the additional geometric
assumption on M (originating from [22]), which we use to extend Proposition 1 to
the endpoint p = 1. Given a o € (0, 1) we define the extension of an open set £ C M
by

x e M :sup

E“:{ —M(BHE)>G}
Bsx  M(B)

Note that £ is open and satisfies u(E?) < o~ u(E) by the weak type (1, 1) inequality
for the Hardy-Littlewood maximal function. Recall that the tent T(E) over an open
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set E C M is given by

T(E)={(y.0) e M*: B(y.1) C E} = M™\ | J ().
x¢E

CONE COVERING PROPERTY . There exists a o € (0, 1) such that every bounded open
set E C M satisfies the following: For every x € E, there exist x1, ..., xy € M \ E, with
N depending only on M, such that

N

rx)\ T(E”) € | D).

m=1

When M has the cone covering property, o will be fixed and we write E° = E*.

LEMMA 2. Suppose that M has the cone covering property. Letu € L*(M*) ® X and
write E = {x € M : u(x) > A} forar > 0. Then

JZ{(UIM+\T(E*))(X) S A for allx e M.

Proof- If x € M \ E, then
A (Ul yro\rg9))(x) < Fu(x) < A

by the definition of E. Let then x € E. Since E is a bounded open set, we may use
the cone covering property to pick xi, ..., xy € X \ E (with N depending only on the
dimension of M) such that

N

L)\ T(E) C | M)

m=1

We can then estimate

N
o Wy 7)) = (E //r e udWHZ)l/2 < Zl (e| //F N udWH2>1/2 < Na,

as required. O

REMARK. In [2, Appendix B], we have shown that every complete (connected)
Riemannian manifold with non-negative sectional curvature has the cone covering
property. The lemma above should be compared with [2, Lemma 4.4]. Notice, that
in the vector-valued setting, Bernal’s convex reduction argument [6] is not available,
which means that interpolation and change of aperture for 7!(X) cannot be deduced
from the reflexive range as in the scalar-valued case, and this forces us to use the cone
covering property.

3.3. Atomic decomposition. The main result of [22] was the atomic decomposition
for T'(X) on R”, which also relies on the cone covering property. The proof generalizes
directly to our setting.

https://doi.org/10.1017/5S0017089515000415 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089515000415

698 MIKKO KEMPPAINEN

DEFINITION. An a € T'(X) is called an atom associated with ball B C M if alr = a
(i.e. ais ‘supported’ in 7(B)) and ||al r2(x) < n(B)~/2.

THEOREM 3 (Atomic decomposition). Suppose that M has the cone covering
property. Then, every u € T'(X) can be decomposed into atoms ay. so that

u= Z kkak,
k
where the sum converges in T'(X) and the scalars A, satisfy

D Il = Nl 7.

k

Moreover, ifu € (T' N T?) ® X, then the sum converges also in T*(X).

This allows us to extend the change of aperture estimate from Proposition 1 to
T'(X).

PROPOSITION 4. Suppose that X has UMD and that M has the cone covering property.

Let o > 1. Then, given any ¢ > 0, we have

el Se @™l ull

~

Joreveryu e L2IMT)® X.

Proof. Note first that if a is an atom associated with a ball B C M, then ||a|7»(x) <
w(B)~U=1P) for 1 < p < 2 as an immediate consequence of ||a| 71(x) < 1. Secondly, for
any ball B, T'y(x) intersects 7'(B) exactly when x € ¢ B. Thus, given an ¢ > (0 we may
write | — 1/p = ¢ with a p > 1 and argue as follows:

| uall = / ) do) < ) / ey an()"”

3

u(ztg))”/f’an _ ot
"

where in the third step we used Proposition 1. The claim follows by the Atomic
decomposition. Il

S 1@B) e allron < (

THEOREM 5. Suppose that X has UMD and that M has the cone covering property.
Then, T'(X)* = T®(X*).

Proof. To see that every v € T°°(X™) induces a bounded linear functional A on
T'(X), note first that for any ball B C M,

s 12
vzl = (/ o (v1rm))(x) d,u(x))
B
12
< ([ oo du) " = w(B ol
B

By the Atomic decomposition, it suffices to define the action of A on atoms: if ¢ is an
atom in 7'(B) we set Aa = (a, vly(p) so that

[Aal < [a, vizw)| < llalranllvlzs ey < vllreoe)-

https://doi.org/10.1017/5S0017089515000415 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089515000415

VECTOR-VALUED TENT SPACES AND HARDY SPACES 699

This does not depend on B in the sense that if ¢ is an atom in both 7'(B) and T'(B),
then (a, UlT(B)> = {(a, vlT(B/)).

Let A € T'(X)*. For every open E C M, we have I'(x) N T(E) # @ exactly when
x € E so that & (ul 7)) is supported in E and |[ul 7z ll71(x) < w(E)2ul 1)l 72x)
whenever u € T?(X). Hence, A restricts to a bounded linear functional Az on the
closed (complemented) subspace T#(X) = {ul 7 : u € T*(X)} of T?(X). Since X has
UMD, T2(X)* = T2(X*) (by Proposition 1) and there exists a vg € T#(X*) so that
Agu = (u, vg) for allu € T3(X) and

el rae = 1AEl 7200 < WE) 2 IA 1)

Moreover, velrEne) = velr@Ene) because for every ue T?(X) we have
(u, UEIT(EQE/)) = A(ulT(EmE/)) = (u, UE’IT(EQE’)). Consequently, th = vErh forall & €
L*(K) whenever K C T(EN E') = T(E)N T(E') and we may define a linear operator
v: LA(M*) — X by vh = vgh when h € L*(K) with K C T(E).

To see that ||v|l7~(x~) = | All71(x) note first that for any ball B C M, we have
I'(x;rp) C T(3B) whenever x € B. Therefore,

llvsll 720x+

(f armuerane)” < s ([ oo due)” < 2000 < jaly
5 “ (B)'/2 ” T oz e

and so [|v]l7ex+) S IAll71x)-. On the other hand, by the Atomic decomposition,
I All71(x) is obtalned by testing against atoms. Now, if ¢ is an atom in 7'(B), then

1 172
[Adl = 1{a vg)] = Nallronlosloen < s /B o/ vp(3)? dpu())

IA

r 2 172
(£ 0092 du0) " < follrecen.
B

O

REMARK. That every v € T>°(X*) induces a bounded linear functional on T'(X)
follows also from the inequality

// [u(y, 1), v(y, D) tlliiyy) )~ S lull o llvllz=ces,  wu e T'® X,

where v is assumed to be a function. This can be proved as in [21] and [10].

3.4. Interpolation. Our first main result extends the complex interpolation scale
of vector-valued tent spaces [20, Theorem 4.7] to the endpoint p = 1. The argument
presented here fills the gap in the proof of [10, Lemma 5] (see also [1, Remark 3.20])
by using the cone covering property.

THEOREM 6. Suppose that X has type r € (1, 2] and that M has the cone covering
property. Then

[TY(X), T"(X)]y = TP(X), where }) =1-90 <1 — %) .
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Proof. We first check that [T!(X), T"(X)]s € TP(X). Let Y : S — T'(X) + T"(X)
be a function that?
e isanalyticinthestripS={¢ € C:0 < Re¢ < 1},
e is continuous and bounded on S,
* has [T s)rxy) S 1and [Y(1 +is)ll7x) S 1foralls e R.
Denote Y = y(L*(M™), X) and recall the embedding 77(X) < L’(M;Y) given by
Ju(x) = ulr(y. Then, J o Y : S — LY(M; Y) + L'(M; Y) and we may rely on complex
interpolation for vector-valued L7-spaces to see that

1Tz x) = IS 0 YOy

< max{ sup I 0 T ey, supllJ o X1+ i) roven |
seR seR

= max { sup [ Y(is)llrcn, supI0(1+ )l |
seR seR

which shows that [T(X), T"(X)]y is boundedly contained in 77(X).
We now show that [T1(X), T"(X)]y D T7(X): Letu € LA(M™*) ® X with |lul|7»(x) =
1 and consider the open sets

Er={xeM: dulx)>2", keZ.
Write A, = T(E}) \ T(E},) and define the interpolating function as in [10, Lemma 5]
by

1
k(v(¢)p—1) =1 —Z
Y'(¢) E 2 uly,, where v()=1-¢ (1 r> ,

keZ

so that Y(0) = u. What remains is to check that [[Y(is)ll71(x) S 1 and [|Y(1 +
is)|l7rx) S 1foralls € R.
Let s € R and note first that |2€@P=D| < 2= Hence, by triangle inequality

1T 0 < Y 20 Vlul g, ll71x).
keZ

where
g iy = / A (1)) du(x) < 2u(ED),
E;

according to Lemma 2. Consequently,

1T 70 S Y 270ED) S lullpsy)-
kez

For a given s € R, we now estimate the second quantity

||T(1+is)||fT,,(X)=/M([EH //1"()ZZk(U(lHS)p_DulAkdWH2>r/2d/L(x).
Y kez

>The reader is referred to [5, Chapter 4] for details on complex interpolation.
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Noting that [2€(v(1+P=D| < 2k/r=1 we argue using type r of X:

‘ 2172
([EH Z// zk(u(l—ﬂ?)p_l)ulAdeH ) < (sz(p—r)EH // uly dW
kez 7T keZ Feo

Therefore, by Lemma 2,

1T+ i)y S Y2407 / E| /
keZ E r

S 20 [ )y dut

keZ

S Y 2P ED) S ully
keZ

r)l/r

ul g, dWHr du(x)
(x)

as required. O

REMARK. It is clear that for 1 < p < oo, the tent spaces 77(X) embed continuously
into L} (M;y(L*(M™), X)). Another possible choice for an ambient space, one that
is suitable also for T°°(X), is the space of linear operators u : L>(M*) — X equipped
with the seminorms [[ulx ||, z2a+) x) With K C M ranging over compact subsets of

M.
COROLLARY 7 (Complex interpolation). Suppose that X has UMD and that M has

the cone covering property. Let 1 < py < p; < oo. Then

1 1-6 6
[T7°(X), T"(X)]p = T'(X), where - = + =,
p po Pi

Proof. By Proposition 1, the claim is true for 1 < py < p; < oo. First, take r > 1
so that X has type r. The statement then follows for pg = 1 and p; = r from Theorem
6. For pp = 2 and p; = oo, we argue by duality. Note that 1/p = (1 — 6)/2 implies that
1/pp=1—6"4+6"/2for6’ =1—6. Then

[T2(X), T*(X))y = [T"(X*), TX(X)];, = T” (X*)* = T(X)

by reflexivity of X and Proposition 1. The full statement now follows by reiteration
(and its converse). ]

3.5. Integral operators on tent spaces. We will then consider integral operators
on tent spaces. Given an operator-valued kernel K : (0, 00) x (0, 00) — Z(L*(M)), we
define

00 d
Su(-, 1) = / Kt u(,5) =, 150, uel’ (MY)®X.
0 S

The following result extends [20, Corollary 5.1] to T'(X). In the statement and the
proof, the only difference to the Euclidean setting is that we might no longer have
u(B(x, 1)) =~ t", and therefore have to assume more decay from the kernel.
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THEOREM 8. Suppose that X has UMD and that M has the cone covering property.
Assume that the kernel satisfies for all t, s > 0 the estimate

o P d(E,E)\~
"’ 2 < —— 2
K@ )Nz Smin (2.5 ) (1 e=2) el (M
whenever E, E' C M are measurable and f € L*(M), and that y > 3n/2 and o, B > n
Then S is bounded on TP (X) for every 1 < p < oo

Proof. Letu € L2(M™) ® X. We closely follow the proofs of [20, Propositions 5.4
and 5.5] and split the operator S into two parts

Soott(-, 1) = /OO K(t, s)u(-, s)% and Syu(-, 1) = /t K(t, s)u(-, s) E
! 0

The operator S.: We estimate <7 (Syu) pointwise by a sum of @e+1u’s. In order to
do this, fix an x € M and write

oo

0 ds >
Soctl( )= | Kt )Tt ) — =2 D el 1)
k=0""! —
where Ci(x, s) = B(x, 28t1s) \ B(x, 2¥s) for k > 1 and Cy(x, s) = B(x, 2s). The desired
estimate

([E” //F(X) ude”2)l/2 Sz_ka([EH //FZI(+l(x)udWH2>l/2,

with § > 0 follows by Covariance domination once we have established that for all
& e X7,

d,u(y)dt 1/2 d,u(y)dl 1/2
//r et 0892 S < // BNCCLEY )
where

o0 d
0.6 = { [ K9 uonteo ) )

o ds
= [ ket .6 T
t
For a fixed &* € X* denote (-, 5)

,8) = (u(-, s), £*). When (y,?) € I'(x), we have
V(y,t) = V(x, t) and so
, ds 2 dp(y) diy 172
seos=(J ][ ke atawie. o0 S )
ds\2 dr 1/2
s (/0 (/t 1150, n K (2, $)(Lcp (.85 ) 22 ?) e l)) .

For s > ¢, we have d(B(x, t), Ci(x, 5)) = 2Xs (when k > 1) and so by (1)

. Y, _ .
1L K )Ll Dl S () 27 Mg, 9o

https://doi.org/10.1017/5S0017089515000415 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089515000415

VECTOR-VALUED TENT SPACES AND HARDY SPACES

Therefore,

o . ds\ 2
(/ 11 B, K (2, $)(1 . B(-5 9))Il 22 ?>
t

© sf\2e ds O£\ 2a—¢) 3 . ds
’S / <_> s / (_) 4 kr ||13(x,2k+13.)u(~, S)”iz —_—,
t N N t S s

703

where the first integral on the right-hand side is bounded by a constant (depending on

g).
Plugging this in, we get

2(0# €) ds dt 172
< ky 1 adi(-. )12, —
I(x) £ 2 / / Mottt DN o)

S rt\2Ae—e) dr ds
— 2 z =
= ( /0 112619 91 /0 G e

where the integration limits are obtained from the identity 1, )(s) = 1(0,5(9).

To estimate the inner integral, we proceed as follows:

S o\ 2e—e)  df 27s 2(a &) dr
/0 (E) 1V (x, 1) 2/2 (g 1V (x, 1)
27s 2a—e) dt

- Z Vi(x,2- UH)S) 2G4 (_> N

< 2—](04—5)
~ j:ZO V(x, s)

_ izfﬂwfn) P
T V(x,s) py = V(x,s)’

where ¢ is chosen small enough so that @ — ¢ > n.
We have now established

» 12
lix 527 y / /B(x 2kl g) iy, S)| du() sV(x, S)) ’

For y € B(x, 2Kt1s), we have

1 d(x,y)\m 1 ok L
Vixs) — (1 5 ) 7o <2 Vo)

and so

Ti(x) < 27k no/2) // ()| iy, 5) dl;((};)i;)l/z.

In other words, we have shown that

A (Sott)(x) < > Au(x) S 27K gz u(x).
k=0 k=0
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The operator Sy: To estimate o7 (Sou)(x) by a sum of &eim2u(x)’s for a fixed x € M,
we write

2-my d
Su.n=3 [ K et

Pty (m+1)¢

For a fixed £* € X*, we again write (-, s) = (u(-, 5), £*) and estimate as above:

Diem(x) @ = //F(Y) 512 du(y) dt>1/2
dt 1/2
)

[ Kt & 04
(L)L Mk cooit o L) 8

(m+1)t
—(m+])t
By (1), we have
A S\P —ky A
1180 K (2, ) gyt N2 S (;) 2711 gy prerr (-, $)l 12

and so by Holder’s inequality,

(m+1);

27" 27"
dsy2 5\ 28 ds
) < z —ky (- 22
( /2 1L K (e )L cyuoiC Dz =) S /mw([) 47 L e )12~
Plugging this in, we obtain
o . dsy 172
Lem(x) S 27 ky 9= mﬁ / /( ) ||13(x,2k+1,)u(.,s)||2Lz ?)
m+1) ¢

2m+1
dt ds
B(x, 2kmt2g) |U(y S)| M(y) omg IV(X [) S

where the exchange of the order of integration is justified by the fact that if 2=+ <
§ <277t then 2s < t < 2"tsand B(x, 2t11) € B(x, 2Kt +25).
When y € B(x, 267425, we have

2m+l n kn,
/ dt - 1 N(1+d(x y))o 1 < 2K
2 tVix,t) = V(x,2"s) 2mg V(y,2ms) ~ V(x,s)

mg

and so

5 du(y)dsy 172
() < 27K/ // 2y, 5) .
- ok+m+" (x) V(y S) )

Again, by Covariance domination, we obtain

A (Sou)(x) S Y 27K gy (). (3)
k,m=0
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The operator S: Let 1 < p < co. We bring together the estimates for S, and Sp.
From (2), we obtain using change of aperture (Propositions 1 and 4)

o0 (o]
1 (Seotd)llr S 275 L apyrullp S Y 27K Lot u .
k=0 k=0

Moreover, from (3) we obtain in a similar fashion that

oo o0
L/ Sow)llr S D 274002 | apynullp Se Y 27HOTIEO2TE o7y
k,m=0 k,m=0

Consequently, choosing ¢ small enough so that y — ¢ > 3n/2 and 8 — ¢ > n we get

I1Sull 7ocxy < ISoottll ey + 1Soull ey S Nutll 7oy

4. Hardy spaces. We make the following assumptions:
e Let(M,d, u) be a complete doubling metric measure space and assume that it has
the cone covering property.
* Let L be a non-negative self-adjoint operator on L*(M) and assume that it generates
an analytic semigroup (e~'%),. o, which satisfies the following off-diagonal estimates:
There exists a constant ¢ such that for every ¢ > 0 we have

d(E, E' 2
ge " ANl S exp ( - %) ISl

whenever E, E' C M and f € L*(M). Sets E and E’ in such a context are assumed,
without separate mention, to be measurable. Denote by D(L) and R(L) the domain
and the range of L on L*(M).

e Let X be a UMD space.

Recall that on a complete (connected) Riemannian manifold with non-negative
sectional curvature the volume measure is doubling with respect to the geodesic
distance. Moreover, the Laplace—Beltrami operator on such a space satisfies the off-
diagonal estimates, regardless of curvature. See [4, Section 1] and [15, Section 3.1] for
further discussion and references.

4.1. Definition and basic properties. We now define the Hardy spaces and express
the conical square function in terms of the tent space norm:

DEFINITION. Let 1 < p < oo and let N be a positive integer. The Hardy space H’L’, NX)
associated with L is defined as the completion of R(L) ® X with respect to

W la vy = 1Onfle(xy,  where  Onf(y, 1) = LV (). feRD® X.

REMARK. Note that by the scalar-valued theory (see [15, Section 4.1]), Onf € T>? ® X
whenever f € R(L) ® X.
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Recall the Calderon reproducing formula (the proof of which follows by spectral
theory): For every positive integer N, there exists a constant ¢ such that

> di
f=c /0 (PLPNe 2Ly ~

whenever f € R(L) ® X.
We now define, for each positive integer NV, the mapping

= AW L dr 2
TNU = (rL)"e u(-,t)T, uelT " ®X,
0

with which the reproducing formula can be wrltten asf = cmyQnf. Here, the integral
is understood as a limit in L? of the integrals f ase — Oand R — oo. In what follows,
Fubini’s theorem applied to this integral is interpreted by first considering the finite
integrals f and then using Lebesgue’s dominated convergence to pass to the limit.

Note that Qy and 7y are formally adjoint in the sense that for f € R(L) ® X and
ve T?® X* we have

o0 ) d
(Onf,v) = / / (DY 10,20, ) dn
/ / (O, (PLY e o, 1) du—

— . 27 \N —L, (. haiet
—/M<f(>,/0 (PLYVe v(,t)t>du

= (f, Tyv).

In order to make use of Theorem 8 in proving, for instance, the boundedness
of my from T?(X) to HY(X) (and the boundedness of the H*°-functional calculus of
L on H7(X)), we need some off-diagonal estimates of the form (1) for the kernels
of our integral operators. There is an abundance of such estimates in the literature
and a suitable version of Lemma 10 could be obtained directly from sophisticated
results like [17, Lemma 2.40]. However, taking into account the simplicity of our
situation, we can afford to give some indication of the proof. The first off-diagonal
estimate in the following lemma can be found, for instance, in [15, Proposition 3.1].
The second estimate, which is a special case of [17, Lemma 2.28], contains the heart
of the functional calculus in the sense that there and only there the holomorphicity
of ¢ is put to use. Note that when ¢ is a bounded holomorphic function in a sector
{¢ € C\ {0} : |arg¢| < o} we can define ¢(L)f by spectral theory forall /' € R(L) ® X.

LEMMA 9. Let k be a non-negative integer and let ¢ be a bounded holomorphic
function in a sector. For all E, E' C M and every f € L*(M), we have the exponential
off-diagonal estimate

E. E 2
He@nfe el Sen (~ “CE e, >0,
and the polynomial off-diagonal estimate

2 d(E, E'y*\~k
o@D e Ui £ 19 (1+ D) Sigpie, o> 0.
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LEMMA 10. Let N, N' > 1 and let ¢ be a bounded holomorphic function in a sector.
Then for all E, E' C M and every f € L*(M), we have

gLV e L)LY e H(1gf)ll 2

< N d(E, E') =28+
N||¢||oomm<sz—]wﬁ)( +m)

whenever t, s > 0.

Ief 2

Proof. We make use of the fact that off-diagonal estimates (both exponential and
polynomial) are stable under compositions in the sense of [17, Lemma 2.22] and [3,
Lemma 6.2]. For # < s, the result follows by writing

L)Y e PLYLYL L)Y e L = ( g )2N e Lg( L)(SL)N Y oL

2
—5*

and applying Lemma 9 separately for (¢~""%),. o and (¢(L)(s> L)Y+ e=5'L),_,. Similarly,

for s < t we write
27 \N —£L 20\ —sL _ (S 2w 2 P \N+N' —~L —L
(CL) e "p(L)(s"L)" e " = ; P L) e e

and applying Lemma 9 for (¢(L)(2L)N Y e="L),_ o and (¢=L),-. ]
For a real number «, we denote by |« the largest integer not greater than «.

PROPOSITION 11. Let 1 < p < oo. For every N > |n/2] + 1, ny defines a bounded
surjection from TP(X) onto H} y(X).

Proof. For boundedness, it suffices to consider the integral operator
X AW —PLy 2 N S ds
Ovmyu= [ (L) e " “(s"L) e " "u(-, 5) —,
0 S

the kernel of which, by Lemma 10, satisfies the estimate (1) with y = 4N > 3n/2 and
a=p=2N >n.

Surjectivity follows immediately from the facts that, by definition, Qy is an
isometric embedding (into a complete space), and cwry is its continuous left inverse
on the dense set R(L) ® X. O

The following theorem is a part of our second main result and can be thought of
as an extension of Theorem 7.10 in [20] to the endpoint p = 1:

THEOREM 12. Let 1 < p < oco. Then
o HZN(X) = HZN/(X) =: HY(X) whenever N, N' > |n/2] + 1,
e L has a bounded H*-functional calculus of any angle on HY(X), that is, if ¢ is a
bounded holomorphic function in a sector, then

||¢(L)f||H’,’_(X) ,S ||¢||oo|lf||1—1',{()()

forallf e RL)® X.
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Proof. Assume that ¢ is a bounded holomorphic function in a sector. We use the
reproducing formula to write

ONO(L)f (-, 1) = (PL)Ne " Lo(L)f
= / oo(r2L>Ne*’2L¢(L)(s2L>2N’e*2*‘2Lf ds
0 S

o0 ds
= [ Kwsowre.9 S
0 N
By Lemma 10, the kernel
K(t, s) = c(FL)N e " Lp(L)(s* L)Y e+ F

satisfies estimate (1) with parameters y > 3n/2 and «, 8 > n and a constant depending

on [|¢]lcc-
The first statement follows by considering ¢ identically one. O

PROPOSITION 13. Let 1 < p < co. Then HY (X)* ~ H’Z(X*) and the duality is realized
via

<f,g>=/M<f(x),g(x)>du<x), feRD®X. gecRD® X"

Proof. Fixan N > |n/2] + 1 and abbreviate Q and & for Qy and my. The pairing
in the statement arises from the identification of H% (X) as the complemented subspace
QH?Y (X) = Qn TP(X) of T?(X). The projection O on T?(X) has the adjoint (Qr)* =
7*Q* = O on TP(X)* ~ T? (X*) and therefore

HY(X)* ~ (Qn TP(X))* ~ Qn T” (X*) ~ HY (X*).
O

REMARK. From Theorem 5, it follows that bounded linear functionals on H} (X) are
of the form f +— (Of, v), where v € T°°(X™). We will not attempt to describe H E(X )*
as a space of functions on M.

The other part of our second main result extends the complex interpolation scale
of vector-valued Hardy spaces to the endpoint p = 1 (cf. Corollary 7.2 in [20]):

THEOREM 14. Let 1 < py < p; < oo. Then

[QH(X), QHI (X))s = QHE(X), where ~ =12, ¢
V4 Po Pl

Proof. This follows from interpolation of tent spaces (Corollary 7) along with
boundedness of the projection O (Proposition 11 and the proof of Proposition 13)
by means of interpolation of complemented subspaces (see [20, Corollary 7.2] and the
references therein). g
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4.2. Atoms. Inorder to transfer the atomic decomposition from 7 (X) to H} (X),
we proceed as in [15, Subsection 4.3]. Relying on the self-adjointness of L we may define,
as in [15, Lemmas 3.5 and 4.11], a family (®,),-¢ uniformly bounded operators on
L*(M) such that

¢ for all positive integers N, N’, there exists a constant ¢ such that
F Ay WaN g Ly 4 B
f=c (L) Qe f77 S eRWL)® X,
0

e for all non-negative integers k, the family ((t>?L)*®,),~¢ of bounded operators on
L>(M) has finite speed of propagation in the sense that if 1 < d(E, E') for some
E,E' C M, then 15 (L)*®,(1zf) = 0 whenever f € L*(M).

We now define the operators

Onf(r, )= PV o f(»), feRD®X,

and
~ * AW dz 2
TNU = (t°L) @,u(~,t)7, ue’lT ®X,
0

with which the new reproducing formula can be written as f' = ¢y éNf = AN OnNS.

PROPOSITION 15. Let 1 < p < oo. The operators Qy : HY(X) — T?(X) and Ty :
TP(X) — HY(X) are bounded whenever N > |n/2] + 1.

Proof. Again, it suffices to view @N and 7y as integral operators. Indeed,

ONf (1) = QNN Onf( 1) = ¢ /0 PLN (D) e T ONS (-, 5) %

and
~ X DLW —PL 2 N ds
Oy7iyu=c¢ (L) e " (s" L)Y Qu(-, s) —.
0 S

To see that the kernels of these integral operators satisfy (1), one argues as in Lemma 10
with (12L)N ®, replacing (2L)Ve~". Note that the exponential off-diagonal estimates
are immediate from the fact that 1 (L) ®,(1zf) = 0 when t < d(E, E"). O

DEFINITION. A function m € L*>(M) ® X is said to be an L-atom of order K associated
with a ball B C M if there exists a function 7 € D(LX) ® X, such that

o m= LXm,

e suppm C B,

o N0 Al gy < rg (B2, k=0,1,.... K.

REMARK. It is not clear if all Z-atoms belong to H}(X) as in the scalar-valued setting
(see [15, Proposition 4.4]).

3More precisely, we put &, = #(1+/L), where ¢ is smooth and compactly supported around 0 in R. The
desired properties are expressed in equations (4.21) and (3.12) in [15].

https://doi.org/10.1017/5S0017089515000415 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089515000415

710 MIKKO KEMPPAINEN

PROPOSITION 16. Let a € T' ® X be an atom in T(B) for a ball B C M and let K be
a positive integer. Then Ty yxa € H}(X) is an (constant multiple of an) L-atom of order
K in 2B whenever N > |n/2] + 1.

Proof. Choosing
~ oAWK N dr K
m= t L <I>,a(~,t)7€D(L )X
0
we obtain
s dr
L7 = / (LYK al, 0 S =i xa
0

as usual (cf. [15, Lemma 4.11]).

To see that supp Tyyxa C 2B, it suffices to note that for all ¢ < rp we have
supp a(-, f) C B and thus also

Linos(PL)YE®a(-, 1) = 0.

For the size condition, we pair (r5L)/ with an arbitrary g € R(L) ® X* and
estimate as follows:

| [ whntaoeonan] =] [ [T AR wac 0 S g0 aul
M M 0
=) / PR / at-, 1), LN () du%\
0 M

S i llall oo | Onigll 72
2 -1/2
< 15 B 218l xe)-

The required norm estimate follows then by duality (Proposition 13). O

THEOREM 17. Every f € R(L) ® X in H}(X) can be written, for any positive integer
K, as a sum of L-atoms my. € H}(X) of order K so that

f= Z A,
k
where the sum converges in both H}(X) and L*(X), and the scalars ;. satisfy

Dl = 1 gy
k

Moreover, if Hi(X) = L*(X), then the sum converges also in L'(X).

Proof. Let K be a positive integer. Given an f € R(L) ® X in H}(X), we fix an
N > |n/2] 4+ 1 and decompose Qyf € T' ® X into atoms a; by Theorem 3 so that

Onf = Z)‘kak and Z Ml = NONf iy = W it s
k k
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where the sum for Qyf converges in both 7'(X) and T?(X). Consequently, for a
constant ¢ we have

[ =Nk ONf = ¢ Y MFyika, “)
k

where, by Proposition 16, 7y xay are (constant multiples of) L-atoms of order K and
the sum converges in both H} (X) and H7(X).

Assuming that H7(X) = L*(X), we see that L-atoms are uniformly bounded in
L'(X). Indeed, an L-atom m € L*(M) ® X associated with a ball B satisfies

lmll ey < wB)' P imll 2 < wB) 2 Imll gy < 1.

The right-hand side of (4) is therefore absolutely summable in L'(X) and converges in
L'(X) to a limit which must coincide with its limit in LZ*(X), that is, 1. O

COROLLARY 18. Suppose that H3(X) = L*(X). For every f € L*(M) ® X, we have

* Wllew S W laze whenl <p <2,
* Wl S Wl when2 < p < oo.

Proof. Every f e L>(M)® X in H}(X) admits, by Theorem 17, an L'(X)-

convergent decomposition into L-atoms (which are uniformly bounded in L'(X)) and
SO

W llizon < D 1l = 1 e -
k

By interpolation (Theorem 14), we have ||/l rx) S W/ 2 x) when 1 < p < 2.
The second inequality | f| H(X) S lzeex) for 2 < p < oo follows from the first by
duality:

1z = supll{f. g)] = g € LA(M) @ X*. ligll yy .y < 1)
Ssup{l{f:g)l i g € LA(M) ® X*, llgllpr (v < 1} = If llrco-
O

REMARK. We refrain from addressing the question whether H7 (X) embeds in 17(X)
for 1 < p <2 (or vice versa for 2 < p < 00). This subtle matter has been discussed at
length in [3].

ExAMPLE. Let L = A be the (non-negative) Laplacian on M = R” with the Lebesgue
measure. For functions /' € L*(R") ® X, we have

Onf (. 1) = (D) e 21 (y) = /[R Yy — 2)f (2)dz,
where the Fourier transform of the Schwartz function W, is given by

() = PlEP)Ve T, g e R
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As in the proofs of [20, Theorems 8.2 and 4.8], this gives rise to a singular integral
operator

Tf(x) = /Rn K(x, 2)f(z)dz

with an operator-valued kernel K(x, z) € Z(X, y(L*(R™™), X)) so that

V000 = WIF gy ey x

for test functions f € C*(R") ® X.
In the proof of [20, Theorem 4.8], T is shown to be a Calderé6n—Zygmund operator
and thus for 1 < p < oo we have

W laz o S W -
Moreover, the same inequality holds for X*, namely
gl gz () S Ngllercxs,

and therefore HY (X) = LP(X) when 1 < p < oo.

Let us also remark that H}(X) coincides with the atomic Hardy space H!,(X)
which is defined to consist of functions /" € L'(X) that can be expressed as sums of
(classical) atoms my; so that

f=Y e and  |[fllgy = inf Y Al < oo.
k k

Here, a classical atom is a function m € L>(X) which is supported in a ball B ¢ R” and
satisfies

/m(x)dx:O and  [|mll2x) < |BI7V
B

Indeed, as a Calderon-Zygmund operator, T is bounded from H!(X) to
L' (y(L*(R™), X)), and thus for all f € C*(R") ® X with zero mean we have

W ey S W W)

at

On the other hand, every L-atom m is (a constant multiple of) a classical atom since
[ medx= [ a0 dy =0 and Wl < Il < 1B,
Theorem 17 then guarantees that every /' € L*>(R") ® X in H}(X) satisfies
W a0 S Wi -
REMARK. For a wide class of Schrodinger operators L = A + V' with non-negative

potentials 7 on R” (including the harmonic oscillator with ¥ (x) = |x|?), it has been
shown by Betancor et al. [7] that the conical square function estimate

1Oef oy = W locrys  Qrf (s 5) = svLe™VEf (p),
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associated with the Poisson semigroup, holds for 1 < p < oo whenever X is a UMD
space. Such operators L satisfy the off-diagonal estimates (see [15, Chapter §8]) and
are therefore within the framework of this article. That ||f]| H(X) S N Opf |l 7e(x) follows
again by means of integral operators on tent spaces (cf. the proof of Theorem 12).
Indeed, the reproducing formula

f — C/OO(S\/Z)ZN-Q—IE—ZS\FLJ{%
0 S
is valid (by spectral theory) and the kernel

K(t,s) = (PL)Ne "L(sy/ TN VL

satisfies the required estimate (1) when N > |n/2] + 1, which can be seen with the aid
of [15, Lemma 4.15]. As in the example above, we can then argue by duality to see that
HY(X)=L(X)forl < p < oc.

A. Completeness and dense subspaces of tent spaces.

PROPOSITION 19. For every | < p < oo and o > 1, the tent space T4 (X) is complete
and contains L*(M*) ® X as a dense subspace.

We follow the classical proof of the corresponding scalar-valued result (see [10,
Section 1] and [1, Lemma 3.3 and Proposition 3.4]). For simplicity, we omit the « as it
is immaterial for the proofs and abbreviate | - ||, for || - |l z2ar+),x)-

LEMMA 20. Let 1 <p <ocoandu € TP(X). Then

(1) llullzrxy = supg llulgllzrcx), where the supremum is over compact K C M,
(2) infk lulgell7e(x) = O, where the infimum is over compact K C M,
(3) for every compact K C M, there exists a constant cg such that

-1
cx lulgllreony < lulklly, < cxllullzecx)-

Proof. For the first claim, write I'(x; ¢) = {(y, 1) € T'(x) : ¢ < t < 1/¢}and note that
as ¢ tends to zero, the increasing sequence ||ulp(y.)ll, tends to ||ulrey ||, . Therefore,

) 1/p
i = tim ([ Bt duto)
e—0 M

1/p
= sup ([t dut)
B

&,B

< sup llulgll7rcx),
K

because whenever x is in a ball B C M and ¢ > 0, the cone I'(x; ¢) is contained in a
compact K ¢ M™.

The second claim follows by monotone convergence after choosing an increasing
(and exhausting) sequence of compact subsets K so that for every x € M the decreasing
sequence & (ulg:)(x) = ||ul genry ll, tends to zero.
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To prove the right-hand side in the inequality of the third claim, write S(K) = {x €
M : T'(x) N K # ¥} and observe that &7 (ulx)(x) < |lulg||, to obtain

Islon = ( [ ety an) " < wsky il

The left-hand side in the inequality of the third claim follows by choosing a finite
number N(K) of (small) balls B so that K C [ Jz(B x (0, 00)) =: | B" and so that for
every x € B we have K N Bt C I'y(x). Then for each B, we have [ulgnp+ |, < Fu(x)
when x € B and therefore

v NK)
lulilly < 23: lul kg Il < ; ( ]i Su(x dp(x)) < ey il = exllullory

O

Proof of Proposition 19. Let (1) be a Cauchy sequence in 77(X). For each compact
K c M*, we now see by (3) of Lemma 20 that (u;1x) is a Cauchy sequence in
y(L2(M™), X) and therefore converges to a uX. Setting u = uX on each L?(K) results
in a well-defined linear operator from L2(M™*) to X.

To see that u is in 77(X), fix a compact K C M+ and observe that for each k,

lulgllrry < 1@ —w)l gl + ekl ey < ekl — w1kl + llukll 7ex)-

Choosing k large enough, we see that |[ulk| 7(x) S 1 independently of K, which means
that u € TP (X).

In order to show that u; converges to uin 77(X), let ¢ > 0. Choose then a number
N so that |Jux — un||7r(x) < € for all k > N and, by (2) of Lemma 20, a compact K so
that || (4 — un)lgell7e(xy < €. Then for all k > N,

lu — willrrxy < 1w — w)lg e + 1 — un)lgell ey + 1 — un)lgellrecx
< ekl —u)lgll, + 2e,

where the first term on the right tends to zero as k — oo.
Finally, the density of L2(M*) ® X in T?(X) follows by approximating u by ul ¢
in 77(X) and then ul ¢ by a finite rank operator u'1g in y(L* (M), X). O
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