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Abstract. We calculate the Euler characteristics of the local systems SV ® S‘A’V on the
moduli space M, of curves of genus 2, where V is the rank 4 local system R'z,C.
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1. Introduction

Let m,: My — M, be the universal curve of genus g, g > 2. The local system
V= Rlng*C is symplectic of rank 2g. Given a sequence (ki, ..., k,) of nonnegative
integers, there is an associated local system

W(lkl B .gkg) — Sk] (\/) ® Skz(AZ\/) R ® S/Cg(Ag\/)

on M,, with Euler characteristic e (1¢1...gk) = e(M,, W(1%1...gk)), and gener-

ating function
o0

Solur, .. ug) = Z ulf‘. . .uggeg(lk‘ ... g").
koo lig=0
In this paper, we calculate f>(up, uo).

Let I'y = m1(M,) be the genus g mapping class group. There is a homomorphism
p, from I, to the symplectic group Sp(2g, C), obtained by composition of the
quotient map to Sp(2g, Z) with the inclusion Sp(2g, Z) — Sp(2g, C), and the Euler
characteristic eg(l’”. .. g%) may also be realized as the Euler characteristic in group
cohomology

> (=1 dim H(Ty, p*(S°(C*) @ S*(A’C*) ® - - ® S*(A*C*))).
i
We may illustrate our method by considering the analogous problem in genus 1;

here, we must replace the universal curve by the fibration n;: M;; — M ;. The
generating function in this case equals

filw) = " Fe(My 1, S'V) = " ute(SL(2, Z), S'CP).
k=0 k=0
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To calculate f1, we stratify the coarse moduli space |[M| | of M, in other words
the j-line, according to the automorphism group of the elliptic curve E(j); let
M 1(I') be the subvariety of |M; | where E(j) has automorphism group iso-
morphic to I'. There are three strata:

Mi1(Cr) = C\ {0, 1728},

Mi1(Cy) = {j = 1728},

Mi1(Co) = {j = 0}.
Denote the projection from the stack M ; to |[Mj | by p. If W is a local system on
M1, we have

eM1, W) = e(IM1], w W),

since R'u,W = 0 for i > 0. The Euler characteristic of a local system on a stratified
space is the sum of the Euler characteristics over the strata:

e(IMy 1], u,, W) = e(M1(Cy), 1, W) + e(M1,1(Cy), W) + e(M1(Cs), u, W).

The restriction of the constructible sheaf p, W to a stratum M, (I') is a local
system, and hence its Euler characteristic on this stratum is equal to the product
of the Euler characteristic of M, ;(T") and the rank of u, W restricted to M, 1(T"). (It
is the failure of the analogous property for stacks which necessitates the descent to
the coarse moduli space |M; |.) We conclude that

fiw) =Y uM{e(M11(Ca), SV) + e(M1(Cy), S*V) + e(M1(Cy), S'V))
k=0

= i W {e(M.1(Cy)) dim(SFCH® + e(M (Cy)) dim(SFCH% +
k=0
+ e(M.1(Cq)) dim(SFC*)e}.

The cyclic group C,, is conjugate to the subgroup {(0 : 0_,) " = 1} of SL(2, C); it

follows that

o0 . o0 ) 1+un
ke C,, SEC?) = W dim(Sf e = — ~ 7
2 elCn S'C) = J u dimS OO = i

It follows that
1+ 1+ 1+ ub
==t i = A= — )
_1—u2—2u4—u6+u8
(I —uhH(1 — ud)

Our calculation in genus 2 proceeds analogously: we use Bolza’s stratification of
the coarse moduli space |M;| by the automorphism group of the corresponding
curve [2]. Denote the stratum associated to the automorphism group I' by M,(I).
The contribution of each stratum to e(M,, W(1¥2¢)) must be calculated using
the character theory of I'; since I' is a finite subgroup of SL(2,C), the McKay
correspondence allows this to be done in terms of the associated Dynkin diagram.
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The only tricky point is the calculation of the Euler characteristics of M,(I"). The
hardest case is the affine surface M;(Cy4); we prove in Section 3 that e(M>(Cy)) = 3.
The original motivation for this work was the desire to calculate the S,-equi-
variant Euler characteristics of the moduli spaces M, ,. We explain how this may
be done in Section 5.
Throughout this paper, ¢, = exp(2ni/n). All varicties we consider are defined over
the field of complex numbers C.

2. Finite Subgroups of SL(2,C) and the McKay Correspondence
Given positive integers p = g =r = 2, let (p, q,r) be the group with presentation
(S, T,U| S =T7=U"=STU).

The element STU is a central involution, which we denote by —1.
If p7'4+¢7'+r' > 1, the group (p,q,r) is finite, and its order equals

4)(p " gt =,

Table 1 lists all of these groups.

According to Klein [7], the non-Abelian finite subgroups I' of SL(2, C) are iso-
morphic to the finite groups (p, ¢, r); any such subgroup of SL(2, C) is conjugate to
the subgroup generated by the element S of SL(2, C) listed in the table, and the
element U= (° ).

The Abelian subgroups of SL(2,C) are all cyclic, and any such subgroup of
SL(2,C) is conjugate to the subgroup generated by the element 7 = (" 8’701
of SL(2,C)

We refer to the finite subgroups of SL(2, C) as the Kleinian groups. If I" is such a
group, let V be the two-dimensional fundamental representation of I'" induced by
the embedding of T" in SL(2, C), and let V; be the kth symmetric power SV of V
(isomorphic to the space of binary forms of degree k). If T is a Kleinian group
containing —7 and W is an irreducible representation of I, we call W even if —1I acts
by +1 and odd if its acts by —1; by Schur’s lemma, these are the only possibilities.
For example, the fundamental representation V is odd.

Table 1.
(p.gq,1) (p.q.7) Order Name S
(n,2,2) Qqn 4n quaternionic, n > 2 €2 ?1
0 &
-1 3
in : : 1 (& &
(3,3,2) T 24 binary tetrahedral & < o )
. 1 ¢
. . . L 8
4,3,2) O 48 binary octahedral % <z§ | >
4 3
; : g (E&—1 e—es
(5,3,2) | 120 binary icosahedral v <s‘5‘ C2 a1 >
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There is a beautiful relationship between the character theory of Kleinian groups
and Dynkin diagrams, known as the McKay correspondence. If T" is a Kleinian
group, consider the graph with one vertex w; for each isomorphism class
{W; |1 <i<r} of irreducible representations of I', and n; edges between vertices
w; and w;, where the positive integers n; are the Clebsch-Gordon coefficients

The resulting graph is the Dynkin diagram of an irreducible simply-laced affine Lie
algebra; equivalently, the graph is connected, the numbers n;; are equal to 0 or 1,
and the Cartan matrix defined by 4; = 26, — n;; is positive semi-definite, with one-
dimensional null-space. In fact, the null-space is spanned by the vector whose ith
component is the dimension of W;, since by (1),

> (28 — ny) dim(W)) = 0.
j=1

EXAMPLES OF THE McKAY CORRESPONDENCE

Cyclic groups. If I' = C,, is a cyclic group, let y be the primitive character char-
acterized by y(7T) = ¢,. The irreducible representations of the cyclic group C, are the
powers {1’ | 0 <i<n} of y. Since V® ' = y*! @ 5!, the associated graph is a
circuit with » vertices: the Dynkin diagram Ay

Quaternionic Groups. The McKay correspondence associates to the quaternionic
group Qg, the Dynkin diagram of D,_;:

1 X+
Viz] Vin—2]

v 3 Vin-1

Xo y

The irreducible representations Vjj, 1 <i<n—1, are two-dimensional, and
V 22 V3. The group Qu, has four one-dimensional characters, as follows:

P p(S) o(T) p(U)
1 1 1 1
% 1 -1 -1
X+ -1 in —in
ja -1 —i" i"

Note that X+V[,] = X_V[,] = V[nfi] and that XOV[,] = Vm
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The binary octahedral group. The cases T, O and | of the McKay correspondence
correspond respectively to the affine Dynkin diagrams Es, E7 and E. Of these, we
only need the case of O in this paper; its Dynkin diagram is as follows:

1 vV Va2 Vi xV2 xV X

w

The unique nontrivial one-dimensional character y is characterized by y(S) =
y(U) = —1. Note that yV; =2 V; and that yW = W.

3. The Automorphism Group of a Hyperelliptic Curve

Denote by Z,,4» the affine variety of polynomials of degree 2g +2 with non-
vanishing discriminant. We identify a polynomial f'€ Zo44» with the binary form
y2+2f(x/y). If f € Tag4, consider the affine varieties V(z> — f(x)) C Spec C[x, z] and
V(22 — ¥%¢2f(1/X)) C Spec C[X, Z]. The hyperelliptic curve Cy associated to f is the
smooth curve defined by gluing V(z> — f(x)) and V(Z* — ¥%¢2£(1/X)) by the iden-
tification (X, 2) = (1/x, z/x%*t1).

The involution ¢: Cy — Cy defined by a(x, z) = (x, —z) is called the hyperelliptic
involution of Cy; it acts on HO(Cf, Q) by —1I and is in the centre of the automorph-
ism group Aut(Cy) of Cr.

LEMMA 1. The curve Cy has genus g, and HO(C,f, Q) has basis w; = x'dx/z,
0<i<g

Proof. The fixed points of the hyperelliptic involution are the 2g + 2 Weierstrass
points of C;. The projection (x, z) — x exhibits C as a double cover of P!, ramified
at the roots of f; thus, its genus equals g.

On the affine variety V(z> — f(x)), the differentials 2zdz and f”(x)dx are equal;
thus w; = 2x'dz/f"(x). Since the functions z and f”(x) have no common zeroes (the
polynomial f{x) has no multiple roots), we conclude that the differentials w; are
regular on V(z*> — f(x)), so long as i > 0.

Let f(x) = x%*2f(1/x). On the affine variety
VE = FM1/3) = VE - fi3),
the differential forms 2zdz and f '(X)dx are equal. Since
= —%NdR/E = 2567z (R),

the differentials w; are regular on V(2> — ¥*¢*2£(1/X)) so long as i < g.
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We have exhibited g linearly independent algebraic one-forms on Cy; since Cy has
genus g, they form a basis of H'(Cr, Q). O

The group SL(2, C) x C* acts by rational transformations on Spec C[x, z] by the
formula

a b _ ax+b uz
<<C d)’u>'(x’z)_<CX+d’(cx+d)g+‘>'

If f'€ Zre4a, the subgroup of elements of SL(2,C) x C* which preserve the sub-
variety V(z> — f(x)) is a group of the form

I'(p) = {(y.u) | y € T,u* = p(y)} € SL2,C) x C*,

where I' = I'y is the finite subgroup of SL(2, C) consisting of elements whose action
on P! preserves the set of roots of £, and p = pyis an even character of I'r. We have
the short exact sequence

0 — (=1, (1)) = T(p) - Aut(Cp) — 0.

Given a I'-module W and an integer n, let W(n) be the I'(p)-module with under-
lying vector space W on which the element (y, u) € I'(p) acts by (y, u) - w = u"(y - w).
We have the isomorphisms W(n +2) = p ® W(n) and W(n)” = W(—n). With this
notation, the irreducible representations of Aut(Cy) have the form W(n), where W is
an isomorphism class of irreducible representations of I'y, and n = g(mod 2)
(respectively n = g+ l(mod 2)) if W is even (respectively, odd).

PROPOSITION 2. As a representation of Aut(Cy), HO(C/-, Q) =V, (-1
Proof. Under the action of (y,u) € I'(p), w; transforms into

i —1
(ax =+ b) ( uz ) dx _ u_](ax + b)[(cx + d)g—[—l dX/Z.

ex+d) \(ex+df™)  (cx+df
Expanding the right-hand side in terms of the basis w;, we recover the action of
Aut(Cy) on V,_i(—1). O

COROLLARY 3. A4s a representation of Aut(Cy), H'(Cy, C) 2= V,_1(1) & Vo_1(—1).
Proof. H'(Cy,©) = H(C;. Q) & H\(C;, 0) = H(C;. Q) @ H(Cr, Q) O

Given a Kleinian group I' and a character p, let Z»,»>(I', p) be the subvariety of
Trg+2 consisting of polynomials such that the pair (I'y, py) is conjugate to (I, p).
The quotient H, of Zs,4» by the group (SL(2,C) x C*)/{(—1, (=) is the
moduli space of hyperelliptic curves of genus g. It is a complex orbifold of dimen-
sion 2g — 1, stratified by the images Hq(I', p) of the subvarieties Tz i2(I", p).
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It carries a local system V whose fibre at [f] is isomorphic to H'(Cy, C); by
Corollary 3, this local system has underlying vector bundle

Tog2 X(SL(2,C)xC) /(=L (= 1)FH1) Ve1(1) & V1 (=1

The same argument which was used in the introduction to calculate e(M; 1, SV)
proves the following result. This proposition will be used in Section 4 to calculate
the Euler characteristics e(1%2°).

PROPOSITION 4.
e(H,, W(lkl .. .gkz))

¢ ‘ T(p)
> e(H(T. p)) - dim (@ SUN (Vo () @ vgl(—l)») .

(T,p) i=1

4. The Stratification of H,

We now specialize to genus 2; this case is special, in that H, is identical with the
moduli space M, of smooth projective curves of genus 2.

Bolza [2] has shown that the stratification H, = [[ H2(T, p) has seven strata. In
Figure 1, we give a diagram showing these strata, as well as two more pieces of data
which we will need: the Euler characteristics e(H(I', p)) of the strata, and a normal
form for polynomials in Z»,o(I', p). Since no two distinct strata have the same
isotropy group I', we may, without ambiguity, denote the stratum H,(I, p) by
Hao(ID).

e(’Hz(Cz,l)):—l
a:6+a1:c5y+.4.+a5zy5+y6

e(H2(Ca,x?))=3

(L‘G+CX m4y2+6 z2y4+y6

/

e(H2(Qs,x0))=—2 e(H2(Q12,x0))=—2
zy(zt+az?y?+y?) z84+a 3y —y
e(H2(0,x))=1 e(H2(Q24,x+))=1 e(H2(C10,x%))=1
z®—y° zy(a*+y*) e(z°+y°)

Figure 1. The Bolza stratification of H,.
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In this section, we calculate the Euler characteristics of these strata. Since
H2(C1o), Ha(Qp4) and H,(O) each consists of precisely one point, it is clear that
they have Euler characteristic 1. Since H, is contractible, it also has Euler char-
acteristic 1; thus the Euler characteristics of all of the strata add up to 1. It remains
to calculate the Euler characteristics e(H>(Ca)), e(H2(Qs)) and e(H,(Q12)). Of these,
the first is the most difficult; in calculating it, we use Clebsch’s classification of the
covariants of binary sextics.

The Euler characteristic of H>(Cy). If f and g are binary forms of degree k and ¢
respectively, define their pth Ueberschiebung (f, g), by the formula

_(k+e—p)!< PP

P
S(.f’ g)p - (k +€)' axan - ﬁ) <f(x7 y)g(gv 17)

x=¢,y=n

The binary form (f,g), is a joint covariant of f and g.
For a proof of the following result, see §130 of [5].

LEMMA 5. If | and m are a pair of quadratic forms, let C(l, m) be the joint invariant

(1), (L,m),
(m7 1)2 (Wl, n1)2

C(l,m) = ‘

The quadratic forms | and m may be simultaneously diagonalized (i.e. there are
coordinates & and n such that | = aé’ +by? and m= cfz+d112) if and only if
C(l,m) # 0.

Given a binary sextic f, define a quartic covariant i = (f,f), of degree 2, and
quadratic covariants

I=(i,f)s m=(i,1),, n=(,m),

of degrees 3, 5 and 7 respectively. Let R = —2((/, m),, n),. Using his symbol calculus
for covariants of binary forms, Clebsch has shown ([3], § 113) that

(1) if R#0, fis a cubic polynomial in the quadratic forms /, m and #;
(2) if R=0and C(/,m) # 0, fis a cubic polynomial in the quadratic forms / and m.

In each case, the coefficients of the representation are explicit rational invariants
of f. For an exposition of the proofs, see §29 of [5].

We are interested in the second case above. By the condition C(/, m) # 0 and
Lemma 5, we see that there are coordinates ¢ and # such that /e C[¢?, 4?]. Fur-
thermore, provided the discriminant of f'is nonzero, we can rescale the coordinates
¢ and 5 in such a way that the coefficients of £° and #° equal 1.

In conclusion, a binary sextic f with nonvanishing discriminant such that R =0
and C(l,m) # 0 is equivalent to a sextic in the normal form
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f(x,y):x6+ocx4y2+/3x2y4+y6. )

By §I of Bolza [2], these are precisely the sextics whose image in H, lies in
Ha(Ca).

Let X =o® + ° and Y = of. From these functions, we may recover the normal
form f of (2) thus, they give global coordinates on the stratum H,(C4). To see this,
observe that

@ = p) =X —4Y.

Thus, we may recover from X and Y the coefficients o and f, up to the action of the
dihedral group generated by the transformations (o, ) (€**/3a, e 2"/3f) sand
(o, Py~ (B, ). However, this dihedral group is precisely the symmetry group
of the normal form f.

The discriminant of the normal form f of (2) equals

—64(4X — Y> — 18Y +27)%,

while

10
C(l,m) = _ﬁ(u— Y2 +110Y — 1125)%(X% — 4Y3).

Denoting the divisors (4X — Y?> —18Y +27), (4X —Y>+110Y —1125) and
(X2 —4Y% in C* by Ay, A, and A,, we conclude that
Hz(C4) = Cz\AO UA| UA,.

In fact, Bolza shows that A; corresponds to the stratum H,(Qg), while A, corre-
sponds to the stratum H,(Qpn).

It is now quite easy to calculate e(H>(C4)). Since Ay and A; are graphs in C?, they
have Euler characteristic 1. The projection (X, Y) — Y displays A, as a double cover
of C ramified at 0, showing that it too has Euler characteristic 1. As for the
intersections of the three divisors, we have

Ao NAT ={(54,9)}, AoNA={(54,9). (=2, D},
A N A = {(54,9), (=250, 25), (6750, 225)}.

Combining these results, we conclude that e(H,(C4)) = 3.

The Euler characteristic of H»(Qg). Two binary sextics

f(x»y):xy(x4+aix2y2+y4)’ i= 1v21

are equivalent if and only if o = &3; thus, we may parametrize the stratum H,(Qg)
by «?. Three values of o® are excluded:
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(1) when o =4, the sextic has vanishing discriminant;
(2) when o =0, the sextic has automorphism group O;
(3) when o = 100/9, the sextic has automorphism group Quq.

It follows that the parameter o* identifies the stratum H,(Qs) with C\{0, 4,13},
and hence, that e(H»(Qg)) = —2.

The Euler characteristic of H2(Qjz). Two binary sextics

fix,y) = x° + oc[,x3y3 — y6, i=1,2,

are equivalent if and only if &} = o3; thus, we may parametrize the stratum H»(Q;»)
by o?. Three values are excluded:

(1) when o? = —4, the sextic has vanishing discriminant;
(2) when o =0, the sextic has automorphism group Qu;
(3) when o = 50, the sextic has automorphism group O.

It follows that the parameter o identifies the stratum H,(Q),) with C\{0, —4, 50},
and hence, that e(H2(Qp)) = —2.

5. The calculation of f;(u,v)
We have seen in Proposition 4 that

falu,v) =Y e(Ha(T, p)) - i o' dim(SF(V) ® S(A2V)T .
(T.p) k,£=0

where by Corollary 3, V=V(1)®V(=1) and A’V =Vo @ p®1dp .

PROPOSITION 6.

o0 ['(p)
> W' dim (sk\/ ® s‘f/\z\/>
k=0
20\/2 -1 4
_ dim i Il+usV"+p+p )2+u y
(1 =2(V" = 2p +utp?)(1 —u>(V" = 2)p~" +utp~?)

1 L(p)
X .
(1= v(V> = 2)+ v2)(1 — vp)(1 — v)*(1 — vp‘1)>

Proof. All of the following calculations are performed in the ring R(I')(u, v).
Using the formulas o,(4 ® B) = 6,(A) - 6,(B) and ¢,(A4) = A_(A)~", we see that
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o0
> 'SV @ SIAY = 6,(V) - 6,(AV)
k=0

= 0,(V(1)) - 6, (V(=1)) - 6u(V2) - 5u(p) - 6u(1) - 7(p ")

= 2V A V(= 1) AV T ()7
()7

=0 —uV)+u?p)" (1 —uV(=1) +u*p ™"
A=V =D+ =D =) =)

=y (1 — oo~

The third fg.CtOI'U)Of tl(ie dgrlljorrzinator may be simplified by the factorization

I=o(V=D+*V =D =) '=1 =V} =2)+ D)1 -0
To simplify the factors involving the variable u, we use the formulas
(1= uV(1) +u?p) (1 +uV(1) + u’p)

1+ uV() +u?p

1= A(V? = 2)p + u*p?
T 1+ uV) +u?p

1 —uV(1)+u?p =

and, similarly,

1— 2 (V2 =2)p~ ' +utp2
14+ uV(—1)+ u?p~!

1—uV(=D)+u?p ! =
Hence,
(1 —uV(1)+2p) (1 —uV(=1) +12p™ )

_ (1+uV() +?p)(1 + uV(=1) +u?p™")
(= w2V = 2)p + utp?)(1 — w2 (V2 = 2)p~! 4 utp2)

_ U2V 4 p+p7) +uh) + )V @ V(=1)
(1 —12(V* = 2)p + up?)(1 —12(V* = 2)p~! +up~2)
No representation of I'(p) of the form W(n) with n odd can have a nontrivial space

of invariants; we conclude that we may discard the terms which are odd in u before
taking the space of invariants under the group I'(p). O

To apply this formula, we substitute for V the matrix (n;) with entries 0 and 1
associated to the Dynkin diagram corresponding to I" in the McKay correspon-
dence, and for p the permutation matrix (p;) with entries

pij = dimg Homr(p @ W;, W)).
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In this way, we obtain a matrix with entries in Z(u, v); the desired power series is the
diagonal entry corresponding to the trivial representation. We list the results for the
seven cases of (I', p) in Table II, expressed as a sum of terms of the form
r(u, v)/s(u)t(v). We have also listed the sum of the contributions for all strata
other than H,(Cp); to obtain the formula for f;(u, v), we simply add this total
to the contribution for Cy.

We may use our formula for f>(u, v) to calculate the Euler characteristics e, of
irreducible local systems V,; on M,. Let y,, denote the character of V. If g is
an element of Sp(4, C) with eigenvalues {x, y, x~!, y~!}, the Weyl character formula

says that
xa+2 _ xfafz xb+1 _ xfbfl
a+2 —a—2 b+1 —b—1
-y W —y
Xa,b(g) - 2 -2 —1
X —X X —X

y=y? y—y!

Multiplying by u“~?1” and summing over a and b, we see that

k¢
WV n
k=0

= (1=’ ((1+v)(1 + ') —wV) > o' V) @ SYAV).
k>0

6. The Equivariant Euler Characteristic of M, ,

The following Euler characteristics are immediate from Table II:

k 0 2 0 4 2 0 6 4 2 0
’ 0 0 1 0 1 2 1 2 3
er(152%) 1 0 0 0 -1 0 -1 -1 -1 -3

One might imagine from these data that all of the Euler characteristics e,(1¥2¢) are
negative: however, e(1'%) = 1.

Using the Leray—Serre spectral sequence, the S,-equivariant Euler characteristics
of the moduli spaces M, , may be expressed in terms of the Euler characteristics
e (1%, g%): by [4], we have

Z €§,,(Mg,n) = 6((1 +[)1)2 l_[ (1 +pk)_£zmk d “(k/d)ChL’(\/)>. 3)
n=0 k=1

In this formula, we identify the virtual representation ring R(S,,) of the symmetric
group S, with the space of symmetric functions of degree n, which, when tensored
with Q, is in turn isomorphic to the algebra of polynomials of the power sums py.
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Table II. Contributions of the strata H,(I',p) to fo(u,v)

9V NO SINHLISAS TVO0T 40 SOILSIYAIOVIVHO ¥d1N4d

T, p) r(u, v) () (v)
(Ca,1) w4612 + 1 (1—u)? (1-v)°
(C4,7%) (2 + 12 (0" + 602 + 1) + 16:2(v® + v) (1—u?)? (1 =) (1 —v?)*
(Qs, 7%0) (1 + S+ 4t + 12 + 1) 4+ 1) + (4 + 148 + 120 + 142 + 4)0* — (1 —ud)*(1 = (1 —u2)* (1—v)*(1 —v?)*
—(u* =10 + 1)(® +v)
(Qu2, 70) U2 + 0 + b+ 6+t DS+ 1)+ (1 =2 (1 —uf)? (1—v)(1—o))*(1 = %)
+(3u'? + 15010 + 310 + 340 + 31u* + 1507 + 3)(v* + 0?) +
4202 ((3ud + 5ub + 140t + 51 +3) (V3 +v) 4+ 2(u* + 1) (Su* + 112 + 5)0)
(Qua, 1) (' 4+ u™ 4+ 20" + 400 + 8u® + 4+ 2ut + i+ 1)+ 1) + (1 —u*?(1 —uf)? (1 =2 (1= v?)*(1 = 15)
+(2u' + 1™ 4 240" + 3200 4 300 + 3200 + 24u* + 110 4 2)(v° 4 0?) —
—(u'? = 3uM — 4B — 1208 — 4t — 3P+ 1)V +v) — (1 —u2)*(1 — uf)?
—(2u'? — 5u" — 1208 — 18u — 12u* — 517 +2)(v° + ) +
+2(2u'? + 2! + 568 + 6u® + Sut + 2u? + 2)v*
(0,7) (2 + u' 4+ 2uM 4 6u'? + 4u'® + 6 + 20 + 12 + 1) (0* + 1)+ (1—u*)(1—u)(1 —u®) (1—o)(1 =)’ (1 = o*)(1 —v*)
12 (u'® + 3u™ + 150" + 28u'0 + 2608 + 28u° + 15u* + 3t + 1) (v +v) —
—(u? — 5u" — 27u!® — 574 — 87u" — 106u'0 — 87u® — 570 —
=27u* — 517 + 1)(v° + 03) +2(u® + 6u'® + 18u'® + 33u™ + 46u'? + 56u'0+
+46u + 33ub + 18u* + 6u® + 1)v*
(4 3u® + 3u® + 1)(0° +0?) (1= (1 +u)
(Cio,2%) ? — "+ 4 + 4t -+ 1)+ 1) - (1—u2)*(1 —u') (1—0)>(1 =%

—(3u'? — 11u'° + 8 — 8u + 8u* — 111 + 3)(v* +v) +
+(5u'? — 1360 + 160 — 8u® + 16u* — 1312 + 5)0°

€el
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Table I1I. Calculation of es, (M,,)

n es,(Man)

0 e 1

1 2e; 51 251

2 (e2 +e2(2))s2 + (e2 + ea(12))s)2 5+ 8

3 (e2(2) — e2(12))s3 + (€2(2) + e2(12))s21 + 2 e2(12) 5y 0

4 (62 — 62(12) — 62(2))5‘4 + (*62 — 62(12) + 62(2))S31 + S4 — 831
H(=er +ex(1%) +e2(2%))s2 + (€2 — e2(2) + e2(172))s312 + (e2(17) + ea(1%))se —522

5 (2e2 —2e2(2))s5 + (e2 — 62( 2) — 6’2(22))3‘4] + 2(s5 + Sa1)

( 362+2€2( 2)+2€7( ) 6‘2(1 2)+€2(22))S32+ —253

H(—ex(12) +2(2) — e2(14) — e2(22) sz +
+(e2 —2ex(2) +ex(172) + €2(2%))s2) +
+(€2 — 6’2(12) (2) + 82(14) + 82(122))5211 + 262(14) 815

6 (6’2—62(] ) 26’2(2)+€2(122))56+(26’2—62(12)—62(2)+€2(14))351 + 2 851
+(2e2(2) — 02(22))8‘42 + (2ex(1%) +e2(2) — e (1*) — 22(122) — €2(2%)) 5412 + 2 8412
+(=2er+2er(12) + ea(1%) + 2 2(2%))s3 + —2s3
+( ey — 62(12) 282(2) + 62(122) +€7(2 ))S‘321 + —2531
+H(=2e2(12) + e2(2) — ea(1%) — e2(22))s315 +
+(er — e2(1?) — e2(2) + e (1*) + e2(22)) 2 + —355
+(e2 — ex(1%) — e(2) + er(1*) + €2(1727) )52 + Sy
+(—ex +2ex(12) + e2(2) — ea(122) + e2(142))5214 + (e2(1°) + e2(14)) 516 —($214 + 516)

7 (7(’2(14) + 62(122) — 62)5‘7 + (62(14) + 262(122) + 62(22) — 362(12) — 362(2))561 + 72(5‘7 +S61)
+(72€2(22) 7282(12)+2€2(2)+282)S52+ 2857
+(ea(1*) — 2e2(122) 4 €2(2%) + 3 ex(1%) — e2(2))s512 + 28512
+(82(122) +82(22) +e2(12)+e2(2) —e)sa3 + —2.8543
+(—€2(1222) — 82(23) — 282(14) — 62(122) — 82(22) + 4 5491
+4ey(12) +3ey(2) — )sgp) +
+(—ex(1*2) — e2(1222) — e2(14) — e2(122) + 3 e2(12) + e2(2) — 1)sys + 28413

(26’2(14)+€2(122)+3€2(22)+6’2(12)—362( ) )S321+ —253

+H(—ea(1222) + e2(2%) — ea (14) + 62(122) —ey(12) = 2e(2) — )53 + —4 53
+( 62( 42)—62(23)+2€2( )-‘,—282( 2) 462( ) —82(2)+2€2)S3212+ 4 53512
+H(—ea(1%) — ex(122%) — e2(1*) + €2(122) — e2(12) — e2) 5314 + 0
+(ea(1222) + €2(2%) — e2(122) — e2(2%) + €2(2) + )ssy + —25p
+(82(142) =+ 62(1222) — 262(122) + 362(12) + 62(2))3‘2213 +
+(6’2(16) + 6’2(142) - 82(14) — 6’2(122) + 282(12) + 6’2(2) - 63)S215 + 26’2(16)5'17 —2(5215 + 517)

In applying (3) in genus 2, we may take advantage of the fact that e,(1¥2%)
vanishes if k is odd. We obtain the results listed in the second column of
Table III. Substituting the values for e,(1%2¢), we obtain the equivariant Euler
characteristics of M;,, 0 < n < 7. The dimensions of these virtual representations

of §,
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agree with the Euler characteristics of M, , calculated by Bini et al. [1].


https://doi.org/10.1023/A:1015826400148

EULER CHARACTERISTICS OF LOCAL SYSTEMS ON M, 135

Acknowledgement

This paper was completed while the author was a guest of the School of Math-
ematical Sciences of the Australian National University. The author is partially
supported under NSF grant DMS-9704320.

References

1. Bini, G. Gaiffi, G. and Polito, M: A formula for the Euler characteristic of M,_,. math.
AG/9806048.

2. Bolza, O: On binary sextics with linear transformations into themselves, Amer. J. Math.
10 (1888), 47-70.

3. Clebsch, A: Theorie der bindren algebraischen Formen, Teubner, Leipzig, 1872.

4. Getzler, E: Resolving mixed Hodge modules on configuration spaces, Duke Math. J. 96
(1999), 175-203. alg-geom/9611003.

5. Gordan, P: Dr. Paul Gordan’s Vorlesungen iiber Invariantentheorie. Herausgegeben von dr.
Georg Kerschensteiner. Zweiter Band: Bindre Formen, Teubner, Leipzig, 1887, (Reprinted
by Chelsea Publishing, New York, 1985).

6. Klein, F: Vorlesungen iiber das Ikosaeder und die Aufiosung der Gleichungen vom fiinften

Grade, Teubner, Leipzig, 1884 (Reprinted by Birkhduser Verlag, Basel, 1993).

https://doi.org/10.1023/A:1015826400148 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015826400148

