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Generalization of Klain’s theorem to
Minkowski symmetrization of compact
sets and related topics

Jacopo Ulivelli

Abstract. We shall prove a convergence result relative to sequences of Minkowski symmetrals of
general compact sets. In particular, we investigate the case when this process is induced by sequences
of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain
(2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019,
Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Math-
ematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific
class of compact sets. The idempotency for symmetrizations of this family of sets is investigated,
leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis
14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and
generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski
sums of star-shaped sets, preprint).

1 Introduction

The tool of symmetrization has played an important role in Mathematics since its very
introduction from Steiner of the homonym Steiner Symmetrization in the attempt of
proving the Isoperimetric Inequality. One of the main features of this tool is that there
exists a sequence of hyperplanes such that the corresponding sequence of successive
symmetrizations ensures the convergence to a ball independently from the compact
convex body we start from. Moreover, Steiner symmetrization preserves the volume of
the object we are modifying. Historically, this symmetrization is employed in standard
proofs of not only the isoperimetric inequality, but also other powerful geometric
inequalities, such as the Brunn–Minkowski, Blaschke–Santalò, or Petty projection
inequalities.

To this day, even though this tool is almost 200 years old, it still plays a crucial
role in mathematical research. For example, it has been recently employed by Milman
and Yehudayoff [18] in the solution of a long-standing open problem about Affine
Quermassintegrals.

The interest toward the convergence of sequences of successive symmetrizations
has risen again in the last years thanks to a series of papers focusing on Steiner
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Klain’s theorem to Minkowski symmetrization of compact sets 125

symmetrization (for example, Klain [13], Bianchi et al. [2], Bianchi et al. [5], Volcic
[22], and the very recent Asad and Burchard [1]) and on Minkowski symmetrization
(as Klartag [14, 15] and Coupier and Davydov [7]).

In Bianchi et al. [3, 4], the authors introduced a wider frame for the study of
general symmetrizations, studying the common features and the important properties
of these different tools. In particular, in [4], they provide a beautiful generalization of
Klain’s main result in [13] valid for Steiner symmetrization to many other symmetriza-
tions, including Minkowski’s.

Still, many of these works focus on the behavior of symmetrization in the class of
compact convex sets.

The aim of this paper will be the study of some convergence results in the class of
compact sets, mainly on the frame of Minkowski symmetrization and the similar fiber
symmetrization. Indeed, as usual, the case of compact sets reveals many pathologic
issues and interesting developments. Here, we will try to present some results in
this direction. In particular, there are some properties, such as idempotency and
invariance on symmetric sets, that we lose once turning to the general compact
case. Many of them rely on the behavior of the Minkowski addition, with which we
define Minkowski symmetrization, thus pointing our focus to the study of Minkowski
addition of compact set. See Fradelizi, Madiman and Marsiglietti [9] for an extensive
survey on the subject.

Let us introduce some terminology. LetE be the classKn
n of compact convex bodies

with nonempty interior in R
n , or the class Cn of compact sets in R

n . Given a subspace
H ⊂ R

n , let♢H denote a symmetrization overE, i.e., any map which associates to every
set in E a set in E symmetric with respect to H. Given a sequence {Hm} of subspaces
and K ∈ E, we consider the sequence of sets

Km = ♢Hm . . .♢H2♢H1 K .

For which sequences {Hm} and for which symmetrizations, ♢H does the sequence
{Km} converge for each K ∈ E? This process depends on the class E, on the definition
of ♢H and on the sequence {Hm} (and, in particular, on the dimension of the
subspaces).

The cases which have been studied most are those when ♢ is Steiner, Schwarz,
or Minkowski symmetrization in the class E =Kn

n , and {Hm}m∈N consists of hyper-
planes. Some results are available also for more general symmetrizations, for the class
of compact sets and for subspaces of any dimension (see [2, 4]). In this notation, our
aim is to extend some of these results to the class E = Cn .

We will start from the study of Minkowski symmetrization of compact sets. In
particular, we will prove a generalization of the following result due to Klain [13].
Here, SH denotes the Steiner symmetrization with respect to a subspace H.

Theorem 1.1 (Klain) Given K ∈Kn
n and a finite family F = {Q1 , . . . , Q l} ⊂

G(n, n − 1), consider a sequence of subspaces {Hm}m∈N such that for every m ∈ N,
Hm = Q j for some 1 ≤ j ≤ l . Then, the sequence

Km ∶= SHm . . . SH1 K
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126 J. Ulivelli

converges to a body L ∈Kn
n . Moreover, L is symmetric with respect to Q j for every Q j

which appears infinitely often in the sequence.

This result has been extended in [4] for the class Kn
n to Minkowski symmetriza-

tion, to fiber symmetrization and also to general symmetrizations satisfying certain
properties (the proper definitions will be introduced in the next section). Regarding
Steiner symmetrization, this result was generalized in [2] to the class Cn .

Our strategy will be to reduce our argument to the convex case, so that, starting
from the general compact case, we will appropriately compare and link the behavior
of the two different processes. In particular, we prove the following.

Theorem 1.2 Consider K ∈Kn and a sequence of isometries {Am}m∈N. If the sequence

Km = 1
m

m
∑
j=1

A jK

converges, then the same happens for every compact set C ∈ Cn such that conv(C) = K.
Moreover, the two sequences converge to the same limit.

The strength of this result reveals itself once that one realizes that the Minkowski
symmetrization of a set C ∈ Cn can be expressed as the mean of two isometries of
C, i.e., the identity and the reflection with respect to the considered symmetrization
subspace. Iterations of this symmetrization can be expressed in an analogous fashion.
A similar result has been proved in Theorem 7.4 in [4], where this property of
Minkowski symmetrization was first observed; this result states that if a sequence of
subspaces is such that the corresponding sequence of symmetrals converges to a ball
for every convex compact set we start from, then the same will happen starting from
an arbitrary compact set. Theorem 1.2 can be seen as a more general version of such
result, because we do not require to converge to a ball and in general it allows us to
work with specific sequences too.

This approach is not strong enough when working with fiber symmetrization.
Indeed, as we will point out later, the symmetrization behaves way less predictably
and the corresponding sequences do not necessarily converge to convex sets. For this
symmetrization, we prove convergence only for compact sets that satisfy

∂convC ⊆ C ,

where ∂convC is the boundary of the convex envelope of C, providing the following
result. For a fixed subspace H, we define the corresponding fiber symmetrization of a
compact set as the union of the Minkowski symmetrizations of its orthogonal sections
with respect to H. See equation (2.1) and the corresponding definition for more details.

Theorem 1.3 Let K ∈ Cn such that ∂conv(K) ⊂ K, let F = {Q1 , . . . , Qs} be a family
of subspaces of Rn , 1 ≤ dim(Q i) ≤ n − 2, and let {Hm} be a sequence such that Hm ∈ F
for every m ∈ N. Then, the sequence

Km ∶= FHm . . . FH1 K
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Klain’s theorem to Minkowski symmetrization of compact sets 127

converges to a convex set L, where L is the limit of the same symmetrization process
applied to conv(K). Thus, L is symmetric with respect to all the subspaces of F which
appear infinitely often in {Hm}.

The case of one-dimensional sections needs to be treated differently, and in a
further work, we will prove this result for n ≥ 1 with the additional hypothesis ∣K∣ > 0,
i.e., K ∈ Cn

n .
The peculiarity of the case n = 1 will be clearer after stating Theorem 1.4, which is

instrumental to prove Theorem 1.3.
The study of these issues will lead us to focus on the following problem: What can

we deduce on the Minkowski sum of two compact sets from their boundaries? We
will see how this question is strongly related to the idempotency of Minkowski and
fiber symmetrizations.

In this regard, we obtain the following result.

Theorem 1.4 Let K , L be compact sets with connected boundary such that, for every
x ∈ Rn , neither K + x is strictly contained in −L nor −L is strictly contained in K + x.
Then,

K + L = ∂K + ∂L.

A similar result was proved recently from Fradelizi, Làngi and Zvavitch [8] in a
more restrictive case. Notice that this does not give us information about the case n =
1, which we will address in Lemma 4.1 and turns out to give us interesting properties
on the finite Minkowski addition of bounded sets in R.

2 Preliminaries

As usual, Sn−1 denotes the unit sphere in the Euclidean n-space R
n with Euclidean

norm ∥⋅∥. The term bal l will always mean an n-dimensional Euclidean ball, and the
unit ball in R

n will be denoted by Bn . B(x , r) is the open ball with center x and radius
r. If x , y ∈ Rn , we write x ⋅ y for the inner product. If x ∈ Rn ∖ {o}, then x⊥ is the
(n − 1)-dimensional subspace orthogonal to x. G(n, i) denotes the Grassmanian of
the i-dimensional subspaces of Rn , 1 ≤ i ≤ n − 1, and if H ∈ G(n, i), H⊥ is the (n − i)-
dimensional subspace orthogonal to H. By subspace, we mean linear subspace. Given
x ∈ R, ⌊x⌋ is the floor function of x.

If X is a set, we denote by convX its convex envelope, and by ∂X its boundary. If
H ∈ G(n, i), then X∣H is the (orthogonal) projection of X on H. If X and Y are sets in
R

n and t ≥ 0, then tX ∶= {tx ∶ x ∈ X} and

X + Y ∶= {x + y ∶ x ∈ X , y ∈ Y}
denotes the Minkowski sum of X and Y. For X measurable set, its volume will be ∣X∣.

When H ∈ G(n, i), we write RH for the reflection with respect to H, i.e., the map
that takes x ∈ Rn to 2(x∣H) − x, where x∣H is the projection of x onto H. If RH X = X,
we say that X is H-symmetric.

We denote by Cn the class of nonempty compact subsets of Rn . Kn will be the class
of nonempty compact convex subsets of Rn , and Kn

n is the class of convex bodies. A
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body is a compact subset of Rn equal to the closure of its interior. In the analogous
way, we define Cn

n . If K ∈Kn , then

hK(x) ∶= sup{x ⋅ y ∶ y ∈ K},

for x ∈ Rn , defines the support function hK of K. With the support function, we can
define the mean width of a convex body K, which is

w(K) ∶= 1
∣∂Bn ∣ ∫S n−1

(hK(ν) + hK(−ν))dν,

where ∣∂Bn ∣ is the (n − 1)-dimensional measure of the unit sphere in R
n . The afore-

mentioned spaces Cn and Kn are metric spaces with the Hausdorff metric, which is
given in general for two sets A, B by

dH(A, B) ∶= sup{e(A, B), e(B, A)},

where

e(A, B) ∶= sup
x∈B

d(x , A)

is the excess of the set A from the set B, and d(x , A) is the usual distance between a
point and a set. The completeness of such metric spaces is a classic result [6], we will
refer to it as the Blaschke selection theorem both in convex and compact context.

Another classical result we will refer to is the Brunn–Minkowski inequality. Given
two measurable sets A, B such that A+ B is measurable (the sum of measurable set is
not always measurable), it states that

∣A+ B∣1/n ≥ ∣A∣1/n + ∣B∣1/n ,

where equality holds if and only if one of the following holds: either A is convex with
nonempty interior and B is a homothetic copy of A (up to removing subsets of volume
zero), or both A and B have null measure and lie on parallel hyperplanes. See Gardner
[10] for a precise and comprehensive survey on the general case of this inequality. For
more background material in convex geometry see Gardner [11], Gruber [12], Lay [16]
and Schneider [20].

Given C ∈ Cn , H ∈ G(n, i), 1 ≤ i ≤ n − 1, we recall the definition of some sym-
metrizations.
• Schwarz symmetrization:

SHC ∶= ⋃
x∈H

B(x , rx),

where rx is such that for the (n − i)-dimensional measure of every section holds
∣B(x , rx)∣ = ∣C ∩ (H⊥ + x)∣, and B(x , rx) ⊂ H⊥ + x. If ∣C ∩ (H⊥ + x)∣ = 0, then rx =
0 when C ∩ (H⊥ + x) ≠ ∅, while when the section is empty, then the symmetriza-
tion keeps it empty. Observe that thanks to Fubini’s theorem, Schwarz symmetriza-
tion preserves the volume.

For i = n − 1, we have Steiner symmetrization. See Gardner [11], Chapter 1 and 2
for a comprehensive exposition on this symmetrization.
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• Minkowski symmetrization:

MHC ∶= 1
2
(C + RHC).

We will also consider the case i = 0, which is called the central Minkowski sym-
metrization

Mo K = K − K
2

.

Notice that for support functions, we have the following:

hK + hL = hK+L ∀K , L ∈Kn ,

thus Minkowski symmetrization preserves mean width.
• Fiber symmetrization:

FHC ∶= ⋃
x∈H

[ 1
2
(C ∩ (H⊥ + x)) + 1

2
(RHC ∩ (H⊥ + x))] .(2.1)

Observe that, defining MH⊥ ,x the central Minkowski symmetrization with respect
to x in H⊥ + x identified with R

n−i , we can write

FH K = ⋃
x∈H

MH⊥ ,x(K ∩ (H⊥ + x)).

• Minkowski–Blaschke symmetrization: If K is a convex compact set, we define

hMH K(u) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫−
S n−1∩(H⊥+u)

hK(v)dv , if ∣Sn−1 ∩ (H⊥ + u)∣ ≠ 0 in R
n−i ,

hK(u), otherwise,

for every u ∈ Sn−1. At the end of Section 3, we will see that we can extend this
definition to any compact set using the support function of its convex envelope.
Consider a family of bodiesE and a subspace H ∈ G(n, i), then an i-symmetrization

is a map

♢H ∶ E→ EH ,

where EH are the H-symmetric elements of E.
We now state some properties of i-symmetrizations. As we will see, the interaction

between these properties and eventually their lack can be crucial in the study of
convergence. Consider K , L ∈ E, H a subspace in R

n , and the map ♢H satisfies the
properties of:

Monotonicity if K ⊂ L ⇒ ♢H K ⊂ ♢H L;
H-symmetric invariance if RH K = K ⇒ ♢H K = K;
Invariance under translations orthogonal to H of H-symmetric sets if RH K = K , y ∈
H⊥ ⇒ ♢H(K + y) = ♢H K.

Notice that these properties hold for Steiner, Minkowski, and fiber symmetriza-
tions, while the first and the third hold for Schwarz symmetrization. More examples
of symmetrizations with peculiar behaviors can be found in Saroglou [19].
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� �

Figure 1: Original body and first symmetrization.

�
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Figure 2: Second and third symmetrization.

3 Klain’s theorem for Minkowski symmetrization of compact sets

Two of the main features of Steiner, Schwarz, Minkowski, and fiber symmetrizations
are the idempotency and the invariance for H-symmetric bodies in the class of convex
sets. These two properties no longer hold when we switch to the class of generic
compact sets.

An immediate example regarding Minkowski symmetrization is the following.
Consider in R

2 the compact set C = {(−1, 0), (1, 0)}. This set is obviously symmetric
with respect to the vertical axis, which we can identify with a subspace H. Then, we
have

MHC = {(−1, 0), (0, 0), (1, 0)},

thus the invariance for symmetric sets no longer holds. If we apply again the same
symmetrization,

MH(MHC) = {(−1, 0), (−1/2, 0), (0, 0), (1/2, 0), (1, 0)},

showing that the same happens to idempotency. In Figures 1 and 2, we see an example
for the fiber symmetrization of a compact set in the plane.

If we iterate this process for C = {(−1, 0), (1, 0)}, we see that in this case
there is no finite degree of idempotency, i.e., there does not exist an index � ∈ N
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such that

M�
HC = Mk+�

H C ,

for every k ∈ N, where in general

MH . . . MH
 !!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!!!!!!!#

�-times

∶= M�
H .

Moreover, the iterated symmetrals converge to the set given by conv(C). This is the
main idea behind the next result, after proving a technical lemma.

Lemma 3.1 Let K ∈ Cn , H a subspace of Rn . Then:
(i) for every v ∈ Rn ,

MH(K + v) = MH(K) + v∣H,

(ii) if K is H-symmetric, then K ⊆ MH K,
(iii) K = MH K if and only if K is convex and H-symmetric.

Proof The first statement follows from the explicit calculations

MH(K + v) = K + v + RH(K + v)
2

= K + RH(K)
2

+

v∣H⊥ + v∣H − v∣H⊥ + v∣H
2

= MH(K) + v∣H,

where we used the linearity of the reflections and the decomposition v = v∣H + v∣H⊥.
For the second statement, by hypothesis, we have that RH K = K, i.e., RH(x) ∈ K

for every x ∈ K. Then, taking x ∈ K, (x + RH(RH(x)))/2 = x ∈ MH K, concluding the
proof.

Consider now K such that K = MH K. Then, obviously K must be H-symmetric,
and K = RH K. Then, for every x , y ∈ K, we have that (x + y)/2 ∈ K, thus for every
point z in the segment [x , y], we can build a sequence by bisection such that it
converges to z. K is compact, henceforth it contains z. The other implication is
trivial. ∎

If we consider the iterated symmetral

Km ∶= Mm
H K = MH . . . MH

 !!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!!!!!!!#
m-times

K ,(3.1)

we notice that the second statement implies that Km ⊆ Km+1 for every m ∈ N.
The next theorem presents the intuition behind the rest of the work. It will actually

be an easy corollary of the results we will prove later, but we present it, because its proof
is self-contained and it is useful to glimpse the underlying structure of Minkowski
symmetrization.
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Theorem 3.2 Let K ∈ Cn , H ∈ G(n, i), 1 ≤ i ≤ n − 1. Then, the sequence Km in (3.1)
converges in Hausdorff distance to the H-symmetric convex compact set

L = conv(MH K).

Proof We observe preliminarily that for the properties of convex envelope and
Minkowski sum, we have Km ⊆ L for every m ∈ N. Then, we only need to prove that
for every x ∈ L, we can find a sequence xm ∈ Km such that xm → x. We can represent
K as K̄ + v , v ∈ K, where K̄ contains the origin. Because Minkowski symmetrization
is invariant under H-orthogonal translations, we can take v ∈ H.

For every m, we have RH Km = Km , and thus we can write

Km+1 = MH Km = Km + Km

2
=

2m−times
%!!!!!!!!!!!!!!!!!!!!!!!!!&!!!!!!!!!!!!!!!!!!!!!!!!'
K1 +⋯+ K1

2m .

Considering the aforementioned representation of K, RH K = RH K̄ + v, and we have

Km = K̄m + v , where K̄m ∶= Mm
H K̄ ,

and thus we can write every point y ∈ Km as y = ȳ + v , ȳ ∈ K̄m .
Given x ∈ L, thanks to the Carathèodory theorem, there exist xk ∈ K1 , λk ∈

(0, 1), k = 1, . . . , n + 1 such that ∑n+1
k=1 λ i = 1 and

x =
n+1
∑
k=1

λk xk =
n+1
∑
k=1

λk x̄k + v ,

where xk = x̄k + v , x̄k ∈ K̄1. For every λk , we consider its binary representation

λk =
+∞

∑
�=1

a�,k

2�
, a�,k ∈ {0, 1}

(we do not consider � = 0, because λ i < 1), and its mth approximation given by the
partial sum

λm ,k ∶=
m
∑
�=1

a�,k

2�
= 1

2m

m
∑
�=1

a�,k2m−� .

We notice for later use that ∣λk − λm ,k ∣ ≤ 1/2m .
Calling qs ∶= ⌊2s/(n + 1)⌋, we now build the sequence

xs ∶=
n+1
∑
k=1

λqs ,k x̄k + v = 1
2qs

n+1
∑
k=1

(
qs

∑
�=1

a�,k2qs−�) x̄k + v ,

where the 2s − qs(n + 1) spare terms in K̄1 can be taken as the origin in the sum
representing K̄s .
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Then, we have that every xs belongs to Ks , and

∥x − xs∥ = ∥x̄ + v − (x̄s + v)∥

≤
n+1
∑
k=1

∥x̄k∥∣λk − λqs ,k ∣ ≤
1

2qs

n+1
∑
k=1

∥x̄k∥ ≤ (n + 1)
maxy∈K1∥y − v∥

2qs
.

Clearly, ∥x − xs∥ → 0 as s → +∞, which concludes our proof. ∎

As an immediate consequence, we have the following result.

Corollary 3.3 Let K ∈ Cn , H ∈ G(n, i), 1 ≤ i ≤ n − 1. Then, we have that the sequence

Km ∶= Fm
H K = FH . . . FH

 !!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!#
m-times

K

converges in Hausdorff distance to the H-symmetric compact set

L = ⋃
x∈H

conv(FH K ∩ (x + H⊥)).

Proof Recalling the definition of fiber symmetrization,

FH K = ⋃
x∈H

1
2
((K ∩ (x + H⊥)) + (RH K ∩ (x + H⊥))) = ⋃

x∈H
MH⊥ ,x(K ∩ (x + H⊥)).

The result is a straightforward application of Theorem 3.2 to the sections of K. ∎

Remark In Corollary 3.3, we lose the convexity on the limit, but convexity of its
sections still holds, as a consequence of Theorem 3.2. This property is known, when
dim(H) = n − 1, as directional convexity (see [17]). We can extend this concept to
sectional convexity, that is, fixed a subspace H inR

n and a set A, the convexity of every
section A∩ (x + H⊥), x ∈ H. Then, in the previous result, the sectional convexity is
with respect to the subspace H.

We now state the Shapley–Folkman–Starr theorem ([20, Theorem 3.1.2], [21]) for
using it in the next proof.

Theorem 3.4 (Shapley–Folkman–Starr) Let A1 , . . . , Ak ∈ Cn . Then,

dH

⎛
⎝

k
∑
j=1

A j , conv
⎛
⎝

k
∑
j=1

A j
⎞
⎠
⎞
⎠
≤
√

n max
1≤ j≤k

D(A j),

where D(⋅) is the diameter function D(K) ∶= sup{∥x − y∥ ∶ x , y ∈ K}.

In Theorem 3.2, we already saw how the convexification effect of Minkowski addi-
tion works when we iterate the same symmetrization. Now, with the inequality given
by the Shapley–Folkman–Starr theorem, we generalize the former result proving
Theorem 1.2.
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Proof First notice that orthogonal transformations and Minkowski addition com-
mute with convex envelope. Thus, for Cm = ∑m

j=1 A jC/m, where C ∈ Cn and {A j} is a
sequence of isometries as in the hypothesis,

conv(Cm) = conv
⎛
⎝

1
m

m
∑
j=1

A jC
⎞
⎠
= 1

m

m
∑
j=1

A jconv(C) = 1
m

m
∑
j=1

A jK = Km .

We now apply the Shapley–Folkman–Starr theorem, obtaining

dH(Cm , Km) = dH(Cm , convCm) ≤
√

n
m

max
1≤ j≤m

D(A jC) =
√

n
m

max
1≤ j≤m

D(C).

C is compact and thus bounded, hence dH(Cm , Km) → 0, completing the proof. In
fact, the compactness is not necessary, and boundedness would suffice, but this is
beyond the interest of the present paper. ∎

Corollary 3.5 Let K be a convex compact set, and let {Hm} be a sequence of subspaces
of R

n (not necessarily of the same dimension) such that the sequence of iterated
symmetrals

Km ∶= MHm . . . MH1 K

converges to a convex compact set L in the Hausdorff distance. Then, the same happens
for every compact set K̃ such that conv(K̃) = K, and the sequence K̃m , defined as K̃m ∶=
MHm . . . MH1 K̃, converges to the same limit L.

Proof We will show that the theorem holds proving that

dH(K̃m , Km) → 0,

for m →∞.
We can write Km as the mean of Minkowski sum of composition of reflections of

K. Indeed, we have

K1 =
K + RH1 K

2
,

K2 =
K + RH1 K + RH2(K + RH1 K)

4
= K + RH1 K + RH2 K + RH2 RH1 K

4
,

. . .

and so on. The same obviously holds for K̃m . We call these compositions of reflections
A j , 1 ≤ j ≤ 2m , and defining A j ∶= A jK̃, we can write

K̃m = 1
2m

2m

∑
j=1

A jK̃ = 1
2m

2m

∑
j=1

A j .

The proof follows applying Theorem 1.2. ∎

We now have, as a consequence of Corollary 3.5, our generalization of Klain’s result.
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Corollary 3.6 Let K ∈ Cn , F = {Q1 , . . . , Qs} ⊂ G(n, i), 1 ≤ i ≤ n − 1, {Hm} a
sequence of elements of F. Then, the sequence

Km ∶= MHm . . . MH1 K

converges to a convex set L such that it is the limit of the same symmetrization process
applied to K̄ = conv(K). Moreover, L is symmetric with respect to all the subspaces of F
which appear infinitely often in {Hm}.

Proof The proof follows straightforward from the generalization of Klain’s
theorem to the Minkowski symmetrization of convex sets (cf. [4, Theorem 5.7]) and
Corollary 3.5. ∎

We can use a similar method to generalize the following classical result from
Hadwiger (see, for example, [20, Theorem 3.3.5]).

Theorem 3.7 (Hadwiger) For each convex body K ∈Kn
n , there is a sequence of

rotation means of K converging to a ball.

Then, the next result is obtained combining Theorems 1.2 and 3.7.

Corollary 3.8 For each compact set C such that conv(C) ∈Kn
n , there is a sequence of

means of isometries C converging to a ball.

Remark Corollary 3.5 gives us an answer regarding the possibility of extending
the Minkowski–Blaschke symmetrization MH to compact sets. This symmetrization,
that we have defined in Section 2 for convex bodies, can be practically seen as the
mean of rotations of a compact set K ∈Kn by a subgroup of SO(n), and thus can be
approximated by

1
N

N
∑
k=1

Ak K ,

where {Ak}N
k=1 ⊂ {Ak}k∈N is a suitable set of rotations which is dense in said sub-

group.
Indeed, from the definition of MH in terms of the support function, we have that

the integral can be approximated by
N
∑
k=1

hK(A∗k x)
N

= 1
N

N
∑
k=1

hAk K(x),

which corresponds naturally to the Minkowski sum written above.
Then again, following the proof of Corollary 3.5, we can write the symmetral as

the limit of a mean of Minkowski sum of isometries of a fixed K ∈Kn , and thus the
Minkowski–Blaschke symmetrization actually gives the same result for every C ∈ Cn

such that conv(C) = K.
This shows that this symmetrization is sensible only to the extremal points of a set,

thus it makes no difference in using it with compact sets or convex sets.
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4 The case of convex outer boundary

One of the main properties of Minkowski symmetrization is that, as a consequence
of the Brunn–Minkowski inequality, it increases the volume. Indeed, for every mea-
surable set K ⊂ R

n such that ∣K∣ > 0 and MH K is measurable, we have

∣MH K∣1/n = ∣1/2(K + RH K)∣1/n ≥ 1
2
∣K∣1/n + 1

2
∣RH K∣1/n = ∣K∣1/n ,

where equality holds if and only if K and RH K are homothetic convex bodies from
which sets of measure zero have been removed. See [10] for a general proof of this
result. We work only with compact sets, thus the equality condition is possible only
if the two bodies are homothetic and convex. This happens if and only if K = MH K,
thus we would like to state that the iteration of Minkowski symmetrization increases
the volume until the sequence of symmetrals reaches MHconv(K).

With Theorem 3.2, we proved that, regardless of the volume, the limit of K̃m is
actually MHconv(K), but now we raise one more question: Can we obtain this limit
in a finite number of iterations? Under which hypothesis is this possible?

We start by giving an answer for compact sets of R. This case is more complicated
than for similar objects in R

n , n ≥ 2, as we will prove later.

Lemma 4.1 Let K ∈ R be a compact set such that conv(K) = [a, b] with the following
property:

∃ε > 0 s.t. [a, a + ε] ⊂ K or [b − ε, b] ⊂ K .

Then, there exists an index � ∈ N depending on ε and (b − a) such that

M�
o K = M�+k

o K ,

for every k ∈ N.
Moreover, � increases with (b − a) and decreases if ε increases.

Proof First consider the case K ⊇ {a} ∪ [b − ε, b]. Then,

Mo K ⊇ Mo({a} ∪ [b − ε, b]) ⊃ [ a − b
2

, a − b
2

+ ε
2
] ∪ [b − a

2
− ε

2
, b − a

2
] .

Easy calculations show that the same happens when K ⊇ [a, a + ε] ∪ {b}. Then,
naming

M ∶= b − a
2

, m ∶= b − a
2

− ε
2

,

and we can work with a set containing a subset the form

[−M ,−m] ∪ [m, M] =∶ K̃ ,

where M − m = ε/2.
If now we apply the symmetrization, we obtain

Mo K ⊇ [−M ,−m] ∪ [m − M
2

, M − m
2

] ∪ [m, M] = Mo K̃ .(4.1)
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If (M − m)/2 ≥ m, that is, m ≤ M/3, then Mo K = conv(K), and the result holds with
� = 1.

In the general case, we can show by induction that the following inclusion holds:

Mk+1
o K ⊇ Mk+1

o K̃ ⊇
2k+1

⋃
j=0

[(2k+1 − j)m − jM
2k+1 , (2k+1 − j)M − jm

2k+1 ] ,

where the first inclusion is trivial thanks to the monotonicity of Minkowski sym-
metrization. In particular, we will show that

Mk+1
o K̃ ⊇ Mk

o K̃ ∪
2k

⋃
j=1

[(2k+1 − 2 j + 1)m − (2 j − 1)M
2k+1 , (2k+1 − 2 j + 1)M − (2 j − 1)m

2k+1 ] ,

which is the desired set. This inclusion is actually an equality, but proving this fact is
beyond our goal here.

For k = 0, we have already seen in (4.1) that the inclusion holds. By inductive
hypothesis, at the (k + 1)th step, the means of adjacent intervals of Mk

o K̃ are given
by

1
2
[(2

k − ( j + 1))m − ( j + 1)M
2k , (2

k − ( j + 1))M − ( j + 1)m
2k ]

+ 1
2
[(2

k − j)m − jM
2k , (2

k − j)M − jm
2k ]

= [(2
k+1 − 2( j + 1) + 1)m − (2( j + 1) − 1)M

2k+1 , (2
k+1 − 2( j + 1) + 1)M − (2( j + 1) − 1)m

2k+1 ] ,

for every j = 0, . . . , 2k − 1, giving us the elements of the union with odd indices.
Observe that Mk

o K̃ is invariant under reflection. Thus, thanks to Lemma 3.1 and the
monotonicity of Minkowski symmetrization, we have Mk

o K̃ ⊆ Mk+1
o K, concluding the

induction.
Taking at the kth step two adjacent intervals, we have that they are connected if

(2k − ( j + 1))M − ( j + 1)m
2k ≥ (2k − j)m − jM

2k .

It follows that the condition for filling the whole segment conv(Mk
H K) is

m
M

≤ 2k − 1
2k + 1

.

Observe that the dependence on the index j disappeared after calculations, confirming
that this holds for every couple of adjacent intervals.

By hypothesis, M − m = ε/2 and (2k − 1)/(2k + 1) → 1. We have
m
M

= 1 + m − M
M

= 1 − ε
2M

,

then there exists � ∈ N such that

1 − ε
2M

< 2� − 1
2� + 1

,
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thus M�
o K = conv(K) for

� ≥ log2 (
4M

ε
− 1) .

This set is convex and o-symmetric, and thus is invariant under Minkowski sym-
metrization. The dependence from M and ε is clear from the last inequality. ∎

Notice that it is crucial that either a or b belongs to an interval with positive
measure contained in K. Indeed, if the two extremes both were isolated points, there
would occur a situation analogous to the example presented at the beginning of
Section 3, thus there would be a part of the set which stabilizes itself only at the limit.

Remark With wider generality, the previous lemma holds for the means of
Minkowski sums. Indeed, if K ⊂ R, for every x ∈ R holds

1
m

m
∑
j=1
(K − x) = 1

m

m
∑
j=1

K − x ,

and taking x as the average of the extreme points of K, we reduce ourselves to the same
context of the lemma, which can be restated as follows.

Lemma 4.2 Let K ∈ R be a compact set such that conv(K) = [a, b] with the following
property:

∃ε > 0 s.t. [a, a + ε] ∪ [b − ε, b] ⊂ K .

Then, there exist an index � ∈ N depending on ε and (b − a) such that

1
2�

2�

∑
j=1

K = 1
2�+k

2k+�

∑
j=1

K ,

for every k ∈ N.
Moreover, � increases with (b − a) and decreases if ε increases.

Proof First, we remind the reader that, as we have seen in Theorem 3.2, when we
iterate MH , after the first symmetrization, we are just computing the mean

1
2m−1

2m−1

∑
j=1

MH K = Mm
H K .

Moreover, we observe that the only difference with the previous lemma is that we do
not have the sum with the reflection, so we have to require in the hypothesis that both
the end points of K belong to segments included in K.

Now, we can work with a set

K̃ ∶= ([−M ,−m] ∪ [m, M]) + x

for a suitable x ∈ R, and the rest of the proof follows as the previous one. ∎
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A weaker property that these sets have is to contain the boundary of their convex
envelope. When n ≥ 2, this is enough to prove the stronger and more general result
in Corollary 4.4.

Lemma 4.3 Let K , L ∈ Cn such that ∂K and ∂L are connected and K ∩ L ≠ ∅. If
neither L is strictly contained in K nor K is strictly contained in L, then there exists
z ∈ ∂K ∩ ∂L.

Proof First, note that, in general, if K is a closed set and ∂K is connected, then K
is connected. Moreover, Rn ∖ intK is connected too.

Observe that if K = L, then ∂K ∩ ∂L = ∂K = ∂L ≠ ∅, and there would be nothing
to prove, so we will work in the hypothesis K ≠ L.

We start proving that ∂K ∩ L ≠ ∅. Indeed, there exist y ∈ L ∖ K and x ∈ K ∩ L.
Then, because L is connected, there exists a continuous curve γ joining x , y. Now,
γ must cross ∂K ∩ L going from one end (x, inside K) to the other (y, outside K) in a
point u which belongs to the required intersection.

Now, we prove that ∂K ∖ L ≠ ∅. Indeed, there exists x ∈ K ∖ L, and K , L are
compact, then there exists r > 0 such that the ball B(0, r) contains strictly K and L.
Then, there exists a continuous curve γ′ from x to the boundary of B(0, r) that does
not intersect ∂L because of the connectedness of Rn ∖ intL. Moreover, γ′ must cross
∂K in a point v that does not belong to L, hence this point belongs to ∂K ∖ L.

Finally, because ∂K is connected, we can join u, v with a curve contained in ∂K
from inside L to outside of it, crossing ∂L in at least one point z ∈ ∂K ∩ ∂L. ∎

If A is a connected compact set, then we call the external connected component of
R

n ∖ A the unbounded connected component of such a set. Then, we notice that, as
in [8], this result holds also for the boundary of the external connected component
of Rn ∖ K and R

n ∖ L. Moreover, we point out that the hypothesis of Lemma 4.3
immediately rules out the case n = 1. This will indeed be an issue in Corollary 4.4
and Theorem 1.3.

Now, we can prove Theorem 1.4.

Proof Let x ∈ K + L, then there exist κ ∈ K , � ∈ L such thatx = κ + �. If we define
K̃ ∶= K + x − κ, L̃ ∶= −L + x + �, we have that x ∈ K̃ ∩ L̃, hence K̃ and L̃ satisfy the
hypothesis of Lemma 4.3. Thus, ∂K̃ ∩ ∂L̃ ≠ ∅.

Let z ∈ ∂K̃ ∩ ∂L̃, then

z − x + κ ∈ ∂K , � − z + x ∈ ∂L.

Now,

(z − x + κ) + (� − z + x) = κ + �,

proving our assertion. ∎

Corollary 4.4 Let K ∈Kn , and let H be a subspace of Rn . Then,

MH K = MH ∂K ,(4.2)
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In particular, if C ∈ Cn and C ⊇ ∂conv(C), then MHC is convex, and

MHconv(C) = MHC .

The same holds for fiber symmetrization if H is not a hyperplane.

Proof We first prove the result regarding Minkowski symmetrization. We apply
Theorem 1.4 to K/2 and RH K/2. Indeed, observe that the two sets are convex, hence
with connected boundary. Moreover, because they have the same volume, no translate
of one set is strictly contained in the other set. Then, Theorem 1.4 yields MH K =
MH ∂K.

Consider now a set C ∈ Cn with ∂conv(C) ⊆ C. From equation (4.2), ∂conv(C) ⊆
∂C, and the monotonicity of Minkowski symmetrization, we infer

MHC ⊃ ∂C + ∂RHC
2

⊇ ∂conv(C) + ∂RHconv(C)
2

= MHconv(C).

Since the reverse inclusion trivial, this concludes the proof in the case of Minkowski
symmetrization.

Regarding fiber symmetrization, notice that if H was a hyperplane, then the
sections are one-dimensional, and in Lemma 4.1, we proved that we need certain
conditions on the boundary to obtain idempotency. In general, we know that fiber
symmetrization preserves convexity, thus FHconvC is convex, and its boundary is
given by the union of the boundaries of the sections by H⊥ + x , x ∈ H. If H is not a
hyperplane, these sections are obtained by the Minkowski symmetrization of convex
sets of dimension greater or equal than 2, completing the proof. ∎

The proof of Theorem 1.3 now follows immediately.

Proof By Corollary 4.4, we have FH1 K = FH1 convK. Therefore, FH1 K ∈Kn
n , and it

suffices to apply to for the rest of the sequence the generalization of Klain’s theorem
for fiber symmetrization (cf. [4, Theorem 5.6]), proving the theorem. ∎

We conclude this section with another immediate application, a small addition to
Klartag’s following result (cf. Theorem 1.1 in [15]). The same generalization holds for
similar results in [14].

Theorem 4.5 Let n ≥ 2, 0 < ε < 1/2, and let K ⊂ R
n be a compact set such that

K ⊇ ∂convK. Then, there exist cn log 1/ε Minkowski symmetrizations with respect to
hyperplanes, that transform K into a body K̃ that satisfies

(1 − ε)w(K)Bn ⊂ K̃ ⊂ (1 + ε)w(K)Bn ,

where c > 0 is some numerical constant.

Proof First, we consider the sequence given by the original statement of this
theorem for the convex body convMH K. As we have proved in Theorem 1.4, applying
the first symmetrization, the resulting body will be convMH K. Proceeding with the
sequence as in the original result, we conclude the proof. ∎
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