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Direct numerical simulations are performed to study temporal variations of the wall
shear stresses and flow dynamics in the turbulent pulsatile pipe flow. The mechanisms,
responsible for the paradoxical phenomenon for which the amplitude of the oscillating
wall shear stress in the turbulent flow is smaller than that in the laminar flow for the same
pulsation conditions, are investigated. It is shown that the delayed response of turbulence
in the buffer layer generates a large magnitude of the radial gradient of the Reynolds shear
stress near the wall, which counteracts the effect of the oscillating pressure gradient on
the change of the streamwise velocity and hence reduces the amplitude of the wall shear
stress. Such a delayed response consists of two processes: the delayed development of
near-wall streaks and the subsequent energy redistribution from the streamwise velocity
fluctuation to the other two co-existing components. This is a dynamical manifestation
of the viscoelasticity of turbulent eddies. As the frequency is reduced, the variation of
the friction Reynolds number results in a phase-wise variation of the time scale and
intensity of the turbulence response, causing the hysteresis of the wall shear stress. Such a
phase asymmetry is amplified by the increase of the pulsation amplitude. An examination
of the energy spectra reveals that the near-wall streaks are stretched in the streamwise
direction during the acceleration phase, and then break up into small-scale structures in the
deceleration phase, accompanied by the enhanced dissipation that transforms the turbulent
kinetic energy into heat.
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1. Introduction

Pulsatile turbulent pipe flows are widely encountered in engineering applications and
biological systems, such as the turbomachinery and blood flow in aortic arteries. The
oscillating nature of the pulsatile flow leads to a high-level fluctuation of the wall friction.
Understanding the variation of the wall shear stress is of great practical significance to,
e.g. pipeline leak detections (Colombo, Lee & Karney 2009) and blood-vessel problems
(Cunningham & Gotlieb 2005), which require precise knowledge of flow dynamic
behaviours. This paper is concerned with the wall shear stresses in pulsatile turbulent
pipe flows and the corresponding fluid dynamics.

The pulsation process consists of continuous accelerating and decelerating phases. In
the past decades, several researchers have focused on the flow responses in the accelerating
turbulent pipe or channel flow, in which the flow rate varies in a step- or ramp-changing
manner (Maruyama, Kuribayashi & Mizushina 1976; Greenblatt & Moss 1999; He &
Jackson 2000; Greenblatt & Moss 2004). It is well established, in both scenarios, that
the flow initially evolves in a laminar-like way, accompanied by the streamwise stretching
of the near-wall streaks (stage 1). Then, the elongated streaks break up, leading to the
formation and subsequent merging of turbulent spots (stage 2). Finally, the turbulence
reaches its new fully developed state (stage 3) (He, Ariyaratne & Vardy 2011; Jung &
Chung 2012; Seddighi et al. 2014; He & Seddighi 2015; He, Seddighi & He 2016).
Specifically, this three-stage flow evolution resembles closely the bypass transition in the
boundary layer induced by the free stream turbulence (He & Seddighi 2013). Mathur et al.
(2018) interpreted this process in a different way by regarding the preexisting turbulence as
a perturbation that leads to the instability of the temporally developing laminar boundary
layer from the wall. In any case, the laminar-like flow behaviours at the early stage allow
an unsteady friction model to be established to predict the wall shear stress. Based on
the assumption that the turbulence in stage 1 is nearly ‘frozen’, He & Ariyaratne (2011)
derived a laminar-flow formulation to describe the wall shear stress at that stage. The
acquired results are in good agreement with experimental or computational outcomes as
further consolidated by He et al. (2011). He & Seddighi (2015) and Jung & Kim (2017)
discussed the effects of the ratio of the final to initial Reynolds number and the effects of
the acceleration rate on the transition, respectively. They both showed that the turbulence
evolves progressively for a low ratio and low acceleration rate, which is in contrast to
the aforementioned bypass transition. Guerrero, Lambert & Chin (2021) investigated the
transient dynamics of the accelerating turbulent pipe flow in detail. By using the FIK
identity, which is an exact expression developed by Fukagata, Iwamoto & Kasagi (2002)
to quantify the friction coefficient for wall-bounded flows, they were able to quantify the
different contributions to the wall friction during the transient. Moreover, Sundstrom &
Cervantes (2018a) showed that the flow responses during the accelerating phase of the
pulsatile flow are similar to those in the first two stages of the uniformly accelerating flow.
As for the decelerating flow which is characterized by a decay of the preexisting turbulence
(Mathur 2016), Sundstrom & Cervantes (2018c) also demonstrated its laminar similarity
to the accelerating flow at the initial stage.

Different from the one-way flow excursion reviewed above, the pulsatile turbulent flow
exhibits strong wave–turbulence interactions due to the shear wave generated near the
wall. The laminar Stokes thickness l+s = lsūτ /ν, ls = √

2ν/ω, where ν and ω are the
kinematic viscosity and the angular pulsatile frequency, respectively, is generally used
to characterize the wall-normal length scale of such a near-wall shear wave. In the present
paper, the superscript + denotes normalization using the mean friction velocity ūτ and the
kinematic viscosity ν. To take into account the diffusion effect of turbulence, Scotti &
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Piomelli (2001) proposed a turbulent Stokes thickness lt, based on the eddy-viscosity
theory, as the scaling parameter. There have been several experimental studies that focused
on the pulsatile flows (Gerrard 1971; Ronneberger & Ahrens 1977; Ramaprian & Tu 1980,
1983; Tu & Ramaprian 1983; Shemer & Kit 1984; Shemer, Wygnanski & Kit 1985; Mao &
Hanratty 1986; Tardu & Binder 1993; Tardu, Binder & Blackwelder 1994; Lodahl, Sumer
& Fredsøe 1998; He & Jackson 2009), covering a wide range of pulsation parameters. The
wave–turbulence interactions exhibit a strong frequency dependence. When the pulsation
frequency is high (0.02 � ω+ � 0.04), the Stokes thickness is small such that the shear
wave is only confined to the very narrow near-wall region. In this case, the inner shear
wave and outer turbulence are weakly coupled (quasi-laminar state). There is a 45◦ phase
lag between the centreline velocity and the wall shear stress, which coincides with the
laminar Stokes solution. When the frequency falls in a low-frequency range (ω+ � 0.005),
the flow variation is slow enough to allow the turbulence to react and settle down.
Hence, the instantaneous flow field resembles that of the steady flow at the corresponding
Reynolds number (quasi-steady state). Generally speaking, if the pulsation amplitude is
not large enough to induce a reversal flow, the time-averaged flow quantities remain nearly
unchanged from their values in the steady flow (Brereton, Reynolds & Jayaraman 1990).
However, Tu & Ramaprian (1983) showed a deviation of the mean velocity profile from the
steady one when the frequency is close to or larger than the turbulent bursting frequency in
the turbulent pipe flow, i.e. a very-high frequency range (ω+ � 0.04). This can be possibly
attributed to a resonance effect with the closeness between the pulsation frequency and the
characteristic frequency of the near-wall coherent structure. In contrast, Tardu et al. (1994)
and Scotti & Piomelli (2001) did not report such a deviation in turbulent channel flows
with different pulsation parameters. This might be due to the dependency of the bursting
frequency on the Reynolds number and geometry such that a resonance condition is not
easily satisfied. Sundstrom, Mulu & Cervantes (2016) performed experimental research on
a double-frequency pulsatile turbulent pipe flow and showed that the time-averaged flow
quantities are also unaffected by the double-frequency pulsation. For a large-amplitude
oscillation (usually refers to a situation when the oscillatory to mean velocity ratio A is
larger than one), Manna, Vacca & Verzicco (2012) reported a drag-reducing effect which
manifests as an upward shift of the mean velocity profile in the logarithmic region. This is
consistent with Mao & Hanratty (1994) and Manna & Vacca (2005) in which a reduction
of wall shear stresses was both reported.

The laminar–turbulent transition is also an important phenomenon that occurs in
pulsatile flows. Turbulence can be completely relaminarized in the pulsatile pipe flow with
a non-zero mean flow under certain parameters (Lodahl et al. 1998), and can also appear
intermittently in a purely oscillatory flow (Feldmann & Wagner 2012), which belongs to a
subcritical transition scenario (Feldmann & Wagner 2016b). Xu et al. (2017) conducted an
experimental study on the transition in a pulsatile pipe at amplitudes A ≤ 0.7. Based on
the transition theory in the steady pipe flow (Hof et al. 2006; Avila, Willis & Hof 2010;
Avila et al. 2011), they summarized the effects of pulsation frequency and this was further
elaborated by Xu & Avila (2018) with the aid of the direct numerical simulation (DNS).
For a large-amplitude pulsation with A > 0.7, Xu, Song & Avila (2021); Xu et al. (2020)
reported a helical instability mechanism that induces the burst of turbulence in a pulsatile
pipe flow. In particular, this helical disturbance is triggered during the decelerating phase
and disappears in the accelerating phase, indicating a strong phase asymmetry in the
pulsatile pipe flow (Feldmann & Wagner 2016a). Further, Morón, Feldmann & Avila
(2022) linked this helical instability to the linear stability of the corresponding laminar
flow and discussed the effect of the pulsation wave form on the turbulence transition.
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Similarly, Feldmann, Morón & Avila (2020) investigated the spatio-temporal intermittency
associated with a competition between the helical structures and puffs. This intermittency
in the pulsatile pipe flow is qualitatively similar to the gas-liquid slug pipe flow reported
by Padrino et al. (2023).

A paradoxical phenomenon occurs in the intermediate frequency range (0.005 � ω+ �
0.02). In this frequency range, the amplitude of the oscillating wall shear stress in a
turbulent flow (Aτ̃w,t) is smaller than that in a laminar flow with the same pulsation
conditions (Aτ̃w,s). This suggests a turbulence-induced drag reduction that is opposite
to that in the steady flow where turbulence generally produces a larger drag than a
laminar flow (Mao & Hanratty 1986; Tardu et al. 1994; Sundstrom & Cervantes 2018a).
To deal with a non-closure problem in the governing equation, several researchers have
established theoretical models for the Reynolds shear stress based on the concept of eddy
viscosity. Most of these models in general fail to describe accurately the paradoxical
phenomenon due to the inherent assumption that the Reynolds shear stress is in phase
with the imposed oscillation (Weng, Boij & Hanifi 2016; Weng, Boij & Hanifi 2013).
Weng et al. (2016) introduced the time dependency of the Reynolds shear stress into the
standard eddy-viscosity model, which brings a phase lag between the Reynolds shear
stress and the oscillating shear strain rate. This improved model is shown to be able
to predict correctly the paradoxical phenomenon. However, a detailed explanation on
why and how the turbulence reduces the wall shear stress is still lacking. Sundstrom
& Cervantes (2018b) provided a new interpretation of this paradoxical phenomenon by
decomposing the total wall shear stress into the contributions from the oscillating pressure
gradient (τp) and the Reynolds shear stress (τs). It is shown that a phase shift between τp
and τs results in a mutual cancellation that leads to the reduction of the total wall shear
stress. Nevertheless, in their experimental study, τs is calculated by subtracting τp from
the measured total wall shear stress while τp is calculated by the laminar Stokes solution.
Hence, this interpretation still cannot explain the underlying mechanisms; for instance,
it does not explain what causes the phase shift. Based on these, we choose to perform
direct numerical simulations in turbulent pulsatile pipe flows, in the hope of extending the
numerical database of pulsatile flows, elucidating the physical mechanisms that cause the
paradoxical phenomenon and revealing the corresponding turbulence dynamics in detail.

This paper is organized as follows. A computational set-up is introduced in § 2. Some
basic statistics and the properties of the varying wall shear stress are given in § 3. Section 4
explores the causes of the paradoxical phenomenon and § 5 discusses the hysteresis
phenomenon of the wall shear stress. The effects of the pulsation amplitude are examined
in § 6. Section 7 further examines the phase-wise variation of spectra and § 8 summarizes
the main findings of this paper.

2. Computational set-up

For pulsatile flows, it is common to introduce a triple decomposition of the flow quantity
f (x, t) (Hussain & Reynolds 1970; Weng et al. 2016; Sundstrom & Cervantes 2018b):

f (x, t) = 〈 f 〉 (x, ϕ) + f ′(x, t) = f̄ (x) + f̃ (x, ϕ) + f ′(x, t), (2.1)

where f̄ and 〈 f 〉 are the time-averaged and phase-averaged values, f̃ is the oscillating
component, f ′ is the turbulent fluctuation and ϕ is the phase. By further including the
spatial average in statistically homogeneous directions, the time and phase averages can be
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Flow dynamics in turbulent pulsatile pipe flow

defined as

〈 f 〉 ( y, ϕ) = lim
M→∞

1
2πML

M∑
n=1

∫ L

0

∫ 2π

0
f
(

x, t + 2πn
ω

)
dx dθ, (2.2a)

f̄ ( y) =
∫ 2π

0
〈 f 〉( y, ϕ) dϕ, (2.2b)

where x, y = R − r and θ denote the streamwise, wall-normal and azimuthal directions,
respectively, with the corresponding velocity components being u, −v and w. The pipe
radius is R, L is the pipe length and M is the total number of periods.

In the present study, the pulsation is achieved by imposing a sinusoidally varying
component to the constant streamwise pressure gradient that drives the steady turbulent
pipe flow:

∂p
∂x

(t) = ∂ p̄
∂x

(1 + β sin(ωt)). (2.3)

The constant mean pressure gradient ∂ p̄/∂x is set to aim for a steady turbulent flow
of Reτ = ūτ R/ν = 180. Throughout the paper, the quantity ϕ refers to a phase of the
streamwise pressure gradient ∂p/∂x. We use the ratio of the amplitude of the oscillating
velocity to the mean velocity at the pipe centreline, i.e. A = Aũcl/ūcl, to characterize the
pulsation amplitude. Using (2.1), the governing equation for the oscillating component of
the streamwise velocity reads:

∂ ũ
∂t

= −∂ p̃
∂x

+ ν
1
r

∂ ũ
∂r

+ ν
∂2ũ
∂r2 −∂rũ′v′

r∂r︸ ︷︷ ︸
℘

. (2.4)

By evaluating (2.4) at the pipe centreline, we have

A = −∂ p̄
∂x

β

ω
. (2.5)

Hence, β can be predetermined based on the desired pulsation amplitude A.
To enable a direct comparison, the pulsation parameters selected in this paper, which

are given in table 1, are similar to those of Weng et al. (2016) and Sundstrom & Cervantes
(2018b) (figure 1a). Five frequencies are chosen for A = 0.1 (Cases 1–5), and the resulting
Womersley numbers W = R

√
ω/ν ranges from 12.7 to 63.6. In addition, simulations of

Cases 6 and 7 are performed at a higher amplitude of A = 0.4 to evaluate the effect of
pulsation amplitude. To provide a more comprehensive comparison with previous studies,
each case is plotted in the Reb–Rew plane (Lodahl et al. 1998) together with available
literature data (figure 1b). Here, Reb = UbD/ν is the bulk Reynolds number based on the
bulk velocity Ub and the pipe diameter D, and Rew = Aũcl

2/ων is the oscillatory Reynolds
number. It is clear that all cases fall in the turbulent regime, as demonstrated in figure 3
where the instantaneous streamwise velocity at the meridional plane for Case 7 is shown.
Although there is a large coincidence in the parameter space between the current study
and Cheng et al. (2020), we note that our goal is not to carry out an investigation in the
unexplored parameter space but to further elucidate the mechanisms responsible for the
aforementioned paradoxical phenomenon based on existing parameters in the literature.
Further, all the simulation cases of Cheng et al. (2020) are conducted at the fixed β while
the pulsation amplitude A is fixed in the present study. Therefore, our cases are in fact

979 A24-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
68

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1068


X. Liu, H. Zhu, Y. Bao, N. Srinil, D. Zhou and Z. Han

Case A ω+ l+s W Reb Rew Aτ̃w,t/Aτ̃w,s

1 0.1 0.125 4 63.6 5265 30 1
2 0.1 0.016 11 23.1 5273 229 0.94
3 0.1 0.01 14 18.2 5277 416 0.65
4 0.1 0.007 17 15.0 5280 924 0.86
5 0.1 0.005 20 12.7 5260 1325 1.41
6 0.4 0.01 14 18.2 5654 6230 0.80
7 0.4 0.007 17 15.0 5796 12559 0.59

Table 1. Cases with different pulsation parameters, namely the pulsation amplitude A, the frequency ω+. Here,
l+s is the laminar Stokes thickness; W is the Womersley number; Aτ̃w,t/Aτ̃w,s is the amplitude of the wall
shear stress normalized by its laminar Stokes value; and Reb = UbD/ν and Rew = Aũcl

2/ων are the bulk and
oscillatory Reynolds numbers, respectively.

5 10 15 20 25 30

ls+
35 40 45 50
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1.0

1.5A τ̃
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2.5
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Weng et al. (2016) A = 0.1

Sundstrom & Cervantes (2018) A = 0.15

Tardu et al. (1994) A = 0.1

Tardu et al. (1994) A = 0.19

Present DNS A = 0.1

Re
w

Reb

Reb,tr

Rew,tr

Transition boundary

Cheng et al. (2020)

He & Jackson (2009)

Lodahl et al. (1998)

Manna et al. (2012)

Present DNS

Case 1

Case 2

Case 3

Case 4
Case 5

Case 6

Case 7

(b)(a)

105

104

103

102

101

103 104

Figure 1. (a) Variation of the amplitude of the wall shear stress Aτ̃w,t normalized by the laminar Stokes
amplitude Aτ̃w,s with respect to the laminar Stokes thickness l+s . (b) Laminar–turbulent transition boundary
(dash-dotted line, Lodahl et al. 1998) and parameter combinations considered by previous studies. The critical
Reynolds numbers Reb,tr and Rew,tr are denoted by the dashed lines.

different from those of Cheng et al. (2020) according to (2.5). For each case, the pulsation
is imposed at a single flow field of the steady turbulent pipe flow. After discarding the
transient effect, the phase-averaged data are collected over more than 23 periods to obtain
the final statistics.

A cylindrical-coordinate spectral element–Fourier DNS solver Semtex is employed
to conduct the simulations (Blackburn & Sherwin 2004; Blackburn et al. 2019).
The computational mesh is the same as that of Liu et al. (2022), where a 50 ×
10 two-dimensional spectral element mesh is deployed to discretize the meridional
semi-plane. To represent the three-dimensional computational domain, 192 Fourier
expansion planes are used in the azimuthal direction. The pipe length is set to be L = 6πR.
To ensure that this mesh configuration is appropriate to resolve the precise turbulence
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Flow dynamics in turbulent pulsatile pipe flow

Case P N H 
x+ 
y+ 
(rθ)+wall

Baseline 11 192 50 [2.24, 10.0] [0.18, 5.91] 5.89
3-1 10 192 50 [2.73, 11.2] [0.21, 6.61] 5.89
3-2 12 192 50 [1.87, 9.26] [0.15, 5.46] 5.89
3-3 11 240 50 [2.24, 10.0] [0.18, 5.91] 4.71
7-1 11 240 50 [2.24, 10.0] [0.18, 5.91] 4.71
7-2 12 192 50 [1.87, 9.26] [0.15, 5.46] 5.89
7-3 11 192 65 [1.72, 7.71] [0.18, 5.91] 5.89

Table 2. Summary of the grid information. Here, 
x+, 
y+ are the normalized streamwise, wall-normal grid
resolutions; 
(rθ)+wall is the normalized circumferential grid resolution at the wall; P is the number of Lagrange
knot points along the side of each element, corresponding to a polynomial order of P − 1; N represents the
number of Fourier expansion planes in the circumferential direction; H denotes the number of elements in the
streamwise direction, which is associated with the streamwise h-refinement strategy in the spectral element
method.

0 0.2

〈τ w
〉

0.4 0.6 0.8 1.0
2.2

2.4

2.6

2.8

3.0

(×10–3) (×10–3)

t/T
0 0.2 0.4 0.6 0.8 1.0

t/T

Case 3-3
Case 3-2
Case 3-1
Case 3

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Case 7
Case 7-1
Case 7-2
Case 7-3

(b)(a)

Figure 2. Comparisons of the phase-averaged wall shear stress 〈τw〉 between different mesh-independence
validation cases: (a) Case 3 (A = 0.1, l+s = 14); (b) Case 7 (A = 0.4, l+s = 17).

dynamics, we choose Cases 3 and 7 to conduct the mesh independence test. The choice of
these two cases is based on the fact that the former is the case for which the ratio Aτ̃w,t/Aτ̃w,s
reaches its minimum and the latter is a high-amplitude case in which the variation of
turbulence dynamics is more intense. Details of the spatial grid resolution are given in
table 2. The hp-refinement strategy for the spectral element method is employed. Our
baseline grid resolutions are comparable with the regular and high resolutions reported
by Zahtila et al. (2023). Figure 2 shows the phase-averaged wall shear stress obtained
from various grids. It can be found that all the curves for Case 3 overlap well and the
kink variation trend in Case 7 can be observed for all test cases, indicating that our
phase-averaged statistics are grid independent. Figure 1(a) compares the present results of
Aτ̃w,t/Aτ̃w,s for A = 0.1 with previous studies. It is shown that the paradoxical phenomenon
can be clearly reproduced and that the variation trend of Aτ̃w,t/Aτ̃w,s with respect to l+s is
also consistent with that in the literature. Note that the temporal variation of the wall shear
stress is not necessarily a pure sine function; thus, here the amplitude corresponds to the
amplitude of the fundamental mode calculated from the Fourier analysis. Quantitatively,
a reasonable agreement can also be found except that the minimum of Aτ̃w,t/Aτ̃w,s is 0.65
at l+s = 14, which is smaller compared with that of Weng et al. (2016) and Sundstrom
& Cervantes (2018b) but in agreement with Tardu et al. (1994). This can probably
be attributed to the different Reynolds numbers used in these studies. Moreover, the
instantaneous fields in figure 3 exhibit visual smoothness, and no mesh imprints can
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Figure 3. Contours of the instantaneous inner-scaled streamwise velocity u+ in the meridional plane for
Case 7 (A = 0.4, l+s = 17) at (a) ϕ ≈ 0, (b) ϕ ≈ π/4, (c) ϕ ≈ π/2, (d) ϕ ≈ 3π/4.

be found. Hence, these results give us confidence in the accuracy of the DNS data used in
this paper.

3. Fundamental characteristics of pulsatile flow

First, we present some basic properties of the pulsatile pipe flow. Figure 4(a) shows the
oscillating component of the streamwise velocity at the pipe centreline ũcl. As expected,
the oscillating amplitudes for high-frequency cases (Cases 2 and 3) are exactly A = 0.1,
while they are slightly larger than 0.1 for low-frequency cases (Cases 4 and 5). This is due
to the strong coupling of the near-wall shear layer and the central region for low-frequency
cases (Weng et al. 2016). A similar phenomenon can also be found for higher amplitude
cases where the centreline velocity oscillates at an amplitude larger than 0.4 for Case 7.
Figure 4(b,c) shows the wall-normal profiles of the normalized mean velocity ū and the
components of the Reynolds stress tensor. The mean velocity is insensitive to the frequency
at a low amplitude of A = 0.1, but an increase in amplitude leads to the elevation of ū in
the log region. This is consistent with previous studies (Scotti & Piomelli 2001; Manna
et al. 2012). In addition, the mean velocity seems to be more sensitive to the frequency
for high-amplitude cases. For the presented Reynolds stresses, all the curves collapse
well except for that of u′u′. The increase of amplitude produces a larger magnitude of
u′u′ beyond y+ ≈ 10, and u′u′ is insensitive to the frequency for low-amplitude cases.
Furthermore, the increase of u′u′ is accompanied by the wall-normal location of the
maximum u′u′ moving away from the wall, which is similar to the situation where a
transverse Stokes layer is generated by the wall oscillation (Quadrio & Sibilla 2000; Liu
et al. 2022).

The near-wall flow dynamics is directly reflected by the wall shear stress. Figure 5
compares the phase-wise variation of the wall shear stress τ̃w (black solid lines) with their
corresponding laminar Stokes values (dashed blue lines) for cases with A = 0.1, with the
latter calculated by evaluating the radial derivative of the laminar Stokes solution at the
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Figure 4. (a) Time evolution of the oscillating component of the streamwise velocity ũcl at the pipe centreline.
(b) Wall-normal profiles of the mean streamwise velocity ū+. (c) Wall-normal profiles of the components of
the Reynolds stress tensor. Note that the curves for the steady pipe (no pulsation) overlap completely with those
for Case 2 in panel (b,c).

wall (see Manna et al. 2012):

ũ(r, t) = A · Re

[
i

(
J0(i3/2

√
2r/ls)

J0(i3/2
√

2R/ls)
− 1

)
eiω(t−T/4)

]
, (3.1)

where J0 is the Bessel function of the first kind of order zero, Re[ · ] represents the real
part of the argument, i is the imaginary unit and T is the pulsation period. Also included is
the corresponding fundamental mode obtained from the Fourier analysis (red solid lines),
which allows us to evaluate qualitatively the extent of the nonlinear effect due to the
turbulence. For a better presentation of the variation tendency, the data are duplicated
and then spliced such that two periods are shown.

For Case 1, the three curves overlap completely, indicating a quasi-laminar flow state.
The phase-wise variation of the wall shear stress follows a purely sinusoidal pattern
(figure 5a). A mild increase in frequency leads to the subtle departure from the laminar
Stokes value and the decrease of Aτ̃w,t/Aτ̃w,s from unity for Case 2 (figure 5b). For
Case 3, it is clear that the amplitude of the wall shear stress is significantly smaller than
its laminar value but they still synchronize in phase. The differences between the wall
shear stress and its fundamental mode are subtle, suggesting that the phase symmetry
still holds. Considerable changes occur for Case 4. As seen, the wall shear stress deviates
significantly from its fundamental mode. The drag-increasing phase occupies for a longer
portion of the cycle than the drag-decreasing phase. That is, a hysteresis occurs during
the oscillation cycle, indicating the destruction of the phase symmetry. Interestingly,
when approaching the maxima, the increasing rate decreases, leading to a stage of the
high-level wall shear stress with a slow growth. Similar phenomena have also been
reported experimentally by Sundstrom & Cervantes (2018b), where up to 500 cycles
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Figure 5. Phase-wise variations of the oscillating component of the wall shear stress τ̃w for A = 0.1 (the black
lines), with the corresponding fundamental Fourier mode represented by the red solid lines. The blue dashed
lines correspond to the laminar Stokes solution. The vertical arrows denote the phases where the phase-averaged
wall shear stress 〈τw〉 reaches its maximum or minimum. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4;
(e) Case 5.
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Figure 6. Phase-wise variations of the oscillating component of the wall shear stress τ̃w for A = 0.4 (the black
lines), with the corresponding fundamental Fourier mode represented by the red solid lines. The blue dashed
lines correspond to the laminar Stokes solution. The vertical arrows denote the phases where the phase-averaged
wall shear stress 〈τw〉 reaches its maximum or minimum. (a) Case 6; (b) Case 7.

of measurements have been performed to obtain the phase-averaged wall shear stress
at a higher amplitude and Reynolds number. Nevertheless, their data still suffer from
fluctuations due to measurement uncertainties. Chen et al. (2014) also reported the same
tendency for similar pulsation parameters, but their data were obtained only from the final
period. In the present study, the sufficient number of averaging periods and the spatial
average in homogeneous directions ensure the smoothness of the phase-averaged statistics.
In addition, the wall shear stress lags behind the laminar value, which does not occur in
the former cases. This discrepancy and the physical meaning of this phase lag will be
discussed in § 5. For the smallest frequency considered (Case 5), the deviations from the
fundamental mode are still observable and the hysteresis is less evident but discernable.
A phase lag with respect to the laminar value can also be observed. Theoretically, if the
frequency is small enough to reach the quasi-steady state, all three curves should be in
phase with the sinusoidally varying pressure gradient, and no hysteresis occurs. Hence, it
can be inferred that as the frequency increases from zero, the aforementioned phase lag
and hysteresis emerge initially and then disappear gradually.

Figure 6 shows the phase-wise variation of the wall shear stress for cases with A = 0.4.
A reduction of the amplitudes compared with the corresponding laminar value is still
observable. Specifically, Aτ̃w,t/Aτ̃w,s increases from 0.65 to 0.8 as the amplitude increases
from 0.1 to 0.4 for l+s = 14, while it decreases from 0.86 to 0.59 for l+s = 17. For Case 6,
a distinct deviation from the fundamental mode occurs when the wall shear stress reaches
its minimum (negative peak of τ̃w), which implies a strong nonlinear effect of turbulence
at that phase. Same as that for A = 0.1, the wall shear stress is still in phase with the
laminar value. For Case 7, a distinct kink can be clearly observed at around the phase
of t = 3T/4. We note that both Tu & Ramaprian (1983) and Scotti & Piomelli (2001)
reported such a kink, but the causes are still unclear. Such a kink also implies special
turbulence dynamics and will be discussed in detail in § 6. The fundamental mode lags
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behind the laminar value, consistent with that for A = 0.1. It is worth noting that we
only consider a higher amplitude at two intermediate frequencies. In fact, increasing the
amplitude will not change the quasi-laminar state for high-frequency cases (e.g. Cases 1
and 2), hence their wall shear stresses are expected to still follow the laminar solution;
while for a low-frequency case where the quasi-steady state is reached, a higher pulsation
amplitude leads to a higher amplitude of the wall shear stress, but the variation trend would
still follow a sinusoidal manner. Case 5 can be considered as a transition case for which the
flow state is closer to the quasi-steady state. The hysteresis phenomenon at the frequency
of Case 5 with a higher amplitude is probably not evident. Thus, behaviours of the wall
shear stress for cases with high or low frequencies are somewhat predictable, which is the
reason for considering only these two frequencies with a higher amplitude.

In this section, we provide a general description of the pulsatile pipe flow, with a
focus on the phase-wise variation of the wall shear stress. Different combinations of the
pulsation parameters lead to significantly different behaviours of τ̃w. In the following
sections, we aim to explore the causes of such differences and the corresponding flow
dynamics based on (2.4) since τ̃w correlates closely to ũ near the wall.

4. Damping mechanisms of the oscillating wall shear stress

We focus on Case 3, for which the ratio Aτ̃w,t/Aτ̃w,s reaches its minimum, to elucidate the
mechanisms that lead to the amplitude reduction of the oscillating wall shear stress (τ̃w) in
the turbulent state compared with its corresponding laminar value.

The phase-wise variation of ũ for Case 3 is shown in figure 7(b), together with its
laminar value calculated from (3.1) shown in figure 7(a). As seen, the most dramatic
difference resides in the near-wall region; namely, below y+ ≈ 20, the laminar contour
appears to be more distorted than that in the turbulent case in that region. By examining
the contour values, it can be observed that the amplitude of the oscillating ũ is smaller
in the turbulent case, corresponding to the smaller amplitude of τ̃w shown in figure 5(c).
In the outer layer, the laminar and turbulent cases behave almost the same. According to
(2.4), the key term that the laminar equation lacks is the weighted radial derivative of the
Reynolds shear stress ũ′v′ (Sundstrom & Cervantes 2018c), which we denote as ℘. This
term can be further decomposed into the derivative term −∂ ũ′v′/∂r and the curvature
term −ũ′v′/r, for which the latter is generally negligible compared with the former in
the near-wall region. Hence, we examine the phase-wise variation of ũ′v′ in figure 7(c).
Importantly, there is a phase lag between ũ′v′ and ũ such that the positive and negative

peaks of ũ′v′ are reached when |∂ ũ/∂t| reaches its maximum (the regions between the blue
and red contours). Evidently, the term ℘ is prominent below the blue and red contours, as
shown by the magenta contours in figure 7(c). For negative ũ′v′ (blue region, at t ≈ T/4),
the radial derivative of ũ′v′ near the wall is positive, hence the term ℘ acts as a sink term
that leads to a reduction of the positive acceleration ∂ ũ/∂t. Similarly, for positive ũ′v′ (red
region, at t ≈ 3T/4), the term ℘ contributes positively to the negative ∂ ũ/∂t. Thus, in
the turbulent case, the acceleration and deceleration of ũ in the near-wall region are both
damped by term ℘ compared with its laminar value, therefore causing the reduction of the
amplitude of ũ and then the wall shear stress. It is noted that in the near-wall region of a
steady fully developed turbulent pipe flow, −du′v′/dr acts as a gain term in the ū transport
equation and hence contributes positively to the mean velocity (−u′v′/r is comparatively
negligible) (Wu & Moin 2008). Thus, the effect of turbulence is reversed by the imposed
unsteadiness. It should also be noted that the temporal variation of ũ′v′ is not strictly
sinusoidal, i.e. the time span of the blue contour is not strictly the same as that of the red
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Figure 7. Phase-wise variations of (a) the laminar Stokes velocity ũ+, (b) the turbulent streamwise velocity
ũ+ and (c) the Reynolds shear stress ũ′v′+ for Case 3 (A = 0.1, l+s = 14). The magenta contours in panel (c)
represent the term ℘, with the values (divided by 10−3) marked on the contour lines. The magenta dash-dotted
straight line indicates the laminar Stokes thickness of l+s = 14.

contour, and the same goes for the following contours. This coincides with the fact that
the wall shear stress deviates slightly from its fundamental mode as shown in figure 5(c).

Apparently, it is the phase lag between ũ and ũ′v′ that causes the nearly antiphase
variation between the term ℘ and ∂ ũ/∂t, leading to the subsequent reduction of the
amplitude of τ̃w. To further understand the origin of such a phase lag, we examine the
phase-wise variations of ũ′u′, ṽ′v′ and the production terms of ũ′u′ and ũ′v′ (shown in
figure 8):

Pũ′u′ = −u′v′ ∂ ũ
∂r︸ ︷︷ ︸

Puu,1

−ũ′v′ ∂ ū
∂r︸ ︷︷ ︸

Puu,2

−
(

ũ′v′ ∂ ũ
∂r

− ũ′v′ ∂ ũ
∂r

)
︸ ︷︷ ︸

Puu,3

, (4.1a)
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lines indicate the laminar Stokes thickness of l+s = 14.

Pũ′v′ = −v′v′ ∂ ũ
∂r︸ ︷︷ ︸

Puv,1

−ṽ′v′ ∂ ū
∂r︸ ︷︷ ︸

Puv,2

−
(

ṽ′v′ ∂ ũ
∂r

− ṽ′v′ ∂ ũ
∂r

)
︸ ︷︷ ︸

Puv,3

. (4.1b)

These quantities are closely correlated as ṽ′v′ dictates the production terms of ũ′v′; ũ′v′
dictates the production terms of ũ′u′, and the energy redistribution from ũ′u′ directly feeds
energy into ṽ′v′. In addition, the laminar Stokes thickness l+s = 14 (magenta dash-dotted
line) is included to mark the edge of the laminar Stokes layer.

The phase-wise variation of ũ′u′ is well correlated with ũ, with the latter leading by
a small phase margin. Since the streamwise velocity fluctuation is directly linked to the
near-wall streak, this phase lag reflects the inertial effect of the turbulence structure. Here,
the contour only gives the information regarding the intensity of near-wall streaks. It will
be shown later by the spectrum analysis that the increase of ũ′u′ is also accompanied
by the elongation of near-wall streaks. The shear-strain-oscillated production Puu,1 leads
ũ′u′ in phase and the wall-normal location of the maximum coincides with that of ũ′u′.
The Reynolds-stress-oscillated production Puu,2 peaks inside the Stokes layer, and its
magnitude is larger than Puu,1. Thus, the main portion of the near-wall streak is dominated
by the oscillating shear strain rate through Puu,1, with the phase lag corresponding to
the delayed development of the streak. Here, Puu,2 is in phase with ũ′v′ and therefore
responsible for the distortion of ũ′u′ contour within the Stokes layer. The phase-wise
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Figure 9. Phase-wise variation of the dissipation rate ε̃+ of the TKE k = u′
iu

′
i (i = 1, 2, 3) for Case 3 (A = 0.1,

l+s = 14). Note that the time-averaged dissipation rate ε+ is negative, thus a negative value of the oscillating
component indicates the enhanced dissipation rate. For the definition of ε̃+, we refer the reader to Eggels et al.
(1994) for further details.

variation of ṽ′v′ further lags behind ũ′u′; it reaches a positive (negative) peak during the
deceleration (acceleration) phase of ũ. The production terms Puv,1 and Puv,2 both peak
outside the Stokes layer, but Puv,2 is more correlated with ũ′v′ and its magnitude is larger
than Puv,1. Thus, it can be inferred that the variation of ũ′v′ is dominated by ṽ′v′ rather
than the oscillating shear strain rate, but the existence of Puv,1 makes the ũ′v′ lead ṽ′v′ by a
small phase margin. The phase lag between ṽ′v′ and ũ′u′ indicates the energy redistribution
from ũ′u′ to ṽ′v′ (the same goes for w̃′w′, not shown here. The variation of w̃′w′ is in phase
with ṽ′v′). Moreover, the magnitude of ũ′u′ is one order of magnitude larger than ṽ′v′
and w̃′w′. The reduction of the energy of ũ′u′ does not match the total energy gain of ṽ′v′
and w̃′w′, which implies that there must be significant dissipation of the turbulent kinetic
energy (TKE) during the deceleration phase of ũ as confirmed in figure 9. It should be
noted that the nonlinear production terms Puu,3 and Puv,3 are both negligible compared
with the other linear production terms.

Based on the information given, we can summarize the flow evolution with a schematic
in figure 10. There are two circulations representing the time evolution of ũ′u′ and the
bulk velocity Ub, respectively. The inside of the Ub loop corresponds roughly to the inner
Stokes layer, while the outside is associated with the region outside the Stokes layer. As
shown in figure 8(a), the majority of ũ′u′ contours are outside the Stokes layer, hence
here the ũ′u′ loop encloses the Ub loop. Two main points deserve to be highlighted. One
is the time delays that are associated with the development of near-wall streaks and the
energy redistribution process. The former corresponds to a phase lag between ũ and ũ′u′,
and the latter gives rise to a phase lag between ũ′u′ and ṽ′v′. These time delays together
result in a phase lag between ũ′v′ and −∂ ũ/∂r (figure 11a), which is 
φ = 0.52π at
y+ = 15.8 where the overall absolute value of ũ′u′ reaches its maximum. This value is
quite close to that reported by Weng et al. (2016) (figure 21 in their paper). Another point
is the phase asymmetry of the turbulence activity. At the initial stage of the acceleration
phase, the level of turbulence intensity is low, hence the whole phase is occupied by
the smooth intensification of turbulent activity. For the deceleration phase, the situation
is more complicated; the energy redistribution process is accompanied by a high-level
dissipation rate that transfers partial TKE into heat. We note that Feldmann & Wagner
(2016a) also reported phase asymmetries in the oscillatory pipe flow (zero mean bulk
flow), but their focus was on the laminar–turbulent transition during the reciprocal cycles
of the bulk flow, therefore different from the present study where the phase asymmetry
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∂ũ
∂y

∂u ′v ′

∂u ′v ′

∂r

∂r

Time delay

Time delay

Dissipation εk

Energy redistribution

Time

delay

Ub,min Ub,max

u′u′

v ′v ′ u ′v ′

u ′v ′

u ′u′

u ′u′

u ′u ′
u ′u ′

min

u ′u ′
max

(w′w′)

v ′v ′
(w′w′)

Time delay

Puu,1

Puv,2

Puu,1

Puu,1

Puu,2

Puu,2

τw

τw

(Puv,1)

Puv,2

(Puv,1)

Figure 10. Schematic of the flow dynamics leading to the damping of the wall shear stress. The vertical
arrows indicate whether the quantities increase or decrease. The vertical lines denote the absolute values.

is reflected in the evolution of sustained turbulence. Xu et al. (2020) also reported strong
phase asymmetry in a pulsatile pipe with a non-zero mean flow. They showed, in the case
of a large pulsation amplitude, that helical flow structures occur in the deceleration phase
and decay in the acceleration phase. In the present study, the pulsation amplitude is small
such that the helical instability cannot be triggered, but the energy transfer from ũ′u′ to the
other two co-existing components bears some similarity with the occurrence of the helical
structure since the latter is characterized by a large circumferential velocity whose energy
probably comes from the streamwise velocity.

However, the distinct phase asymmetry in the evolution of turbulence does not result
in a remarkable phase asymmetry in τ̃w. As shown before, the fact that ũ′u′ is mainly
dominated by Puu,1 suggests that the strength of the main portion of the near-wall streak
directly follows from the magnitude of the shear strain rate. In the deceleration phase, ṽ′v′
drains energy from ũ′u′ and feeds energy into ũ′v′ through Puv,2 simultaneously, yielding a
large magnitude of Puu,2. Nevertheless, Puu,2 only affects ũ′u′ in the very near-wall region
(within the Stokes layer), which means that the main portion of the near-wall streak is
unaffected by the variation of ũ′v′. That is, the energy flow from ũ′u′ to ṽ′v′ to ũ′v′ is
somewhat one-way coupled. In the acceleration phase, a negative ũ′u′ results in a negative
ṽ′v′, ũ′v′ and Puu,2. However, due to the high-frequency oscillation, the Reynolds number
variation does not influence markedly the turbulence response time scale. Therefore, the
phase-wise variation of ũ′v′ follows a nearly sinusoidally varying manner (figure 11a)
and the term ℘ follows suit. In addition, the delayed response of turbulence leads to
an antiphase variation pattern between the term ℘ and the oscillating pressure gradient
(figure 11b), indicating the coincidence between the phase lag between −∂ ũ/∂r and ũ′v′
and the quarter of pulsation period. The resulting phase-averaged wall shear stress is
equivalent to that in the laminar flow with a reduced amplitude of the oscillating pressure
gradient. Hence, the above-mentioned factors make the phase-averaged wall shear stress
oscillate at a lower amplitude without losing its phase asymmetry.
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Figure 11. (a) Phase-wise variations of the Reynolds shear stress ũ′v′+ and the shear strain rate −∂ ũ+/∂r+
at y+ = 15.8 where the overall absolute value of ũ′u′ reaches its maximum for Case 3 (A = 0.1, l+s = 14).
(b) Phase-wise variations of the term ℘ and the oscillating pressure gradient −∂ p̃/∂x at y+ = 6.5 where the
overall absolute value of term ℘ reaches its maximum for Case 3 (A = 0.1, l+s = 14). The red solid and dashed
lines represent the respective fundamental Fourier modes that are used to calculate the phase difference.

It is noted that similar discussions regarding the production process of Reynolds stresses
have also been made by Weng et al. (2016). Their focus was mainly on the effects of
frequency on the production process and the wall-normal propagation of the shear wave.
Here, the flow dynamics presented in figure 10 is broadly consistent with them, but we
further elaborate the production process focusing on only one case. The differences are
that: we identify the relative importance of the production terms in (4.1) and their effective
region during the cycle; we give an explanation of why the turbulence dampens the
oscillating wall shear stress based on the production process; we explain why the phase
asymmetry of the evolution of turbulence does not induce a remarkable phase asymmetry
in the variation of wall shear stress.

5. Hysteresis phenomenon in the wall shear stress

An interesting issue to be addressed next is the distinct hysteresis in the phase-wise
variation of τ̃w for Case 4, where the drag-increasing phase occupies a longer portion

of the cycle than the drag-decreasing phase. Figure 12 shows the phase-wise variations
of ũ, ũ′u′, ṽ′v′ and ũ′v′ for Case 4. Again, the data are duplicated to two periods for
a better presentation of the hysteresis. It is observed that the phase asymmetry is only
remarkable in the near-wall region (approximately below y+ = 20) for ũ, while it shows
good symmetry in the outer layer. This is because the outer turbulence intensity is low
such that the flow in that region behaves almost in a laminar-like manner. The hysteresis
is brought out well by the contours of ũ′u′, ṽ′v′ and ũ′v′. They all exhibit similar patterns,
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Figure 12. Phase-wise variations of (a) the turbulent streamwise velocity ũ+, (b) the Reynolds normal stress
ũ′u′+, (c) the Reynolds normal stress ṽ′v′+ and (d) the Reynolds shear stress ũ′v′+ for Case 4 (A = 0.1,
l+s = 17). The data are duplicated and then spliced such that two periods are presented.

that is, the low-magnitude phase of the stress progresses over a longer portion of the cycle
than the high-magnitude phase. Again, at y+ ≈ 12 where the mean streak intensity reaches
its maximum, ũ′u′ lags behind ũ and ṽ′v′ further lags behind ũ′u′, while ṽ′v′ is almost in

phase with ũ′v′. This suggests the same evolution process of turbulence as that in Case 3
discussed above.

The question addressed next is why the hysteresis occurs in Case 4 rather than in Case 3
given the same turbulence evolution process. Based on the discussion in § 4, the term ℘

and the oscillating pressure gradient are the key factors that determine the evolution of
the near-wall streamwise velocity ũ. Hence, we found the wall-normal location where the
overall absolute value of term ℘ reaches its maximum and plotted the phase-wise variation
of ũ, −∂ p̃/∂x, term ℘ and the sum of the last two terms at that location in figure 13(a). It
can be observed that the phase-wise variation of term ℘ is apparently non-sinusoidal.
Specifically, the term ℘ rises to a positive peak with a larger absolute value than the
negative peak; this leads to a sharp increase of the positive sum (black dash-dot-dotted
line) of the term ℘ and −∂ p̃/∂x, which counteracts the slow-down effect from the viscous
force. Hence, ũ keeps increasing at a lower rate even though the oscillating pressure
gradient has already changed its direction, leading to the short lingering of the high-level
wall shear stress and thereby the hysteresis. In the region away from the wall at y+ = 12.2
(figure 13b), for instance, the magnitude of term ℘ is smaller such that it cannot effectively
influence the evolution of the streamwise velocity, and therefore the hysteresis is less
evident.

According to the discussions above, it can be found that the magnitude of term ℘ and its
phase relation to the oscillating pressure gradient in the vicinity of the wall are the crucial
factors that affect the wall shear stress. Taking the wall-normal location where the overall
absolute value of term ℘ reaches its maximum as a reference, these two terms vary in
antiphase to each other in Case 3 (the phase lag is approximately π (figure 11b)); while in
Case 4, the phase lag is less than π if we take the positive peak of term ℘ as the reference
(figure 13a). In addition, the magnitude of term ℘ in Case 4 is larger than that in Case 3.
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Figure 13. Phase-wise variations of the term ℘, the oscillating pressure gradient −∂ p̃/∂x, the streamwise
velocity ũ (divided by a scale factor of 5) and the quantity of −∂ p̃/∂x + ℘ at (a) y+ = 6.1 where the overall
absolute value of term ℘ reaches its maximum, and at (b) y+ = 12.2 where the overall absolute value of ũ′u′
reaches its maximum for Case 4 (A = 0.1, l+s = 17).

The combination of these facts leads to the significantly different behaviours of τ̃w.
The oscillating pressure gradient is predetermined based on the pulsation parameters. As
for term ℘, its magnitude and phase near the wall are determined by the outer ũ′v′; while
the outer ũ′v′ is closely associated with ṽ′v′ through the production terms, with the latter
deriving from the energy redistribution process. Thus, this is a top-down effect that reflects
the high wall-normal inhomogeneity of the wall-bounded turbulent flow, which is different
from that in the homogeneous turbulence case (Yu & Girimaji 2006). Hereafter, the outer
region corresponds roughly to the wall-normal location where the overall absolute value of
ũ′u′ reaches its maximum and the inner region is associated with the wall-normal location
where the overall absolute value of term ℘ reaches its maximum.

With regards to the phase lag between the term ℘ and the oscillating pressure gradient,
it is natural to focus on the time scale that the turbulence reacts to the varying shear
strain rate, i.e. the time delay between −∂ ũ/∂r and ũ′v′, which we denote as tT . In the
outer region, ũ′v′ lags behind −∂ ũ/∂r due to the above-mentioned two processes. In the
meantime, as the wall-normal location moves away from the wall, the phase lag between
−∂ ũ/∂r and the oscillating pressure gradient gradually approach π/2 (figure 12a). Thus,
we can use a quarter of the pulsation period (T/4) as a benchmark to measure the phase
lag between the term ℘ and the oscillating pressure gradient. If tT is equal to T/4 in the
outer region, then the term ℘ would be in antiphase to the oscillating pressure gradient in
the inner region, which is the situation in Case 3. To quantify tT and take into account the
hysteresis, we denote the time delay between the maximum −∂ ũ/∂r and maximum ũ′v′
as tT,max; while for the minimum, it is denoted as tT,min (see figure 14). Figure 15 shows
the wall-normal distribution of tT normalized by the respective pulsation period (T) for
Cases 2–5. It is first observed that both tT,max and tT,min in the buffer layer are exactly
a quarter of the pulsation period for Cases 2 and 3. For Cases 4 and 5, tT,max is smaller
than T/4, in accordance with the aforementioned reduction of the phase lag between ℘

and −∂ p̃/∂x from π. It is noted that the wall-normal variation tendency of tT presented
in figure 15 agrees qualitatively well with that reported by Weng et al. (2016) where they
showed the wall-normal profiles of the phase lag between −ũ′v′ and ∂ ũ/∂y. A remarkable
feature is the significantly reduced phase lag below y+ = 10 for ω+ ≤ 0.006 of their cases.
In the present study, both tT,max and tT,min for Cases 4 (ω+ = 0.007) and 5 (ω+ = 0.005)
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Figure 14. Definitions of the quantities associated with the time scale of turbulence response: tT,max, tT,min,
tD,max, tD,min. The data of the curves are taken from Case 4 (A = 0.1, l+s = 17) at y+ = 12.2. The values of
ũ′u′+ are divided by a scale factor of 30.
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Figure 15. Wall-normal profiles of tT normalized by the pulsation period T . Solid lines, tT,max; dashed lines,
tT,min. Note that −∂ ũ/∂r approaches zero close to the centreline and numerical errors occur when determining
tT . The regions where the magnitude of local maximum |∂ ũ/∂r| drops below 10 % of the overall maximum are
considered to be accompanied by certain numerical errors, which are marked by the black dots.

exhibit such a feature. The cause is that the delayed generation of ũ′v′ in the outer region
produces a large radial gradient of ũ′v′ in the inner region, promoting the continuous
increase of ũ and then shifting the overall phase of ũ in the inner region. Therefore, the
phase lag between −∂ ũ/∂r and ũ′v′ is reduced, and this also causes the phase lag of the
wall shear stress between the turbulent and laminar cases mentioned in § 3.

Another important information conveyed by figure 15 is the inequality between tT,max
and tT,min, especially below y+ = 10. In the model proposed by Weng et al. (2016), a
constant turbulence relaxation time is assumed such that the turbulent eddies can be
considered as viscoelastic; this turbulence relaxation time together with the pulsation
frequency determines the phase lag between −ũ′v′ and ∂ ũ/∂y. Furthermore, they
attempted to improve the turbulence model by considering the wall-normal variation of
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Figure 16. Wall-normal profiles of inner-scaled t+D . Solid lines, tD,max; dashed lines, tD,min. The meaning of
the black dots is the same as that in figure 15.

turbulence relaxation time. However, it turns out that the improvement in predicting the
wall shear stress is not satisfactory. The reason might be that the turbulence relaxation
time varies not only in space but also in phase. As shown in figure 15, the difference
between tT,min and tT,max increases as the wall is approached ( y+ < 10), which means
that the assumption of constant turbulence relaxation is inappropriate; the cause might be
attributed to the significant viscous effect near the wall such that the temporal variation
of the friction Reynolds number leads to the distinct temporal variation of turbulence
relaxation time scale tT in that region. In addition, such difference is more prominent
in low-frequency cases (Cases 4 and 5) where tT,max and tT,min differ significantly not only
below y+ = 10 but also in the buffer layer. This might explain to a certain extent why
considering the wall-normal variation of turbulence relaxation time can help to improve
the prediction of τ̃w for cases with ω+ ≥ 0.01 but fails for low-frequency cases (Weng
et al. 2016).

We further examine the time delay between −∂ ũ/∂r and ṽ′v′, denoted as tD, in figure 16
since ũ′v′ leads ṽ′v′ by a small phase margin due to Puv,1, and tD can describe a
more complete turbulent reaction process. Again, the time delays between the respective
maximum and minimum values are denoted as tD,max and tD,min (see figure 14). For
Cases 2 and 3, tD,max and tD,min differ slightly in the near-wall region, in accordance
with the phase symmetry shown in previous contours. For Cases 4 and 5, tD,max and
tD,min follow a similar wall-normal distribution pattern, with the overall magnitude of
tD,min being larger than tD,max. In addition, in the buffer layer where the near-wall streak
populates, tD increases as the frequency decreases, indicating that the turbulence reacts
more slowly in low-frequency cases. As suggested by Weng et al. (2016), the delayed
response of turbulence is a manifestation of the viscoelasticity of turbulent eddies, then
the above-mentioned features of tD reflect the variation of the viscoelasticity with respect
to the pulsation frequency. For high-frequency cases (Cases 2 and 3), the frequency is large
such that the turbulent eddies exhibit a phase-wise-invariant viscoelastic property, that is,
the relative importance between the elasticity and viscosity remains nearly constant in
phase (in Maxwell’s viscoelastic model, the ratio between the viscosity and the elasticity
dictates the relaxation time), and this is reflected by the closeness between tD,max and
tD,min; while for low-frequency cases (Cases 4 and 5), the viscoelasticity varies in phase.
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Specifically, for a high-level shear strain rate (positive −∂ ũ/∂r), the instantaneous friction
Reynolds number is large, hence it can be regarded that the elasticity is enhanced such
that the turbulence response time tD,max is small; while for the low shear strain rate
phase (negative −∂ ũ/∂r), the viscosity dominates, leading to a larger tD,min which is
also characteristic of low-Reynolds-number flows. Therefore, this highlights again the
importance of considering the phase-wise variation of turbulence relaxation time when
employing the viscoelastic model to predict the wall shear stress in pulsatile wall-bounded
flows. Moreover, the effects of the varying Reynolds number on the turbulence response
time bears qualitative resemblance with that reported by Xu et al. (2017) where the
transition in the pulsatile pipe flow is studied. In the high-frequency regime, the transition
threshold is unaffected due to the too-fast variation of the flow rate, corresponding to the
equivalence between tD,max and tD,min here. When the frequency is reduced, the Reynolds
number effect sets in: for the transition problem, it is reflected by the fact that the entrance
of a low-Reynolds-number interval significantly elevates the transition threshold; while in
the present study, the turbulence responds quickly in the high-Reynolds-number interval
but slows down in the low-Reynolds-number interval.

6. Effects of the pulsation amplitude

In this section, the effects of pulsation amplitude are examined. We focus on l+s = 14 and
17 with the amplitude being A = 0.4, which corresponds to Cases 6 and 7, respectively. As
shown in figure 6(a), the wall shear stress decreases at a lower rate when it is close to its
minimum in Case 6, leading to a short lingering low-level wall shear stress at that phase.
This behaviour is similar to that in Case 4 except that the lingering stage occurs when the
wall shear stress is close to its maximum and the extent is more distinct. According to
the discussion on Case 3, the phase of the low-level wall shear stress is accompanied by a
high-level Reynolds shear stress ũ′v′ which results from the delayed turbulence response.
It is reasonable to expect a more intense generation of ũ′v′ for a larger pulsation amplitude.
This is confirmed in figure 17 where the instantaneous spatial-averaged wall shear stress
over all the collected periods for A = 0.1 and 0.4 are shown. As seen, for low-amplitude
cases (Cases 3 and 4), all the curves are evenly dispersed (figure 17a,b); while for
high-amplitude cases (Cases 6 and 7), evident local scattering of the curves can be
observed around the phase of t = 3T/4 even for a larger vertical axis limit (figure 17c,d).
Note that the energy redistribution from ũ′u′ to ṽ′v′ and the rise of ũ′v′ occurs at this phase.
It should also be noted that apparent scattering can be still observed for Case 4 during the
lingering phase (figure 17b). Hence, such a localized scattering of the wall shear stress
curves indicates that the delayed response of turbulence in the drag-reducing phase is
an intense event with a high degree of randomness. The higher the pulsation amplitude,
the more intense the turbulence response. In addition, the corresponding laminar Stokes
values are also included for comparison. Although the amplitude of the phase-averaged
wall shear stress for all the cases shown in figure 17 are lower than their laminar values,
the instantaneous value could possibly exceed the variation range of the laminar value
for the cases with a relatively low frequency (figure 17b,d), especially when the pulsation
amplitude is large (figure 17d).

Figure 18 shows the phase-wise variations of ũ, ũ′u′, ṽ′v′ and ũ′v′ for Cases 6 and
7, with the dashed magenta lines marking the edge of the laminar Stokes layer. The
exhibited phase lag indicates again the delayed response of turbulence. A first observation
is that the positive ũ′u′ peaks inside the laminar Stokes layer for Case 7 (figure 18d). As
discussed in § 4, the increase of ũ′u′ within the Stokes layer results from the generated
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Figure 17. Temporal evolution of instantaneous space-averaged wall shear stress τw over all the pulsation
periods that are used to perform the phase average. The red solid lines represent the corresponding laminar
Stokes values. (a) Case 3; (b) Case 4; (c) Case 6; (d) Case 7.

ũ′v′ through Puu,2. This indicates the significantly large magnitude of ũ′v′ such that it
produces higher streamwise velocity fluctuations near the wall. Second, distinct hysteresis
can be observed for Case 6. The blue contour occupies a longer portion of the cycle than
that by the red contour, especially for ṽ′v′ and ũ′v′. Note that this hysteresis is indiscernible
in Case 3. Therefore, the increase of pulsation amplitude amplifies the phase asymmetry of
turbulence activity, leading to hysteresis in the wall shear stress (figure 6a) that is reversed
compared with Case 4, i.e. the drag-reducing phase is longer than the drag-increasing
phase. The same goes for Case 7 where the amplification of the phase asymmetry is
reflected by the more distinct hysteresis conveyed by the contour plots (figure 18d, f,h).
Furthermore, in comparison with Case 6, the larger magnitude of all turbulence quantities
in Case 7 indicates the higher intensity of turbulence activity, which accords well with
the fact that the instantaneous curves of the space-averaged wall shear stress are more
dispersed at that specific phase (figure 17c,d).

Next, we evaluate the relative importance of the term ℘ and the oscillating pressure
gradient (−∂ p̃/∂x) in figure 19 to explore the cause of the behaviour of τ̃w for A = 0.4.
The wall-normal locations are selected where the overall maximum absolute value of term
℘ is reached. As seen, the variation of term ℘ exhibits a distinct phase asymmetry for both
cases; it declines very slowly and smoothly during the acceleration phase of ũ but increases
sharply in the deceleration phase. Importantly, the sharp increase of term ℘ leads to a
significant change of the sum (black dash-dot-dotted lines), especially for Case 7 where
the sum even bounces back to a positive value at around the phase of t = 3T/4, causing
the kink of the ũ curve and hence the wall shear stress; while for Case 6, the ũ descends at a
lower rate instead. This discrepancy results from the fact that the value of the positive peak
of term ℘ in Case 7 is larger than that in Case 6, while the amplitude of the oscillating
pressure gradient is smaller in the former case (according to (2.5), β is proportional to
the frequency ω for fixed A). The large pulsation amplitude tends to enhance the phase
asymmetry and produces a large magnitude of term ℘. In the meantime, the amplitude of
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Figure 18. Phase-wise variations of the turbulent streamwise velocity ũ+, the Reynolds stresses ũ′u′+, ṽ′v′+

and ũ′v′+ for A = 0.4. (a,c,e,g) Case 6 (A = 0.4, l+s = 14); (b,d, f,h) Case 7 (A = 0.4, l+s = 17).
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Figure 19. Phase-wise variations of the term ℘, the oscillating pressure gradient −∂ p̃/∂x, the streamwise
velocity ũ (divided by a scale factor of 5) and the quantity of −∂ p̃/∂x + ℘ at (a) y+ = 6.5 for Case 6 (A = 0.4,
l+s = 14), (b) y+ = 5.8 for Case 7 (A = 0.4, l+s = 17) where the overall absolute value of term ℘ reaches its
maximum.

the oscillating pressure gradient also varies with respect to the pulsation amplitude. Hence,
it can be inferred that there would be diverse forms of the phase-wise variation of τ̃w for
different combinations of pulsation parameters, which requires more cases to summarize
the general law and is therefore beyond the scope of the present paper. It also highlights
the complexity of pulsatile flows which possess multiple predefined parameters.
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Figure 20. (a) Wall-normal profiles of tT normalized by the pulsation period T . (b) Wall-normal profiles of
the inner-scaled tD. Solid lines, tT,max and tD,max; dashed lines, tT,min and tD,min. The meaning of the black dots
is the same as that in figure 15.
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Figure 21. Wall-normal profiles of the inner-scaled tT and tD. (a) Case 6 (A = 0.4, l+s = 14); (b) Case 7
(A = 0.4, l+s = 17). The meaning of the black dots is the same as that in figure 15.

We further examine the quantities tT and tD in figure 20. A first observation is that the
significantly reduced time scale below y+ ≈ 10 in Case 4 disappears for Case 7. This is
easily understood since the outer delayed variation of ũ′v′ does not induce a remarkable
phase shift of the inner ũ (figure 18b). The general trend is that these two quantities both
gradually increase as the wall is approached; this can be attributed to the strong viscous
effect near the wall that shifts the phase of ũ forward, which can be clearly conveyed by
the distorted laminar contour in figure 7(a) as an example, and thereby enlarging the time
delay between the shear strain rate and the Reynolds stresses in that region. Compared
with A = 0.1, tT does not change significantly in the buffer layer; both tT,max and tT,min
are nearly a quarter of the period in Case 6, and tT,min is larger than tT,max in Case 7. For
tD, a remarkable observation is the enlarged difference between tD,max and tD,min in the
buffer layer for both cases. This accords well with the hysteresis exhibited in figure 18.
However, there are obvious differences between tT and tD. For Case 6, tT,min and tT,max
are nearly the same in the buffer layer, while tD,min and tD,max differ significantly in that
region. Similarly, the difference between tD,min and tD,max is also apparently larger than
tT for Case 7. Note that such discrepancy between tT and tD is not evident for cases with
A = 0.1. To explore the physical meaning, we compare the magnitude of tT and tD in
figure 21. Generally, tT is smaller than tD since ũ′v′ leads ṽ′v′ by a small phase margin due
to the shear-strain-oscillated production term Puv,1. It can be observed in figure 21 that
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Figure 22. Normalized streamwise pre-multiplied spectra kxφuu of streamwise velocity fluctuations, where
λx = 2π/kx is the wavelength. The contour levels are set to be the same for the fixed amplitude. The
wall-normal location, where the spectra data are taken from, is at y+ = 14.7 for (a) Case 2, (b) Case 3,
(c) Case 4, (d) Case 5, and at y+ = 16.9 for (e) Case 6, ( f ) Case 7. The black arrows indicate qualitatively
the variation trend of the energy spectrum.

the values of tT,max and tD,max are close, while tT,min and tD,min differ significantly for both

cases. This discrepancy highlights the importance of the shear-strain-oscillated production

term Puv,1, that is, the variation of ũ′v′ is governed both by the shear strain rate and ṽ′v′. In
the deceleration phase, the generation of ṽ′v′ is intense such that the production process of
ũ′v′ is dominated by ṽ′v′, thus the variation of ũ′v′ synchronizes with ṽ′v′ and the values
of tT,max and tD,max are very close; while in the acceleration phase, the magnitude of
ṽ′v′ is relatively small, then the effect of the shear-strain-oscillated production term Puv,1
becomes prominent, leading to a large phase lag between ũ′v′ and ṽ′v′, and also the large
difference between tT,min and tD,min. For the small amplitude of A = 0.1, the magnitude of
the varying shear strain rate is small such that the variation of ũ′v′ is mainly dominated by
ṽ′v′ throughout the cycle, hence the difference between tT and tD is small.

7. Energy spectra

We finally examine the streamwise and circumferential one-dimensional spectra to provide
some information about the variation of scales of turbulence structures during the
pulsating process, as shown in figures 22 and 23. These spectral data are collected
at the wall-normal locations where u′u′ reaches its maximum. Taking Case 4 as an
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Figure 23. Normalized circumferential pre-multiplied spectra kθφuu of streamwise velocity fluctuations,
where λθ = 2π/kθ is the wavelength. The contour levels are set to be the same for the fixed amplitude. The
wall-normal locations, where the spectra data are collected, are the same as those in figure 22. (a) Case 2,
(b) Case 3, (c) Case 4, (d) Case 5, (e) Case 6, ( f ) Case 7.

example (figure 22c), the energy spectrum of large wavelengths (roughly λ+x > 1000)
increases during the acceleration phase of ũ (approximately 0 ∼ T/2, see figure 12a),
accompanied by an initially mild decrease and the subsequent increase of the energy
of small wavelengths (λ+x < 1000); in the deceleration phase (T/2 ∼ T), the increasing
energy spectrum of small wavelengths reaches its maximum quickly and then decreases,
while the energy of large wavelengths keep decreasing. Notably, the phase of the peak
energy spectrum of small wavelengths coincides with that of the peak of ṽ′v′. Hence, a
rough scenario can be depicted: the increase of the bulk flow yields a large magnitude
of the near-wall shear strain, stretching the near-wall streaks in the streamwise direction
and suppressing the turbulence motions that are of small scales; when the bulk flow
starts to decrease, the existing streamwise-stretched long streaks break up into many
small-scale structures, accompanied by the energy redistribution from ũ′u′ to the other
two components and high intensity of dissipation; subsequently, the overall TKE drops
to a low level and the flow state goes back to the beginning and repeats. This scenario is
more clear in large-amplitude cases, as shown in figure 22(e, f ), where the stretching and
the breaking up processes are separated distinctly. For low-amplitude cases, the increase of
the energy spectrum of small wavelengths becomes less evident as the frequency increases,
it almost disappears for Case 2 (figure 22a); in addition, the streamwise stretching is
also weak. Such changes result from two factors: one is that the pulsation is too fast
for the turbulence structures to respond, and the other is the low thickness of the Stokes
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layer in high-frequency cases such that only a small portion of the near-wall streaks are
affected by the varying shear strain rate. Nevertheless, there is still an evident increase
of the peak energy spectrum of λ+x ≈ 1000, which is the commonly accepted averaged
length scale in a steady flow, outside the laminar Stokes layer. This can be attributed to
the turbulent diffusion that diffuses ‘upward ejected’ or ‘downward sweeping’ fluids with
higher wall-normal velocity due to the bottom Stokes layer away from or towards the wall,
leading to a larger deficit or excess of the streamwise velocity outside the Stokes layer and
hence the higher energy spectrum.

For circumferential spectra, all the contours are centred around λ+θ = 100 which is the
averaged circumferential length scale in the steady pipe. This means that the pulsation
does not change the dominated circumferential length scale. Nevertheless, the streamwise
stretching of the streaks is accompanied by a slight enlarging of their circumferential space,
and the subsequent breaking up leads to the increase of energy of small circumferential
wavelengths. It is noted that the results reported above resemble closely those of He &
Seddighi (2013) where the turbulence in a channel with a step-increase of the bulk flow was
investigated, both of which are characterized by the initial stretching of near-wall streaks
and the subsequent breaking up into small-scale structures. However, the breaking up of
the elongated streaks reported by He & Seddighi (2013) occurs in a circumstance where the
bulk flow has already settled down, thus it can be considered as a spontaneous and gradual
event because the turbulence structures have to change their scales to accommodate to
the new larger Reynolds number; while in the pulsatile flow, the elongated streaks break
up in the deceleration phase of the bulk flow, that is, the decelerating bulk flow cannot
accommodate the existing high-energy turbulence structures such that they are forced to
break up, hence it is a non-spontaneous, externally forced and transient process that is
different from that of He & Seddighi (2013).

8. Summary

The phase-wise variations of the wall shear stress in turbulent pulsatile pipe flow with
low-amplitude oscillations at Reτ = 180 have been investigated using DNS. We focus
on the paradoxical phenomenon reported in previous studies, that is, the amplitude
of the oscillating wall shear stress in the turbulent flow is smaller than that in the
laminar flow for the same pressure gradient in the intermediate frequency range.
This implies that the turbulence reduces the wall shear stress. It is shown that the
phase-wise variation of the wall shear stress exhibits a strong dependence on the frequency
at the fixed amplitude of A = 0.1. For high-frequency cases, the wall shear stress
synchronizes with its corresponding laminar Stokes value, displaying an evident phase
symmetry. As the frequency is reduced, a distinct hysteresis occurs, i.e. the time occupied
by the drag-reducing phase differs significantly from that by the drag-increasing phase,
accompanied by a phase shift with respect to its laminar Stokes value. This hysteresis
would disappear if the frequency further reduces to reach a quasi-steady state.

The cause of the paradoxical phenomenon can be attributed to the delayed response
of the turbulence. Specifically, the delayed generation of the Reynolds shear stress ũ′v′
in the buffer layer gives rise to a large magnitude of the radial gradient of ũ′v′ near the
wall whose contribution to the oscillating streamwise velocity ũ is opposite to that of the
oscillating pressure gradient, thus damping the variation of ũ near the wall and leading
to a lower amplitude of the wall shear stress. This is a top-down effect that reflects the
wall-normal inhomogeneity of wall-bounded turbulent flows. The delayed generation of
ũ′v′ derives from two processes: the delayed development of near-wall streaks and the
subsequent energy redistribution from streamwise velocity fluctuations to the other two
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coexisting components. This is an interpretation of the viscoelasticity of turbulent eddies
from the perspective of flow dynamics.

The hysteresis in the variation of the wall shear stress that occurs in low-frequency
cases is caused by the phase asymmetry of turbulence response. In the deceleration phase
of the bulk flow, the turbulence response is intense such that a large magnitude of ũ′v′ is
generated in the buffer layer, yielding a large magnitude of the radial derivative of ũ′v′
near the wall that is comparable to the oscillating pressure gradient and thus deviating
the variation of ũ and wall shear stress from the sinusoidally varying manner; while in
the acceleration phase, the turbulence response is mild, thereby the variation of near-wall
streamwise velocity is dominated by the oscillating pressure gradient and hence follows a
sinusoidal manner. Such a phase asymmetry causes the hysteresis of the wall shear stress
and also a phase shift from its laminar Stokes value. The intensity of turbulence response
and the magnitude of the oscillating pressure gradient are both closely related to the
pulsation parameters. Thus, there would be diverse forms of phase-wise variations of the
wall shear stress given the different combinations of pulsation amplitude and frequency,
highlighting the complexity of pulsatile flows. Further, a quantitative examination of the
turbulence responding time scale reveals that the viscoelastic model proposed by Weng
et al. (2016) should not only consider the wall-normal variation of turbulence relaxation
time but also take into account its phase-wise variation to acquire a better performance.

For larger amplitude cases, the phase asymmetry of the turbulence response is amplified
due to the larger variation range of the Reynolds number. The flow evolution can be
clearly separated into two stages. In the acceleration phase of bulk flow, the near-wall
streaks are stretched in the streamwise direction, accompanied by the suppression of
small-scale turbulent motions. When the bulk flow starts to decrease, the existing long
streaks break up into small-scale structures, together with a high dissipation rate that
transforms the turbulent kinetic energy into heat. This process is of a high degree of
randomness that leads to a more intense fluctuation of the instantaneous wall shear stress.
Moreover, the importance of the shear-strain-oscillated production term of ũ′v′ increases
for large-amplitude cases, reflected by the enlarged phase lag between the minimum ũ′v′

and ṽ′v′ compared with that in low-amplitude cases.
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