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Abstract
Models for converting expert-coded data to estimates of latent concepts assume different data-generating
processes (DGPs). In this paper, we simulate ecologically valid data according to different assumptions,
and examine the degree to which common methods for aggregating expert-coded data (1) recover true
values and (2) construct appropriate coverage intervals. We find that the mean and both hierarchical
Aldrich–McKelvey (A–M) scaling and hierarchical item-response theory (IRT) models perform similarly
when expert error is low; the hierarchical latent variable models (A-M and IRT) outperform the mean
when expert error is high. Hierarchical A–M and IRT models generally perform similarly, although
IRT models are often more likely to include true values within their coverage intervals. The median
and non-hierarchical latent variable models perform poorly under most assumed DGPs.

Keywords: Bayesian methods; latent variable models; measurement; survey methodology

Prominent data-gathering enterprises survey experts to collect data on concepts that are difficult
to directly measure (Bakker et al., 2012; Norris et al., 2013; Coppedge et al., 2018). However, the
standard mean-plus-standard deviation (MpSD) approach to aggregating these data cannot
account for variation in either expert scale perception (differential item functioning, DIF) or sto-
chastic error (Marquardt and Pemstein, 2018; Castanho Silva and Littvay, 2019; Lindstädt et al.,
2020). Recent research therefore suggests that scholars should aggregate such data with either the
bootstrapped median (BMed; Lindstädt et al., 2020) or one of two types of latent variable models:
Aldrich–McKelvey (A–M) scaling (Aldrich and McKelvey, 1977; Bakker et al., 2014) or item-
response theory (IRT) models (Clinton and Lewis, 2008; Pemstein et al., 2018). The BMed
approach is both simple and potentially more robust than MpSD, while latent variable modeling
uses more complicated techniques to adjust for DIF and random error.

Although these approaches involve different conceptualizations of the process that translates
expert perceptions into survey responses, previous research has generally assumed only one pro-
cess when assessing the performance of different models (Marquardt and Pemstein, 2018;
Lindstädt et al., 2020). In this paper, we investigate how each method—A–M, IRT, BMed,
and the bootstrapped mean (BAvg)—perform under each model’s assumed rating process, retain-
ing MpSD for baseline comparison. We do so by creating simulated data in which we vary both
the distribution of the latent values and the method by which experts perceive them.

We find that both MpSD and latent variable models with hierarchically clustered DIF (both
A–M and IRT) perform similarly in the presence of low expert error. When expert error is
high, hierarchical latent variable models outperform MpSD. Although hierarchical A–M and
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IRT models generally perform similarly, IRT models are often more likely than their A–M
counterparts to contain the true values within their uncertainty intervals.

In contrast, non-hierarchical latent variable models tend to underperform their hierarchical
counterparts, likely because of data sparseness. BMed only performs as well as hierarchical latent
variable models under very specific conditions, and generally underperforms even MpSD and
BAvg.

We conclude by discussing the empirical implications of modeling choice, using different tech-
niques to aggregate the Varieties of Democracy (V–Dem) variable “Freedom from Political Killings”
(the variable we use as the basis for the simulation studies). Although all aggregations show similar
patterns at a high level of analysis, there are substantial differences at lower levels. In particular,
MpSD shows extremely high levels of uncertainty, while BMed provides extremely rough estimates
of latent concepts. Hierarchical A–M and IRT models provide both finer-grained estimates and
tighter uncertainty estimates. In line with the simulation analyses, the main difference between
these two latent variable techniques is that IRT models show slightly higher uncertainty.

These findings cumulatively demonstrate that scholars should use hierarchical latent variable
models to aggregate expert-coded data, not summary statistics such as the mean or the median.
Among hierarchical latent variable models, IRT models appear to be slightly safer than their A–M
counterparts.

1. Three models of expert rating
A–M, IRT, and BMed assume different rating processes. A–M assumes that there is a linear cor-
respondence between the latent traits—such as de facto regime characteristics or party ideology—
that experts observe and the ordinal ratings they report. A–M thus conceptualizes DIF in terms of
intercept shifts and stretches. IRT relaxes the linearity assumption made by A–M, and models the
translation between perception and ordinal score using a series of thresholds on the latent scale: if
experts perceive a latent value to fall below their lowest threshold they assign the case the lowest
possible ordinal score, and so on. Both models assume normally distributed random errors.
Although BMed does not derive directly from an explicit model of the rating process,
Lindstädt et al. (2020) posit a specific model that motivates their choice of the median for pro-
ducing point estimates. Like A–M, their model assumes a linear translation between perceptions
and scores, but assumes both a uniform underlying distribution of the true values and uniform
error structure that produces truncated errors. That is, the key problem of expert coding is that
experts make errors disproportionally at the extremes of the scale.

In this section, we provide brief analytical descriptions of these different frameworks as well as
the specific implementations we use in this paper. For more detailed descriptions of the A–M and
IRT implementations, see online Appendix A and Marquardt and Pemstein (2018); for the
Lindstädt et al. (2020) model, see online Appendix E.

1.1 A–M scaling

We build on the Bayesian A–M approach of Hare et al. (2015), using the likelihood:

yctr � N (mctr , tr)

mctr = ar + brzct.
(1)

Here, yctr is the ordinal response by expert r to case ct,1 zct is the latent score for case ct, a, b, and
t are expert-specific intercept, slope, and variance parameters. These parameters allow for a

1Our focus is on panel expert ratings: c is for country, and t for time/year.
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specific class of cognitive bias and error: a and b respectively allow expert scale strictness and
distance perception to vary, while t allows for inter-expert differences in random error rates.

We estimate values for A–M models using two specifications. In the first, a standard A–M
model, we do not cluster parameter values. In the second, we hierarchically cluster a and b
parameters by the primary country an expert codes. This second prior specification assumes
that rater parameters are more similar within cases than they are across cases: although experts
may code multiple countries, shared expertise in a particular country leads experts to translate
their perceptions into scores in similar ways.

1.2 Ordinal IRT

In contrast to A–M models, ordinal IRT uses “thresholds” to describe how experts perceive the
latent scale. The partial likelihood for an ordinal IRT is:

Pr(yctr = k) = f gr,k − zctzr
( )− f gr,k−1 − zctzr

( )
. (2)

Again, zct represents the latent value, which expert r converts to ordinal values using (1) her k
thresholds, g; and (2) the inverse of her stochastic error variance, z. g is an IRT corollary of a
and b in A–M models, with less restrictive linearity assumptions; z serves a similar purpose as
the A–M t.

We provide three IRT models with different parameterizations of DIF. These three models
allow us to assess the degree to which hierarchical clustering facilitates or hinders estimation
in simulated data with different assumptions about DIF. The first model assumes no clustering
of DIF; the second that expert DIF clusters only about universal thresholds; and the third that
expert DIF is further clustered about the main case an expert codes. In the text, we focus on
the first and third models, which are direct corollaries of the A–M models; online Appendix
G analyzes differences across IRT clustering strategies.

1.3 Uniform errors

Lindstädt et al. (2020) motivate the BMed approach by postulating an expert rating process that is
largely analogous to the A–M model. However, whereas both A–M and IRT models assume an
unbounded interval-scale latent space, they assume that latent values fall on the interval
(l, u) [ R. In contrast to standard A–M models, they also assume that expert intercept, slope,
and variance parameters are uniformly distributed.

Results in online Appendix E indicate that the key difference between the Lindstädt et al.
(2020) and A–M approach is the assumption about the underlying distribution. We therefore
focus on this aspect of their model in the text.

2. Simulation design
We examine the robustness of different modeling strategies to data-generating process (DGP)
through simulation analyses. To create ecologically valid simulated data, we follow Marquardt
and Pemstein (2018) in using the coding structure from the expert-coded V–Dem variable
“Freedom from Political Killings” (Coppedge et al., 2018). To code this variable for a given
country-year, experts use a five-point Likert scale with categories ranging from “Political killings
are non-existent” to “Political killings are practiced systematically and they are typically incited
and approved by top leaders of government.” The simulated data have 1445 experts coding
some subset of 26,120 country-years, following the same pattern of the actual experts; true values
reflect trends in the data. We vary three aspects of the simulated data: (1) the distribution of the
true values, (2) the DGP that converts these values into ratings, and (3) the degree of DIF and
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variation in expert reliability.2 We then analyze the performance of different methods for aggre-
gating expert-coded data in each of the eight possible combinations of these four aspects (two
true value distributions × two models × two levels of variation). We replicate the simulations
thrice to ensure the robustness of our results.

Most expert-coded variables in the V–Dem dataset have a structure similar to “Freedom from
political killings,” the variable we use as the basis for our simulation analyses. The results are thus
generalizable to other V–Dem variables and, more broadly, relatively sparse expert-coded data on
a Likert scale. More saturated expert-coded data (e.g., data with more than five experts per obser-
vation) would likely have less variation in technique performance (Marquardt and Pemstein,
2018; Lindstädt et al., 2020).

2.1 Distribution of true values

We analyze simulations with two different distributions of true values. The first, normally distrib-
uted, matches traditional latent variable modeling assumptions about the underlying data struc-
ture (Figure 1, left). For these data, we estimate true country-year values by taking the normalized
mean of expert codings for each country-year, weighted by expert self-reported confidence to
increase data specificity.

The second, uniformly distributed, follows Lindstädt et al. (2020) in assuming a truncated uni-
form distribution (Figure 1, right). To approximate this distribution while maintaining an eco-
logically valid structure, we convert the scale to the range (−2, 2) by centering the values at
the mid-point (three). We then estimate true country-year values by taking the median of expert
codings for each country-year, shifting non-integer values away from the center of the scale (e.g.,
if the country-year median is 3.5, we assign the country-year a true value of four). This procedure
creates true values that are a hard case for models which assume central tendencies in the
distribution of true values (e.g., the latent variable models we use here), weakly following
the assumption of Lindstädt et al. (2020) that truncation occurs at the extremes.

2.2 Models for converting true values to observed ratings

We model the process by which experts convert true values to ratings in two ways: A–M scaling,
as in Equation 1; and an IRT model, as in Equation 2. To standardize the assumptions of the IRT
model with those of A–M scaling, we model experts in the IRT context as having both a consist-
ent linear trend in their scale perception and idiosyncratic variation in their thresholds.3

Fig. 1. Distribution of true values for simulation studies with normally and uniformly distributed underlying data.

2Online Appendix D provides further information on coding structure and simulation algorithms.
3A–Mmodels may underperform hierarchical IRT when simulated data assume that DIF is highly non-linear. See analyses

of simulated data with a truncated-uniform DGP in online Appendix E and Marquardt and Pemstein (2018, Appendix C).
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In contrast to Marquardt and Pemstein (2018), we assume that there is no hierarchical clus-
tering of simulated DIF.4 These simulated data therefore present a harder case for models that
include hierarchical clustering.

2.3 Level of DIF and variation in expert reliability

We conduct analyses of simulated data in which error variation (in the form of both DIF and
variation in expert reliability) is at low and high levels. Although the first scenario (low DIF
and reliability variation) is perhaps optimistic, the second scenario is nightmarish, with DIF
often spanning the range of true values.

3. Simulation results
We use the previously described methods for aggregating expert-coded data—MpSD, BAvg,
BMed, and latent variable models with hierarchical structures—to recover latent values from
the simulated data.5 We assess performance with two metrics. First, the mean square error
(MSE) of point estimates from the true values provides a measure of the degree to which a
given method yields estimates close to the truth.6 Second, the proportion of 95 percent highest
posterior/bootstrap density intervals that cover the true values (credible region coverage, CRC)
allows us to assess the degree to which measures of uncertainty provide appropriate coverage.
Better methods have lower MSE and higher CRC.7

3.1 Normally distributed true values

Figure 2 presents the results of our simulation studies with low error variation and normally dis-
tributed true values. In the figure, the top row represents estimates from simulated data that use an
IRT DGP, the bottom an A–M DGP. The left column presents MSE; the right CRC. Within each
cell, rows represent different families of models (IRT, BMed, BAvg, and A–M). Within the IRT and
A–M families, different shades and shapes represent different DIF clustering structures. Dark gray
circles represent models without any hierarchical clustering of DIF, light gray triangles models with
two levels of clustering (i.e., at the universal and main-country-coded level). Each point illustrates
results from a simulation and thus overlapping simulation estimates are darker. Vertical lines
represent estimates from the MpSD approach, which we provide as a benchmark for MSE estimates.

The figure reveals four clear findings. First, MpSD, BAvg, and hierarchical latent variable mod-
els perform similarly in terms of MSE, regardless of simulated DGP. Second, CRC is higher for
hierarchical latent variable models than BAvg, with hierarchical A–M and IRT again performing
similarly. Third, non-hierarchical IRT and A–M models underperform their hierarchical equiva-
lents in terms of MSE. Fourth, BMed underperforms both hierarchical latent variable models and
BAvg in both MSE and CRC; this poor performance is particularly pronounced when the simu-
lated data are the result of an IRT DGP.

Figure 3 presents results from analyses of simulated data with high error variation. In these cases,
hierarchical latent variable models outperform all other models in terms of both MSE and CRC, and
there is little difference betweenhierarchicalA–Mand IRTmodels. BMed also performsworse than all
models (save non-hierarchical IRT models in A–M-simulated data) in terms of MSE.

4Online Appendix F contains analyses of simulated data with hierarchical DIF.
5Online Appendix D provides further details on these procedures; we use Stan (Stan Development Team, 2018) to estimate

posterior draws for the latent variable models.
6For latent variable models, we use the posterior median as the point estimate; similarly, we use the median over boot-

strapped draws for BAvg and BMed. We normalize at each draw of the latent variable models and BAvg, while we center
each draw of the bootstrapped median at zero.

7Posterior estimates of uncertainty are as important as the point estimate when interpreting trends over time and space.
There is also evidence that incorporating this uncertainty in applied regression analyses can yield more accurate estimates of
relationships between latent variables and outcomes of interest (Marquardt, 2020).
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Cumulatively, these results indicate that hierarchical latent variable models perform similarly
or better than other models in terms of both MSE and CRC when the true values are normally
distributed, and the difference between hierarchical IRT and A–M algorithms is slight. The rela-
tively poor performance of non-hierarchical models (in particular, IRT models) is likely a com-
putational issue due to sparse data. The BMed results indicate that it is a problematic method for
aggregating expert-coded data with normally distributed true values.

3.2 Uniformly distributed true values

We replicate the preceding analyses using simulated data in which the true values are uniformly
distributed (online Appendix H). The results largely align with those for simulated data with nor-
mally distributed true values, with two main exceptions. First, in line with Lindstädt et al. (2020),
BMed slightly outperforms other models in terms of MSE when the DGP is A–M and error vari-
ation is low. BMed otherwise performs poorly, as in the preceding analyses. Second, hierarchical
A–M models perform worse than their IRT counterparts in terms of CRC in this context,
although both models again perform similarly in terms of MSE.

3.3 Simulation summary

Overall, the simulation studies demonstrate the following:

(1) Non-hierarchical latent variable models never outperform their hierarchical
counterparts.

Fig. 2. Results from simulation studies with normally distributed true values and low error variation.
Note: Each point represents the relevant statistic, estimated using a given aggregation technique and data from one of three simulated
datasets.
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(2) In most circumstances, the bootstrapped median performs worse than hierarchical latent
variable models, the average and bootstrapped average. It never performs drastically better
than these alternatives.

(3) The average and bootstrapped average perform worse than hierarchical latent variable
models when experts have high levels of measurement error, and never perform drastically
better.

(4) Among hierarchical latent variable models, A–M models generally perform similarly to
their IRT counterparts, although in certain circumstances their CRC is worse.

We therefore conclude that hierarchical latent variable models are the most robust method for
recovering true values from expert-coded data, with some evidence that IRT models may be
the safest in terms of coverage.

4. Empirical application: freedom from political killings
Despite the unambiguous simulation results, it is still unclear to what extent the greater robust-
ness of hierarchical latent variable models substantively matters. We therefore investigate the
importance of aggregation technique for descriptive analysis, an essential element of the social
science enterprise (Gerring, 2012), as well as a common use for expert-coded data.8

Specifically, we use different techniques to aggregate expert-coded data on freedom from political
killings, the V–Dem variable we use as the basis for our simulation studies.

Fig. 3. Results from simulation studies with normally distributed true values and high error variation.
Note: Each point represents the relevant statistic, estimated using a given aggregation technique and data from one of three simulated
datasets.

8As of spring 2020, users had made over 3.5 million descriptive graphics using the V–Dem online data interface alone
(Lührmann et al., 2020).
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As one of the most severe forms of repression which a state can practice, political killings are
an inherently important phenomenon; they are also particularly well-suited for expert coding
since accurate coding requires both conceptual and contextual knowledge. Moreover, academic
research has used this specific V–Dem variable to validate other indices (Fariss, 2017), while pol-
icymakers have used it to both assess the phenomenon directly and construct higher-level indices
(Skaaning, 2019). The descriptive accuracy and precision of this indicator is thus of importance to
a variety of communities.

We analyze the importance of aggregation technique at three levels, focusing on four techni-
ques: MpSD, the traditional method for aggregating expert-coded data; BMed, the technique
Lindstädt et al. (2020) advocate; and hierarchical A–M and IRT models, the best-performing
techniques from the simulation analyses.9

Figure 4 illustrates high-level trends in the data: the relationship between democracy and freedom
from political killings, with Polity IV combined scores proxying democracy (Marshall and Jaggers,
2016). All aggregation techniques show similar patterns: freedom from political killings tends to
be greater in more democratic societies (those with higher Polity values), although as the literature
predicts the relationship is non-linear (Davenport and Armstrong, 2004; Jones and Lupu, 2018).
However, differences between aggregation techniques are also apparent. In particular, BMed tends
to indicate more extreme changes across democracy levels than other aggregation techniques.

Figure 5 provides pairwise comparisons of how different aggregation techniques describe
trends in political killings in Turkey over time. Points represent point estimates from a given tech-
nique, while vertical lines represent 95 percent confidence intervals or credible regions. Again, all
aggregation techniques show similar trends in freedom from political killings. At the same time,
there is substantial variation in how these techniques show these trends. MpSD shows extremely
high levels of uncertainty about change over time (left cell). BMed has lower levels of uncertainty
about these trends, but lacks nuance: for example, although MpSD shows a gradual increase in
freedom from political killings between 1980 and 2001, BMed shows only a jump in 1990
(left cell). IRT and A–M show very similar point estimates and the lowest levels of uncertainty
about these estimates (right cell). However, in line with the simulation evidence of greater
CRC for IRT, there is slightly more uncertainty about the IRT estimates.

These analyses indicate that there is substantial variation in how different aggregation techni-
ques describe political killings, especially when comparing latent variable models to MpSD and

Fig. 4. Trends in freedom from political killings over levels of democracy.
Note: Higher values indicate greater freedom from political killings on a zero-centered scale. Points represent point estimates from dif-
ferent aggregation techniques, and lines locally estimated smoothing regressions.

9Online Appendix B contains additional analyses.
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BMed. Although MpSD produces similar estimates to the latent variable models in the applica-
tion, it is marked by extremely high levels of uncertainty that makes substantive claims about
trends difficult. Results regarding BMed are starker, demonstrating that BMed diverges to the
greatest extent from other estimates. The simulation studies demonstrate that, in the case of
such divergence, BMed is likely to be less accurate than the other aggregation techniques.
Together, the simulation and empirical analyses suggest that BMed is the worst of both worlds,
combining higher MSE with a lack of nuance.10

5. Conclusion
There is increasing evidence that simple summary statistics can perform poorly as point estimates
for cross-national expert surveys. In particular, the use of these statistics largely sweeps the ques-
tion of measurement error under the rug. We put these concerns front and center, and provide a
framework for incorporating such error into downstream analyses. We do so by simulating
ecologically valid expert-coded data, using different DGPs and levels of expert error. We then
investigated the degree to which different models—ranging from simple summary statistics to
computationally intensive latent variable models—recover the simulated true values and provide
reasonable CRC. We conclude by demonstrating that aggregation technique can have important
substantive implications for descriptive analyses.

The main implication of our analyses is that summary statistics—be they the average or espe-
cially the median—are not robust to different forms of measurement error in the context of
expert-coded data. Instead, researchers should aggregate expert-coded data using hierarchical
latent variable models; IRT models are a particularly safe technique. To that end, our replication
dataset contains code to implement all the models discussed here using the statistical software
Stan (Stan Development Team, 2018).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2021.39.
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