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Abstract

Let T be a bounded linear operator acting on a Hilbert space H. The B-Wey! spectrum of T is the set
opw(T) of all A € C such that T — AJ is not a B-Fredholm operator of index 0. Let E(T) be the set
of all isolated eigenvalues of T. The aim of this paper is to show that if T is a hyponormat operator,
then T satisfies generalized Weyl’s theorem o w(T) = o (T)\E(T), and the B-Weyl spectrum ogw(T)
of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of
operators satisfying generalized Weyl’s theorem.
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1. Introduction

Let X be a Banach space and let L(X) be the Banach algebra of bounded linear
operators acting on a Banach space X. For T € L(X), we denote by N(T) the null
space of T, by a(T) the nullity of T, by R(T) the range of T and by 8(T) its defect. If
both ¢ (T) and B(T) are finite, then T is called a Fredholm operator and the index of T
is defined by ind(T) = a(T) — B(T). In this case it is well known that the range R(T)
of T is closed in X. Now for each nonnegative integer n define 7, to be the restriction
of T to R(T") viewed as a map from R(T") into R(T") (in particular Ty = T). If for
some n the space R(T") is closed and 7, is a Fredholm operator, then T is called a
B-Fredholm operator [2, Definition 2.2]. In this case, by [2, Proposition 2.1], 7,, is a
Fredholm operator and ind(7,,) = ind(T,) for each m > n. This remark leads to the
following definition:
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DEFINITION 1.1. Let T € L(X) be a B-Fredholm operator and let n be any integer
such that T, is a Fredholm operator. Then the index ind(T) of T is defined as the
index of the Fredholm operator 7,.

In particular if T is a Fredholm operator we find the usual definition of the index.

Let B F(X) be the class of all B-Fredholm operators. In [2] the first author studied
this class of operators and proved [2, Theorem 2.7] that an operator T € L(X) is a
B-Fredholm operator if and only if T = Q @ F, where Q is a nilpotent operator and
F is a Fredholm operator.

It is apparent from [6] that the concept of Drazin invertibility plays an important
role for the class of B-Fredholm operators. If A is an algebra with a unit 1, following
[16] we say that an element x of A is Drazin invertible if there is an element b of A
and a nonnegative integer k such that

(1) x*bx =x*, bxb=1b, xb=bx.

Recall that the concept of Drazin invertibility was originally introduced by Drazin in
[9] where elements satisfying relation (1) are called pseudo-invertible elements. The
Drazin spectrum of a € A is defined by

op{a) = {A € C:a— Al isnot Drazin invertible}.

In the case of a bounded linear operator T acting on a Banach space X, it is well
known that T is Drazin invertible if and only if it has a finite ascent and descent
(Definition 2.1); this is also equivalent to the fact that T = U @ V, where U is an
invertible operator and V is nilpotent. (See [16, Proposition 6] and [12, Corollary 2.2].)
In {6, Theorem 3.4] it is shown that T is a B-Fredholm operator if and only if its
projection in the algebra L(X)/Fy(X) is Drazin invertible, where Fy(X) is the ideal
of finite rank operators in the algebra L(X) of bounded linear operators acting on X.
In [4], B-Weyl operators and B-Weyl spectrum were defined as follows:

DEFINITION 1.2. Let T € L(X). Then T is called a B-Weyl operator if it is a
B-Fredholm operator of index O; the B-Weyl spectrum opw(T) of T is defined by
ogw(T) = {x € C: T — Al is not a B-Weyl operator}.

In the case of anormal operator T acting on a Hilbert space H, the first author proved
in (4, Theorem 4.5] that opw(T) = o (T)\E(T), where E(T) is the set of all isolated
eigenvalues of T, which gives a generalization of the classical Weyl’s theorem. Recall
that the classical Weyl’s theorem [18] asserts that if T is a normal operator acting on a
Hilbert space H, then the Weyl spectrum ow(T) is the set of all points in o (T) except
the isolated eigenvalues of finite multiplicity, that is ow(7T) = o (T)\Eo(T), where
Eo(T) is the set of isolated eigenvalues of finite multiplicity, and ow(7T) is the Weyl
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spectrum of T, that is, the set of all A € C such that A] — T is not a Fredholm operator
of index 0.

In his paper [1], Barnes considered version II of Weyl’s theorem (called also
Browder’s theorem in [8]):

What conditions on T imply that T satisfies ow(T) = o (T)\ I1o(T), where I15(T)
is the set of poles of the resolvent of T of finite rank?

Recall that an isolated point A of the spectrum o (T) of T is a pole of the resolvent
of T of finite rank if the spectral projection associated to the set {A} is of finite rank.

In [5] it is shown that if T satisfies generalized Weyl’s theorem opw(T) =
o (T)\E(T), then it satisfies Weyl’s theorem oy (T) = o (T)\ E¢(T), and if it satisfies
version II of generalized Weyl’s theorem, opw(T) = o (T)\II(T), then it satisfies
version II of Weyl’s theorem, ow(T) = o (T)\I(T), where I1o(T) is the set of the
poles of the resolvent of T of finite rank.

The aim of this paper is to consider generalized Weyl’s theorem for hyponormal
operators and to consider finite rank commuting perturbations for operators satisfying
generalized Wey!’s theorem. In the second section we show that if T is a hyponormal
operator acting on a Hilbert space H, then T satisfies generalized Weyl’s theorem
ogw(T) = o (T)\E(T) and the B-Weyl spectrum oy (T) of T satisfies the spectral
mapping theorem.

Moreover, if f is an analytic function defined on a neighbourhood of the spectrum
o(T) of T, then we show that f(T) satisfies generalized Weyl’s theorem, that is
osw(f(T)) = o (f (TH\E(f(T)). An analoguous result was obtained in the case of
Weyl’s spectrum by Oberai in [15], W. Y. Lee and S. H. Lee in [14], respectively in
the case where f is a polynomial or f is an analytic function.

In the third section we consider an operator T satisfying Weyl’s theorem, a finite
rank operator F, and we give a necessary and sufficient condition for T + F to satisfy
Weyl’s theorem. This result gives an improvement of Oberai’s result [15, Theorem 4].

Moreover, if T satisfies generalized Weyl’s theorem and F commutes with T,
we give a necessary and sufficient condition for T + F to satisfy generalized WeyI’s
theorem. Furthermore we show that generalized Weyl’s theorem holds for T+ F when
T is an isoloid or a quasinilpotent operator satisfying generalized Weyl’s theorem and
F is a finite rank operator commuting with 7.

2. Generalized Weyl’s theorem for hyponormal operators

First we recall the following definition:

DEFINITION 2.1. Let T € L(X), n € N and let
c(T) = dim R(T")/R(T™"), . (T) =dimN(T™")/N(T").
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Then the descent of T is defined by

8(T) = inf{n : c,(T) = 0} = inf{n : R(T") = R(T™*")},
and the ascent of T is defined by

a(T) = inf{n : ¢ (T) =0} = inf{n : N(T") = N(T™),
with inf @ = o0.

For T € L(X), let o3p(T) = {A € C: T — Al is not a B-Fredholm operator} be
the B-Fredholm spectrum of T and pgr(T) = C\ 0p(T) the B-Fredholm resolvent
setof T.

DEFINITION 2.2. Let T € L(X). We will say that T is of stable sign index if for
each A, u € pgr(T), ind(T — AI) and ind(T — wI) have the same sign.

Recall that an operator T € L(H) on a Hilbert space H is hyponormal if
™*T-TT*>0.

PROPOSITION 2.3. Let H be a Hilbert space and let T € L(H) be a hyponormal
operator. Then T is of stable sign index.

PROOF. Let T be a hyponormal operator. Then for all x € H we have || Tx|? >
IT*x||%2. So N(T) € N(T*) = R(T)*. Since N(T*)/N(T) >~ N(T) N R(T), then
N(T? = N(T). Moreover, if T is also a B-Fredholm operator, then there exists an
integer n such that R(T") is closed and such that 7, : R(T") — R(T") is a Fredholm
operator. We have

ind(T) = ind(7,) = dim N(T) N R(T") — dim R(T")/R(T™*")
= —dim R(T")/R(T"*").

Soind(T) < 0.

Further, if A € pgr(T), then T — LI is a B-Fredholm operator, and 7 — A[ is also
a hyponormal operator. From the preceding argument, we have ind(T — AI) < 0.
Therefore T is of stable sign index. O

THEOREM 2.4. Let X be a Banach space, let T € L(X) be of stable sign index and

let f be a function analytic in a neighbourhood of the usual spectrum o (T) of T.
Then f(ogw(T)) = ogw(f(T)).
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PROOF. If A ¢ ogw(f(T)), then f(T) — Al is a B-Fredholm operator of index 0.
So we can write f(T) — Al = (T — uI)--- (T — u,1)g(T), where iy, ..., W, are
complex scalars and g is an analytic function nonvanishing on the spectrum o (T)
of T. In particular g(T) is invertible. Since f(T) — Al is a B-Fredholm operator,
from [2, Theorem 3.4] it follows that foreach i, 1 < i < r, T — ;I is a B-Fredholm
operator. Moreover, since ind(f(T) — AI) = 0 and T is of stable sign index, then
from [4, Theorem 3.2] we have for each i, 1 < i < r, ind(T — u;I) = 0. So for
eachi,1 <i<r, u; ¢ ogw(T). If L € f(opw(T)), there exists u € ogw(T) such
that A = f(u). Hence

O=fu)—A=(u—pm)- - (u—p)g).

This implies that © € {uy,..., u,}. So there exists i, 1 < i < r, such that u; €
ogw(T), and this is a contradiction. Hence A ¢ f(ozw(T)).

Conversely suppose that A ¢ f(ogw(T)). If A € ogw(f(T)) then A € o (f(T)) =
f(o(T)). Hence there exists i € o (T) such that A = f(u). We have

(D) =2 =f(T)— fw)I =(T — 1)+ AT — u, g(T),

where uy, ..., i, are complex scalars and g is an analytic function nonvanishing
on the spectrum o(T) of T. Since f(T) — Al is not a B-Fredholm operator of
index 0, from [2, Theorem 3.4] and [4, Theorem 3.2] there exists « € {w1, ..., i,}
such that T — «f is not a B-Fredholm operator of index 0. So A = f(a) and
A € f(opw(T)). This contradicts our assumption. Consequently, A ¢ ozw(f(T)) and
flosw(T)) = agw(f(T)). a

Since a hyponormal operator is of stable sign index, we have immediately the
following corollary.

COROLLARY 2.5. Let H be a Hilbert space, let T € L(H) be a hyponormal operator
and let f be a function analytic in a neighbourhood of the usual spectrum o (T) of T.

Then f(aw(T)) = opw(f(T)).

It is proved in [4, Theorem 4.5] that a normal operator acting on a Hilbert space H
satisfies generalized Weyl’s theorem ogw(T) = o (T)\E(T). In the following theo-
rem, we extend this result to the case of a hyponormal operator.

THEOREM 2.6. Let H be a Hilbert space and let T € L(H) be a hyponormal
operator. Then T satisfies generalized Weyl’s theorem agw(T) = o (T)\E(T).

PROOF. If A € 0(T) and A ¢ ogw(T), then T — Al is a B-Fredholm operator of
index 0. From {4, Lemma 4.1], there exist two closed subspaces M, N of H such that
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H=M®N,and T — Al = U® V with U = (T — Al)y a Fredholm operator of
index 0 and V = (T — Al)\y a nilpotent operator. .

Let S = Ty and Iy, = Iy. Since T is a hyponormal operator, then S is also a
hyponormal operator and § — Al = U is a Fredholm operator of index 0.

If X € 0(S), since S is a hyponormal operator, from [7, Theorem 3.1} we have
ow(S) = g (SH\Eo(S). As A ¢ ow(S) we have A € Ey(S). In particular, A is isolated
ino(S). Since T —Al = U® V = (§—Aly)® V,and V is a nilpotent operator, we
have o (U)\{0} = o (T — AI)\{0}. Therefore O is isolated in o (T — A1) or equivalently
A s isolated in o (T). As A € Eo(S) then A € E(T).

If A ¢ 0(S), then T — A[ is Drazin invertible, and A is isolated in o (T). Since
T — X1 is not invertible, we have A € E(T).

Conversely, if A € E(T), then A is isolated in o(T). From [11, Theorem 7.1] we
have X = M & N, where M, N are closed subspaces of X, U = (T — AlI)y is an
invertible operator and V = (T — Al)y is a quasinilpotent operator. Since T is a
hyponormal operator, then V is also a hyponormal operator. As V is quasinilpotent,
from {17, Chapter XI, Theorem 5.1] we have V = 0. Therefore T — LI is Drazin
invertible. By [4, Lemma 4.1] T — Al is a B-Fredholm operator of index 0. a

Now we consider a Hilbert space H, an operator T € L(H), and a function f
analytic in a neighbourhood of the spectrum o (T) of T. In [14] it has been proved
that if T is a hyponormal operator, then Wey!’s theorem holds for f(T). We prove now
that generalized Wey!’s theorem holds also for f(T). We begin with the following
lemma.

LEMMA 2.7. Let X be a Banach space and let T € L(X). Then
o(f(MN\E((T) C flo(D\E(T)].

PROOF. If A € o (f(T)\E(f(T)) then X € o (f(T)) = f(o(T)).

(a) If A is not isolated in f (o (T)), then there exists an infinite sequence (t,),en C
o(T) such that f(u,) — A. Since o(T) is compact, we may assume that (f4,)neN
converges to o in o (T). It follows that wg is not isolated in o (T) and A = f(ug) -
Hence A € f [o (T)\E(T)].

(b) Now suppose that A is isolated in f(o(T)). Since A ¢ E(f(T)), then X is not
an eigenvalue of f(7). We can write

(T = Al =(T =Dy - (T — ., g(T),

where w,, ..., u, are complex scalars and g(T) is an invertible operator. As A ¢
E(f(T)),thenforall u € {u,, ..., u,}, u is not an eigenvalue of 7. Since f(T) — Al
is not invertible, there exists u € {gy, ..., .} such that T — ul is not invertible.
Hence f(u) = xand X € f[o(T)\E(T)]. a
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DEFINITION 2.8 (See [15]). Let X be a Banach space. An operator T € L(X) is
said to be an isoloid if isoo (T) € E(T), where iso o (T) is the set of isolated points
ino(T).

LEMMA 2.9. Let X be a Banach space and let T € L(X). If T is an isoloid, then
o(F(MN\E( (D) = flo(T)\E(T)].

PROOF. Let us prove that f [0 (T)\E(T)] C o (F(T)\E(F(T)). If A € o (F(T)) N

E(f(T)),then f(T)—AI = (T —u I)™ --- (T — . 1)™g(T), where my, ..., m, are
integers, w1, ..., 4, are complex scalars, g(T) is an invertible operator, and p; # u;
for i # j. Since f(T) — Al is not invertible, there exists u € {uq,..., &} such

that u € o(T). Since X is isolated in o (f(T)), w is isolated in o (T). Hence

A= f(u) ¢ flo(D\E(T)]. Therefore f [0 (T\E(T)] C o (f(TH\E(f(T)). From
Lemma 2.7 we know that o (f (T))\E(f(T)) C flo(T)\E(T)]. Hence

o(F(M\E((T)) = f o (D\E(T)]- a

THEOREM 2.10. Let X be a Banach space, let T € L(X) be an isoloid operator
which satisfies generalized Weyl’s theorem, let f be a function analytic in a neighbour-
hood of the spectrum o (T) of T. Then generalized Weyl’s theorem holds for f(T) if
and only if f(osw(T)) = opw(f(T)).

PROOF. Since T is an isoloid, o (f(T)I\E(f(T)) = flo(THO\E(T)]. More-
over, as generalized Weyl’s theorem holds for T, opw(T) = o(T)\E(T). Hence
fopw(D)) = f[o(TI\E(T)] = o (f(T)\E(f(T)). So generalized Weyl’s theorem
holds for f(T) if and only if f(cpw(T)) = osw(F(T)). O

COROLLARY 2.11. Let H be a Hilbert space, let T € L(H) be a hyponormal
operator and let f be a function analytic in a neighbourhood of the spectrum o (T) of
T. Then f(T) satisfies generalized Weyl’s theorem ogw(f(T)) = o (f (T))\E (f(T)).

PROOF. A hyponormal operator on a Hilbert space satisfies generalized Weyl’s
theorem and it is well known that a hyponormal operator is an isoloid. Moreover,
from Theorem 2.4 we have 03w (f(T)) = f(osw(T)). From Theorem 2.10, it follows
that f(T) satisfies generalized Weyl’s theorem. O

3. Finite rank perturbation and generalized Weyl’s theorem

In this part we consider an operator T satisfying generalized Weyl’s theorem and
a finite rank operator F commuting with 7, and we give a necessary and sufficient
condition for T + F to satisfy generalized Weyl’s theorem. Moreover, we obtain
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similar results as those obtained in the case of Weyl’s theorem in [10, 13] and [15].
We begin with the case of Weyl’s theorem and we give an improvement of Oberai’s
Theorem [15, Theorem 4].

THEOREM 3.1. Let X be a Banach space and let T € L(X). If T satisfies Weyl’s
theorem and F is a finite rank operator in L(X), then T + F satisfies Weyl’s theorem
if and only if T1o(T + F) = Eo(T + F).

PROOF. If T + F satisfies Weyl’s theorem, then from [1, Corollary 5], we have
[o(T + F) = Eo(T + F). Conversely if [1o(T + F) = Eo(T + F), since T satisfies
Weyl’s theorem, then from [1, Corollary 5] we have Eo(T) = I1o(T). Since F is
a finite rank operator, from [4, Theorem 4.3] we have ow(T + F) = ow(T). If F
commutes with 7, we have also og(T + F) = 03(T), where o3(T) is the Browder
spectrum of T (see [1]). Since T satisfies Weyl’s theorem, then ow(T + F) =
ow(T) = 05(T) = o5(T + F). As we have I1y(T + F) = Eo(T + F), then from [1,
Corollary 5], T + F satisfies Weyl’s theorem. If F does not commute with T, then
we use the same argument as Oberai in [15, Theorem 4]. O

THEOREM 3.2. Let X be a Banach space and let T € L(X). If T satisfies general-
ized Weyl’s theorem and F is a finite rank operator in L(X) commuting with T, then
T + F satisfies generalized Weyl’s theorem if and only if TI(T + F) = E(T + F).

PROOF. If T+ F satisfies generalized Weyl’s theorem, then from [3, Corollary 2.6],
we have II(T + F) = E(T + F). Conversely if [1(T + F) = E(T + F), since T
satisfies generalized Weyl’s theorem, then osw(T) = op(T). Since F is a finite rank
operator, from [4, Theorem 4.3] we have opw(T) = gsw(T + F). As F commutes
with T, from [3, Theorem 2.7] we have 05(T) = op(T + F). So ogw(T + F) =
op(T + F). Since II(T + F) = E(T + F), then from [3, Corollary 2.6] T + F
satisfies generalized Weyl’s theorem. a

The following lemma is useful in the proof of the next two theorems.

LEMMA 3.3 ([13, Lemma 2.1]). Let T € L(X). If F € L(X) is a finite rank
operator, thendim N (T) < o0 <= dim N(T + F) < 00. Moreover, if F commutes
with T, then . € acca(T) <= A € acco(T + F), where acc a(T) is the set of the
accumulation points of o (T).

THEOREM 3.4. Let T € L(X) be an isoloid operator and F € L(X) be a finite rank

operator commuting with T. If T satisfies generalized Weyl’s theorem, then T + F
satisfies generalized Weyl's theorem.
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PROOF. In view of Theorem 3.2 it is enough to show that [1(T + F) = E(T + F).
Since [1(T + F) C E(T + F) is always true, we only have to prove that [1(T + F) D
E(T+ F).

If A € E(T + F), then A is isolated in o(T + F) and according to Lemma 3.3,
A is isolated in o(T). Since T satisfies generalized Weyl’s theorem, it follows that
A € E(T) = II(T). Finally since I1(T) = [I(T + F) wehave A e II(T + F). O

REMARK 3.5. Let T € L(X). If T has no eigenvalues, then T satisfies generalized
Weyl’s theorem. To prove this, assume that A € o(T); for simplicity assume A = 0.
If 0 ¢ ogw(T), then T is a B-Fredholm operator of index 0. Hence there is an
integer n, such that R(7T™") is closed and ind(T) = ind(7;,) = dim N(T) N R(T") —
dim R(T")/R(T™') = 0. Since N(T) = 0, then R(T") = R(T"*') and then
X = R(T). So T is invertible, and this is a contradiction with our hypothesis. Hence
ogw(T) = o(T) and T satisfies generalized Weyl’s theorem.

PROPOSITION 3.6. Let X be a Banach space and let T € L(X). If T satisfies gen-
eralized Weyl’s theorem and N is a finite rank nilpotent operator in L(X) commuting
with T, then T + N satisfies generalized Weyl’s theorem.

PROOF. Let us prove that if A is an eigenvalue of T then A is also an eigenvalue of
T + N. We may assume that A = 0. Then there exists x # 0 and m € N such that
Tx =0and N™ = 0. We have

m

T+ N)"x = m) TEN™x = 0.
( ) ; ( L

So there exists p € N, p < m, such that (T + N)?x # 0 and that (T + N)(T +
N)?x = 0. Hence O is an eigenvalue of T+ N and E(T) C E(T + N). By symmetry
we have E(T) = E(T + N). If > € opw(T), then T — LI is B-Fredholm of index 0.
From [4, Proposition 3.3], since N is of finite rank, it follows that T + N — X[ is
also a B-Fredholm operator of index 0. So A ¢ ozw(T + N). By symmetry we have
ogw(T + N) = ogw(T). Since 6 (T + N) = o(T), then T + N satisfies generalized
Weyl’s theorem. O

EXAMPLE 1 ([15, Example 2]). Let H = €, and let T and N in L(H) be defined
by

T(X|,x2,x3,...) = (01x1/29x2/3v"')1
N(XI,XZ,X3,...) = (09 —x1/2,0,0,...).

Since T has no eigenvalues, from the Remark 3.5 the operator T satisfies generalized
Weyl’s theorem. So from [5, Theorem 3.9] T satisfies also Weyl’s theorem. Also N
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is a nilpotent operator of finite rank. But from [15, Example 2], the operator T + N
does not satisfy Weyl’s theorem and so from [5, Theorem 3.9] it does not satisfy
generalized Wey!’s theorem either. This example shows that Proposition 3.6 may not
hold if N does not commute with T.

REMARK 3.7. Let T € L(X) be a quasinilpotent operator and F € L(X) be a finite
rank operator commuting with 7. If T is injective then F is nilpotent. To see this,
and under these conditions, T F is a finite rank quasinilpotent operator, therefore T F
is a nilpotent operator. As T is injective, then F is also a nilpotent operator.

THEOREM 3.8. Let T € L(X) be a quasinilpotent operator and F € L(X) a finite
rank operator commuting with T. If T satisfies generalized Weyl’s theorem, then
T + F satisfies generalized Weyl’s theorem.

PROOF. If T is injective, then by Remark 3.7, F is a nilpotent operator and the
result follows from Proposition 3.6.

Suppose T is not injective. Since T satisfies generalized Weyl’s theorem, then by
[S, Theorem 3.9 ], T also satisfies Weyl’s theorem. Hence ow(T) = o (T) \ Eo(T).
As T is a quasinilpotent operator, then ow(T) = {0}. It follows that Eo(T) = @
and, since T is not injective, dimN(7) = oco. This implies by Lemma 3.3 that

dimN(T + F) = oo. Itis easily seen that (T + F) = o(F) = {0, A, ..., M)y
where X;, i = 1, ..., k, are the non-zero scalars of the spectrum of F when they exist.
We have also E(T + F) = {0, Ay, ..., At}

Since

osw(T) = 0opw(T + F) and ogw(T) =0o(T)\ E(T) =9,
we have ogw(T + F) =o(T + F)\ E(T + F). O

LEMMA 3.9. Let T € L(X), let X = M @ N where M, N are two closed subspaces
of X, and let U = Ty, V = Tiy. If T is a B-Fredholm operator, then U, V are
B-Fredholm operators.

PROOF. Let us prove that V is a B-Fredholm operator. Let P be the projection of
X onto N along M. Clearly P is a B-Fredholm operator and commutes with T. Then
by [6, Corollary 3.5], T P is a B-Fredholm operator. Consequently there is an integer
n such that R((T P)") is closed and (T P), : R((TP)") —> R((TP)") is Fredholm.

Since R((TP)") = R(V") and (T P), = V,, then V is a B-Fredholm operator. O

EXAMPLE 2. Let § be an injective quasinilpotent operator which is not nilpotent on
the Hilbert space £,. We define Ton £,®¢, by T = I & S where [ is the identity on £;.
It follows easily that o (T) = {0, 1} and E(T) = {1}. Let us prove thatozw(T) = {0}.
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Wehave T —~ (I @ 1) = 08 (S — I) and since S — I is an invertible operator,
T — (I @ I) is a B-Fredholm operator of index 0, and 1 ¢ azw(T).

Suppose that T is a B-Fredholm operator. Then by Lemma 3.9, S is a B-Fredholm
operator. From [2, Theorem 2.7], there exist two closed S-invariant subspaces of £,
M and N suchthat &, = M @ N and S = U@ V where U = Sy is nilpotent and
V = §yv 1s invertible.

If m is a sufficiently large integer, we have U" = Qand S" = U@ V" =0 V™.
Hence o (V™) C o(S™) = {0}. But since V is invertible, we have N = 0 and then
S = U is nilpotent, which contradicts the hypothesis on S. So ozw(7T) = {0} and
opw(T) = o (T)\E(T). Hence T satisfies generalized Weyl’s theorem.

We define the operator K on £, by K (xy,x3,...) = (—x1,0,0,...)and F = K @0
on ¢, ® £,. Then F is a finite rank operator and we have o(T + F) = {0, 1} and
E(T+ F)={0,1}.

As ogw(T + F) = opw(T) = {0}, then T + F does not satisfy generalized Weyl's
theorem.
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