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Abstract

Let T be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of T is the set
aBW(T) of all X e C such that T - XI is not a fl-Fredholm operator of index 0. Let E(T) be the set
of all isolated eigenvalues of T. The aim of this paper is to show that if T is a hyponormal operator,
then T satisfies generalized Weyl's theorem <JBW(T) = a(T)\E(T), and the B-Weyl spectrum aBW(T)
of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of
operators satisfying generalized Weyl's theorem.
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1. Introduction

Let X be a Banach space and let L(X) be the Banach algebra of bounded linear
operators acting on a Banach space X. For T e L(X), we denote by N(T) the null
space of T, bya(T) the nullity of T, by R(T) the range of T and by fi(T) its defect. If
both a(T) and fi(T) are finite, then T is called a Fredholm operator and the index ofT
is defined by ind(7) = ct(T) — fi(T). In this case it is well known that the range R(T)
of T is closed in X. Now for each nonnegative integer n define Tn to be the restriction
of T to R(Tn) viewed as a map from R(Tn) into R(T") (in particular To = T). If for
some n the space R(Tn) is closed and Tn is a Fredholm operator, then T is called a
B-Fredholm operator [2, Definition 2.2]. In this case, by [2, Proposition 2.1], Tm is a
Fredholm operator and ind(7m) = ind(Tn) for each m > n. This remark leads to the
following definition:
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DEFINITION 1.1. Let T e L(X) be a 5-Fredholm operator and let n be any integer
such that Tn is a Fredholm operator. Then the index ind(T) of T is defined as the
index of the Fredholm operator Tn.

In particular if T is a Fredholm operator we find the usual definition of the index.
Let BF(X) be the class of all B-Fredholm operators. In [2] the first author studied

this class of operators and proved [2, Theorem 2.7] that an operator T e L(X) is a
fi-Fredholm operator if and only if T = Q® F, where Q is a nilpotent operator and
F is a Fredholm operator.

It is apparent from [6] that the concept of Drazin invertibility plays an important
role for the class of 5-Fredholm operators. If A is an algebra with a unit 1, following
[16] we say that an element x of A is Drazin invertible if there is an element b of A
and a nonnegative integer k such that

(1) xkbx=xk, bxb = b, xb = bx.

Recall that the concept of Drazin invertibility was originally introduced by Drazin in
[9] where elements satisfying relation (1) are called pseudo-invertible elements. The
Drazin spectrum of a e A is defined by

aD(a) = [X e C : a — XI is not Drazin invertible}.

In the case of a bounded linear operator T acting on a Banach space X, it is well
known that T is Drazin invertible if and only if it has a finite ascent and descent
(Definition 2.1); this is also equivalent to the fact that T = U © V, where U is an
invertible operator and V is nilpotent. (See [16, Proposition 6] and [12, Corollary 2.2].)
In [6, Theorem 3.4] it is shown that T is a B-Fredholm operator if and only if its
projection in the algebra L(X)/F0(X) is Drazin invertible, where F0(X) is the ideal
of finite rank operators in the algebra L(X) of bounded linear operators acting on X.
In [4], 5-Weyl operators and B-Weyl spectrum were defined as follows:

DEFINITION 1.2. Let T e L(X). Then T is called a B-Weyl operator if it is a
fl-Fredholm operator of index 0; the B-Weyl spectrum aBW(T) of T is defined by
OBW(T) = [k e C : T - XI is not a B-Weyl operator}.

In the case of a normal operator T acting on a Hilbert space / / , the first author proved
in [4, Theorem 4.5] that aBW(T) = o-(T)\E(T), where E(T) is the set of all isolated
eigenvalues of 7\ which gives a generalization of the classical Weyl's theorem. Recall
that the classical Weyl's theorem [18] asserts that if T is a normal operator acting on a
Hilbert space / / , then the Weyl spectrum aw(T) is the set of all points in a(T) except
the isolated eigenvalues of finite multiplicity, that is aw{T) = a(T)\E0(T), where
EQ(T) is the set of isolated eigenvalues of finite multiplicity, and aw(T) is the Weyl
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spectrum of T, that is, the set of all A. 6 C such that XI — T is not a Fredholm operator
of index 0.

In his paper [1], Barnes considered version II of Weyl's theorem (called also
Browder's theorem in [8]):

What conditions on T imply that T satisfies o~w(T) = cr(T) \ Ylo(T), where FloCr)
is the set of poles of the resolvent of T of finite rank"?

Recall that an isolated point X of the spectrum a(T) of T is a pole of the resolvent
of T of finite rank if the spectral projection associated to the set {X} is of finite rank.

In [5] it is shown that if T satisfies generalized Weyl's theorem oBW{T) =
a(T)\E(T), then it satisfies Weyl's theorem crw(T) = a(T)\E0(T), and if it satisfies
version II of generalized Weyl's theorem, aBW(T) = a(T)\Tl(T), then it satisfies
version II of Weyl's theorem, crw(T) = a(T)\no(T), where no(T) is the set of the
poles of the resolvent of T of finite rank.

The aim of this paper is to consider generalized Weyl's theorem for hyponormal
operators and to consider finite rank commuting perturbations for operators satisfying
generalized Weyl's theorem. In the second section we show that if T is a hyponormal
operator acting on a Hilbert space H, then T satisfies generalized Weyl's theorem
aBW(T) = a(T)\E(T) and the fl-Weyl spectrum aBW(T) of T satisfies the spectral
mapping theorem.

Moreover, if/ is an analytic function defined on a neighbourhood of the spectrum
a(T) of T, then we show that f(T) satisfies generalized Weyl's theorem, that is
aBW(f(T)) = a(f(T))\E(f(T)). An analoguous result was obtained in the case of
Weyl's spectrum by Oberai in [15], W. Y. Lee and S. H. Lee in [14], respectively in
the case where / is a polynomial or / is an analytic function.

In the third section we consider an operator T satisfying Weyl's theorem, a finite
rank operator F, and we give a necessary and sufficient condition for T + F to satisfy
Weyl's theorem. This result gives an improvement of Oberai's result [15, Theorem 4].

Moreover, if T satisfies generalized Weyl's theorem and F commutes with T,
we give a necessary and sufficient condition for T + F to satisfy generalized Weyl's
theorem. Furthermore we show that generalized Weyl's theorem holds for T+ F when
T is an isoloid or a quasinilpotent operator satisfying generalized Weyl's theorem and
F is a finite rank operator commuting with T.

2. Generalized Weyl's theorem for hyponormal operators

First we recall the following definition:

DEFINITION 2.1. Let T e L(X), n e N and let

cn(T) = dim R(Tn)/R(Tn+i), cn(T) = dim N(Tn+i)/N(Tn).
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Then the descent of T is defined by

S(T) = inf{n : cn(T) = 0} = inf{n : R(Tn) =

and the ascent of T is defined by

a(T) = inf{n : c'n(T) = 0} = inf{n : N(Tn) =

with inf 0 = oo.

For T e L(X), let oBF{T) = [X e C : T - XI is not a B-Fredholm operator} be
the B-Fredholm spectrum ofT and PBF(T) = C \ OBF (T) the B-Fredholm resolvent
set of T.

DEFINITION 2.2. Let T e L(X). We will say that T is of stable sign index if for
each X, ix e PBF(T), ind(7 — A./) and ind(7 — /A/) have the same sign.

Recall that an operator T e L(H) on a Hilbert space H is hyponormal if
r*r- TT* >o.

PROPOSITION 2.3. Let H be a Hilbert space and let T e L(H) be a hyponormal
operator. Then T is of stable sign index.

PROOF. Let T be a hyponormal operator. Then for all x e H we have ||T;c||2 >
||7*x||2. So N(T) c N(T*) = /?(r)x . Since N(T2)/N(T) ~ N(T) n R(T), then
N(T2) = N(T). Moreover, if T is also a B-Fredholm operator, then there exists an
integer n such that R(Tn) is closed and such that Tn : R(T") -> R(T") is a Fredholm
operator. We have

ind(7) = ind(7n) = dim W(7) n R(Tn) - dim R(Tn)/R(Tn+1)

= - dim R(Tn)/R(Tn+l).

Soind(7) < 0.
Further, if X e PBF(T), then T — A./ is a B-Fredholm operator, and T — XI is also

a hyponormal operator. From the preceding argument, we have ind(T — XI) < 0.
Therefore T is of stable sign index. •

THEOREM 2.4. Let X be a Banach space, let T e L(X) be of stable sign index and
let f be a function analytic in a neighbourhood of the usual spectrum a(T) of T.
Thenf(aBw(T))=o-BW(f(T)).
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PROOF. If A. $ <JBW(f(T)), then f(T) - A./ is a B-Fredholm operator of index 0.
So we can write f(T) - kl = (T - AM/) • • • (T - /xrI)g(T), where /Ai, ..., fir are
complex scalars and g is an analytic function nonvanishing on the spectrum cr(T)
of T. In particular g(T) is invertible. Since f(T) — A./ is a B-Fredholm operator,
from [2, Theorem 3.4] it follows that for each i, 1 < i < r, T — /A,7 is a B-Fredholm
operator. Moreover, since ind(f(T) — kl) = 0 and T is of stable sign index, then
from [4, Theorem 3.2] we have for each i, 1 < i < r, ind(T — /x,/) = 0. So for
each i, 1 < i < r, /A, £ crBW(T). If k e f(o-BW(T)), there exists /x e aBW(T) such
that A. = / ( / x ) . Hence

0 = / ( A O - A = (/A - AM) • • • 0* - iu.r)g(iJi).

This implies that /LA 6 {AM, . . . , AAr}- So there exists i, 1 < i < r, such that /A, G
"•flwC^), and this is a contradiction. Hence A ^ f(crBW(T)).

Conversely suppose that k $ f(aBW(T)). If A. e crBW(f(T)) then A. 6 a{f{T)) =
f(a(T)). Hence there exists /A e CT(7) such that A. = /( /x) . We have

f(T) - kl =f(T) - / ( A A ) / = ( r - ml) • • • (T - nrI)g{T),

where fx,u ..., ixr are complex scalars and g is an analytic function nonvanishing
on the spectrum o (7) of T. Since / ( / " ) — A/ is not a B-Fredholm operator of
index 0, from [2, Theorem 3.4] and [4, Theorem 3.2] there exists a e {//.I, • • •, I^A
such that T — al is not a B-Fredholm operator of index 0. So k = / ( a ) and
^ € f(crBW(T)). This contradicts our assumption. Consequently, A. ^ crBW(f(T)) and

•
Since a hyponormal operator is of stable sign index, we have immediately the

following corollary.

COROLLARY 2.5. Let H be a Hilbert space, let T e L(H) be a hyponormal operator
and let f be a function analytic in a neighbourhood of the usual spectrum o~(T) of T.
Thenf(aBW(T))=aBW(f(T)).

It is proved in [4, Theorem 4.5] that a normal operator acting on a Hilbert space H
satisfies generalized Weyl's theorem aBW{T) — a(T)\E(T). In the following theo-
rem, we extend this result to the case of a hyponormal operator.

THEOREM 2.6. Let H be a Hilbert space and let T e L(H) be a hyponormal
operator. Then T satisfies generalized Weyl's theorem aBW(T) = o(T)\E(T).

PROOF. If A. e a(T) and A. £ aBW(T), then T - kl is a fl-Fredholm operator of
index 0. From [4, Lemma 4.1], there exist two closed subspaces M, N of H such that

https://doi.org/10.1017/S144678870000896X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000896X


296 M. Berkani and A. Arroud [6]

H = M © N, and T - XI = U® V with U = (T - XI){M a Fredholm operator of
index 0 and V = (T — XI)^N a nilpotent operator.

Let S = TiM and IM = I\M- Since 7 is a hyponormal operator, then 5 is also a
hyponormal operator and 5 — XI\M = U is a Fredholm operator of index 0.

If A € CT(S), since 5 is a hyponormal operator, from [7, Theorem 3.1] we have
aw(S) — a(S)\E0(S). As A £ o>(S) we have X e E0(S). In particular, X is isolated
in cr(S). Since T — XI = U®V = (S — XI\M) ® V, and V is a nilpotent operator, we
havea(f/)\{0} = CT(7-A/)\{0}. Therefore 0 is isolated in a(T-XI) or equivalently
X is isolated in a(T). As A. e £0(5) then A. e E(T).

If A. £ cr(S), then 71 — A./ is Drazin invertible, and A. is isolated in o(T). Since
T - XI is not invertible, we have A e E(T).

Conversely, if A e E(T), then A is isolated in CT(T). From [11, Theorem 7.1] we
have X = M ® N, where M, N are closed subspaces of X, U = (T — A/)!W is an
invertible operator and V — (T — XI)\N is a quasinilpotent operator. Since T is a
hyponormal operator, then V is also a hyponormal operator. As V is quasinilpotent,
from [17, Chapter XI, Theorem 5.1] we have V = 0. Therefore T - XI is Drazin
invertible. By [4, Lemma 4.1] T — XI is a fl-Fredholm operator of index 0. •

Now we consider a Hilbert space H, an operator T e L(H), and a function /
analytic in a neighbourhood of the spectrum a(T) of T. In [14] it has been proved
that if T is a hyponormal operator, then Weyl's theorem holds for/( T). We prove now
that generalized Weyl's theorem holds also for f(T). We begin with the following
lemma.

LEMMA 2.7. Let X be a Banach space and let T e L{X). Then

a(f(T))\E(f(T)) Cf[cr(T)\E(T)].

PROOF. If A e a(f(T))\E(f(T)) then A e o{f(T)) =f(a(T)).
(a) If A is not isolated \nf(a(T)), then there exists an infinite sequence ([in)n€H C

cr(7) such that/(/xn) -> A. Since a(T) is compact, we may assume that (/u,n)neN

converges to /x0 in c(7) . It follows that /x0 is not isolated in o{T) and A = /(/x0) .
Hence A e f[a(T)\E(T)].

(b) Now suppose that A is isolated in f(a(T)). Since A ̂  E(f{T)), then A is not
an eigenvalue of f{T). We can write

f(T) -kI = (T-u.lI)---(T- iXrl)g(T),

where fit, ..., /xr are complex scalars and gCT) is an invertible operator. As A ^
E(f(T))< t nen for all ,̂ e [fi\,..., /zr), î is not an eigenvalue of T. Since/(T) — A/
is not invertible, there exists /x 6 {/ij, . . . , /xr] such that 7 — ^il is not invertible.

•
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DEFINITION 2.8 (See [15]). Let X be a Banach space. An operator T e L(X) is
said to be an isoloid if isoa(T) c E(T), where isocr(7) is the set of isolated points
incr(r).

LEMMA 2.9. Let X be a Banach space and let T e L(X). If T is an isoloid, then
a(f(T))\E(f(T)) =f[a(T)\E(T)].

PROOF. Let us prove that/ [o(T)\E(T)] C a(f(T))\E(f(T)). If k € cr(/(T)) n
E(f(T)), then/(D - U = {T - JX,/)"" • • • (T- ixrI)

m>g{T), where m, mrare
integers, /X],..., \xr are complex scalars, g(T) is an invertible operator, and /x, ^ /x7

for i ^ j . Since /(7*) — A/ is not invertible, there exists /x e {/xi,..., /xr} such
that ix e cr(T). Since A. is isolated in cr(f(T)), /x is isolated in a(T). Hence
A- =/(/x) ^ / [ a ( T ) \ £ ( D ] . Therefore/[a(r)\£(7)] C a(f(T))\E(f(T)). From
Lemma 2.7 we know that a(f(T))\E(f(T)) C f [a(T)\E(T)]. Hence

a(f(T))\E(f(T)) = f [a(T)\E(T)]. •

THEOREM 2.10. L£f X be a Banach space, let T e L(X) foe an isoloid operator
which satisfies generalized Weyl's theorem, let f be a function analytic in a neighbour-
hood of the spectrum o~(T) of T. Then generalized Weyl's theorem holds for f{T) if
and only iff(aBW(T)) = aBW(f(T)).

PROOF. Since T is an isoloid, a(f(T))\E(f(T)) = f[a(T)\E(T)]. More-
over, as generalized Weyl's theorem holds for T, aBW(T) = a(T)\E(T). Hence
f{cBw{T)) = f [a(T)\E(T)] = a(f(T))\E(f(T)). So generalized Weyl's theorem
holds for / (D if and only if f(aBW(T)) =aBW(f(T)). •

COROLLARY 2.11. Let H be a Hilbert space, let T € L(H) be a hyponormal
operator and let f be a function analytic in a neighbourhood of the spectrum a(T) of
T. Thenf(T) satisfies generalized Weyl's theorem crBW(f(T)) = a(f(T))\E(f(T)).

PROOF. A hyponormal operator on a Hilbert space satisfies generalized Weyl's
theorem and it is well known that a hyponormal operator is an isoloid. Moreover,
from Theorem 2.4 we have aBW(f(T)) = f(aBW(T)). From Theorem 2.10, it follows
that f(T) satisfies generalized Weyl's theorem. •

3. Finite rank perturbation and generalized Weyl's theorem

In this part we consider an operator T satisfying generalized Weyl's theorem and
a finite rank operator F commuting with T, and we give a necessary and sufficient
condition for T + F to satisfy generalized Weyl's theorem. Moreover, we obtain
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similar results as those obtained in the case of Weyl's theorem in [10, 13] and [15].
We begin with the case of Weyl's theorem and we give an improvement of Oberai's
Theorem [15, Theorem 4].

THEOREM 3.1. Let X be a Banach space and let T 6 L(X). IfT satisfies Weyl's
theorem and F is a finite rank operator in L(X), then T + F satisfies Weyl's theorem
if and only ifTlo{T + F) = E0(T + F).

PROOF. If T -f F satisfies Weyl's theorem, then from [1, Corollary 5], we have
no(T+ F) = E0(T+ F). Conversely if n o (7 + F) = E0(T + F), since T satisfies
Weyl's theorem, then from [1, Corollary 5] we have EQ(T) = no(T). Since F is
a finite rank operator, from [4, Theorem 4.3] we have ow(T + F) = aw(T). If F
commutes with T, we have also aB(T + F) = aB(T), where oB{T) is the Browder
spectrum of T (see [1]). Since T satisfies Weyl's theorem, then ow{T + F) =
aw(T) =aB{T) = aB(T + F). As we have no(T + F) = E0(T + F), then from [1,
Corollary 5], T + F satisfies Weyl's theorem. If F does not commute with T, then
we use the same argument as Oberai in [15, Theorem 4]. •

THEOREM 3.2. Let X be a Banach space and let T e L(X). If T satisfies general-
ized Weyl's theorem and F is a finite rank operator in L(X) commuting with T, then
T + F satisfies generalized Weyl's theorem if and only ifYl(T+ F) = E(T + F).

PROOF. If T+ F satisfies generalized Weyl's theorem, then from [3, Corollary 2.6],
we have Tl(T + F) = E(T + F). Conversely if Tl(T + F) = E(T + F), since T
satisfies generalized Weyl's theorem, then aBW(T) = crD(T). Since F is a finite rank
operator, from [4, Theorem 4.3] we have aBW(T) = aBW(T + F). As F commutes
with T, from [3, Theorem 2.7] we have aD(T) = aD(T + F). So aBW(T + F) =
aD(T + F). Since U{T + F) = E(T + F), then from [3, Corollary 2.6] T + F
satisfies generalized Weyl's theorem. •

The following lemma is useful in the proof of the next two theorems.

LEMMA 3.3 ([13, Lemma 2.1]). Let T € L{X). If F e L{X) is a finite rank
operator, then dim N(T) < oo <=> dim N(T+ F) < oo. Moreover, if F commutes
with T, then A. € ace a(T) <=^ k e acca(T + F), where acca(T) is the set of the
accumulation points ofa(T).

THEOREM 3.4. LetTe L(X) be an isoloid operator and F e L{X) be a finite rank
operator commuting with T. If T satisfies generalized Weyl 's theorem, then T + F
satisfies generalized Weyl's theorem.
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PROOF. In view of Theorem 3.2 it is enough to show that Tl(T + F) = E(T + F).
Since Tl(T + F) C E(T + F) is always true, we only have to prove that I I (T + F) D
E(T+ F).

If A. 6 E(T + F), then X is isolated in a(T + F) and according to Lemma 3.3,
X is isolated in a(T). Since T satisfies generalized Weyl's theorem, it follows that
Xe E(T) = n(T). Finally since n(T) = 11(7 + F) we have X e U(T + F). D

REMARK 3.5. Let T e L(X). If T has no eigenvalues, then T satisfies generalized
Weyl's theorem. To prove this, assume that X e o-(T); for simplicity assume X = 0.
If 0 ^ o-BW(T), then T is a B-Fredholm operator of index 0. Hence there is an
integer n, such that R(Tn) is closed and ind(T) = ind(7n) = dimN(T) n R(T") -
dimR(Tn)/R(Tn+1) = 0. Since N(T) = 0, then R(Tn) = R(T"+1) and then
X = R(T). So T is invertible, and this is a contradiction with our hypothesis. Hence
O~BW(T) = cr(T) and T satisfies generalized Weyl's theorem.

PROPOSITION 3.6. Let X be a Banach space and let T e L(X). If T satisfies gen-
eralized Weyl's theorem and N is a finite rank nilpotent operator in L(X) commuting
with T, then T + N satisfies generalized Weyl's theorem.

PROOF. Let us prove that if X is an eigenvalue of T then X is also an eigenvalue of
T + N. We may assume that A. = 0. Then there exists x ^ 0 and m e H such that
Tx — 0 and Nm = 0. We have

(T + N)mx = ^jT (™\ TkNm-kx = 0.

So there exists p e N, p < m, such that (T + N)px / 0 and that (T + N)(T +
N)px = 0. Hence 0 is an eigenvalue of T + N and E(T) c E(T + N). By symmetry
we have £(7) = E(T + N). If X i oBW{T), then T - XI is fl-Fredholmof index 0.
From [4, Proposition 3.3], since TV is of finite rank, it follows that T + N — XI is
also a B-Fredholm operator of index 0. So X £ crBW(T + N). By symmetry we have
&BW(T + N) = aBW(T). Since o{T + N) — o(T), then T + N satisfies generalized
Weyl's theorem. •

EXAMPLE 1 ([15, Example 2]). Let H = l2 and let T and N in L{H) be defined
by

T(xu x2, x3,...) = (0,

N(xux2, x3,...) = (0, - J C , / 2 , 0, 0, . . .

Since T has no eigenvalues, from the Remark 3.5 the operator T satisfies generalized
Weyl's theorem. So from [5, Theorem 3.9] T satisfies also Weyl's theorem. Also N
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is a nilpotent operator of finite rank. But from [15, Example 2], the operator T + N
does not satisfy Weyl's theorem and so from [5, Theorem 3.9] it does not satisfy
generalized Weyl's theorem either. This example shows that Proposition 3.6 may not
hold if N does not commute with T.

REMARK 3.7. Let T e L(X) be a quasinilpotent operator and F e L(X) be a finite
rank operator commuting with T. If T is injective then F is nilpotent. To see this,
and under these conditions, TF is a finite rank quasinilpotent operator, therefore TF
is a nilpotent operator. As T is injective, then F is also a nilpotent operator.

THEOREM 3.8. Let T e L(X) be a quasinilpotent operator and F e L(X) a finite
rank operator commuting with T. If T satisfies generalized Weyl's theorem, then
T + F satisfies generalized Weyl's theorem.

PROOF. If T is injective, then by Remark 3.7, F is a nilpotent operator and the
result follows from Proposition 3.6.

Suppose T is not injective. Since T satisfies generalized Weyl's theorem, then by
[5, Theorem 3.9 ], T also satisfies Weyl's theorem. Hence ow(T) = a(T) \ E0(T).
As T is a quasinilpotent operator, then aw(T) = {0}. It follows that E0(T) = 0
and, since T is not injective, dim N(T) = oo. This implies by Lemma 3.3 that
dim yV(7 + F) = oo. It is easily seen that a(T + F) = a(F) = {0,Xu..., kk),
where kh i = 1, . . . , k, are the non-zero scalars of the spectrum of F when they exist.
We have also E(T + F) = (0, A., , . . . , Xk).

Since

aBW(T) =aBW(T+F) and aBW(T) = a(T) \ E(T) = 0,

we have aBW{T + F) = a(T+ F)\E(T+ F). •

LEMMA 3.9. LetTe L(X), let X = M ©N where M, N are two closedsubspaces
of X, and let U = T\M, V — TiN. If T is a B-Fredholm operator, then U, V are
B-Fredholm operators.

PROOF. Let us prove that V is a B-Fredholm operator. Let P be the projection of
X onto N along M. Clearly P is a B-Fredholm operator and commutes with T. Then
by [6, Corollary 3.5], TP is a B-Fredholm operator. Consequently there is an integer
n such that R((TP)") is closed and {TP)n : R((TP)n) - • R((TP)n) is Fredholm.

Since R((TP)n) = R( V) and (TP)n = Vn,then Vis a B-Fredholm operator. D

EXAMPLE 2. Let 5 be an injective quasinilpotent operator which is not nilpotent on
the Hilbert space t2. We define Ton i2 ®t2 by T = / © 5 where / is the identity on £2-
It follows easily that a(T) = {0, l } a n d £ ( 7 ) = {!}. Let us prove that aBW(T) = {0}.
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We have T - ( / © / ) = 0 © (S — I) and since S - I is an invertible operator,

T — ( / © / ) is a B-Fredholm operator of index 0, and 1 ^ aBw(T).

Suppose that T is a B-Fredholm operator. Then by Lemma 3.9, S is a fl-Fredholm

operator. From [2, Theorem 2.7], there exist two closed 5-invariant subspaces of t2,

M and N such that l2 = M ® N and S = U ® V where £/ = 5|W is nilpotent and

V — S\N is invertible.

If m is a sufficiently large integer, we have If" = 0 and Sm = Um © Vm = 0 © Vm.

Hence <r( Vm) c o-(Sm) = {0}. But since V is invertible, we have N = 0 and then

5 = U is nilpotent, which contradicts the hypothesis on 5. So aBW{T) = {0} and

QBW(T) = cr(T)\E(T). Hence T satisfies generalized Weyl's theorem.

We define the operator K on £2 by K (x ux2, . . . ) = ( - x i , 0 , 0 , . . . ) and F = K®0

on l2 © £2- Then F is a finite rank operator and we have a(T + F) = {0, 1} and

E{T + F) = {0,1}.
As o-Bly(7 + F) = aBW(T) = {0}, then T+F does not satisfy generalized Weyl's

theorem.
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