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TOPOLOGICAL AND ORDER-TOPOLOGICAL
ORTHOMODULAR LATTICES

ZDENKA RIECANOVA

The necessary and sufficient conditions for atomic orthomodular lattices to have
the MacNeille completion modular, or (o)-continuous or order topological, ortho-
modular lattices are proved. Moreover we show that if in an orthomodular lattice
the (o)-convergence of filters is topological then the (o)-convergence of nets need
not be topological. Finally we show that even in the case when the MacNeille
completion L of an orthomodular lattice L is order-topological, then in general
the (o)-convergence of nets in L does not imply their (o)-convergence in L. (This
disproves, also for the orthomodular and order-topological case, one statement in
G.Birkhoff's book.)

1. INTRODUCTION

In [17] and [12] compact orthomodular lattices have been studied. In [16] some
results from [17] are generalised to locally compact orthomodular lattices. In this paper
we generalise some results from [12] to topological and order topological orthomodular
lattices.

A well-known fact is that the MacNeille completion of an orthomodular lattice L
need not be orthomodular, even if L is a modular ortholattice ([1, 5] and others). Little
is known about completions of orthomodular lattices (abbreviated OMLs). Positive
results are given by Janovitz in [6] for indexed OMLs; in [3] Brums-Greecie-Harding-
Roddy showed that a variety generated by a single finite OML is closed under MacNeille
completions; in [12] and [14] OMLs have been characterised the MacNeille completions
of which are compact topological OMLs or profinite OMLs (see also [17]). For atomic
OMLs some positive results are given in part 3 of this article. Part 4 shows that the
order-topological OMLs in the language of filters and in the language of nets are distinct.
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2. BASIC DEFINITIONS AND LEMMAS

By an orthomodular lattice ( i , V, A, _L, 0,1) (abbreviated OML) we mean a lattice
(L,V,A) with 0 and 1 (0 ^ 1) and with an orthocomplementation ± : L —* L such
that

(i) a^b^b^^a^,

(i) (a-L)X = a,
(iii) a V a-1 - 1,
(iv) o ^ 4 = * 4 = oV (a-1- A 6) (the orthomodular law).

We say that two elements x,y £ L are orthogonal if x Sj y1-. A set M C L is
called an orthogonal set of elements if for every x,y £ L, x ^ y, we have x ^ y*-. A
net (*<*)<*€£ C L (o)-converges to an element x £ L if there are nets {ua)a&£, {?a)a££

in L such that ua ^ xa ^ va for every a £ £ and wa / " x,va \ a; (where wa f x

means that the net ( u a ) a 6 £ is nondecreasing and y u a = x ; the meaning of va \ x
a

is dual). The order topology TO is the strongest (finest) topology on L such that the
(o)-convergence of nets implies their topological convergence.

Recall that a £ L is an atom in L if o ̂  0 and (6 ^ a => 6 = 0 or 6 = o). An OML
L is atomic if every nonzero element in L contains an atom. In fact an atomic OML
is atomistic in the sense that every nonzero element in L is the supremum of all atoms
lying under it. Moreover every nonzero element of an atomic OML is a join (supremum)
of an orthogonal set of atoms (see [7, p.140]). An element x £ L is called a. finite element

if x is a join of a finite set of atoms. We use the symbol \ / S for the supremum of the
set S C. L. An OML L is called (o)-continuous if for any net {xa)ap£ C L and any
x,y £ L, xa y x £ L implies y A xa / y A x. If in the definition of OML we omit
the condition (iv) (orthomodular law) then L is called an ortholattice. The notions of
atomic, atomistic and (o)-continuous ortholattice are defined as for OMLs. (Note that
an atomic ortholattice need not be atomistic). If L is an (o)-continuous ortholattice

(o) (o) (o)

then for any xa,ya, x,y £ L, we have: xa >x, ya—>y implies xa V ya—>z V y,

xa A ya >x A y. For the other terminologies and definitions we refer to [7].

Let L be an atomistic ortholattice and let A — {a £ L | a is an atom }. For every
a £ A we define real functions /„ : L —* {0,1} , fa± : L —• {0,1} as follows

- {

1 if a ^ x

0 if a ^ x

1 if x ^ a1-

0 if x £ a-1
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The family of functions ij> = {/„ | a G A} U {fa± \ a E A} induces the uniformity
U$ and the topology T ,̂ (see [4, p.168]); clearly for any net (xa)a€£ C L and any
x 6 L

xa—>x if and only if Va G A : fa(xa) —» fa(x) and fa±(xa) —> /ox(s:)

This implies, in view of the atomisticity of L, that the topology T ,̂ is Hausdorff. (For

the properties of the topology r^ in OMLs, see [12, 13].)

In view of this observation the folloving lemmas can be proved.

LEMMA 2 . 1 . Let L be an atomistic ortholattice. Then To C T ,̂ .

PROOF: Since the functions / O ) / a x are continuous in T$ we find that for every

atom a G L the intervals [a,l] = /O~1({1}) and [OjO"1-] = /O-L~1({1}) are clopen sets

in Ty,. Let x E L,x ^ 0,x ^ 1. Let U{x) 6 To be such that x E U{x). Since i is

atomistic we have x —yAxjX1- =\J Ax± , where Ax = {a 6 L \ a ^ x, a is an atom},

Axj. = { o £ l | o ^ x±,a is an atom}. Put C = { 7 C J4*UA B J. | 7 0 ^ ^ 0 ^ T H ^ X ,

7 is a finite set}. Evidently C is directed by the set inclusion. For every 7 € C

put xy - \J {a € L I 0 6 7 0 4 } , y7 = / \ {a"1" G £ | o £7!"! A x j . } . Then xT / " a:,

j / 7 \ z and [x7,j/T] are clopen sets in T^,. Suppose that for every 7 6 C there is

z-y G [x7)j/7] such that z7 ^ U{x). Since x 7 ^ z7 ^ j / T for every 7 G C, we get
(o)

z7 >x. As L \ U(x) is closed in To we find that x E L\ U(x), a contradiction. Thus
there exists 70 G C such that x E [*7O»3/7o] C ^ ( s ) - In a similar way we find that for
x = 1 there exists 7 G C such that [z7,1] C U(l) G To and for x = 0 there exists
7 G C such that [0,yy] C tf(0) £ T ( . We conclude that T0 C T^,. D

An atomistic ortholattice L we call compactly atomistic if for every x E L and any

set 5 of atoms in L such that x =y S, the following holds: to every atom a ^ x there
n

exists a finite set {pi,P2, • ••,?*} C 5 such that a ^ \J Pk- An atomistic ortholattice
k=i

is called strongly compactly atomistic if to every set S, 5 c A = { o G l | o i s a n a tom}

and to every p E S ={p E A\ if a G A and a ^ 6X for every 4 £ 5 then p ^ ax}
n

there exists a finite set {pi,P2, •••>?*} C 5 such that p ^ y p* • Clearly a complete

atomistic ortholattice L is strongly compactly atomistic if and only if L is compactly
atomistic.

LEMMA 2 . 2 . Let L bean atomistic ortholattice and A = {a G L | a is an atom}.
T ie following conditions are equivaJent:

(o) £ is fo^-conlinuous;
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(b) for every a £ A and any xa, x £ L (a £ £, £ is direcet) xa y x implies
a A xa y a A x;

(c) L is compactly atomistic;

(d) xa >x implies xa—*x, tor any xa,x £ L (a £ £,£ is directed);
(e) T^ = TO.

PROOF: ((a) =>• (6)) This is obvious.

((6) => (c)) Let 5 C A be such that \J S = x £ L. Let a set £ = {a C 5 | a

is a finite set} be directed by the set inclusion. Denote xa = y a for every a £ £.

Then xa y x and hence a £ A, a ^ x implies that there exists OCQ £ £ such that

a ^ xao = y a0 .

((c) => (a)) Let xa,x,y £ L, ( a £ £, £ is directed) be such that xa y x. Let

b £ A, b ^ x A y. Since x = \/ {a £ A \ a ^ xa,a £ £}, there exists a finite set
n

{01,02, . . . , a n } C {a £ A \ a ^ xa,a £ £} such that 6 ^ y oj.. Suppose a* ^ xajt

fc=i
n n

(fc = 1,2,. . . ,n) and ao ^ aj(.,A! = 1,2,... ,n. Then 6 ^ y aj. ^ y xafc ^ x a o and
*=i fc=i

thus b ^ x a o A y. We obtain y {xa Ay\a££} = xAy.

((d) =>• (e)) Clearly (d) implies that T ,̂ C TO, in view of the definition of To.
Moreover we have TQ C T^ and hence To = T^, .

((e) =>> (6)) Suppose x a , x £ L (a £ £,£ is directed) and xa y x. Then xa—>x;

hence x a —»x. Thus for every a 6 A we have fa{xa) —* fa{x) and hence xaAa y xAa.

((b) => (d)) Since (6) => (a) we see that for every x a , x £ L (a £ £,£ is di-

rected) such that xa »x and every a £ A, it follows that xa A a—>x A a and hence
(o)

/ 0 ( i 0 ) —» /a(x) . Moreover x x >x± and this imphes / a ( * i ) —> ^(a!"1") or equiva-
lently / o x ( x a ) —» / a x (x) (since / o ( x x ) = / ox(x) for every x £ L and o £ X). We

obtain xa »x. U

LEMMA 2 . 3 . Let L be an (o)-continuous, complete and atomistic ortbolattice.

Then for any net ( x a ) a g £ C L and any x £ L,

xa—>x implies xa >x.

PROOF: Suppose xa,x £ L (a £ £,£ is directed) and xa—>x. This implies that
for every atom a £ L, a ^ x there exists f3a £ £ such that for every a ^ /?o, we

have a ^ xa. Thus for every atom a ^ x we have a ^ y A x a and hence x ^
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Y A xa. Since xa—*x implies x£—>x-L we have also x1- ^ \l A xa , and hence

x ^ A Vx<* • ^ow * =̂ V A Z a ^ A V i ° ^ j ! ' *̂"s means tnat x«—>x- ^

3. TOPOLOGICAL AND ORDER-TOPOLOGICAL OMLS IN THE LANGUAGE OF NETS

Examples of atomistic ortholattices are atomic OMLs. Thus using the previous
three lemmas we can find: (a): necessary and sufficient condition under which the
MacNeille completion of an (o)-continuous atomic OML is an (o)-continuous OML;
(6): a necessary and sufficient condition under which the MacNeille completion of a
modular atomic ortholattice is a modular OML. For details about these questions and
counterexamples showing that generally this is not fulfilled, see Kalmbach's book [7,
p.259].

An atomisitic ortholattice L is called topological if there exists a Hausdorff topology
r on L such that xa—>x, 3/a—>y implies a;̂ —>x , xaVya—>xVy and xa/\ya—>x/\y
for any xa,ya,x,y G L.

A topological ortholattice L (precisely (L,TQ)) is called order-topological if L is
TO (°)

topological for the order topology To and xa—*x implies xa *x for any xa,x £ L.
THEOREM 3 . 1 . Let L be a complete and atomistic ortholattice. The followng

conditions are equivlent:

(i) L is order topological;
(ii) L is (o)-continuous;

(o) _ _ TJ,

(iii) xa >x if and only if xa—>x for any net (x a ) a g £ C L and any x (E L;
(iv) L is compactly atomistic.

PROOF: ((i)=>(ii)) This is obvious.
((ii)=>(iii)) By Lemmas 2.2 and 2.3.
((iii) => (i)) In view of Lemma 2.2, (iii) implies that T^, = TQ and L is (o)-continuous.

Hence L is order-topological.
((iv)o>(i) By Lemma 2.2 and the fact that ((ii)<»(i)). D

Kaplansky [8] has shown that every complete modular ortholattice is (o)-continu-
ous. Using this result we obtain the following corollary of Theorem 3.1.

COROLLARY 3 . 2 . Every complete atomic modular OML is order-topological.

An example of an order-topological OML which need not be modular is any OML
isomorphic to a direct product of finite OMLs. Another example is any complete atomic
OML L such that to every atom there exist only finitely many non-orthogonal atoms.
(See [12, 17].)
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A partially ordered set P can be embedded into a complete lattice L such that
every element x £ L is a supremum of some subset of <p(P) and also an infimum of
some subset of <p{P) (y : P —• L is the embedding). We say that P is supremum
and infimum densely embedded in L. It has been shown in [15] that any complete
lattice into which P can be supremum and infinmum densely embedded is isomorphic
to the so called MacNeille completion of P (or completion by cuts). It is known that
the MacNeille completion of an OML is an ortholattice (see [7, p.256]). If L is an
atomic OML then the previous observations imply that its MacNeille completion L is
atomic ortholattice and L and <p(L) have the same set of all atoms (ip : L —> L is
the embedding). Moreover the fact that <fi(L) is supremum and infimum dense in L
implies that L is atomistic and thus the MacNeille completion of an atomic OML is an
atomistic ortholattice with the same set of all atoms as <p{L).

THEOREM 3 . 3 . Let L be a strongly compactly atomistic OML. Then

(i.) (L,To) is a topological OML.

(ii) Tie MacNeille completion L ot L is an order topological OML.
TO (»)

(iii) xa—*x (in L) if and only it xa—>x (in L) for any xa,x £ L.

PROOF: (ii) Suppose £ is a strongly compactly atomistic OML. The MacNeille
completion L of L is a complete ortholattice in which L (we identify L with f{L),

where ip : L —* L is an embedding) is join-dense and meet-dense. The fact that L is
join-dense in L implies that L is atomistic and that L and L have the same set of all
atoms. Thus L is strongly compactly atomistic and, by Lemma 2.2 and Theorem 3.1,
L is order-topological. We shall show that L is orthomodular.

Suppose that x,y £ L, x ^ y and denote Ax ={a £ L \ a ^ x is an atom},
Ay —{a £ L | a ^ y is an atom}. Then Ax <Z Ay. Let £ = {a C Ay \ a is a finite set
and aC[ Ax ^ 0}. Clearly £ is directed by set inclusion. For any a € £ we denote
xa - \ / a 0 Ax , ya = \J a. Then xa , ya £ L, xa < ya and ya = xa A (x£ V ya) , a£

~ (°)
£. Since xa S x, ya S y and (in view of the (o)-continuity of L) xav(x^ A ya) *xV

(x x A y) , we obtain y = x V (x1- A y) . We have proved that L is orthomodular.

(iii) Assume that {xa)a^£ C I , x £ L and xa—>x (in L). By Lemma 2.2 and

Theorem 3.1, using the fact that L and L have the same set of atoms, we obtain

xa—ix (in L) if and only if xa—>x

(o)

if and only if Vo G A : fa(xa) —> fa{x), fa±{xa) -+ fa±(x) if and only if xa >x (in L)

where A = {a £ L | a is an atom}.
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(i) This follows immediately from (ii) and (iii). u

COROLLARY 3 . 4 . Let L be an atomic OML. The following are equivalent.

(i) The MacNeille completion L of L is an order-topological OML.

(ii) L is strongly compactly atomistic.

THEOREM 3 . 5 . Let L be an atomic OML. The following are equivalent.

(i) A MacNeille completion L of L is a modular OML.
(ii) L is strongly compactly atomistic and F — {x £ L \ x is a finite element}

is a modular sublattice in L.

PROOF: ((i)=>(ii)) This follows immediately from Kaplanski's result in [8], and

Theorem 3.1, using the fact that L is complete and the sets of all atoms in L and L

coincide (we indentify L with <p(L) ,where ip : L —* L is an embedding).

((ii)=J>(i)) In view of Theorem 3.3 using the claim (ii), a MacNeille completion L

of L is an order topological OML. Suppose x,y,z £ L,x ^ z. Put A = { o £ L | a is

an atom}, Ax ={a £ A \ a ^ x}, Ay ={a £ A \ a ^ j /} , Az ={a £ A \ a ^ z} and

£ = {a C Ay U Az \ a is a finite set}. Denote xa = y a D Ax, ya = y a fl Ay, za —

aC\Az. Since xa,ya,za £ F and xa < za , we obtain xaV(ya A za) = (xa V ya)Aza

(o)

for every a £ £. The (o)-continuity of L implies that xa V (ya A za) >x V (y A z) and

(xa V ya) A za >(z V y) A z and thus x V (y A z) = (x V j/) A z. U

4. ORDER TOPOLOGICAL O M L S IN THE LANGUAGE OF FILTERS; COUNTEREXAMPLE

There are two different possibilities to define the order convergence and order topol-
ogy in a poset. The net-theoretical approach was developed by G. Birkhoff, 0 . Prink
and others. The study of order convergence in terms of filters was started by A. J.Ward
and continued by D.C. Kent. Papers of Marcel Erne about order convergence in lattices
and order-topological lattices give several new results, all formulated in the language of
filters (see [10, 11]). Recall the basic definitions.

Let ii be a lattice. For a subset Y of L, let Y^ and Y^ denote the set of all lower
and upper bounds of Y, respectively. For any filter T on L we write

Fi = \J{Fi\F£F} ,fl = |J {fT | F £ T) .

We say that T order converges to a point x £ L (written T >z) if x = \l T^ =

A T^ • The order topology To on a lattice L (in language of filters) is the finest topology
such that the order convergence of filters implies a topological convergence. In general
order convergence is distinct from To convergence. Now order convergence of filters is
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said to be topological if it agrees with convergence in the order topology (all in filters
language). One can show that at least in lattices (but not in all posets) both definitions
of order topology (in terms of nets and in terms of filters) coincide. However as the
next example shows, t i e fact that the order convergence of filters in an OML L is
topological does not imply that the order convergence of nets in L is topological too.
In [10], Proposition 2 stated that:

On a lattice L, order convergence (of filters) is topological if and only if for all
x £ L, U(x) has a base of intervals. (Here U{x) means a neighbourhood filter of x £ L
in the order topology To.)

This statement fails to be true for convergence of nets; see the next example.

EXAMPLE 4 .1 . Suppose that H is an uncountable set and that for every K £ H the
OML LK is finite. Let us put L — ]J LK (L is a. direct product of OMLs LK,K £ H,

that is, with coordinatewise defined ordering and orthocomplementation). Evidently L

is complete atomic and (o)-continuous and hence L is an order-topological OML (in
terms of nets) by Theorem 3.1. Let A denote the set of all atoms in L. Evidently
for every a = {O-K)K£H ^ -^ there exists K<> £ H such that aK0 is an atom in LKQ

and aK — 0 € LK for every K ^ KO,K £ H. For every a £ H we denote Aa ={a =

(a<«)KgH £ -A | a a is an atom in La and aK — 0 € LK if « ^ a } . Then for every
«i , «2 € H and every a £ AKl, b £ AKJ we have a ^ b1-. Now let us denote F = { x E

L | x = 0 or x is a join of a finite set of atoms in 1 } and L ={y £ L \ either
y E F or y1- £ F}. Then L is a sub-OML of L and since L and L have the
same set of all atoms, we conclude that L is a MacNeille completion of L. Suppose
{iei,ic2,i6s,...} C H and aKn £ AKn, n — 1,2, Then {aKn \ n = 1,2,. . .} is a

(o)
sequence of mutually orthogonal atoms in the complete OML L and hence aKn—>0

— TO

(in L). Using Theorems 3.1 and 3.3 we obtain aKn—>0 (in L). We shall show that
(°) (")

aKti—f+0 (in L). Assume the contrary: aKn »0 (in L). Then there exist un,vn £ L,

•"n ^ o,Kn ^ vn (n = l , 2 , . . . ) and un / 0, vn \ 0. Since for every n = 1,2, . . . ,
oo oo

\/ aKk ^ / \ " t = "n, w e have aKk ^ vn for every k = n ,n + l , n + 2 , . . . and
k=n k=n

hence vn $ F. Thus v£ £ F, n = 1,2,... . F o r n = 1,2,.. . , let t>£ = (v^K)K^H

OO

and Hn = {K £ H \ v^K ^ 0 G i « } . Then I I Hn is at most countable and hence
n=l
oo

H \ | J ^ n 7̂  0- Thus for every K £ H \ (J J n and every n = 1,2,... we have
n=l n=l

v^K = 0 £LK. Since vn \ 0 £ Z. imphes v^ / 1 £ i we have a contradiction.
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ro (°)

Since aKn—>0 (in L) and a,Kn—/+0 (in L), the order convergence of nets in L is not

topological. But the order convergence of filters in L is topological by Proposition 2 in

[10] mentioned above. To see that we have to show that for any x £ L the neigbourhood

filter U(x) in To has the base of intervals. Really, L is (o)-continuous and hence, in

view of Lemma 2.2, TQ = T ,̂ . Thus, for every a £ A, intervals [o, 1], [0,a1-] are clopen

in To. If we come back to the proof of Lemma 2.1 we see that for every x £ L and

every U{x) £ T0 , x £ U(x), there exists an interval [x-fO,yyo] which is a clopen set in

T^ (and hence in To) such that x £ [x^0,yyo] C U(x).

REMARK 4.2: Now we come back to Example 4.1 and let L and L have the same

meaning as in the mentioned example. We see that £ is a topological OML and L

is an order topological OML which is a MacNeille completion of L. For the chosen
(o) _ (o)

sequence (aKn)^_1 of atoms, aKn >0 (in L), but aK^-f+0 (in L). This fact disproves

(see also [9]) the statement in Birkhoff's book (also for order-topological OMLs) that

the order convergence of nets in the MacNeille completion of a poset P induces the

order comvergence of nets in P (see [2, cap.X., par.9]). Hence the statement (iii) in

Theorem 3.3 cannot be improved.
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