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1. Introduction

Suppose S is a semitopological semigroup. We consider various subspaces
of C(S) and determine what topological algebraic structure can be introduced
into the spaces of means on the subspaces and into the spectra of the C*-sub-
algebras of C(S) they generate.

After establishing terminology and some preliminary (probably known)
results in part 2, we consider in parts 3 and 4 left introverted, respectively left
m-introverted, subspaces of C(S), which were first introduced and studied by
Rao and Witz, respectively Mitchell2, and make some additions to the theory
of these subspaces.

The above-mentioned authors proved the existence and gave a characteriza-
tion of the greatest left introverted subspace WLUC(S) and the greatest left
m-introverted subspace LMC(S). (We use Mitchell's notation.) In part 3 we give
alternate characterizations of these greatest subspaces in terms of the topology
of pointwise convergence on S. We define multiplication in the space of means
of a left introverted subspace and in the spectrum of the C*-subalgebra of C(S)
generated by a left m-introverted subspace in an established way, make some
comments on the posssibility of reordering the operations denning the multiplica-
tion, and prove a universal mapping property for the spectrum of LMC(S).

In part 4, we continue work, mainly of Mitchell, proving the equality of some
subspaces in special cases. In particular, we show LMC(S) = WLUC(S) if S is
locally compact (Mitchell has proved LMC(S) = WLUC(S) if S is first count-
able), LMC(S) = LUC(S), the left uniformly continuous subspace, if S is a
subgroup of a topological group complete in a left invariant metric or locally
compact (Rao, resp. Mitchell, proved LMC(S) = LUC(S) if S is a topological

1 Most of this work was done at the University of Toronto and formed part of the author's
doctoral dissertation there under the supervision of L. T. Gardner. Thanks are due to Professor
Gardner for much advice and encouragement. The author acknowledges support from the
National Research Council of Canada.

2 The author would like to thank T. Mitchell for the preprint [12].
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[2] Semi topological semigroups 489

group complete in a left invariant metric, respectively locally compact), and L UC(S)
= AP(S), the almost periodic subspace, if S is compact. A key lemma in the proof
of the middle assertion of the last sentence is used to give answers (some only
partial) to some questions posed by Burckel [22] 3 concerning the extension of
weakly almost periodic functions. Among other things we prove that, if S is a dense
subgroup of a topological group G, then each weakly almost periodic function
on S is the restriction to S of a weakly almost periodic function on G. An example
is presented to show how badly this last statement can fail if the subgroup S is not
required to be dense in G: there are almost periodic functions (not identically
zero) on the subgroup S that are best approximated (uniformly on S) by the
zero function, if the approximating functions are required to be restrictions to 5
of weakly almost periodic functions on G.

We construct a semitopological semigroup S for which all the subspaces
mentioned are distinct but two: LMC(S) = WLUC(S). We do not know an
example for which LMC(S) ± WLUC(S).

2. Definitions and preliminaries

A semitopological semigroup is a Hausdorff topological space S in which
a separately continuous associative multiplication is defined, that is, the operations,
multiplication on the right s-* st and multiplication on the left s -*• ts, are
denned and are continuous mappings from S into SVteS, and (st)u = s(tu),
Vs, t, ueS. If the multiplication is jointly continuous, i.e., the map (s,t)^st
from S x S into S is continuous, S is called a topological semigroup. We begin
with topological preliminaries; the algebraic structure of S is involved in the
following discussion only after Lemma 2.1.

Let C(S) be the C*-algebra of all continuous bounded complex-valued
functions on S; we indicate the supremum norm on C(S) by | | . Suppose X is
a closed linear subspace of C(S) containing the constant functions. Then there is
a canonical map e of S into the dual X* of X: e(s)(f) = /(s) V/e X. (In case
X = C(S), we let ec denote this map.) e is continuous if X* is given the w* topology
a(X*,X), the only topology we consider on dual spaces or subspaces of dual
speces without specific mention. We call {x6X*/ |x | = 1 = x(l)} the space of
means on X and denote it by F(X). F(X) is w*-compact. Members of the convex hull
of e(S) = {e(s)/se S} are referred to as finite means on X. It is well known that
the finite means are w*-dense in F(X) and that any yeX* can be written as a linear
combination of means in F{X). If S is locally compact, we denote by M(S) the
space of positive regular Borel measures on S of bound 1; the complex-linear
span of M(S) is isometrically isomorphic to C0(S)* [3, Theorem 3, p. 256], where

3 The author would like to thank a referee for informing him that this lemma essentially
answers question 2, p. 81, of [22].
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C0(S) is the C*-subalgebra of C(S) consisting of all functions vanishing at infinity.
M(S) contains all the finite means.

The closure in X* of e(S) is a compact Hausdorff space which we call
S0(X). It is a compactification of S; that is, it is a compact Hausdorff space
containing a dense continuous image of S. S0(X) is homeomorphic in the natural
way to the spectrum of the C*-subalgebra of C(S) generated by X, C*(X), say;
this is because a net in e(S) <= X* converges w* if and only if it converges when
considered as a net in C*(X)*. The "only if" part is all that is not obvious.
Suppose that {e(sj} is a net converging w* in X*. We have {e(sx)f} converging
V/eZ. Extending each e(sj to a functional on C*(X) in the natural way (and
designating this extension by the same symbol e(sj), we have {e(sj/} converging
for all / in the algebra generated by X. Hence, by uniform boundedness of the
net {e(sj}, {e(sx)f} is convergent V/e C*(X).

We state without proof the following generalization of the Stone-Cech
theorem [10; Theorem 24, p. 153]:

LEMMA 2.1. Let E be a Hausdorff topological space and let u(v) be a
continuous map of E onto a dense subset of a compact Hausdorff space EY (E2).
The transpose map u* (v*) injects C(£i) (C(E2)) into C(E). If

v*(C(E2)) c u*(C(Ej),

there is a unique continuous map w from Et onto E2 such that (w • u)(s)
= v(s)VseE.

Suppose feC(S) and seS. The left (right) translate fs (fs) of / by s is
defined by fs{t) =/(sf) (f%t) = f(ts)) It e S. A subspace X of C(S) is called left
(right) translation invariant if / , e X (fs e X) V/e X, s e S; if X is both left and
right translation invariant, it is called translation invariant. Separate continuity
of the multiplication in S ensures that C(S) is translation invariant.

Suppose now that X is a closed linear translation invariant subspace of
C(S). We define multiplication in e(S) by e(s)e(t) = e(st) and note that this def-
inition makes sense, namely e(s1tl)f = e(s2t2)fifeX whenever e(si)f= e(s2)f
and e(f1)/= e(t2)fVfeX; this follows directly from translation invariance of X.
So e(S) is a semitopological semigroup, again by translation invariance of X,
and e is a continuous homomorphism of S onto e(S). In this situation, we prove
the following corollaries to Lemma;2.1.

COROLLARY 2.2. For each teS, multiplication on the left (right)

e(s)-*e(t)e(s)(e(s)^e(s)e(t))

rom e(S) into e(S) extends uniquely by continuity to all of S0(X).

PROOF. We prove the corollary for multiplication on the left. The proof for
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multiplication on the right is similar. Since X is translation invariant, so is the
C*-subalgebra of C(S) generated by X. To apply the lemma, let u be the identity
injection of e(S) into S0(X) = £, and let v be the map e(s) -»e(t)e(s) of e(S) into
the closure of e(t)e(S) in S0(X). The corollary is proved.

COROLLARY 2.3. Let Xt be a closed linear subspace ofC(S), et be the canonical
continuous map ofS into S0(X,), i = 1,2. If the C*-subalgebra ofC(S) generated
by X2 is contained in that generated by Xu there is a unique continuous map
w from S0(Xt) onto S0(X2) such that

(w • e^s) = e2(s) Vs e S.

If Xi and X2 are translation invariant and multiplication is defined in e^S)
and e2(S) as above, then w is a homomorphism ofe^S) onto e2(S), and w pre-
serves the continuous extension, given by Corollary 2.2, of multiplication on
left (right) by elements ofe^S) to all ofS0(Xi), i — 1,2. If, as well, multiplication
on the left (right) by elements ofS0(Xt) is continuous on et(S) and hence, extends
uniquely by continuity to all ofSo(Xi), i = 1,2, w preserves this extension.

REMARK. If one of the continuous extensions mentioned in the last statement
of the corollary holds in both S0(X1) and S0(X2), S0(Xt) and SQ(X2) are semi-
groups and w is a homomorphism of S0C^i) o n t o S0(X2).

PROOF OF COROLLARY 2.3. The first statement follows from the lemma. If Xt

is translation invariant and multiplication has been defined in et(S), so that e;

is a homomorphism, i = 1,2, then

w(e1(s)el(t)) = (w • OCsO = e2(st) = e2(s)e2(t) = w(e1(s))w(e1(t)).

The proofs that w preserves the continuous extensions of multiplication (if they
exist) are straightforward. We prove that w preserves the continuous extension
to all of S0(Xt) of multiplication on the left by elements of e;(S), i = 1,2. Suppose

t> (* \ -* c c <? (Y ~\
*^l\ a/ 0 ^Ov Is*

Then
e2(sa) = w(el(sx)) ~* w(so)

and, if / e S,

and

w(ex(()50) = w(lim e1(0c1(sa)) = Umw(e1(tsll)) = lim (e2(t)e2(s.)) = w(e1(t))w(s0),
at ex. ex.

as required.

DEFINITION. If S, is a compactification of S (having certain properties), e; is
the continuous map of S onto a dense subset of Sh i = 1,2, and w is a continuous
map from St onto S2 such that (w • e^s) = e2(s) VseS (and w preserves the
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properties), we say St is greater than S2 in the family of compactifications
(having the certain properties) of S.

We discuss briefly two well-known compactifications of a semitopological
semigroup S. A function fe C(S) is called left almost periodic (weakly almost
periodic) if { fs | s e S} is relatively compact (weakly relatively compact) in C(S)
and right almost periodic (weakly almost periodic) if {/s|seS} is relatively
compact (weakly relatively compact) in C(S). It turns out that / is left almost
periodic (weakly almost periodic) if and only if it is right almost periodic (weakly
almost periodic). So, without ambiguity, we let AP(S)(WAP(S)) denote the class
of almost periodic (weakly almost periodic) functions on S omitting reference
to left and right. AP(S)(WAP(S)) is a translation invariant C*-subalgebra of
C(S) whose spectrum S0(AP(S))(S0(WAP(S))), Sa(Sw) for short, is canonically a
compactification of S called the almost periodic (weakly almost periodic) com-
pactification. Sa(Sw) is the greatest compactification of S that is a topological
(semitopological) semigroup; that is, if ea(ew) is the canonical continuous
homomorphism from S into Sa(Sw) and </> is a continuous homomorphism of S
onto a dense subset of a compact topological (semitopological) semigroup T,
then 3 a unique continuous homomorphism ba(bw) from Sa(Sw) onto T such that

ba • ea(s) = <Ks)(bw • ew(s) = <j>(s))VseS.

This property of Sa(Sw) is sometimes called the universal mapping property of
Sa(Sw). If S is a compact topological (semitopological) semigroup, then

C(S) = AP(S)(C(S) = WAP(S)).

The reader is referred to [1,2,9,16,22] for these results

3. Two kinds of subspaces

In this section we present discussions of two kinds of subspaces of C(S).

DEFINITION. Let X be a closed translation invariant subspace of C(S) con-
taining the constant functions. Then X is called left introverted (left m-intro-
verted) if,\ffe X and VxeZ* (VfeX and VxeS0(Z)), the function s->x(/s)
is in X.

REMARK. It follows from well-known theorems of Banach spaces and com-
mutative C*-algebras that X* can be replaced by F(X), C(S*)* or F(C(S)) in the
definition of a left introverted subspace and that S0(X) can be replaced by
Sc = S0(C(S)) in the definition of a left m-introverted subspace.

Rao [18] and Witz [20] (Mitchell [11, 12]) introduced the concept of a left
introverted (left m-introverted) subspace of C(S) and proved the existence of a

https://doi.org/10.1017/S1446788700028858 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028858


[6] Semi topological semigroups 493

greatest such subspace, WLUC(S) (LMC(S)); we use Mitchell's notation. In
fact, WLUC(S) = {/e C(S)/the function s->x(/s) is in C(S)VxeC(S)*} and
LMC(S) = {feC(S)l the function s-»x(/s) is in C(S)VxeS0(C(SJ)}.

It is easy to see that LMC(S) is a C*-subalgebra of C(S) and that WLUC(S)
is uniformly closed. The question arises: is WLUC(S) a C*-subalgebra of C(S)7
In the next section we shall seee that WLUC(S) = LMC(S) in many familiar
cases; WLUC(S) is certainly a C*-subalgebra then.

We give another characterization of these subspaces in terms of the topology
of pointwise convergence on S, <r(C(S), ec(S)).

THEOREM 3.1. WLUC{S) = {fe C{S)j the family of convex combinations
of right translates of f is relatively ff(C(5), ec(S))-compact in C(S)}. LMC{S)
= {fe C(S)/{/s/se S} is relatively ff(C(S), ec(S))-compact in C(S)}.

PROOF. We prove the second statement. The proof of the first is similar.
Suppose fe LMC(S) and {/*•} is a net of right translates of / . Let {ec(sxj} be
a subnet of {ec(sa)} <= Sc converging to x e Sc, say. Then {/s"v} converges pointwise
on S to the function t -»x(ft) which is in C(S). So {fs/s e S} is relatively a(C(S),
ec(S))-compact.

On the other hand, suppose {fs/seS} is relatively a(C(S), ec(S))-compact
and xeSc. Then choose a net {ec(sj} c= ec(S) converging to x. By hypothesis,
a subnet {/s*v} of {/s*} converges pointwise on S to he C(S), say. The function
'->*(/» = l i m ^ J C / i ) = 1™*/('O = MO is in C(S). So feLMC(S).

A much-studied example of a left introverted C*-subalgebra of C(S) is the
/e/f uniformly continuous subspace, LUC(S) = {/e C(S)/1 /s_ — fs | -»0 whenever
sa -* s, all in S} [7, 8, 12,14,18,19, for example]. This function space is so named
because, if S is a topological group G, then a function in C(G) is in LUC(G) if
and only if it is uniformly continuous with respect to the left uniformity of G
(see [10]). In the next section we shall see that, if S is a compact semitopological
semigroup, LUC(S) can be strictly smaller than C(S), each function of which is
uniformly continuous with respect to the unique uniformity of S [10; pp. 198,199].
Other examples of left introverted subspaces are WAP{S) and AP(S).

If X is left introverted (left m-introverted), multiplication can be defined
in F(X) (S0(X)) in the usual way [7, 14, 20, among others]: if x, y e F(X)
(x,yeS0(X)), feX, then xy(J) = x(h), where h(t) = y(f,)VteS. It is easy to
verify that, with this multiplication and the w* topology, F(X) (S0(X)) is a com-
pact semigroup and that:

(i) the map x -* xy is continuous Vy e F(X) (Vy e So(^)).

(ii) the map x -> yx is continuous at least if y is a finite mean (y e e(S)).

There is a possibility of reordering the computations defining the product;
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for example, if feX,xe F(X) and y is a finite mean,

m

y = £ ane(sn),
n = l

where 0 ^ o, g 1, s B e S , n = l,2,---,m, and

m

S an = 1,
n = l

then
m

= £ anx(/s.) = x(g),

where #(f) = y(f). Not all products can be computed in rearranged order like
this; in the first place, the function t -* y(f') may fail to be in X, and in the second
place, even if the function t -> y(f) is in X Vj e X* and V/ e .Y, it does not follow
that the order of computations can be changed. For this would imply separate
continuity of the multiplication in F(X), which does not always obtain (see the
example after Corollary 3.3). This brings us to a special case.

LEMMA 3.2. Suppose S is locally compact, X is a left introverted C*-sub-
algebra of C(S), feX, xeF(X) and yeM(S)cCQ(S)*. Then the function
t -* y(f') = g(t), say, is in X and yx(f) = x(g).

PROOF. Glicksberg [5; pp. 205, 207] has proved the following theorems:

Let A and B be locally compact spaces, and f a bounded complex function
on A x B which is separately continuous. Then for fie C0(A)*,

ffjf(s,t)dfx(s)

is continuous on B.

If,aswell,veC0(B)*, then

), tdn(s)dv(t) =

To apply these results to / in the lemma, we put A x B = S x SQ(X) and
consider the function (s, 0 -> t(fs) defined on S x S0(X).

REMARK. In case S is a locally compact group G, a more direct proof of
Lemma 3.2 can be given using the fact that, if U is a neighbourhood of the identity
of G and W c G is compact, then there a neighbourhood V of the identity such
that tVr1 c L7Vf e W [13; p. 55].

A mean y on a left invariant subspace Y of C(S) is called a left invariant
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mean, abbreviated to LIM, if y(f) = y(f)Vfe Y, seS. Lemma 3.2 has an im-
mediate corollary.

COROLLARY 3.3. Let S be locally compact, let X be a left introverted C*-sub-
algebra ofC{S) and let x be a LIM on X. Then V / e l , yeM(S), x(f) = x{h),
where h(t) = $f(st)dy(s).

REMARK. Corollary 3.3. is a generalization of the known result (see [8; Lemma
2.2.2, p. 27, and line following], for example), that, if S is a locally compact
group G, a LIM x on LUC(G) is "topologically" left invariant; that is, x(h * / )
= x(f)V/e LUC(G) and V/i e L1(G)nM(G). Granirer [6] and Renaud [26] have
generalized this result in other directions.

AN EXAMPLE. Let S = Z, the (discrete) group of integers; C(Z) = LMC{Z)
and S0(LMC(Z)) = S0(C(Z)) = PZ, the Stone-Cech compactification of Z.
Then multiplication on the left in fiZ by elements of /?Z is not always continuous
For, let yt be a cluster point in j6Z of the sequence,

and y2 a cluster point of

{ec(l),ec(2),ec(3),-}.

Let {ec(nj} be a net in ec(Z) converging to }>2. Define / by

/(n) = 1 if n ^ 0, f{n) = 0 if n < 0.
Then

lim /(» + m) = 1 Vn e Z.

Hence, yly2(f) = 1. However,

I™ /("a - m) = OVa.

So, yiec{na)-H>yly2. This implies )6Z = S0(LMC(Z)) is not commutative even
though Z is.

It is worth noting that the proof that S0(LMC(ZJ) is not a semitopological
semigroup amounts to finding a function in LMC(Z)\WAP(Z). This is what one
would expect in the light of [16; Theorem 4.3]; namely, S0(LMC(Z)) fails to be
a semitopological semigroup if and only if LMC(Z) contains a function that is
not in WAP{Z).

THEOREM 3.4. Let em be the canonical continuous homomorphism of S
into S0(LMC(S)). S0(LMC(S)) has the following universal mapping property:
ifv is a continuous homomorphism ofS onto a dense subset of a compact semi-
group T in which multiplication on the left is continuous at least by elements
of v(S) and multiplication on the right is continuous without restriction, then
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there is a unique continuous homomorphism w of S0(LMC(S)) onto T such that

PROOF. Let v and T be as stated, let h e C{T), f=v*he C(S) and let {/*•}
be a net of right translates of / . Let {v(sXv)} be a subnet of {r(sa)} converging to
xeT, say. Then h xe C(T) and it is not difficult to see that / s"v-> v*(hx) e C(S)
pointwise on S. Hence, v*(C(T)) <= LMC(S). If we identify T and S0(t)*(C(T)))
in the natural way, Corollary 2.3 yields the desired homomorphism.

4. Inclusion relationships among the subspaces

For any semitopological semigroup S all but the last of the following
inclusions are immediate consequences of the definitions: C(S) => LMC(S)
=> WLUC(S) => LUC(S) => AP(S). Also WLUC(S) => WAP(S) => AP{S). We prove

LEMMA 4.1. LUC(S) r> AP(S) for any semitopological semigroup S.

PROOF. Let feAP(S) and let sx-*s, all in S, and let ea be the canonical
continuous homomorphism of S into Sa = S0(AP(S)). Let h = (e*)-1feC(Sa).
By compactness of Sa and joint continuity of the multiplication there,

| / , * < « - > _ ft •«<«> fl _ » 0 ;
hence,

\\f-r\\ = |e:(A"(*)-*-(i))|-»o.
When S is first countable, Mitchell [12] proved LMC(S) = WLUC(S) using

a theorem of Rainwater [17, or 15; p. 33].

PROPOSITION 4.2. LMC(S) = WLUC(S) whenever S is locally compact.

PROOF. We need only show that LMC(S) <= WLUC(S). Suppose / e LMC(S).
Then the function (s,x)->x(/s) is separately continuous on S x S0(LMC(S)).
The proof is completed by noting that LMC(S) is a C*-subalgebra of C(S) and
putting B = S, A — S0(LMC(S)) in the first result of Glicksberg quoted in the
proof of Lemma 3.2.

In [18; Theorem 2] Rao states that he shows LUC(G) = WLUC(G), where
G is a topological group complete in an invariant metric. In fact, he proves
LMC{G) = LUC(G) for topological groups complete in a left invariant metric.

Mitchell [12] has proved that LMC(G) = LUC(G) for any locally compact
group G, using a theorem of Ellis [4].

In a less general setting, that of cr-compact, locally compact groups, we
present another proof of this result.
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Let G be a a-compact, locally compact group. By Lemma 2.31, p. 54, of [13],
there is an open subgroup G' of G such that G'/Go is compact, where Go is the
identity component of G. By (7-compactness of G, there are at most countably
many left (or right) G'-cosets. We fix coset decompositions of G:

G = U snG' = U G's;1.

0 0

Suppose fe C(G). Define /„' by

/n'(s) = / ( s ) if seG's'1, fn(s) = 0 otherwise.
Define fn by fn(s) = fi(ss~*); the continuous functions {/„} all vanish off G'.
Let the restriction of each /„ to G' also be denoted by / , . 3 a compact normal
subgroup H of G' such that the {/„} are constant on the cosets of H in G' and
G'/H is complete in a left invariant metric [13; p. 61 and p. 34]. Continuing, we
prove

LEMMA 4.3. There exists a compact normal subgroup Ht of G such that
Ht c H and G'/Hl (hence G//^) is complete in a left invariant metric.

PROOF. Put Ht = rffsJHs"1, clearly a compact subgroup of H. Hx is
normal in G. For suppose seG and sk are given. s~1sJ = smt for some t e G' and
some m. So

fls~1s-1 - ssjHr^'^-1 = ss~1sJHsJ~
1ss~1 = SJHSJ'1,sHiS'1 cssK

using normality of H in G'. This proves H1 is normal in G.
Let {̂ }m°°=o be compact sets forming a basis of neighbourhoods of the

identity in G'jH. Let {Vm} be their inverse images in G' under the canonical
map u:G'~* G'/H. Then each Vm is compact and p ^ Vm = H; for, if f e Vm Vm,
but f£JJ, then tHeV^m, but tH$H, contradicting that {K^} is a basis of
neighbourhoods of the identity of G'/H. Consider the countable family of neigh-
bourhoods {snVms~lln, m = 0 ,1 ,2 ," -} . Reindex these in a single sequence and,
by taking finite intersections, form an equivalent monotone decreasing sequence
{Wm}%=0. Then each Wm is compact and

If uy is the canonical continuous map of G' onto G'/H1, we show {u1(Wm)}™=0 is
a basis of neighbourhoods of the identity in G'jH1. Each open set in G'IHl

containing the identity is the image under u1 of an open set in G' containing H1.
So let V be open in G' and Ht c V. Then F = G' \ V is closed and
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is empty. It follows that F n Wmo is empty for some m0; hence Wmo <= V, as
desired.

Thus G'/#i has a countable basis at the identity; reference to [13; p. 34]
completes the proof of the lemma.

Since a translate of a function is constant on cosets of a normal subgroup if
the function is,

/= 2/f"

is constant on the cosets of H^ Thus / determines a function

heC(,G/Hi): KsHJ = h(t)
for any t e sHt.

We now suppose as well that f$LUC(G). It follows directly from the def-
initions of left uniform continuity and quotient topology that h^LXJCiGjH^).
By Rao's result and Theorem 3.1, there is a net {h'~Hi} of right translates of h
converging pointwise on GjH^ to a function discontinuous on G/Ht. The net
of lifts to G, {/'"}, must converge pointwise on G, and the limit cannot be con-
tinuous. We have proved

THEOREM 4.4. If G is a o-compact, locally compact group, then LMC(G)
= LUC(G).

We have seen that LMC(G) = LUC(G) if G is a topological group complete
in a left invariant metric or locally compact. Completeness of the group, though
essential in the proof, is not a necessary condition for the result, as will be seen
in a corollary of the next theorem.

LEMMA 4.5. / / S is a dense subgroup of a topological group G and
feLMC(S), then f extends to a function continuous on G.

PROOF. Suppose feC(S), {Q, {t,} c S, teGjS, t.-*t, tf-*t and limJ(Q,
limpf(tp) exist and differ; that is, / does not extend to a function continuous on G
We prove f$LMC(S).

Let a subnet (ec(^v)} of {ec(ta)} converge to x e S0(C(S)), say. (Here ec is the
canonical continuous homomorphisms of S into S0(C(S)).) Then tpt'1 -*e and
t~'tx -> e jointly, by which we mean, for example:

given a neighbourhood V ofe, 3a0 = ao(V), fi0 = P0(V) such that, if a ^ a0,

If the function s -» x(fs) is to be continuous on S, then, as tfit~
i -* e,

x(fi»7..1 ) should approach

x(fe) = *(/)
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But x(ftfi
l) - X\mJ(m~\^ is close to f(tp) for all large enough v since

fe C(S) and t~ltx -* e. This implies that

xift,,,~') -> Urnf(tfi) as tfit~
x -> e

and we have the desired conclusion: / £LMC(S).

THEOREM 4.6. Let S be a dense subgroup of a topological group G. Then
LMC(S) = LMC(G)\S.

PROOF. By Lemma 4.5, LMC(S) is (canonically isomorphic to) a C*-sub-
algebra of C(G). Hence, if ec is the canonical continuous homomorphism of G
into S0(C(G)) and VseG v(s) is the restriction of ec(s) to LMC(S), the map s -> v(s)
is a continuous homomorphism of G onto a dense subset of S0(LMC(S)). By
Theorem 3.4, v factors canonically through So (LMC(G)): there is a continuous
homomorphism of 50(LMC(G)) onto S0(LMC(S)) taking the canonical image
of s in S0(LMC(G)) onto v(s) e S0(LMC(S)) Vs e S. This implies that LMC(S) is
(canonically isomorphic to) a C*-subalgebra of LMC(G). Since it is clear that
the restriction of a member of LMC(G) to 5 is a member of LMC(S), we are
done.

COROLLARY 4.7. Suppose S is (a topological group homeomorphic and
isomorphic to) a subgroup of a topological group G, which is complete in a left
invariant metric or locally compact. Then LMC(S) = LUC(S).

PROOF. We may assume, without loss, that S is dense in G. We know already
that LUC(G) = LMC(G) and, by the theorem, LMC(S) =LMC(G)\S.

The following theorems are proved in [22; pp. 31, 42, 44]:
(a) / / G is a locally compact group, then every function in WAP(G) is

(left and right) uniformly continuous.
(b) Let G be a commutative topological group, S a dense subgroup. Then

WAP(S) = WAP(G)\S.
(c) If G is a locally compact group, then AP(G) = WAP(G) implies that

G is compact.
Burckel asks [22; p. 81] if the local compactness hypothesis is necessary in

(a) and (c) and suspects that the commutativity hypothesis is unnecessary in (b).
We can shed some light on these matters.

THEOREM 4.8. If S is (homeomorphic and isomorphic to) a subgroup of a
topological group which is complete in a left invariant metric or locally compact,
then all functions in WAP(S) are (left and right) uniformly continuous.

PROOF. In this setting LMC(S) = LUC(S) (Corollary 4.7). But WAP(T)
c LMC(T) for any semitopological semigroup T. Hence, each / s WAP(S) is
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left uniformly continuous. It is not hard to see that such an / is also right uni-
formly continuous. (One way to do this uses the facts that inversion in S, the
map s-^-s'1, induces isometries of C(S) onto C(S) and of Lt/C(S) onto RUC(S),
the space of right uniformly continuous functions on S.)

REMARK. We do not know if WAP(S) consists only of uniformly continuous
functions for every topological group S. We do know that LUC(S) need not
contain WAP(S) if S is only required to be a semitopological semigroup (see
Corollary 4.12 and Lemma 4.13).

We now present a variant of a theorem of Berglund, [22; p. 42] or
[21; Proposition 4], which states that, if

(a) S is a dense subsemigroup of a semitopological semigroup T, and
03) WAP(S)CC(T)\S,

then WAP(S) = WAP(T)\S and AP{S) = AP(T)\S.

We strengthen hypothesis (a) and drop hypothesis (/?)• Theorem 4.9 also con-
tains the generalization of theorem (b) mentioned above that Burckel [22; p. 81]
expected.

THEOREM 4.9. If S is a dense subgroup of a topological group G, then
(i) WAP(S) = WAP(G)\S> and
(ii) \

PROOF. Each fe WAP(S)(AP(S)) has a continuous extension to G, since
WAP(S) (AP(S)) c LMC(S). The proof can be completed by referring directly
to Berglund's theorem or by proceeding as in the proof of Theorem 4.6, using
the universal mapping property of the weakly almost periodic (almost periodic)
compactification instead of Theorem 3.4.

The next corollary answers Burckel's question concerning theorem (c) above.

COROLLARY 4.10. Let S be a totally bounded topological group. Then
AP(S) = WAP(S).

PROOF. Weil [27] has shown that a totally bounded topological group S is
homeomorphic and isomorphic to a dense subgroup of a compact topological
group G. (G may be regarded as the completion of S with respect to the left
uniformity of S, which is the same as the right uniformity of S, since S is totally
bounded). We then have C(G) = AP(G) = WAP{G), and an application of
Theorem 4.9 completes the proof.

Corollary 4.10 leads us to ask a question whose answer we conjecture is no.

QUESTION. Can AP{S) = WAP(S) if S is a topological group that is not
totally bounded! One can exclude groups that have a totally bounded neigh-
bourhood of the identity; for Weil [27] has shown that such a group is a dense
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subgroup of a locally compact (non-compact) group and Theorem 4.9 and
theorem (c) quoted above yield the result, AP(S) # WAP(S).

One might wonder what happens to the result of Theorem 4.9 if the subgroup
S is not required to be dense in G. If G is locally compact and abelian and S is
closed, or if G is locally compact and S is normal and open, the result comes
through unscathed. WAP(S) = WAP(G)\S [22; pp. 47, 49] and hence AP(S)
AP(G)\S. However, the following example shows that the conclusion of Theorem
4.9 can not always be made if the subgroup S is not dense in G. This example is
often cited to show that a positive definite function on a (closed, normal) sub-
group need not extend to a function positive definite on the containing group
[23; 13.11.4, 24; p. 204, 25; p. 22].

EXAMPLE. Let G be the group of pairs {(x,y) x,yeR,x > 0} with multipli-
cation (x,y)(a,b) = (xa,xb + y). Then no non-trivial character of the closed
abelian normal subgroup S = {(1,y)\yeR} extends to a (left and right) uni-
formly continuous function on G.

PROOF. Let (1 ,y)-+ e'yoy be such a character, y0 # 0. Suppose (x, y) ->/(x, y)
is a uniformly continuous extension of it to G, i.e.,

f(l,y) = eiy°yVyeR.
Take any fixed

Vm = {(x,y)\\l-x\ < - , M < - ,

where m is a positive integer. (The family {Vm} forms a basis for neighbourhoods
of the identity of G.) We find

A,B,CeG3B-1AeVm,AC-1eVm and \f(B)-f(C)\ = 2.

This will complete the proof.
We need only choose neRan + 1 > m, i.e., 1 — nj{n + 1) < l/m, and put

\n + 1 yj' \ ' yoj \ y0 )

The calculations are trivial.

REMARK. Examination of this example reveals that, if a function h on S is
to extend to a function uniformly continuous on G, it must oscillate "more and
more slowly" as |y|-»oo. To be more precise, if the function (l,y)-*h(y) is
such that for some e > 0 and all S > 0,

3yt eR and ye[(1 - S)ylt (1 + d)y^ with | h(y) - h(yt) \ ^ e,

then h does not extend to a function uniformly continuous on G. We conclude
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that, if h is a non-trivial character on S and g is the restriction to S of a function
uniformly continuous on G, then | / — g\\ ^ 1.

The following two lemmas enable us to see that the conclusion LMC(S)
= LUC(S) can be impossible if the multiplication in S is not jointly continuous.

The first is a generalization of a lemma of Namioka [14; Lemma 1.3].

LEMMA 4.11. If S is a compact semitopological semigroup, then LUC(S)
= AP(S).

PROOF. By Lemma 4.1 we only have to show LUC(S) c AP(S). Suppose
{/Sl} is a net of right translates of feLUC(S). A subnet of {s,J converges to
seS, say, and the corresponding subnet of {f"} converges uniformly to fs.

COROLLARY 4.12. / / the multiplication in S is not jointly continuous, then
LUC(S) = AP(S) # WAP(S) = C(S) = LMC{S).

A more general situation in which LUC(S) $ WAP(S) is presented in the
following lemma.

LEMMA 4.13. Suppose that S is a semitopological semigroup, that 3 nets
{sa} <= S, sa -» s e S, and {tf} <=S, t^teS, and that 3 a function fe WAP(S)
such that f(st) = 1 and f(savt0j = 0 Vŝ .fy in a subnet {saj^} of the product
net {sjp}. (This implies that the multiplication in S is not jointly continuous.)
Then f$LUC(S).

PROOF. The subnets {saj and {tp} converge to s and t respectively, and
f(stXv) ->/(s0 = 1 by separate continuity of multiplication. Hence,

AN EXAMPLE. Let S, be a compact semitopological semigroup with multipli-
cation not jointly continuous. Let S = St U R be the set-theoretic union of St

and R, and let us regard the images of Sx and R in St KJ R as being open and
closed there. S is made a semigroup with the following multiplication:

xy = xy if x and y are both in S± or both in R;
xy = yx = y if x e S,, yeR.
Then C(S) # LMC(S) # Lt/C(S) # ,4P(S), WLt/C(S) # WAP(S) # ^IP(S),

and LUC(S) $ PFAPCS), W,4P(S) $ LUC(S). However, S is locally compact,
so LMC(S) = JFL[/C(S) by Proposition 4.2.

QUESTION, /S there a semigroup Sfor which LMC(S) ^ WLUC(S)1
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