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Equilibrium distributions under
advection–diffusion in laminar channel flow
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Advective–diffusive transport in Poiseuille flow through a channel with partially absorbing
walls is a classical problem with applications to a broad range of natural and engineered
scenarios, ranging from solute and heat transport in porous and fractured media to
absorption in biological systems and chromatography. We study this problem from the
perspective of transverse distributions of surviving mass and velocity, which are a central
ingredient of recent stochastic models of transport based on the sampling of local flow
velocities along trajectories. We show that these distributions tend to asymptotic equilibria
for large times and travel distances, and derive rigorous explicit expressions for arbitrary
reaction rate. We find that the equality of flux-weighted and breakthrough distributions
that holds for conservative transport breaks in the presence of reaction, and that the average
velocity of the scalar plume is no longer fully characterized by the transverse distribution
of flow velocities sampled at a given time.

Key words: laminar reacting flows, dispersion

1. Introduction

Transport in Poiseuille flow within a channel is a classical problem that has served to
advance the understanding of the fundamental features of advection–dispersion of scalars
such as solutes and temperature, going back to the classical works on asymptotic dispersion
of Taylor (1953) and Aris (1956). Partially absorbing channel walls, where a transported
scalar that diffuses into the walls is consumed proportionally to its local concentration, can
represent a variety of physical processes, such as reactive solute consumption or sorption
in porous or fractured media (Battiato et al. 2011), heat transport in pipes, rock fractures
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or other conduits (Lungu & Moffatt 1982), absorption in biological tissues (Davidson
& Schroter 1983), and chromatography (Sankarasubramanian & Gill 1973; Balakotaiah,
Chang & Smith 1995). In what follows, we adopt the language of reactive solute transport
for concreteness and ease of exposition.

Traditionally, the conservative problem is treated in terms of the method of moments
(Aris 1956), in which differential equations can be derived for successively higher
moments along the longitudinal (mean flow) direction, averaged along the transverse
direction(s). In addition to asymptotic mean velocities and dispersion coefficients, the
evolution of the longitudinal plume towards normality can also be quantified using this
type of approach (Chatwin 1970). The question of how surface reaction affects effective
advective velocities and dispersion has received much attention (Sankarasubramanian &
Gill 1973; De Gance & Johns 1978b; Lungu & Moffatt 1982; Shapiro & Brenner 1986;
Balakotaiah et al. 1995; Mikelić, Devigne & Van Duijn 2006; Biswas & Sen 2007).
Sankarasubramanian & Gill (1973), followed by De Gance & Johns (1978a,b), generalized
the asymptotic theory of Taylor (1953) and Aris (1956) to the case of absorbing walls, and
computed dispersive approximations to the longitudinal concentration field. A treatment in
terms of series expansions of the longitudinal moments in Fourier space is given by Lungu
& Moffatt (1982). These works derive differential equations for longitudinal moments at
asymptotic times, and in particular give a detailed account of effective plume velocities
and dispersion coefficients. Intuitively, solute removal preferentially depletes low-velocity
areas, and these works quantify the corresponding increase in average plume velocity, as
well as the reduction in dispersion due to the associated decrease in the variability of
sampled velocities. Later, Barton (1984) derived a general framework for computing the
time-dependent moments and asymptotic solutions based on eigenfunction expansions,
extending his previous work (Barton 1983) and that of Chatwin (1970) for the conservative
problem. More recently, a stochastic formulation was developed by Biswas & Sen (2007).
Although we focus here on a linear, irreversible reaction, we note that when forward
reaction is accompanied by the reverse reaction, such as in chromatographic applications
where sorption is accompanied by desorption, the net effect at late times is a decrease
in plume velocity characterized by a retardation factor associated with the average time
that the solute remains sorbed to the channel walls (Paine, Carbonell & Whitaker 1983;
Balakotaiah et al. 1995; Jiang et al. 2022). These two scenarios and the time scales
governing the different regimes can be reconciled within a unified description (Zhang,
Hesse & Wang 2017). The linear irreversible picture applies, for example, over time scales
where the reverse reaction may be neglected and local surface reactant concentrations may
be approximated as constant, or when thermally conducting walls may be approximated
as a thermal reservoir.

Despite these significant advances, previous work has focused mainly on the
transverse-averaged moments and resulting approximations for the longitudinal
concentration field. The present work offers a fresh perspective on this classical problem
from the point of view of transverse mass and velocity distributions. The work of Barton
(1984) provides a formal means to compute the dependency of longitudinal moments on
transverse position and has been used to analyse the evolution of transverse averages and
breakthrough curves (Yasuda 1984; Guan & Chen 2024). Here, we provide an alternative
approach to analyse the asymptotic transverse variability in plume concentrations and
advective velocities directly and in detail. Transverse distributions are relevant in the
current context due to their fundamental role in spatial Markov models of transport
in heterogeneous systems, which describe transport in terms of a stochastic evolution
of velocities along solute trajectories over fixed spatial increments (Le Borgne, Dentz
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Equilibrium distributions in flow with absorbing boundaries

& Carrera 2008; Dentz et al. 2016; Sherman et al. 2019, 2021; Puyguiraud, Gouze &
Dentz 2021; Aquino & Le Borgne 2021b). Recent theoretical, numerical and experimental
advances regarding flow and transport in biological systems such as lung tissue (Sznitman
2021) and blood vessel networks in the brain (Goirand, Le Borgne & Lorthois 2021) and
tumours (Dewhirst & Secomb 2017) underline the importance of transport and surface
exchange for processes ranging from drug delivery to oxygen uptake and metabolic waste
disposal. The question of how surface reaction modifies velocity distributions across solute
plumes is thus central for the development of upscaled models of reactive transport in
natural subsurface systems and other heterogeneous media.

We first address the following question: does the transverse distribution of solute
concentrations, normalized by surviving mass, admit an asymptotic form for large times
and travel distances from a given initial condition? We find that the answer is affirmative,
and we derive explicit expressions for equilibrium mass, velocity and breakthrough
distributions for arbitrary reaction rate. To characterize breakthrough distributions, it
turns out to be necessary to determine the asymptotic mean plume velocity. To this
end, we provide an analysis that highlights the role of subleading transverse variability
in the mean plume position, while reproducing previous results based on the method of
moments (Lungu & Moffatt 1982; Barton 1984). We show in particular that the equality
of flux-weighted (i.e. weighted by local velocities) and breakthrough (i.e. associated with
flux over a control plane) distributions that has been established for conservative transport
(Dentz et al. 2016; Puyguiraud et al. 2021) breaks down in the presence of reaction, and
that the mean plume velocity as a function of time is no longer fully characterized by
the transverse distribution of flow velocities sampled by the plume at a given time. The
extent of these effects depends on medium geometry and is more pronounced for flow in a
cylindrical channel than between parallel plates.

The paper is organized as follows. In § 2, we formalize the problem and present
the governing equations. In § 3, we introduce the transverse distributions and related
average quantities that we then compute and compare to simulations for large times and
travel distances in § 4, in both two dimensions (flow between parallel plates) and three
dimensions (flow in a cylindrical channel). Section 5 presents an overall discussion and
conclusions. Ancillary details and derivations can be found in the appendices.

2. Transport in a channel with reactive walls

Consider Poiseuille flow through an infinite channel of fixed cross-section, and a solute
undergoing advective–diffusive transport within the channel. We begin by introducing
some notation. We denote the channel by Ω and an arbitrary cross-section by Ω⊥,
and the channel radius by a (half-width in two dimensions). We consider a Cartesian
coordinate system with the origin at the channel centre and such that x is oriented along
the channel. We denote spatial positions by x = (x, x⊥) ∈ Ω , with x⊥ ∈ Ω⊥ equal to y
in two dimensions and to ( y, z) in three dimensions. We use the notation |Λ| applied to a
dΛ-dimensional spatial domain Λ to denote its dΛ-dimensional measure (volume for dΛ =
3, area for dΛ = 2, and number of points for dΛ = 1). For example, the cross-sectional area
is given by |Ω⊥| = πa2 for a cylindrical channel in three dimensions (Ω⊥ has dimension
two, so |Ω⊥| is an area) and |Ω⊥| = 2a for two spatial dimensions (|Ω⊥| is a length).
Finally, we denote partial derivatives with respect to a variable ξ by ∂ξ .

Within the channel, x ∈ Ω , solute concentrations obey the advection–dispersion
equation

∂tc(x; t) = vE(x⊥) ∂xc(x; t) + D ∇2c(x; t), (2.1)
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where t is time, D is the diffusion coefficient, and for stratified, fully-developed channel
flow, the spatial (Eulerian) velocity profile vE(x⊥) is a function of x⊥ ∈ Ω⊥ only:

vE(x⊥) = vM

(
1 − |x⊥|2

a2

)
, (2.2)

where vM is the maximum velocity, attained at the centre of the channel (x⊥ = 0). We
define the Péclet number as

Pe = a vE

D
, (2.3)

where

vE = |Ω⊥|−1
∫

Ω⊥
dx⊥ vE(x⊥) (2.4)

is the Eulerian mean velocity.
Solute diffusion coefficients in both environmental and engineering applications are

commonly in the range 10−10–10−9 m2 s−1, whereas common flow rates and relevant
length scales (such as the pore, pipe or blood vessel diameter, or the fracture aperture)
vary substantially and are often not independent. For example, subsurface flows through
porous and fractured media usually range from approximately Pe = 10−2 to Pe = 104,
with advection-dominated conditions (Pe > 1) being common, in particular in fractures
(de Marsily 1986). In chromatography, the Péclet number is usually between unity and
a few hundred (Gritti & Guiochon 2013), although it should be noted that turbulent
effects may be non-negligible in engineering applications such as chromatography and
flow cell batteries. Typical flow rates in blood capillary networks (Ivanov, Kalinina &
Levkovich 1981) are of the order of mm s−1, with vessel diameters of the order of μm,
corresponding to a typical Pe of approximately 1–10. For heat transport in fractures, the
thermal diffusivity is commonly approximately 10−7 m2 s, and Pe ∼ 10–102 (de Marsily
1986).

The cross-section concentration, obtained by integrating out the longitudinal coordinate
x, is

c⊥(x⊥; t) =
∫ ∞

−∞
dx c(x; t). (2.5)

Within Ω⊥, the cross-section concentration obeys the diffusion equation

∂tc⊥(x⊥; t) = D ∇2
⊥c⊥(x⊥; t), (2.6)

which can be verified by integrating out x in (2.1), and applying natural boundary
conditions at x = ±∞, i.e. setting the limit as |x| → ∞ of c and its derivative to zero,
which is needed to ensure finite mass in an infinite domain. Here and throughout, ∇⊥
represents the gradient with respect to the transverse coordinates. We consider this
problem subject to a given initial condition c⊥(x⊥; 0), which is determined from the initial
concentration field c(x; 0) according to (2.5).

Surface reaction can be represented through the boundary conditions. Linear depletion
at a constant surface rate kA [LT−1] corresponds to partially absorbing boundaries, i.e. the
Robin boundary conditions

n⊥(x⊥) · D ∇⊥c⊥(x⊥; t) = −kA c⊥(x⊥; t), x⊥∈∂Ω⊥, (2.7)

where n⊥(x⊥) is the outward normal at the point x⊥ on the boundary ∂Ω⊥. For the
conservative problem, kA = 0, this reduces to a reflecting boundary, n⊥ · ∇⊥c⊥|∂Ω⊥ = 0,
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Equilibrium distributions in flow with absorbing boundaries

while for instantaneous reaction, kA → ∞, we have a fully absorbing boundary, c⊥|∂Ω⊥ =
0. We define the Damköhler number Da as the ratio of the characteristic diffusion and
reaction times τD and τR associated with the channel radius a:

Da = τD

τR
= akA

2D
, τD = a2

2D
, τR = a

kA
. (2.8a–c)

Because the reaction rate kA depends on both the thermodynamics of the reaction
and the surface concentrations of reactants at the interface, the Damköhler number for
solute transport problems can vary over a very broad range of orders of magnitude. For
heat transport, we have Da = aH/(2K), where H is the surface conductance or heat
transfer coefficient, and K is the thermal conductivity of the surface (Carslaw & Jaeger
1986). For example, for subsurface transport in fractured rock, we have K ∼ W m−1 K−1

(Carslaw & Jaeger 1986) and H ∼ 10–102 W m−2 K−1 (Heinze 2021), so that, using
a ∼ 10−6–10−2 m, we estimate typical values of Da in the range 10−5–1.

It has been established that as for the traditional conservative problem (Taylor 1953;
Aris 1956), the concentration plume for the reactive problem approaches a Gaussian shape
along the longitudinal direction at late times (Chatwin 1970; Biswas & Sen 2007). The
effective (Taylor) dispersion coefficient is then given by

De = D(1 + η Pe2), (2.9)

where η is a dimensionless constant that depends on the domain geometry and
decreases monotonically with Da, quantifying the decrease in longitudinal dispersion
due to the reduced variability in sampled velocities (Lungu & Moffatt 1982). For the
two-dimensional (2-D) channel, η = 2/105 ≈ 1.9 × 10−2 for the conservative problem,
and η = 9π−6(75π2 − π4 − 630)/45 ≈ 2.7 × 10−3 for Da → ∞. The corresponding
values for the three-dimensional (3-D) problem are η = 1/48 ≈ 2.1 × 10−2 and η ≈
5.0 × 10−3.

3. Transverse distributions

In this section, we introduce different probability density functions (p.d.f.s) of interest
across the transverse direction, before proceeding to discuss the corresponding asymptotic
equilibria in § 4. In Appendix A, we discuss how these quantities can be represented in
terms of concentration moments in the classical Aris–Barton formulation (Barton 1984).

3.1. Surviving mass
The total mass at time t can be expressed as

M(t) =
∫

Ω

dx c(x; t) =
∫

Ω⊥
dx⊥ c⊥(x⊥; t). (3.1)

We use the notation
∫
Ω

dx = ∫
dx
∫

dy
∫

dz for multi-dimensional integrals. For
M(t) /= 1, c⊥(·; t) is a density, but not a p.d.f., because it is not normalized to unit integral.
The p.d.f. pt(·; t) of surviving mass, which describes the transverse mass profile along the
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cross-section at time t, is given by

pt(x⊥; t) = c⊥(x⊥; t)
M(t)

. (3.2)

If it exists, the corresponding equilibrium p.d.f. is

p∞
t (x⊥) = lim

t→∞ pt(x⊥; t). (3.3)

3.2. Velocity at fixed time
A velocity p.d.f. describes the probability density of encountering a certain velocity in a
spatial domain, sampled according to some prescribed distribution. For the flow profile
(2.2), we may disregard the longitudinal direction and consider only the cross-section. We
first introduce the Eulerian velocity p.d.f. pE, which is defined as the probability density
associated with finding a certain velocity magnitude value at a uniformly random spatial
location. We also define the flux-weighted Eulerian p.d.f.

pF(v) = v pE(v)

vE
, (3.4)

where the Eulerian mean velocity, defined in (2.4), obeys vE = ∫ vM
0 dv v pE(v). We denote

the flux-weighted mean velocity by

vF =
∫ vM

0
dv v pF(v) = |Ω⊥|−1

∫
Ω⊥

dx⊥
v2

E(x⊥)

vE
. (3.5)

The transverse velocity p.d.f. at fixed time, pvt(·; t), is obtained by sampling spatial
locations according to the p.d.f. pt(·; t), which describes the probability density of
surviving mass at a given time as a function of cross-section positions, rather than
uniformly. If p∞

t exists, then this velocity p.d.f. also admits an equilibrium given by

p∞
vt

(v) = |Ω⊥| p∞
t [r⊥(v)] pE(v), (3.6)

where

r⊥(v) = a
√

1 − v

vM
(3.7)

are the radial distances from the channel centre where the velocity magnitude equals v

for the Poiseuille flow profile (2.2). Here and in similar contexts, we use the slight abuse
of notation p∞

t [r⊥(v)] = p∞
t (x⊥)||x⊥|=r⊥(v) for convenience. Note that p∞

vt
reduces to the

Eulerian p.d.f. pE if p∞
t (x⊥) = 1/|Ω⊥|, i.e. if mass is distributed uniformly along the

cross-section. Further details on the Eulerian and flux-weighted Eulerian p.d.f.s, including
table 2 summarizing useful quantities and a derivation of (3.6), are given in Appendix B.
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Equilibrium distributions in flow with absorbing boundaries

The mean velocity associated with p∞
vt

is

v∞
t =

∫ vM

0
dv v p∞

vt
(v) =

∫
Ω⊥

dx⊥ vE(x⊥) p∞
t (x⊥). (3.8)

Finally, we introduce the fixed-time flux-weighted velocity p.d.f., corresponding to
assigning a weight proportional to the local velocity to the sampling of spatial locations:

p∞
vt,F(v) = |Ω⊥| p∞

t,F[r⊥(v)] pE(v) = |Ω⊥| p∞
t [r⊥(v)]

vE pF(v)

v∞
t

, (3.9)

where the spatial sampling p.d.f. is obtained by flux-weighting the surviving mass p.d.f.
(3.3):

p∞
t,F(x⊥) = vE(x⊥) p∞

t (x⊥)

v∞
t

. (3.10)

The relationship between these p.d.f.s and solute breakthrough over a control plane is
discussed in § 3.3. The associated mean velocity is

v∞
t,F =

∫ vM

0
dv v p∞

vt,F(v) = 1
v∞

t

∫
Ω⊥

dx⊥ v2
E(x⊥) p∞

t (x⊥). (3.11)

One might reasonably suppose the asymptotic mean of the fixed-time velocity p.d.f.,
v∞

t (3.8), to correspond to the asymptotic mean velocity of the solute plume at large fixed
times. While this is true for conservative transport (Dentz et al. 2016), it is in fact not the
case for the reactive problem. To see why, first recall that the mean plume velocity vP(t)
as a function of time is defined as the rate of change of the mean plume position mP(t),
which is given by

mP(t) = M−1(t)
∫

Ω

dx x c(x, t). (3.12)

Taking the time derivative gives

vP(t) = M−1(t)
∫

Ω

dx x ∂tc(x, t) + α(t) mP(t), (3.13)

where α = M−1 |dM/dt| is the effective reaction rate across the solute plume (units
of inverse time). Integrating the advection–dispersion equation (ADE) (2.1) in Ω and
assuming that the equilibrium distribution p∞

t exists, we find that the late-time effective
rate is constant:

lim
t→∞ α(t) = α∞ = kA |∂Ω⊥| p∞

t (x⊥∈∂Ω⊥). (3.14)

Again using the ADE (2.1) to substitute for ∂tc(x, t) in (3.13) and performing the
appropriate integrations, we find for late times that

vP(t) = v∞
t + α∞ [mP(t) − mW(t)] , (3.15)

where

m(x⊥, t) =

∫ ∞

−∞
dx x c(x, t)∫ ∞

−∞
dx c(x, t)

=

∫ ∞

−∞
dx x c(x, t)

M(t) p∞
t (x⊥)

, mW(t) = m(x⊥∈∂Ω⊥, t) (3.16a,b)

are the mean longitudinal plume positions given an arbitrary transverse position x⊥ and a
position x⊥ at the channel walls, respectively.
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Reactive consumption cannot lead to a maximum velocity larger than vM ,
the centre-channel velocity. However, according to (3.15), if mP(t) − mW(t) grew
asymptotically as time t → ∞, so would the mean plume velocity vP(t). Thus mP(t) −
mW(t) must be at most constant at late times, and we find from (3.15) that vP(t) is constant
at late times. For the conservative problem, it is well known that the mean plume velocity
approaches the Eulerian mean velocity vE. Since reaction depletes mass in low-velocity
regions, the late-time plume velocity must not be smaller than vE and must therefore
be non-zero, so that mP(t) must grow asymptotically. Then the fact that mP(t) − mW(t)
cannot grow at late times implies mP(t) = mW(t) to leading order. On the other hand, by
definition, vP(t) = dmP(t)/dt, and we conclude that to leading order vP(t) = dmW(t)/dt
also. Therefore, mW(t) ∼ v∞

P t asymptotically, with the equilibrium mean plume velocity
given by

v∞
P = lim

t→∞
dmW(t)

dt
= lim

t→∞
mW(t)

t
. (3.17)

As we will show below, it turns out that v∞
P ≥ v∞

t ≥ vE, where the equalities hold only
for the conservative problem. This may also be seen using the more traditional method
of moments, which has been used to compute v∞

P (Lungu & Moffatt 1982). The present
approach clarifies the physical origin of this effect: even though the global mean plume
position equals the mean plume position at the wall to leading order at late times, the
subleading difference of these quantities contributes at leading order to the asymptotic
mean plume velocity in (3.15).

In order to compute v∞
P below, we consider the auxiliary quantity

f (x⊥, t) = M−1(t)
∫ ∞

−∞
dx x c(x, t). (3.18)

From this definition, we have at late times

m(x⊥, t) = f (x⊥, t)
p∞

t (x⊥)
, mP(t) =

∫
Ω⊥

dx⊥ f (x⊥, t). (3.19a,b)

Multiplying the ADE (2.1) by x/M(t), integrating out x, and rearranging terms, we obtain
an evolution equation for f . At late times, it reads

∂t f (x⊥, t) = D ∇2
⊥f (x⊥, t) + α∞ f (x⊥, t) + vE(x⊥) p∞

t (x⊥), (3.20)

with the reactive boundary condition (2.7) applied to f , and an initial condition f (x⊥, 0)

determined by the initial concentration field according to (3.18). This equation has the
form of the transverse ADE (2.6) in terms of differential operators, but with an additional
linear production term at rate α∞, and a source term given by the velocity field weighted
by the surviving mass distribution. We will analyse the late-time behaviour of (3.20) in
more detail separately for the 2-D and 3-D channels in what follows. In particular, we will
find that

m(x⊥, t) = v∞
P t + 	m(x⊥), (3.21)

where the constant-in-time mean-position discrepancy at late times 	m(x⊥) obeys∫
Ω⊥

dx⊥ p∞
t (x⊥)	m(x⊥) − 	mW = lim

t→∞[mP(t) − mW(t)] = v∞
P − v∞

t

α∞ , (3.22)

where 	mW = 	m(x⊥ ∈ ∂Ω⊥), so that (3.15) for the mean plume velocity is satisfied.
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Equilibrium distributions in flow with absorbing boundaries

3.3. Breakthrough over a fixed control plane
The breakthrough of mass as a function of time is a standard metric that represents the
total advective mass flux passing a control plane at a fixed longitudinal position. Here, we
consider breakthrough profiles, by which we mean the profile of the mass flux per area as
a function of transverse position over the control plane. As before, we are interested in the
existence of equilibrium profiles when normalized by surviving mass. Thus we define the
breakthrough p.d.f., i.e. the breakthrough profile normalized by the total mass that crosses
a control plane at position x over all times, and we seek its equilibrium form:

ps(x⊥; x) =

∫ ∞

0
dt vE(x⊥) c(x, t)∫

Ω⊥
dx⊥

∫ ∞

0
dt vE(x⊥) c(x, t)

, p∞
s (x⊥) = lim

x→∞ ps(x⊥; x). (3.23a,b)

The advective mass flux is locally proportional to the flow velocity. At large distances,
the crossing times are also large, so that we may expect the equilibrium breakthrough
p.d.f. to result from flux-weighting the surviving mass p.d.f., i.e. p∞

s = p∞
t,F; see (3.10).

This is indeed the case for the conservative problem (Dentz et al. 2016), but, surprisingly,
the equality does not hold exactly for the reactive problem due to the subleading
contributions 	m(x⊥) to the mean plume position discussed in the previous subsection
(see (3.21)). To see this, consider that, as already discussed, the plume is Gaussian along
the longitudinal direction at late times (Chatwin 1970; Biswas & Sen 2007). We thus write
the concentration field as

c(x, t) = M(t) p∞
t (x⊥) G[x; v∞

P t + 	m(x⊥), 2Det], (3.24)

where G(·; ξ, σ 2) is the Gaussian p.d.f. of mean ξ and variance σ 2, the mean plume
position is given by (3.21), and the Taylor dispersion coefficient De is given by (2.9). We
have established in (3.14) that the mass decays at a constant rate α∞ at late times, which is
equivalent to saying the late-time decay of mass is exponential at rate α∞. Thus the time
integrals in (3.23a) are proportional to the Laplace transform over time of the Gaussian
p.d.f. in (3.24) evaluated at α∞, which, for x ≥ 	m(x⊥), is given by

LtG[x; v∞
P t+	m(x⊥), 2Det](α∞) =

exp

[
− v∞

P
2De

(√
1+ 4Deα

∞

(v∞
P )2 − 1

)
[x − 	m(x⊥)]

]

v∞
P

√
1 + 4Deα∞/(v∞

P )2
.

(3.25)

The requirement x ≥ 	m(x⊥) is needed because the Gaussian approximation deteriorates
at smaller x. For a given time t > 0, the peak of the Gaussian is located at x = v∞

P t + 	m,
which implies x − 	m = v∞

P t. This means that under this approximation, the peak at a
position x < 	m would occur before t = 0, resulting in a change of sign of the square root
term within the exponential in the Laplace transform. Using (3.25), we conclude that

p∞
s (x⊥) = β(x⊥) vE(x⊥) p∞

t (x⊥)∫
Ω⊥

dx⊥ β(x⊥) vE(x⊥) p∞
t (x⊥)

, (3.26a)
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T. Aquino

where

β(x⊥) = exp(γ α∞ 	m(x⊥)/vE), γ = 2vE

v∞
P

[
1 +

√
1 + 4μ2

1vE
2

(v∞
P )2 Pe2 (1 + η Pe2)

]−1

.

(3.26b,c)

Here, we have used the fact that μ2
1 = 2τDα∞ is a constant that depends only on the

geometry of the problem and on the Damköhler number, as we will see below. Note
that γ ≈ Pe/μ1 for Pe 
 2μ1vE/v∞

P , η−1/2, whereas in the opposite limit of large Pe, γ

approaches a constant, γ ≈ 2vE/v∞
P [1 + (1 + 4μ2

1vE
2η/(v∞

P )2)1/2]−1 ≈ vE/v∞
P . In the

last approximation, we have used the fact that the term involving η turns out to be small
compared to 1 for both the 2-D and 3-D problems. We note that γ ≈ vE/v∞

P is recovered
if the plume is approximated as a Dirac delta rather than a Gaussian along the longitudinal
direction. As shown in what follows, the dimensionless quantity α∞ 	m(x⊥)/vE does not
depend on the Péclet number, and γ increases monotonically with Pe. The correction factor
β is thus largest and, more importantly, most spatially variable as Pe → ∞. Formally, the
factor γ is also largest as η → 0 for a given Pe, with η depending on Da and geometry,
although we find that the value of η has negligible impact for the problems treated here,
irrespective of the value of Pe. This means that while the mean plume velocity v∞

P is
required to estimate γ , a detailed treatment of dispersion is not. For the conservative
problem, α∞ = 0, so β(x⊥) = 1 and p∞

s = p∞
t,F, as expected.

We thus conclude that for the reactive problem, breakthrough is favoured where 	m >

0, and suppressed where 	m < 0, in addition to the natural flux-weighting caused by
considering advective breakthrough at fixed distance. From the preceding discussion,
based on (3.24), we see that this enhancement or suppression of breakthrough is due to the
fact that transverse positions where the mean plume position is locally larger are associated
with a larger mass at the time of crossing, because solute arrives earlier and is therefore
less subject to reaction on average. We find in what follows that the differences between
p∞

s and p∞
t,F are non-zero but small for all Da > 0 and Pe > 0 for the 2-D channel, and are

more pronounced for the 3-D channel, even at moderate Da and Pe. In both the 2-D and
3-D cases, the differences between the mean v∞

t of the fixed-time transverse velocity p.d.f.
and the mean plume velocity v∞

P , which also result from the same effect, are appreciable
starting at moderate Da and Pe. It is interesting to note that as we will see, 	m is non-zero
even for the conservative problem, although it no longer plays a role at late times because
it does not interact with reaction to create the necessary mass differences.

Finally, we consider the velocity p.d.f. associated with breakthrough over a control plane
at a given distance from injection. Analogously to (3.6), we have the relationship

p∞
vs

(v) = |Ω⊥| p∞
s [r⊥(v)] pE(v) = |Ω⊥| p∞

t [r⊥(v)]
β[r⊥(v)] vE pF(v)∫ vM

0
dv β[r⊥(v)] v p∞

v,t(v)

. (3.27)

Its mean,

v∞
s =

∫ vM

0
dv v p∞

vs
(v) =

∫ vM

0
dv β[r⊥(v)] v2 p∞

vt
(v)∫ vM

0
dv β[r⊥(v)] v p∞

vt
(v)

=

∫
Ω⊥

dx⊥ β(x⊥) v2
E(x⊥) p∞

t (x⊥)∫
Ω⊥

dx⊥ β(x⊥) vE(x⊥) p∞
t (x⊥)

,

(3.28)
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Equilibrium distributions in flow with absorbing boundaries

Symbol Physical meaning Fixed Equations

p∞
t Transverse mass p.d.f. Time (3.3), (4.3), (4.19)

p∞
t,F Flux-weighted transverse mass p.d.f. Time (3.10), (4.5), (4.21)

p∞
s Transverse mass breakthrough p.d.f. Distance (3.23a,b), (3.26)

p∞
vt

Transverse velocity p.d.f. Time (3.6), (4.16), (4.27)

p∞
vt,F Flux-weighted transverse velocity p.d.f. Time (3.9), (4.17), (4.28)

p∞
vs

Transverse velocity breakthrough p.d.f. Distance (3.27)

v∞
P Mean plume velocity Time (3.13), (4.14), (4.25)

v∞
t Mean of transverse velocity p.d.f. Time (3.8), (4.13), (4.24)

v∞
t,F Mean of flux-weighted transverse velocity p.d.f. Time (3.11), (4.15), (4.26)

v∞
s Mean of transverse breakthrough velocity p.d.f. Distance (3.28)

Table 1. Main equilibrium quantities discussed in the text, along with important equations.

represents the mean solute velocity upon crossing a far control plane, i.e. at a longitudinal
position far from the initial condition irrespective of the crossing time. Note that for the
conservative problem, this velocity p.d.f. is obtained by flux-weighting the fixed-time
velocity p.d.f. That is, in that case, p∞

vs
(v) = p∞

vt,F(v) and v∞
s = v∞

t,F; see (3.9) and (3.11).

4. Equilibrium distributions

In this section, we determine the transverse equilibrium distributions for surviving mass,
breakthrough and velocity introduced in § 3. The main asymptotic quantities discussed
in this section are summarized in table 1 for ease of reference. Consider first the
conservative problem. The asymptotic concentration field for large times is constant
over the cross-section, so that p∞

t (x⊥) = 1/|Ω⊥|. Thus, in this case, the asymptotic
p.d.f. of velocities at fixed time coincides with the Eulerian p.d.f., p∞

vt
= pE. Since, as

already discussed, the correction factor β(x⊥) in (3.26) is unity in this case, breakthrough
p.d.f.s are obtained by flux-weighting. Thus we have p∞

s = p∞
t,F = vE/(|Ω⊥| vE) and

p∞
vs

= p∞
vt,F = pF, as expected (Dentz et al. 2016).

In what follows, we analyse the reactive problem separately for flow between flat plates
(2-D channel) and flow in a cylindrical pipe (3-D channel). We compare our results to
numerical simulations obtained using a standard finite-volume method in OpenFOAM
(OpenCFD Ltd 2022). For the simulations, we fix a moderate Péclet number Pe = 2, and
consider three values of the Damköhler number, Da = 10−1, 1 and 10, corresponding to
slow, moderate and fast reaction compared to diffusion at the scale of the channel radius
(see Appendix C for further details).

4.1. Two-dimensional channel
In this case, the diffusion equation (2.6) with boundary conditions (2.7) and initial
condition c⊥( y; 0) has the solution (Polyanin & Nazaikinskii 2016)

c⊥( y; t) =
∑
n≥1

exp
(

− μ2
nt

2τD

)
φn( y)
abn

∫ a

−a
dy′ φn( y′) c⊥( y′; 0), (4.1a)
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Damköhler number, Da
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Figure 1. Slowest decay mode constant μ1 as a function of Da for the 2-D and 3-D channels. The solid lines
are obtained by finding the smallest solution to (4.1d) and (4.18b) numerically. The analytical limiting forms
(E1) and (F1) for small Da, and (E2) and (F2) for large Da, are shown as dashed lines for Da ≤ 1 and Da ≥ 1,
respectively.

where

φn( y) = cos
[
μn

(
1 + y

a

)]
+ 2 Da

μn
sin
[
μn

(
1 + y

a

)]
, (4.1b)

bn = 1 + 2 Da (1 + 2 Da)

μ2
n

, (4.1c)

and μn are the positive solutions to

tan(2μ)

2μ
= 2 Da

μ2 − (2 Da)2 . (4.1d)

Trigonometric manipulation yields two useful alternate forms of this relation:

cos(2μ) = μ2 − (2 Da)2

μ2 + (2 Da)2 , tan(μ) = 2 Da
μ

. (4.1e)

The μn dictate the rate of decay of mode n in (4.1a) through the exponential factor. While
they cannot in general be determined analytically, by ordering the solutions so that μn <

μn+1, it holds that the n = 1 mode is dominant for t � 2τD/(μ2
2 − μ2

1), so that for large
times,

c⊥( y; t) ≈ exp

(
− μ2

1t
2τD

)
φ1( y)
ab1

∫ a

−a
dy′ φ1( y′) c⊥( y′; 0). (4.2)

The dependency of μ1 on Da is shown in figure 1, along with the 3-D case discussed in
§ 4.2 for comparison. Analytical results for the low and high Damköhler limits are derived
in § E.1.

The onset of the asymptotic regime depends only weakly on the reaction time τR,
through the dependence of the decay mode constants μn on the Damköhler number.
Indeed, μ2

2 − μ2
1 grows monotonically from ≈10 to ≈20 for the 2-D case, so that the

characteristic time for the onset of the asymptotic regime decreases with Da but is always
of the order of a tenth of the diffusion time. It may seem surprising that the time τR
does not enter more directly, but this can be understood as follows. In the high-Da
limit, the reaction is transport-limited, so that the transition to the asymptotic regime is
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Equilibrium distributions in flow with absorbing boundaries

controlled by diffusion. On the other hand, in the low Da limit, the equilibrium profile is
close to homogeneous, so that little reaction is necessary to achieve it, and the diffusive
homogenization time remains the most important control. Similar considerations are valid
for the 3-D case, for which μ2

2 − μ2
1 grows monotonically from ≈15 to ≈25.

4.1.1. Surviving mass and breakthrough
From (3.2) and (4.2), we obtain the equilibrium surviving mass p.d.f.

p∞
t ( y) = φ1( y)∫ a

−a
dy′ φ1( y′)

= μ2
1

4a Da

(
cos

[
μ1

(
1 + y

a

)]
+ 2 Da

μ1
sin
[
μ1

(
1 + y

a

)])
,

(4.3)
where we have used (4.1e) and some trigonometric manipulation.

We conclude that for arbitrary reaction rate and including Da → ∞, the transverse
distribution of surviving mass admits an asymptotic form that is independent of the initial
condition. From (4.1a), we also conclude immediately that the late-time reaction rate is
constant and given by the slowest decay mode,

α∞ = μ2
1

2τD
. (4.4)

This result can be verified to agree with (3.14) by direct calculation using (4.3) and the
trigonometric relations (4.1e). The fact that the asymptotic rate is constant is consistent
with the existence of a transverse equilibrium distribution. The relationship to recent
descriptions in terms of first passage times (Aquino & Le Borgne 2021a; Aquino et al.
2023) is discussed in Appendix D.

To obtain the flux-weighted surviving mass p.d.f. p∞
t,F, we flux-weight (4.3) according

to (3.10):

p∞
t,F( y) = Da μ2

1

2 Da − μ2
1

(
1 − y2

a2

)
p∞

t ( y); (4.5)

see also (4.13) below for the mean of the fixed-time velocity p.d.f. The limiting forms of
p∞

t and p∞
t,F for small and large Da are derived in § E.1.

To obtain the true breakthrough p.d.f. p∞
s associated with flux over a fixed control

plane, we must take into account the correction factor β( y) = exp[γα∞ 	m( y)/vE]; see
(3.26). Because of the normalization, any differences between p∞

s and p∞
t,F result from

variability in the mean-position discrepancy 	m( y) with respect to the cross-section
position y. To compute it, we must solve (3.20) for the auxiliary quantity f ( y, t). Since
the differential operators are the same as for the transverse ADE (2.6), this equation has
the same propagator, except that the decay modes are modified by the production term
at rate α∞. The solution for the 2-D channel, reflecting the presence of a source term
p∞

t ( y)vE( y), is (Polyanin & Nazaikinskii 2016)

f ( y, t) =
∑
n≥1

φn( y)
abn

[
exp

(
−
(

μ2
n

2τD
− α∞

)
t
)∫ a

−a
dy′ φn( y′) f ( y′, 0) (4.6)

+
∫ t

0
dt′ exp

(
−
(

μ2
n

2τD
− α∞

)
t′
)∫ a

−a
dy′ p∞

t ( y′) φn( y′) vE( y′)
]

, (4.7)
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where the φn and μn are the same as in (4.1a). We assume that the initial condition
f ( y, 0) ∝ ∫

dx x c(x, y, 0) does not depend on y, which holds for any initial condition
of constant width along the longitudinal direction. We then set f ( y, 0) = 0 without
further loss of generality by choosing the longitudinal origin of the coordinate system
to coincide with the initial mean plume position. Using (4.3) and (4.4), we obtain, for
t � 2τD/(μ2

2 − μ2
1),

f ( y, t) = 16a Da2 t p∞
t ( y)

μ4
1b1

∫ a

−a
dy′ ( p∞

t )2( y′) vE( y′) (4.8)

+
∑
n≥2

φn( y)
abnα∞

μ2
1

μ2
n − μ2

1

∫ a

−a
dy′ p∞

t ( y′) φn( y′) vE( y′). (4.9)

The first term is associated with the mean plume velocity as discussed below. From
the second term and (3.19a,b) and (3.21), we conclude that the late-time mean-position
discrepancy obeys

α∞

vE
	m( y) = − 3

2p∞
t ( y)

∑
n≥2

φn( y)
bn

μ2
1

μ2
n − μ2

1

∫ 1

−1
du u2 p∞

t (au) φn(au), (4.10)

where we have used the fact that p∞
t ( y) ∝ φ1( y) and the φn are a set of orthogonal

modes (i.e. the product φnφm integrates to zero for n /= m). We note that for an initial
condition where f ( y, 0) is not constant, there is an additional contribution to 	m( y)
given by φ1( y)/(ab1)

∫
dy′ φ1( y′) f ( y′, 0), which cannot be fully removed by a choice

of coordinate origin. We are not aware of a closed-form solution of (4.10) for arbitrary Da.
However, rather surprisingly, the remaining integration and sum can both be performed
analytically in the limit of large Da to yield the simple form

α∞

vE
	m( y) = 1

8

[
3y2

a2 − πy
a

(
1 − y2

a2

)
tan

(πy
2a

)
+ 12

π2 − 1
]

. (4.11)

Unfortunately, the denominator in (3.26) must still be computed numerically. As
mentioned in § 3.3, 	m is non-zero even for the reactive problem. In that case, proceeding
similarly using the conservative solution (Polyanin & Nazaikinskii 2016), we obtain

	m( y)
2τD vE

= 1
8

[
7

30
− y2

a2

(
1 − y2

2a2

)]
. (4.12)

We find by numerical computation according to (4.10), using the values of μn up to n = 6
reported in Carslaw & Jaeger (1986), that this result is approached continuously in the
limit of small Da.

Figure 2(a) illustrates the dependency of the factor γ on Péclet number (see (3.26)),
and figure 2(b) shows a comparison between p∞

s and p∞
t,F at large Da and Pe, showing

little difference. The value of η in γ depends on the Damköhler number, as discussed
in relation to (2.9) for Taylor dispersion. However, this dependency makes no appreciable
difference in either two or three dimensions for the quantities reported here, and we employ
η = 0 in (3.26b) here and in what follows. The largest error in γ occurs for Pe → ∞
and Da → ∞, with a relative value of about 4 × 10−3 in two dimensions, and 2 × 10−4

in three dimensions. The error decreases to zero as Da → 0. The results for the p.d.f.s
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Figure 2. Effect of the mean-position discrepancy 	m( y) on the breakthrough p.d.f. p∞
s for the 2-D channel.

The mean-position discrepancy generates differences between the flux-weighted p.d.f. p∞
t,F and the true

breakthrough p.d.f. p∞
s through the factor β( y) = exp[−γα∞ 	m( y)/vE] in (3.26). (a) Plot of γ as a function

of Péclet number Pe in the limit of infinite Da, with the low- and high-Pe behaviours shown as dashed lines.
(b) Comparison of p∞

s ((3.26) and (4.10)) and p∞
t,F (E6) in the limit of large Da and Pe, showing that differences

are minor for the 2-D channel; the factor β( y), which is below 1 near the channel walls and above 1 near the
channel centre but always close to unity, is shown as a dashed line.
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Figure 3. Equilibrium surviving mass and breakthrough p.d.f.s p∞
t and p∞

s in the 2-D channel, for
(a) Da = 10−1, (b) Da = 1, and (c) Da = 10. Symbols show the results of numerical simulations. The
theoretical predictions approximate the breakthrough p.d.f. p∞

s as the flux-weighted p.d.f. p∞
t,F as discussed

in the text. The solid lines in (a,c) show the analytical limit forms (E3) and (E5) for low Da, and (E4) and (E6)
for high Da, respectively. The solid lines in (b) show the analytical solutions (4.3) and (4.5) with μ1 computed
numerically according to (4.1d).

under the approximation p∞
s ≈ p∞

t,F are shown in figure 3 for different Da and Pe = 2. As
expected, since the effect of β is small at large Da and Pe, the agreement is good across
all values of Da.

4.1.2. Velocity
Using (2.2), (3.8) and (4.3), we determine the asymptotic mean of the fixed-time velocity
p.d.f. as

v∞
t

vE
= 3

1 − μ1 cot μ1

μ2
1

= 3
2

2 Da − μ2
1

Da μ2
1

. (4.13)
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Figure 4. Equilibrium mean of the transverse velocity p.d.f. in time v∞
t , its flux-weighted counterpart v∞

t,F ,
mean plume velocity v∞

P , and mean breakthrough velocity v∞
s , as a function of Da for (a) the 2-D channel

and (b) the 3-D channel. The solid lines corresponding to v∞
t , v∞

P and v∞
t,F are the analytical solutions (a)

(4.13), (4.14) and (4.15), and (b) (4.24), (4.25) and (4.26). The corresponding dashed lines show the analytical
limit forms for low and high Da: (a) (E7), (E9) and (E11), and (E8), (E10) and (E12); (b) (F7), (F9) and (F11),
and (F8), (F10) and (F12). Solid lines corresponding to v∞

s employ (3.28), together with (4.10) for (a) and
(4.23) for (b); these lines use Péclet number Pe → ∞. Symbols show the results of numerical simulations for
Da = 10−1, 1 and 10.

As discussed in § 3.2, this is smaller than the mean plume velocity v∞
P , which describes

the rate of change of the plume centre of mass at late times. We find from (3.17) and (4.8)
that

v∞
P
vE

= 16 Da2

μ4
1b1

∫ 1

−1
du u2 ( p∞

t )2(u) = 1 + 3
4μ2

1
− 3 + 4 Da

2μ2
1 + 4 Da (1 + 2 Da)

. (4.14)

This result is equivalent to that reported in Lungu & Moffatt (1982). Using (4.3) for p∞
t ,

(4.11) for α∞ 	m( y)/vE, (4.13) and (4.14) for v∞
t /vE and v∞

P /vE, and 	mW = 	m(±a),
we find by direct calculation that (3.22) is satisfied as expected.

In line with the discussion for the breakthrough p.d.f., we approximate the true average
breakthrough velocity v∞

s by the flux-weighted mean v∞
t,F. Proceeding similarly to the

calculation of v∞
t , using (3.11), we obtain

v∞
t,F

vF
= 15

μ2
1

(
1 − vE

v∞
t

)
. (4.15)

These results are shown as a function of Da in figure 4(a) (see § E.2 for the derivation
of the high- and low-Da forms). The 3-D case, discussed in detail in § 4.2, is shown in
figure 4(b) for comparison.

It is interesting to note that for both the 2-D and 3-D channels, we have vE < vF <

v∞
t < v∞

t,F < v∞
s < v∞

P as Da → ∞. In this high-Da limit, there is a noticeable difference
corresponding to an increase of approximately 7 % and 13 % between v∞

t and v∞
P in two

and three dimensions, respectively. The plume velocity v∞
P differs from the fixed-time

flux-weighted velocity v∞
t,F by only approximately 1 % and 2 %, respectively, and the

fixed-time average velocity v∞
t is similar to the Eulerian flux-weighted mean velocity vF

rather than to the Eulerian mean velocity vE, differing by about 1 % in the 2-D case, and
4 % in the 3-D case. The average breakthrough velocity v∞

s is approximately halfway
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Equilibrium distributions in flow with absorbing boundaries

between v∞
P and v∞

t,F in both cases. This should be contrasted with the conservative
problem, for which v∞

t = v∞
P = vE and v∞

s = v∞
t,F = vF. As shown in table 2, vF is

larger than the mean flow velocity vE by 20 % and approximately 33 % in two and three
dimensions; thus the mean plume velocity increases by approximately 30 % and 56 % as
Da → ∞.

It is easy to see that the relationship vE ≤ vF always holds, with the equality holding if
and only if the flow is uniform, due to fact that vF assigns more weight to higher velocities.
The same argument shows that v∞

t ≤ v∞
t,F, and similarly, because breakthrough at fixed

distance is naturally associated with a flux-weighting according to the local velocities,
v∞

t ≤ v∞
s . Since reaction happens at the channel walls, it leads to an increase of the

velocities sampled by the plume, and therefore to an increase in the different Lagrangian
(i.e. associated with sampling by the solute rather than characteristic of the flow) average
velocities v∞

t , v∞
t,F, v∞

s and v∞
P . Thus it is also easy to see that for the reactive problem,

vE < v∞
t , v∞

P and vF < v∞
t,F, v∞

s . We have seen that the inequality v∞
t,F < v∞

s of two
averages that are identical for the conservative problem arises from the interaction between
the subleading moment discrepancy 	m and reaction. Indeed, breakthrough is favoured
where 	m > 0, because the earlier arrival of Lagrangian trajectories at these positions
means a shorter exposure to reaction; see (3.26). Given that 	m /= 0, it is intuitive that
the mean plume position for a given transverse position is larger where the flow velocity
is larger. This mechanism acts in addition to the natural flux-weighting associated with
breakthrough, and leads to v∞

t,F < v∞
s . For a similar reason, v∞

t < v∞
P ; see (3.15). It should

be noted that these qualitative arguments are not sufficient to ensure that for sufficiently
fast reaction, the fixed-time averages v∞

P and v∞
t become larger than the flux-weighted

Eulerian average vF, and similarly that v∞
P becomes larger than both the Lagrangian

flux-weighted average v∞
t,F and the breakthrough average v∞

s , as we observe in figure 4.
In other words, this discussion does not guarantee that this happens at finite Da for an
arbitrary flow configuration.

We also note in this context that the inequality of Lagrangian and Eulerian average
velocities is not limited to the reactive problem when considering early times. For the
conservative problem, the classical Taylor dispersion picture implies that the asymptotic
fixed-time transverse average velocity and the plume velocity both equal the average flow
velocity vE, and similarly the average flux-weighted and breakthrough velocities equal vF.
However, this is not true at pre-asymptotic times, when these quantities may differ as the
initial plume deforms as it samples the flow, and complex pre-asymptotic distributions of
transverse concentration and breakthrough may develop (Guan & Chen 2024).

Next, we turn to the asymptotic velocity p.d.f.s. For the fixed-time p.d.f., using (3.6),
(3.7) and (4.3), we obtain

p∞
vt

(v)

pE(v)
= μ2

1
2 Da

(
cos

[
μ1

(
1 +

√
1 − v

vM

)]
+ 2 Da

μ1
sin
[
μ1

(
1 +

√
1 − v

vM

)])
.

(4.16)

Recall that the maximum velocity is vM = 3vE/2 for two dimensions. For v 
 vM , we find
by Taylor expansion that the low-velocity behaviour is flat, as for the conservative case.
However, as Da → ∞ and μ1 → π/2, the v-independent term vanishes. The low-velocity
plateau, which accounts for contributions from the shear layer near the channel walls,
is thus lower for higher Da, and occurs for smaller v. The approach to this plateau is
∼ v, and the scaling of the p.d.f. thus becomes linear in v as Da → ∞. For v ≈ vM ,
corresponding to positions near the centre of the channel, we have p∞

vt
(v) ∼ 1/

√
v − vM
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Figure 5. Equilibrium velocity p.d.f. in time p∞
vt

and breakthrough velocity p.d.f. p∞
vs

in the 2-D channel, for
(a) Da = 10−1, (b) Da = 1, and (c) Da = 10. Symbols show the results of numerical simulations. The
theoretical predictions approximate p∞

vs
as the flux-weighted p.d.f. p∞

vt,F as discussed in the text. The solid
lines in (a,c) show the analytical limit forms (E13) and (E15) for low Da, and (E14) and (E16) for high Da,
respectively. The solid lines in (b) show the analytical solutions (4.16) and (4.17), with μ1 computed numerically
according to (4.1d). Dotted lines show the Eulerian and flux-weighted Eulerian velocity p.d.f.s pE(v) and pF(v),
which equal p∞

vt
and p∞

vs
= p∞

vt,F for the conservative problem.

as for the conservative case, irrespective of Da (see § E.2 for further details on the low-
and high-Da limits).

In line with the results for the breakthrough p.d.f., we approximate the true velocity
p.d.f. p∞

vs
associated with breakthrough at fixed distance by the flux-weighted p.d.f. p∞

vt,F.
Flux-weighting (4.16) and using (4.13), we find

p∞
vt,F(v)

pF(v)
= μ4

1

6 Da − 3μ2
1

(
cos

[
μ1

(
1+

√
1 − v

vM

)]
+ 2 Da

μ1
sin
[
μ1

(
1+

√
1− v

vM

)])
.

(4.17)

The low-velocity scaling is now linear for finite Da, and becomes quadratic as Da → ∞.
As before, for high velocities v ≈ vM , the scaling is p∞

vt,F(v) ∼ 1/
√

v − vM , irrespective
of Da. The flux-weighted approximation agrees well with numerical simulations, as can
be seen in figure 5.

4.2. Three-dimensional channel
Similarly to the 2-D case, decay modes of order higher than the first can be neglected at late
times for transport in a cylindrical channel. Furthermore, in this case, symmetry ensures
that any angular variability in the initial concentration along the channel cross-section
vanishes at late times. The late-time solution for transverse concentrations is thus
associated with the slowest radial decay mode and is given by (Polyanin & Nazaikinskii
2016)

c⊥(x⊥, t) = 2
a2 J2

1(μ1)

(2 Da)2

μ2
1 + (2 Da)2

exp

(
−μ2

1t
2τD

)
J0

(
μ1

|x⊥|
a

)

×
∫ a

0
dr r J0

(
μ1

r
a

)
c⊥(r, 0), (4.18a)
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Equilibrium distributions in flow with absorbing boundaries

where Jν is the Bessel function of the first kind of order ν, and μ1 is the smallest positive
root of

μ J1(μ) = 2 Da J0(μ). (4.18b)

Using the well-known recurrence relation 2α Jα(x)/x = Jα−1(x) + Jα+1(x) (Abramowitz
& Stegun 1964) for α = 1, 2, we find that the latter is equivalent to

J2(μ) = 4 Da − μ2

μ2 J0(μ), J3(μ) = 2
8 Da − 2μ2 − Da μ2

μ3 J0(μ). (4.18c,d)

The behaviour of μ1 as a function of Da is shown in figure 1(b); see § F.1 for the
derivation of the asymptotic forms. Note that the nth radial mode decays exponentially
at rate μ2

n/(2τD) as for the 2-D case, although the values of μn are different because they
now solve (4.18b).

4.2.1. Surviving mass and breakthrough
From (4.18a), we obtain the surviving mass p.d.f.

p∞
t (x⊥) = μ1

2πa2
J0(μ1|x⊥|/a)

J1(μ1)
. (4.19)

Again, we conclude in particular that an equilibrium form independent of the initial
condition exists for all Da, including Da → ∞. As before, the asymptotic reaction rate
is given by

α∞ = μ2
1

2τD
. (4.20)

Flux-weighting, we find

p∞
t,F(x⊥) = Da μ2

1

4 Da − μ2
1

(
1 − |x⊥|2

a2

)
p∞

t (x⊥); (4.21)

see also the result for the fixed-time average velocity in (4.24) below. The limiting forms
of these two p.d.f.s for Da → 0 and Da → ∞ are discussed in § F.1.

To find the breakthrough p.d.f. p∞
s , we must solve (3.20). As for the 2-D case, we assume

that the initial condition f (x⊥, 0) ∝ ∫
dx x c(x, x⊥, 0) does not depend on x⊥, and we

set f (x⊥, 0) = 0 without further loss of generality. Analogously to the 2-D channel, the
solution for t � 2τD/(μ2

2 − μ2
1) is now (Polyanin & Nazaikinskii 2016)

f (x⊥, t) = 8π2a2μ−2
1 t p∞

t (x⊥)

1 + (μ1/2 Da)2

∫ a

0
dr r( p∞

t )2(r) vE(r)

+ 2
a2α∞

∑
n≥2

J−2
1 (μn) J0(μn |x⊥|/a)

1 + (μn/2 Da)2

μ2
1

μ2
n − μ2

1

∫ a

0
dr r p∞

t (r) J0(μnr/a) vE(r).

(4.22)
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Figure 6. Effect of the mean-position discrepancy 	m(x⊥) on the breakthrough p.d.f. p∞
s for the 3-D

channel. The mean-position discrepancy generates differences between the flux-weighted p.d.f. p∞
t,F and the

true breakthrough p.d.f. p∞
s through the factor β(x⊥) in (3.26). (a) Behaviour of β in the limit of infinite Da,

for different values of Péclet number Pe. (b) Comparison of the resulting p∞
s ((3.26) and (4.23), using terms up

to n = 6 in the sum according to the values of μn reported in Carslaw & Jaeger 1986) to p∞
t,F (F6).

As before, the first term is associated with the mean plume velocity (see below), and from
(3.19a,b) and (3.21) we conclude from the second term that

α∞

vE
	m(x⊥) = −4

∑
n≥2

J0(μn |x⊥|/a)

J2
1(μn) J0(μ1 |x⊥|/a)

(2 Da)2

(2 Da)2 + μ2
n

μ2
1

μ2
n − μ2

1

×
∫ 1

0
du u3 J0(μ1u) J0(μnu). (4.23)

We are not aware of a closed-form solution for either the integral or the sum in this case.
Recall that the mean-position discrepancy affects the breakthrough p.d.f. p∞

s through
the factor β(x⊥) in (3.26). The β profiles for different values of the Péclet number at
infinite Da are shown in figure 6(a), along with a comparison between the resulting p∞

s and
the flux-weighted p.d.f. p∞

t,F in figure 6(b). Although the difference to the flux-weighted
p.d.f. is not dramatic, it is substantially more pronounced than in the 2-D case, and
clearly discernible at the channel centre. At Pe = 2, the results are similar to those for
Pe → ∞, which explains the good agreement found between simulations at Pe = 2 and
theory for Pe → ∞ for the mean breakthrough velocity in figure 4(b). The results for
the surviving mass and breakthrough p.d.f.s are shown in figure 7 for different Da at
Pe = 2. As expected, the differences between p∞

s and p∞
t,F become more pronounced with

increasing Da, but are already visible at Da = 10−1.

4.2.2. Velocity
Proceeding as for the 2-D case, but integrating (3.8) in polar coordinates and consulting
table 2 for the 3-D case, we obtain for the asymptotic mean of the fixed-time velocity
p.d.f.:

v∞
t

vE
= 2

4 Da − μ2
1

Da μ2
1

. (4.24)
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Figure 7. Equilibrium surviving mass and breakthrough p.d.f.s p∞
t and p∞

s , and flux-weighted mass p.d.f. p∞
t,F ,

in the 3-D channel, for (a) Da = 10−1, (b) Da = 1, and (c) Da = 10. Symbols show the results of numerical
simulations. The solid lines in (a,c) for p∞

t and p∞
t,F show the analytical limiting forms (F3) and (F5) for low

Da, and (F4) and (F6) for high Da. The corresponding solid lines in (b) show the analytical solutions (4.19)
and (4.21), with μ1 computed numerically according to (4.18b). In all plots, the solid lines representing p∞

s are
computed using (3.26) and (4.23), using terms up to n = 6 in the sum according to the values of μn reported
in Carslaw & Jaeger (1986).

Using (4.22), arguments similar to those for the 2-D case lead to the asymptotic plume
velocity

v∞
P
vE

= 8π2

μ2
1

(2 Da)2

μ2
1 + (2 Da)2

∫ a

0
dr r( p∞

t )2(r) vE(r) = 4
3

(
1 + 1

μ2
1

− 1 + 2 Da

μ2
1 + (2 Da)2

)
,

(4.25)

This result is equivalent to that reported in Lungu & Moffatt (1982). For the flux-weighted
mean velocity, we find

v∞
t,F

vF
= 24

μ2
1

(
1 − vE

v∞
t

)
. (4.26)

The different mean velocities are shown as a function of Da in figure 4(b); see also the
associated discussion in §§ 4.1.2 and F.2 for the limiting forms at low and high Da.

We now turn to the asymptotic velocity p.d.f.s, again proceeding as for the
one-dimensional case. First, according to (3.6), the fixed-time p.d.f. is given by

p∞
vt

(v)

pE(v)
= μ1

2πa2 J1(μ1)
J0

(
μ1

√
1 − v

vM

)
. (4.27)

Note that in this case, the Eulerian p.d.f. pE(v) = 1/vM is independent of v; see table 2.
Finally, for the flux-weighted p.d.f., we have

p∞
vt,F(v)

pF(v)
= μ3

1
4πa2 J1(μ1)

Da

4 Da − μ2
1

J0

(
μ1

√
1 − v

vM

)
. (4.28)

These velocity p.d.f.s are illustrated in figure 8 (see § F.2 for low- and high-Da forms)
along with the breakthrough velocity p.d.f. p∞

vs
from (3.27) that takes into account the

mean-position discrepancy (4.23). The differences between p∞
vs

and p∞
vt,F are in line with

the discussion of the breakthrough p.d.f. p∞
s ; see figure 7.
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Figure 8. Equilibrium velocity p.d.f. at fixed time p∞
vt

, corresponding flux-weighted p.d.f. p∞
vt,F , and

breakthrough velocity p.d.f. p∞
vs

in the 3-D channel, for (a) Da = 10−1, (b) Da = 1, and (c) Da = 10. Symbols
show the results of numerical simulations. The solid lines associated with p∞

vt
and p∞

vt,F in (a,c) show the
analytical limit forms (F13) and (F15) for low Da, and (F14) and (F16) for high Da. The corresponding solid
lines in (b) show the analytical solutions (4.27) and (4.28), with μ1 computed numerically according to (4.18b).
The solid lines associated with p∞

vs
use (3.27) in all plots, with ps computed as in figure 7. Dotted lines show

the Eulerian and flux-weighted Eulerian p.d.f.s, which equal p∞
vt

and p∞
vs

= p∞
vt,F for the conservative problem.

5. Discussion and conclusions

We have provided a detailed analysis of the asymptotic transverse distributions of
surviving mass, velocity and breakthrough fluxes for advective–diffusive transport in
Poiseuille flow between two flat plates and in a cylindrical channel. Just as for the
conservative case, asymptotic forms exist, even in the limit of instantaneous reaction. In
addition to qualitatively intuitive changes associated with the depletion of low-velocity
regions due to reaction at the channel walls, we have also found that the equality between
flux-weighted and breakthrough quantities, as well as between the mean plume velocity
and the average of the transverse velocity distribution at fixed time, are modified by the
presence of reaction. These effects result from variability in the mean plume position over
the channel cross-section, which, despite being of subleading order in time, contributes at
leading order to the mean plume velocity and results in non-vanishing asymptotic effects.
As we have seen, the effect of this mechanism on breakthrough distributions is noticeable
but mild, especially in the two-dimensional case. The effect on the mean plume velocity
is more substantial in both cases.

The simplicity of the set-up used here in terms of the geometry, flow profile and
chemical kinetics allows most of the calculations to be carried out analytically. This
elucidates the underlying mechanisms and also provides analytical building blocks that can
be used to develop models that are applicable to more complex scenarios. In this context,
the results raise a number of questions that remain open. Does the ordering under fast
reaction, vE < vF < v∞

t < v∞
t,F < v∞

s < v∞
P , of the different mean velocities discussed

here hold for arbitrary geometries? What geometric features lead to larger or smaller
differences between the mean plume velocity and the average of the transverse velocity
distribution, and between breakthrough and flux-weighted quantities? To what extent do
these results affect the formal structure and predictions of stochastic models of transport
based on velocity distributions, and how can they be adapted to account for more complex
geometry, flow heterogeneity and rheology, as encountered, for example, in natural porous
and fractured rock formations or in biological systems? Answering these questions, in
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particular for the single channel and for ensembles of connected channels, will be the
subject of future work.
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Appendix A. Transverse quantities in terms of Aris–Barton moments

Here, we relate the transverse quantities introduced in § 3 to moments in the classical
Aris–Barton formulation (Barton 1984). To this end, we define the integral operators

Ix f =
∫ ∞

0
dx f (x), I⊥ f =

∫
Ω⊥

dx⊥ f (x⊥),

It f =
∫ T

0
dt f (t), Ivf =

∫ vM

0
f (v) dv,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A1)

where f is an arbitrary function that depends on the appropriate physical variable, and
variables not affected by the operator are understood to be kept constant. We introduce the
local axial moments

Cm = Ixx̂mc, (A2)

where m ∈ N, the hat indicates the identity function (i.e. x̂(x) = x), and the global
moments

Mm = I⊥Cm. (A3)

Note that M0(t) = M(t), the total mass at time t. An analytical treatment of these moments
may be found in Barton (1984).

In terms of these definitions, the transverse mass p.d.f. is given by

pt = C0

M0
. (A4a)

Its flux-weighted counterpart is

pt,F = vEpt

I⊥vEpt
, (A4b)

and the breakthrough p.d.f. is in turn

ps = ItvEc
I⊥ItvEc

. (A4c)

As discussed in the main text and in Appendix B, the velocity p.d.f.s associated with
spatial sampling according to the previous p.d.f.s can be obtained through what amounts
to a change of variables. That is,

pvt = I⊥δvE pt, pvt,F = I⊥δvE pt,F, pvs = I⊥δvE ps, (A5a–c)

where δvE is the Dirac delta centred at vE, δvE(x⊥)(v) = δ[vE(x⊥) − v]. At equilibrium,
when from symmetry considerations the transverse mass p.d.f.s must be a function of

985 A16-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-9033-7202
https://orcid.org/0000-0001-9033-7202
https://doi.org/10.1017/jfm.2024.294


T. Aquino

radial position only, this simplifies to

p∞
vt

= pt(r⊥) pE, p∞
vt,F = p∞

t,F(r⊥) pE, p∞
vs

= p∞
s (r⊥) pE; (A6a–c)

see (3.7). For the corresponding mean velocities, we have

vt = Ivv̂pvt = I⊥vEpt, (A7a)

vt,F = Ivv̂pvt,F = I⊥v2
Ept, (A7b)

vs = Ivv̂pvs = I⊥vEps. (A7c)

Finally, the mean plume velocity is the rate of change of the mean plume position,

vP = dmP

dt
, mP = M1

M0
, (A8a,b)

and we have for the transverse-position-dependent mean position:

m = C1

C0
, (A9)

so that from (3.15),

v∞
P = v∞

t + α∞ lim
t→∞

(
M1

M0
− C1

C0

∣∣∣∣
x⊥∈∂Ω⊥

)
. (A10)

Appendix B. Flow velocity distributions

In this appendix, we provide details on the Eulerian and flux-weighted p.d.f.s associated
with flow velocity at fixed times, and their relationship with the velocity p.d.f.
characterizing advective velocities at fixed time. The Eulerian velocity p.d.f. is defined
as the probability density associated with finding a certain velocity magnitude value at a
uniformly random spatial location,

pE(v) = |Ω⊥|−1
∫

Ω⊥
dx⊥ δ[v − vE(x⊥)], (B1)

where δ(·) is the Dirac delta. In order to express this p.d.f. in a more practical form,
it is convenient to change variables in the integrand to explicitly use the fact that the
contributions to pE(v) arise from positions x⊥ where the velocity has a specified value v.
The Dirac delta can be expressed as a simple layer integral (Hörmander 2015; Aquino &
Le Borgne 2021b)

δ[v − vE(x⊥)] =
∫

Λ(v)

dx′
⊥

δ(x′
⊥ − x⊥)

|∇⊥vE(x′
⊥; t)| , (B2)

where Λ(v) is the (d − 2)-surface of points x⊥ where vE(x⊥) = v. For channel flow,
the shear rate magnitude as a function of velocity α(v) = |∇⊥vE(x⊥; t)|x⊥∈Λ(v) is well
defined, as it is constant over surfaces of constant velocity. Thus, substituting in (B2), we
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d |Λ(v)| pE(v) pF(v) vE vF

2 2
1

2vM
√

1 − v/vM

3v

4v2
M

√
1 − v/vM

2vM/3 6vE/5

3 2πa
√

1 − v

vM
1/vM 2v/v2

M vM/2 4vE/3

Table 2. Eulerian and flux-weighted Eulerian flow velocity p.d.f.s and associated quantities for Poiseuille
flow between two flat plates (spatial dimension d = 2) and in a cylindrical channel (d = 3).

obtain

pE(v) = |Λ(v)|
|Ω⊥|α(v)

. (B3)

Note that the surface Λ(v) of constant velocity is composed of points of constant radial
coordinate r⊥(v) = |x⊥| given by

r⊥(v) = a
√

1 − v

vM
. (B4)

Recall that a is the channel radius and vM is the maximum velocity, which occurs at the
centre of the channel. For example, in two dimensions, this occurs at two points for v ∈
]0, vM[, so that |Λ(v)| = 2H(vM − v) H(v), where H is the Heaviside step function. In
what follows, we omit such Heaviside step functions for notational simplicity. Taking the
derivative of the Poiseuille flow profile (2.2) with respect to |x⊥| and substituting (B4),

α(v) = 2vM

a

√
1 − v

vM
. (B5)

We also define the flux-weighted Eulerian p.d.f. pF(v) = v pE(v)/vE. Some useful
quantities relating to pE and pF and their means vE and vF for Poiseuille flow in two
and three dimensions, computed according to these results, are summarized in table 2.

We can now generalize the discussion above leading to the Eulerian p.d.f. The transverse
velocity p.d.f. at fixed time p∞

vt
(·; t) is obtained by sampling spatial locations according to

the p.d.f. pt(·; t) of cross-section positions determined by the surviving mass profile, rather
than uniformly. That is,

pvt(v; t) =
∫

Ω⊥
dx⊥ pt(x⊥; t) δ[v − vE(x⊥)]. (B6)

Using (B2), together with the fact that the shear rate α(v) is constant over surfaces of
constant v, we obtain

pvt(v; t) = |α(v)|−1
∫

Λ(v)

dx⊥ pt(x⊥; t). (B7)

From symmetry considerations, if the asymptotic surviving mass p.d.f. p∞
t exists, then

it must depend only on the radial coordinate, and therefore can also be expressed as a
function of velocity through r⊥(v); see (B4). Thus, from (B3) and (B7),

p∞
vt

(v) = |Ω⊥| p∞
t (x⊥)||x⊥|=r⊥(v). (B8)
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Figure 9. Cross-section of the 3-D-channel mesh.

Appendix C. Numerical simulations

Numerical simulations of the reactive transport problem used in the text were performed
using a standard second-order finite-volume solver in OpenFOAM (OpenCFD Ltd 2022).
The mean Eulerian velocity was set to vE = 1, the domain radius (half-width in two
dimensions) to a = 1, and the diffusion coefficient to D = 1/2. A flux-weighted pulse
injection one discretization cell wide near x = x0 = 10 was used in all simulations. The
channel inlet was placed at x = 0, and the outlet at x = 100. The normalized equilibrium
results presented in the text are not affected by these parameter and initial condition
choices, except for the value of Péclet number Pe = 2 (defined according to (2.3)) in the
case of breakthrough quantities. The boundary conditions at the inlet and outlet of the
channel were absorbing, although care was taken to verify that no mass left the domain
by the inlet or outlet within the times of interest. The Robin boundary condition (2.7) was
imposed at the channel walls. The simulations were run up to time t = 100. Damköhler
numbers Da = 10−1, 1 and 10, defined according to (2.8a–c), were simulated.

For the 2-D channel, we employed a regular grid discretization with 1000 cells in
the x direction and 20 cells in the y direction. For the 3-D channel, we used a regular
discretization in a square central region of side 1/2 to avoid numerical issues at the centre
of the channel, as shown in figure 9. The discretization along the x direction was again
regular using 1000 cells. Along each of the y and z directions, 30 cells were used: 10 in the
square central region, and 10 on each side. The outer regions employed an expansion ratio
of 25 %, such that cells decreased in size towards the channel wall from the centre.

The equilibrium profiles were evaluated at times τ and longitudinal positions x0 + vEτ .
For the 2-D case, τ = 30 for all values of Da. For the 3-D case, τ = 20 for Da = 10−1,
and τ = 5 for Da = 1 and Da = 10. These smaller values of τ in the latter cases were
used to avoid numerical issues due to very small concentration values, which affect the
computation of breakthrough fluxes at large distances. In addition, in these two cases,
the initial mass was multiplied by a large value to avoid errors associated with roundoff
procedures employed by OpenFOAM to prevent overflow on division by small numbers.
This does not affect the results after normalizing by mass because the problem is linear.

Surviving mass p.d.f.s pt are computed by integrating concentrations numerically over
the longitudinal direction at the time of interest, using the underlying grid discretization.
The breakthrough profiles ps are computed by integrating concentrations multiplied by
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local velocities over time at the longitudinal position of interest, using an integration
time step 0.1. Mean plume velocities v∞

P are obtained by numerically computing the
mean longitudinal position mP(t) at time t = 40, and estimating v∞

P = [mP(t) − x0]/t.
The remaining mean velocities discussed in the text, v∞

t , v∞
t,F and v∞

s , are obtained by
direct numerical integration according to the relevant numerically determined p.d.f.s.

Appendix D. Asymptotic decay rate in terms of first passage times

As shown in the present work, the asymptotic reaction rate α∞ associated with the decay
of total plume mass at late times is constant and determined by the slowest decay mode of
concentration,

α∞ = μ2
1

2τD
. (D1)

Recently, the decay of total mass has been described in terms of first passage and return
times to the reactive interface (Aquino & Le Borgne 2021a; Aquino et al. 2023). In
particular, for an instantaneous injection of initial mass M0 in the 2-D channel, it is given
in Laplace space by (Aquino & Le Borgne 2021a)

M̃(λ)

M0
= 2 Da Ψ̃0(λ) + tanh(

√
2τDλ)

√
2τD/λ

2 Da + tanh(
√

2τDλ)
√

2τDλ
, (D2)

where the tilde denotes the Laplace transform, λ is the Laplace variable conjugate to time,
and Ψ0 is the survival probability, i.e. Ψ0(t) is the probability that first passage to the
channel wall has not occurred by time t for a given initial concentration distribution in
the channel. The description in terms of first passage times is particularly intuitive for
Da → ∞, which corresponds to fully-absorbing walls. Then, for any geometry, the total
mass is fully determined by the first passage times and is given by M(t) = M0 Ψ0(t), i.e. the
surviving mass is precisely the mass that has not yet reached the walls. The general result
agrees with that reported in Zhang et al. (2017) for the case of a homogeneous initial
distribution, for which Ψ̃0(λ) = [1 − tanh(

√
2τDλ)/

√
2τDλ]/λ.

From (D2), the late-time reaction rate can be estimated by expanding for small λ,
yielding (Aquino & Le Borgne 2021a)

α∞ = 1 + Da w0/τD

1 + Da (2/3 + w0/τD) + Da2 s2
0/(2τ 2

D)

Da
τD

, (D3)

where w0 is the mean first passage time, and s2
0 is the corresponding second moment.

This result differs from (D1) and appears to suggest that the late-time reaction rate
depends on the initial mass distribution. The reason for this discrepancy is that the small-λ
expansion of the Laplace transform of a function with a finite first moment produces an
approximation of the late-time behaviour that recovers the correct first moment, rather than
providing the exact late-time decay. This approximation becomes exact when the original
function is itself exponential. For common initial distributions, such as a uniform injection,
a flux-weighted injection (Ψ̃0(λ) = [1 − 3(1 − tanh(

√
2τDλ)/

√
2τDλ)/(2τDλ)]/λ), or a

mid-channel injection (Ψ̃0(λ) = [1 − sech(
√

2τDλ)]/λ), the exponential approximation
is sound and leads to maximum relative errors of approximately 1 %, 0.1 % and 3 %,
respectively, which occur at infinite Da. Thus while it may wrongly suggest that the
late-time behaviour is initial-condition-dependent, the Laplace expansion approach based
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on the first passage time picture provides good approximations and generalizes well to
more complex geometries (Aquino & Le Borgne 2021a; Aquino et al. 2023). This also
shows that since for Da → ∞ we have α∞ independent of the initial condition, the
actual late-time tail of the first passage time distribution is independent of the initial mass
distribution and is instead fully determined by the diffusion coefficient and the geometry
of the problem.

Appendix E. Damköhler expansions for the 2-D channel

In this appendix, we derive limiting forms for low and high Damöhler number Da of some
of the equilibrium quantities discussed in the main text for the 2-D channel.

E.1. Surviving mass
First, consider the slowest concentration decay mode μ1. For Da 
 1, we can Taylor
expand the second form in (4.1e) around μ = 0, to obtain

μ1 ≈
√

2 Da
(

1 − Da
3

+ 11
90

Da2
)

. (E1)

In the opposite limit of fast reaction, Da � 1, we expand (4.1d) around μ = π/2 and
1/Da = 0 to obtain

μ1 ≈ π

2

(
1 − 1

2 Da

)
. (E2)

Substituting (E1) in (4.3) and Taylor expanding for Da 
 1 yields for the surviving
mass p.d.f.

|Ω⊥| p∞
t ( y) ≈ 1 +

(
1 − 3y2

a2

)
Da
3

. (E3)

In particular, note that p∞
t ( y) = 1/|Ω⊥| = 1/(2a) for Da = 0, as expected. Similarly,

substituting (E2) and expanding for Da � 1 leads to

|Ω⊥| p∞
t ( y) ≈ π

2
cos

(πy
2a

)(
1 −

[
1 − πy

2a
tan

(πy
2a

)] 1
2 Da

)
. (E4)

The corresponding flux-weighted p.d.f. (4.5) is, for low Da,

|Ω⊥| p∞
t,F( y) ≈ 3

2

(
1 − y2

a2

)[
1 +

(
1 − 5y2

a2

)
Da
5

]
, (E5)

and, for high Da,

|Ω⊥| p∞
t,F( y) ≈ π3

16

(
1 − y2

a2

)
cos

(πy
2a

)(
1 −

[
3 − π2

4
− πy

2a
tan

(πy
2a

)] 1
2 Da

)
. (E6)

E.2. Velocity
For Da 
 1, we obtain the average of the fixed-time velocity p.d.f. (4.13),

v∞
t

vE
≈ 1 + 2 Da

15
− 4 Da2

63
. (E7)

In particular, we recover v∞
t = vE for the conservative problem, as expected. Note that

in order to obtain this result to second order in Da with the expansion (E1) for μ1, it is
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necessary to use the first form in (4.13); for the second form, a higher-order expansion of
μ1 in Da would be necessary. The second-order accuracy is necessary to achieve first-order
accuracy in v∞

t,F below. For Da � 1, we have

v∞
t

vE
≈ 12

π2

(
1 − π2 − 8

8 Da

)
. (E8)

For the mean plume velocity (4.14), we find, for Da 
 1,

v∞
P
vE

≈ 1 + 4 Da
15

, (E9)

and, for Da � 1,
v∞

P
vE

≈ 1 + 3
π2 −

(
1
2

− 3
π2

)
1

Da
. (E10)

For Da 
 1, using (E1) and (E7), (4.15) for the flux-weighted average velocity reduces
to

v∞
t,F

vF
≈ 1 + 2 Da

35
. (E11)

Again as expected, we recover v∞
t,F = vF in the conservative limit. For Da � 1,

v∞
t,F

vF
≈ 5

π2

(
12 − π2 − π4 − 96

8 Da

)
. (E12)

Proceeding similarly, the Da 
 1 limit of (4.16) for the equilibrium fixed-time velocity
p.d.f. is

p∞
vt

(v)

pE(v)
≈ 1 −

(
1 − v

vE

)
2 Da

3
, (E13)

and for Da � 1 we have

p∞
vt

(v)

pE(v)
≈ π

2
cos

(
π

2

√
1 − v

vM

)(
1 −

[
1 − π

2

√
1 − v

vM
tan

(
π

2

√
1 − v

vM

)]
1

2 Da

)
.

(E14)
For the equilibrium flux-weighted velocity p.d.f. (4.17), the low-Da limit is

p∞
vt,F(v)

pF(v)
≈ 1 −

(
1 − v

vF

)
4 Da

5
, (E15)

and for the high-Da limit, we obtain

p∞
vt,F(v)

pF(v)
≈ π3

24
cos

(
π

2

√
1 − v

vM

)

×
(

1 −
[

3 − π2

4
− π

2

√
1 − v

vM
tan

(
π

2

√
1 − v

vM

)]
1

2 Da

)
. (E16)

Appendix F. Damköhler expansions for the 3-D channel

Here, we derive limiting forms for low and high Damöhler number Da of some of the
equilibrium quantities discussed in the main text for the 3-D channel.
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F.1. Surviving mass
Expanding (4.18b) to sixth order in μ, solving for μ, and expanding for small Da, we find
for the slowest concentration decay mode:

μ1 ≈ 2
√

Da

(
1 − Da

4
+ 5 Da2

96

)
. (F1)

For Da → ∞, we have J0(μ) = 0, so that μ1 = j0,1 ≈ 2.4048, the smallest positive root of
J0. Expanding μ to first order around this value in (4.18b), we obtain the high-Da expansion

μ1 ≈ j0,1

(
1 − 1

2 Da

)
. (F2)

Using (4.19) and (F1), we find the low-Da expansion for the surviving mass p.d.f.:

|Ω⊥| p∞
t (x⊥) ≈ 1 +

(
1 − 2 |x⊥|2

a2

)
Da
2

. (F3)

Note that, as expected, in the conservative limit we recover a uniform transverse p.d.f.
p∞

t (x⊥) = 1/|Ω⊥| = 1/(πa2). Based on (4.19) and (F2), we obtain the high-Da expansion

|Ω⊥| p∞
t (x⊥) ≈ j0,1 J0( j0,1 |x⊥|/a)

2 J1( j0,1)

[
1 −

(
1 − j0,1 J1( j0,1 |x⊥|/a)

2 J0( j0,1 |x⊥|/a)

|x⊥|
a

)
1

Da

]
. (F4)

Correspondingly, for the flux-weighted p.d.f., we find for low Da

|Ω⊥| p∞
t,F(x⊥) ≈ 2

(
1 − |x⊥|2

a2

)[
1 +

(
1 − 3 |x⊥|2

a2

)
Da
3

]
, (F5)

and for high Da,

|Ω⊥| p∞
t,F(x⊥) ≈ j30,1 J0( j0,1 |x⊥|/a)

8 J1( j0,1)

(
1 − |x⊥|2

a2

)

×
[

1 −
(

8 − j20,1 − 2j0,1 J1( j0,1 |x⊥|/a)

J0( j0,1 |x⊥|/a)

|x⊥|
a

)
1

4 Da

]
. (F6)

F.2. Velocity
The average of the fixed-time velocity p.d.f. (4.24), admits the low-Da expansion

v∞
t

vE
≈ 1 + Da

6
− Da2

24
, (F7)

and the high-Da expansion

v∞
t

vE
≈ 8

j20,1

(
1 − j20,1 − 4

4 Da

)
. (F8)

For the plume velocity (4.25), we find for Da 
 1,

v∞
P
vE

≈ 1 + Da
3

, (F9)
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Equilibrium distributions in flow with absorbing boundaries

and for Da � 1,

v∞
P
vE

≈ 4
3

(
1 + 1

j20,1

)
−
(

1 − 2
j20,1

)
2

3 Da
. (F10)

Note that these approximations agree with those reported in Sankarasubramanian & Gill
(1973) and Barton (1984) to the relevant order in Da.

For Da 
 1, we obtain the flux-weighted average velocity (4.26),

v∞
t,F

vF
≈ 1 + Da

12
, (F11)

and, for Da � 1,
v∞

t,F

vF
≈ 3

8 − j20,1

j20,1

(
1 − j40,1 − 32

8 − j20,1

1
4 Da

)
. (F12)

For the equilibrium fixed-time velocity p.d.f. (4.27), we have for low Da,

p∞
vt

(v)

pE(v)
≈ 1 −

(
1 − v

vE

)
Da
2

, (F13)

and for high Da,

p∞
vt

(v)

pE(v)
≈ j0,1 J0( j0,1

√
1 − v/vM)

2 J1( j0,1)

[
1 −

(
1 − j0,1 J1( j0,1

√
1 − v/vM)

2 J0( j0,1
√

1 − v/vM)

√
1 − v

vM

)
1

Da

]
.

(F14)
For the equilibrium flux-weighted velocity p.d.f. (4.28), the low-Da limit is

p∞
vt,F(v)

pF(v)
≈ 1 −

(
1 − v

vF

)
2 Da

3
, (F15)

and the high-Da limit is

p∞
vt,F(v)

pF(v)
≈ j30,1 J0( j0,1

√
1 − v/vM)

16 J1( j0,1)

×
[

1 −
(

8 − j20,1 − 2j0,1 J1( j0,1
√

1 − v/vM)

J0( j0,1
√

1 − v/vM)

√
1 − v

vM

)
1

4 Da

]
. (F16)
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