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Abstract

The classical Remez inequality [‘Sur une propriété des polynomes de Tchebycheff’, Comm. Inst. Sci.
Kharkov 13 (1936), 9–95] bounds the maximum of the absolute value of a real polynomial P of degree
d on [−1, 1] through the maximum of its absolute value on any subset Z ⊂ [−1, 1] of positive Lebesgue
measure. Extensions to several variables and to certain sets of Lebesgue measure zero, massive in a
much weaker sense, are available (see, for example, Brudnyi and Ganzburg [‘On an extremal problem
for polynomials of n variables’, Math. USSR Izv. 37 (1973), 344–355], Yomdin [‘Remez-type inequality
for discrete sets’, Israel. J. Math. 186 (2011), 45–60], Brudnyi [‘On covering numbers of sublevel sets
of analytic functions’, J. Approx. Theory 162 (2010), 72–93]). Still, given a subset Z ⊂ [−1, 1]n ⊂ Rn,
it is not easy to determine whether it is Pd(Rn)-norming (here Pd(Rn) is the space of real polynomials
of degree at most d on Rn), that is, satisfies a Remez-type inequality: sup[−1,1]n |P| ≤ C supZ |P| for all
P ∈ Pd(Rn) with C independent of P. (Although Pd(Rn)-norming sets are precisely those not contained in
any algebraic hypersurface of degree d in Rn, there are many apparently unrelated reasons for Z ⊂ [−1,1]n

to have this property.) In the present paper we study norming sets and related Remez-type inequalities
in a general setting of finite-dimensional linear spaces V of continuous functions on [−1, 1]n, remaining
in most of the examples in the classical framework. First, we discuss some sufficient conditions for Z to
be V-norming, partly known, partly new, restricting ourselves to the simplest nontrivial examples. Next,
we extend the Turán–Nazarov inequality for exponential polynomials to several variables, and on this
basis prove a new fewnomial Remez-type inequality. Finally, we study the family of optimal constants
NV (Z) in the Remez-type inequalities for V , as the function of the set Z, showing that it is Lipschitz in the
Hausdorff metric.

2010 Mathematics subject classification: primary 41A17; secondary 41A63.

Keywords and phrases: norming set, norming constant, Remez-type inequality, polynomials, analytic
functions.

1. Introduction
The classical Chebyshev inequality (see, for example, [36, pages 67–68]) bounds the
maximum of the absolute value of a polynomial P of degree d on [−1, 1] through the
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maximum of its absolute value on an interval [a, b] ⊂ [−1, 1]. In a little-known and
hardly available paper [34], Remez generalized the Chebyshev inequality by replacing
[a, b] by an arbitrary measurable subset Z ⊂ [−1, 1]:

Theorem 1.1. Let P ∈ R[x] be a polynomial of degree d. Then, for any measurable
Z ⊂ [−1, 1],

sup
[−1,1]

|P| ≤ Td

(4 − µ
µ

)
sup

Z
|P|, (1.1)

where µ = µ1(Z) is the Lebesgue measure of Z and Td is the Chebyshev polynomial of
degree d.

This result has been rediscovered several times (see, for example, [17] and [14,
Lemma 2]), but the Remez proof is still the simplest and most elegant.

A multidimensional inequality of this kind is due to Brudnyi and Ganzburg [14]:

Theorem 1.2. Let B ⊂ Rn be a convex body and Z ⊂ B be a measurable subset. Then
for every real polynomial P on Rn of degree d,

sup
B
|P| ≤ Td

(1 + (1 − λ)1/n

1 − (1 − λ)1/n

)
sup

Z
|P|. (1.2)

Here λ = (µn(Z))/(µn(B)), with µn being the Lebesgue measure on Rn.

This inequality is sharp and for n = 1 coincides with (1.1).
It is well known that inequalities of the form (1.2) may be true also for some sets Z

of Lebesgue measure zero and even for certain finite sets Z; see, for example, [5, 11,
12, 16, 19, 22, 24, 33, 40–42].

There are numerous generalizations of the above inequalities (referred to as Remez-
type inequalities) to wider classes of functions. Recently there has been considerable
interest in such inequalities in connection with various problems of analysis; see, for
example, the introduction to [10] and references therein, and results and references
in [13, Ch. 2, 9, 10], [2, 6, 7, 18, 28]. Some of the results below can be extended in an
appropriate manner to these classes.

In the present paper we study the problem of characterizing the objects subject
to the following definition. Let V ⊂ C(Qn

1) be a finite-dimensional subspace of real
continuous functions on the closed unit cube Qn

1 := [0, 1]n ⊂ Rn.

Definition 1.3. A compact subset Z ⊂ Qn
1 is said to be V-norming if there exists a

constant C > 0 such that, for every f ∈ V ,

max
Qn

1

| f | ≤ C ·max
Z
| f |. (1.3)

The minimum of all such constants C is denoted by NV (Z) and is called the V-norming
constant of Z.
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[3] Norming sets and related Remez-type inequalities 165

(The notion originates from the Banach space theory: the family {δz}z∈Z ⊂ V∗

of evaluation functionals at points of Z is a norming set for V , that is, ‖ f ‖Z :=
supz∈Z |δz( f )|, f ∈ V , is a norm equivalent to the supremum norm on V .)

Even if V := Pd(Rn), the space of real polynomials of degree at most d on Rn, the
general problem of characterizing sets Z for which Remez-type inequality (1.3) is valid
remains generally open. As we will see below, there is a wide variety of apparently
unrelated geometric, algebraic, arithmetic, . . . sufficient conditions on such Z, which
are difficult to present in a coherent way.

In principle, there is a very simple description of V-norming sets:

Proposition 1.4. A compact subset Z ⊂ Qn
1 is V-norming (equivalently, NV (Z) <∞) if

and only if the space V |Z of restrictions of functions in V to Z is of dimension dim V.
This is, in turn, equivalent to the condition that Z is not contained in any zero-level set
{x ∈ Qn

1 : f (x) = 0}, f ∈ V.

Proof. Indeed, (1.3) implies that Z is V-norming if and only if the restriction map
r : V → V |Z , r( f ) := f |Z , is an isomorphism of Banach spaces equipped with the
corresponding supremum norms. �

However, in general it is not easy to reformulate this condition in an ‘effective’ way
and to provide explicit bounds on NV (Z) starting with an explicitly given Z.

In the present paper we first discuss (in Section 2) some sufficient conditions for Z to
be Pd(Rn)-norming, partly known, partly new. This includes ‘massiveness’, algebraic,
and topological properties of Z. We intend it as a survey of a variety of results in the
area of Remez-type inequalities and a brief introduction to the subject for those who
apply such inequalities in other fields of mathematics.

Next, in Section 3 we extend the Turán–Nazarov inequality for exponential
polynomials to several variables, and on this basis prove a new fewnomial Remez-
type inequality. It is worth mentioning that fewnomials appear in numerous fields
of analysis, differential equations, diophantine geometry, probability, cryptography,
complexity theory, to name but a few. In many of these fields (for example, probability,
cryptography, complexity theory) Remez-type inequalities are in common use. So we
expect that our fewnomial version of the Remez inequality (involving only the number
of terms, but not the degree) will find important applications.

Finally, in Section 4 we study the behavior of the best constant NV (Z) in the Remez-
type inequality, as a function of the set Z, showing, in particular, that it is Lipschitz
in the Hausdorff metric. Lipschitz continuity of the Remez constant has an important
corollary: the norming property of a compact set is an open condition in the Hausdorff
metric, with an explicit bound on the norming constant of nearby sets. Once more,
rather rough (and purely metric) information on sets implies a strong restriction on the
behavior of functions (for example, polynomials) on these sets.

2. Examples of Remez sets
As mentioned in the Introduction, the problem of characterizing (in geometric

terms) those sets Z for which Remez-type inequality is valid is generally open. In
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this section we provide a small selection from the wide variety of apparently unrelated
geometric, algebraic, arithmetic, . . . sufficient conditions for Z to be V-norming. We
restrict ourselves to the simplest nontrivial examples of each kind, mostly for families
V of real polynomials or analytic functions.

2.1. Interpolation system. For finite sets Z it is possible (in principle) to write an
explicit answer through the determinants arising in the corresponding interpolation
systems.

Indeed, suppose that F := { f1, . . . , fl} ⊂ V , l := dim V , is a basis and that our set Z
contains exactly l points x1, . . . , xl ∈ Qn

1. Assuming that the values of f =
∑l

i=1 ai fi ∈ V
on Z are given, f (x j) = v j, j = 1, . . . , l, we get the following interpolation system:

l∑
i=1

ai fi(x j) = v j, j = 1, . . . , l.

Considered as a linear system with respect to the unknown variables ai, this is
a multidimensional Vandermonde-like system with the matrix MZ = ( fi(x j)). It is
uniquely solvable if and only if its determinant ∆F (x1, . . . , xl) = det MZ is nonzero. The
V-norming constant NV (Z) is precisely the norm of the inverse matrix M−1

Z , considered
as the operator from the space of functions on Z to the space V , both equipped with
the corresponding supremum norms. An easy application of Cramer’s rule gives us a
bound of the form

NV (Z) ≤
(max1≤i≤l{maxQn

1
| fi|})l · l · l!

|∆F (x1, . . . , xl)|
. (2.1)

Thus we have the following proposition.

Proposition 2.1. A set Z = {x1, . . . , xl} ⊂ Qn
1 is V-norming if and only if

∆F (x1, . . . , xl) , 0. In this case, the upper bound for NV (Z) is given by (2.1).

For specific families F ⊂ V and sets Z more accurate estimates of NV (Z) in terms
of the characteristics of the matrix M can be produced.

In this extremal setting the Remez-type inequality is essentially equivalent to the
stability estimate of the multidimensional interpolation problem; see, for example,
[30] and references therein. As an immediate consequence we get the following
corollary.

Corollary 2.2. For each compact V-norming set Z ⊂ Qn
1, the norming constant NV (Z)

satisfies

NV (Z) ≤ inf
Z′⊂Z,#Z′=l

NV (Z′) ≤ inf
F⊂V

(max1≤i≤l{maxQn
1
| fi|})l · l · l!

supx1,...,xl∈Z |∆F (x1, . . . , xl)|
. (2.2)

(Here #Z′ stands for the cardinality of the subset Z′ and F runs over all bases in V.)

The first inequality in (2.2) is almost optimal, as the following result shows.
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Proposition 2.3. For each compact V-norming set Z ⊂ Qn
1, there exists a subset Z′ ⊂ Z

of cardinality l such that
1
l
· NV (Z′) ≤ NV (Z).

Thus,
1
l
· inf

Z′⊂Z,#Z′=l
NV (Z′) ≤ NV (Z) ≤ inf

Z′⊂Z,#Z′=l
NV (Z′).

Proof. For a fixed basis F in V , let Z′ = {x1
∗, . . . , x

l
∗} ⊂ Z be such that

|∆F (x1
∗, . . . , x

l
∗)| = sup

x1,...,xl∈Z
|∆F (x1, . . . , xl)|.

(Such points exist because Z is compact and ∆F is a continuous function on (Qn
1)l ⊂

Rnl.) Since dim V |Z = l, and evaluations δz at points z ∈ Z determine bounded linear
functionals on V |Z , the Hahn–Banach theorem implies easily that span{δz}z∈Z = (V |Z)∗

and, hence, ∆F (x1
∗, . . . , x

l
∗) , 0. Next, we define functions Li ∈ VF by the formulas

Li(x) :=
∆F (x1

∗, . . . , x
i−1
∗ , x, xi+1

∗ , . . . , xl
∗)

∆F (x1
∗, . . . , xl

∗)
, x ∈ Qn

1, 1 ≤ i ≤ n.

Clearly, they satisfy the properties

Li(x j
∗) = δi j (the Kronecker delta) and max

Z
|Li| ≤ 1. (2.3)

For a function h defined on Z′, the Lagrange interpolation is given by the formula

(Lh)(x) :=
l∑

i=1

h(xi
∗)Li(x), x ∈ Qn

1. (2.4)

From (2.3) and (2.4) we obtain

NV (Z′) ≤
l∑

i=1

max
Qn

1

|Li| ≤ l · NV (Z),

as required. �

2.2. Sets with algebraically independent coordinates. Assume that Z = {x1, . . . ,
xs} ⊂ Qn

1 ⊂ R
n, where s = (n

d)(= dimPd(Rn)). As was shown above, Z is Pd(Rn)-
norming (that is, satisfies Remez-type inequality (1.3) for real polynomials on Rn

of degree at most d) if and only if the Vandermonde matrix MZ determined with
respect to the basis Md,n of monomials in Pd(Rn) is nondegenerate, that is, its
determinant ∆Md,n (x1, . . . , xs) , 0. But ∆Md,n is a polynomial with integer coefficients
in the coordinates of x1, . . . , xs. Therefore, if they are algebraically independent over
Q, then ∆Md,n (x1, . . . , xs) , 0. For instance, due to the classical Lindemann–Weierstrass
theorem [39], the latter is true if all these coordinates are exponents of algebraic
numbers linearly independent over Q. Presumably, in some specific examples (for
example, if the coordinates of x1, . . . , xs are Liouville numbers), the norming constant
NPd(Rn)(Z) can be estimated explicitly.
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2.3. Hausdorff measure and metric entropy. By Theorem 1.2 above, each
compact subset Z ⊂ Qn

1 of positive Lebesgue n-measure is Pd(Rn)-norming for each
natural d and

NPd(Rn)(Z) ≤ Td

(1 + (1 − λ)1/n

1 − (1 − λ)1/n

)
<

(4n
λ

)d
(2.5)

with λ = µn(Z). Similarly, if V consists of real analytic functions defined in a
neighborhood of Qn

1 and Z is as above, then it is V-norming and

NV (Z) ≤ E
(1 + (1 − λ)1/n

1 − (1 − λ)1/n

)C
<

(4n
λ

)C
,

where E(x) := x +
√

x2 − 1, |x| ≥ 1, and C is a constant depending on V only. This
follows from an inequality similar to (1.2) for real analytic functions; see [8, 9].

Next, it is shown in [12] that compact subsets Z ⊂ Qn
1 of Hausdorff dimension

greater than n − 1 are Pd(Rn)-norming for each d.
In [11, 40] some Pd(Rn)-norming sets are characterized in terms of their metric

entropy. Let us recall that the covering number M(ε,X) of a compact metric space X is
the minimal number of closed ε-balls covering X (see [27]). Below M(ε,X) are defined
for compact subsets X ⊂ Rn equipped with the induced l∞ metric, that is, closed ε-balls
in this metric are intersections with X of closed cubes of side length 2ε with centers at
points of X.

Definition 2.4. Let Z be a compact subset of Qn
1. The metric (d, n)-span ωd(Z) of Z is

defined as

ωd,n(Z) := sup
ε>0

εn[M(ε,Z) − Mn,d(ε)].

Here Mn,d(ε) :=
∑n−1

i=0 Ci(n, d)(1/ε)i is a universal polynomial of degree n − 1 in
1/ε whose coefficients are positive numbers related to Vitushkin’s bounds for covering
numbers of polynomial sublevel sets of degree d; see [23, 38, 40]. The explicit formula
for Mn,d is given in [40]. In particular,

M1,d(ε) = d, M2,d(ε) = (2d − 1)2 + 8d ·
(1
ε

)
.

The following result is established in [40].

Theorem 2.5. If ωd,n(Z) = ω > 0, then NPd(Rn)(Z) <∞ and satisfies

NPd(Rn)(Z) ≤ Td

(1 + (1 − ω)1/n

1 − (1 − ω)1/n

)
.

Thus, in some cases the Lebesgue measure µn(Z) in Theorem 1.2 can be replaced
with ωd,n(Z).

Note that the metric (d, n)-span ωd,n(Z) may be positive even for some finite sets.
Consider, for example, finite subsets of R.
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Corollary 2.6. A set Z = {x1, . . . , xm} ⊂ [−1, 1], xi , x j for all i , j, is Pd(R)-norming
if and only if m ≥ d + 1. In this case ωd,1(Z) ≥ δ where δ is the minimal distance
between distinct xi and x j in Z, and NPd(R)(Z) ≤ Td((2 − δ)/δ).

Proof. It is enough to take ε > 0 tending to δ from the left in the definition
of ωd,1(Z). �

Some other examples are given in [40]. In particular, ωd,n(Z) > 0 for each Z with
the entropy (or box) dimension dime Z greater than n − 1.

For similar results for spaces V of real analytic functions, see [11].
Still, subsets Z ⊂ Qn

1 with ωd,n(Z) > 0 are (in a certain discrete sense) ‘massive
in dimension n − 1’. Below we give examples of Pd(Rn)-norming sets Z in Qn

1
which are contained in certain analytic curves in Rn, and which have ωd,n(Z) = 0.
So ‘massiveness’ is just one of the possible geometric reasons for a set to be Pd(Rn)-
norming.

2.4. Capacity. Another class of ‘massive’ norming sets consists of the so-called
nonpluripolar subsets of Rn. Recall that a compact subset Z ⊂ Qn

1 is pluripolar if there
exists a nonidentically −∞ plurisubharmonic function u on Cn such that u|Z ≡ −∞.
It is known (see, for example, [26]) that a compact subset Z ⊂ Qn

1 is nonpluripolar if
and only if there exists a constant C > 0 depending on Z and n only such that Z is
Pd(Rn)-norming for all d and the norming constants satisfy

NPd(Rn)(Z) ≤ Cd.

For instance, inequality (2.5) shows that any compact subset Z ⊂ Qn
1 of positive

Lebesgue n-measure is nonpluripolar. However, nonpluripolar sets in Rn may be of
arbitrary small positive Hausdorff dimension (for example, the n-fold direct product
of Cantor sets in [−1, 1] of sufficiently small positive Hausdorff dimensions is
nonpluripolar in Rn; see also [29]). If Z ⊂ Qn

1 is nonpluripolar, then the upper bound
for NPd(Rn)(Z) can be expressed also in terms of the capacity cap(Z) of Z, a positive
number defined in one of the following equivalent ways: in terms of the Monge–
Ampère measure of Z, the Robin constant of Z, the Chebyshev constant of Z or the
transfinite diameter of Z; see [1, 26, 35]. Then, for such Z and all d ∈ N, one has

ln(NPd(Rn)(Z)) ≤
c · d

cap(Z)
,

where c > 0 depends on n only, and cap(Z) is defined in terms of the Monge–Ampère
measure of Z; see [1].

Finally, observe that due to Proposition 1.4 each nonpluripolar compact subset
Z ⊂ Qn

1 is V-norming for every finite-dimensional space of real analytic functions
defined in a neighborhood of Qn

1.
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2.5. Nodal sets of elliptic partial differential equations. We consider a
homogeneous elliptic differential equation of the form

Lu ≡
n∑

i, j=1

ai j(x)∂i ju +

n∑
i=1

bi(x)∂iu + c(x)u = 0 (2.6)

defined in an open neighborhood of Qn
1, where the coefficients ai j satisfy

n∑
i, j=1

ai j(x)ξiξ j ≥ λ‖ξ‖
2
2, for any ξ ∈ Rn, x ∈ Qn

1,

for some positive constant λ. We assume that ai j are Lipschitz and bi and c are at least
bounded. The Lipschitz condition for the leading coefficients is essential. It implies
the unique continuation for the operator L. In other words, if a solution u vanishes to
an infinite order at a point in Qn

1, then u is identically zero; see [3].
For any C2 nonidentically zero solution u in Qn

1, we define the nodal set

N(u) := {x ∈ Qn
1 : u(x) = 0}.

According to [25], the set N(u) has finite (n − 1)-dimensional Hausdorff measure.
Thus from here and Proposition 1.4 we obtain the following result. Suppose that V is
a finite-dimensional space of C2 solutions of equation (2.6) and Z ⊂ Qn

1 is compact of
infinite (n − 1)-dimensional Hausdorff measure. Then Z is V-norming.

2.6. Algebraic curves of high degree. One apparent algebraic-geometric reason for
a set to bePd(Rn)-norming is that algebraic sets Z of degree higher than d ‘generically’
cannot be contained in a hypersurface of degree d. There are plenty of ways in which
this general claim can be transformed into a Remez-type inequality. We give here only
one simple example, in which the computations are fairly straightforward.

Consider a curve S ⊂ Qn
1 ⊂ R

n given in parametric form by x = Ψ(t) where Ψ is
defined by

x1 = td1 , x2 = td2 , . . . , xn = tdn , t ∈ [−1, 1].

Theorem 2.7. If d1 ≥ 1, d2 > dd1, . . . , dn > ddn−1, then S is Pd(Rn)-norming, and
NPd(Rn)(S ) ≤ 2ddn · (d

n).

Proof. Let P(x1, . . . , xn) =
∑
|α|≤d aαxα be a real polynomial of degree d, α =

(α1, . . . , αn) multi-indices, and |α| = α1 + · · · + αn. On the curve S we have xα = tβ(α),
where β(α) = α1d1 + α2d2 + · · · + αndn.

Lemma 2.8. For α′ , α′′, we have β(α′) , β(α′′).

Proof. Let j ≤ n be the largest index for which α′j , α
′′
j , say, α′j < α

′′
j . Then β(α′) ≤

β(α′′) − d j + dd j−1 < β(α′′), since di increase, |α| ≤ d, and d j > dd j−1. �
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[9] Norming sets and related Remez-type inequalities 171

So the monomials of P remain ‘separated’ in the univariate polynomial G(t) =

P(Ψ(t)) of degree β((0, . . . , 0, d)) = ddn, and their coefficients aα remain the same.
If P is bounded by 1 on S , then G is bounded by 1 on [−1, 1]. We conclude via the
Chebyshev inequality that all the coefficients of G do not exceed 2ddn , and hence the
same is true for P. Finally, this implies that P is bounded by 2ddn · (d

n) on Qn
1. �

Applying to the univariate polynomial G the classical Remez inequality, or its
discrete version given by Theorem 2.5 above, we immediately conclude that the
corresponding subsets of the curve S are Pd(Rn)-norming in Rn.

A more general class of real analytic curves S for which an analog of Theorem 2.7
is valid for certain spaces V of real analytic functions with explicit bounds of norming
constant NV (S ) is presented in [10, Theorem 2.3]. The role of the degree of a
polynomial there is played by the ‘valency’ of an analytic function.

2.7. Transcendental surfaces. Each piece of an analytic curve

Γ :=
{
(x, φ(x)) ∈ R2 : x ∈ [a, b] ⊂ [−1, 1], sup

[a,b]
|φ| < 1

}
⊂ Q2

1

is Pd(R2)-norming for all d if φ is a transcendental function. For instance, this is true
for the curve y = ex, x ∈ [−1, 0]. However, it may be a delicate problem to bound
explicitly the norming constants for such curves. In this section we formulate one of
the results in this direction. Let us recall that an entire function f on Cn is of order
ρ ≥ 0 if

ρ = lim sup
r→∞

ln m f (r)
ln r

, where m f (r) = ln
(

sup
‖z‖2≤r

| f (z)|
)
.

If ρ <∞, then f is called of finite order.
Suppose that f is a nonpolynomial entire function on Cn real on Rn and such that

the hypersurface {(x1, . . . , xn+1) ∈ Rn+1 : xn+1 = f (x1, . . . , xn)} intersects Qn
1 by a subset

Z of real dimension n. The next result follows from [10, Theorem 2.5] (see also [15,
Theorem 1.1] for the particular case n = 1 and f being of finite positive order).

Theorem 2.9. There exist a sequence of natural numbers {d j} converging to ∞
(depending on f only) and a sequence of positive numbers {ε j} converging to 0
(depending on f , n, and n-dimensional Hausdorff measure of Z only) such that

ln(NPd j (R
n+1)(Z)) ≤ d2+ε j

j , for all d j.

For n = 1 this inequality is sharp in the sense that 2 in the exponent on the right-hand
side cannot be replaced by a smaller number.

In [10, Theorem 2.8] some sufficient conditions for f are formulated under which
the above inequality is valid for all polynomial degrees d. In particular, this is true if

f =

m∑
j=1

p j · eq j , where all p j, q j are real polynomials on Rn.

Also, [10, Theorem 2.5] deals with some other spaces V of analytic functions and
gives upper bounds for their norming constants NV (Z).
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2.8. Topological conditions. Algebraic geometry provides a wide variety of specific
topological properties of real algebraic sets of a given degree d in Rn. Some of them are
shared also by all subsets of these algebraic sets. So if a compact set Z ⊂ Qn

1 violates
one of these properties, it cannot be contained in an algebraic set of degree d, and
hence Z is Pd(Rn)-norming. Below, we illustrate this with some simple examples.

We consider compact oriented hypersurfaces S in Rn, bounding the corresponding
domains D. A sequence Σ = {S 1, . . . , S m} of such hypersurfaces is called ‘nested’ if
D1 ⊂ D2 ⊂ · · · ⊂ Dm. We define δ(Σ) as the minimum of the `∞ distances between the
subsequent hypersurfaces in Σ.

Proposition 2.10. Let Σ = {S 1, . . . , S d+1} be a nested sequence of hypersurfaces in
the unit cube Qn

1 ⊂ R
n. Then S =

⋃d+1
j=1 Sj is P2d(Rn)-norming, and NP2d(Rn)(S ) ≤

T2d((2 − δ)/δ), where δ = δ(Σ).

Proof. Let P ∈ P2d(Rn) be a polynomial of degree at most 2d bounded by 1 on S . Fix
a point x0 ∈ D1 and consider the straight line l ⊂ Rn passing through x0 and a point
y ∈ Qn

1 such that |P(y)| = maxQn
1
|P|. We set l\{x0} := l1 t l2, where each li is an open

ray with endpoint x0. By assumptions, each li crosses S at not less than d + 1 points,
and we can fix exactly one point xi j ∈ li ∩ S j, j = 1, . . . , d + 1, so that

‖xi1 − x0‖∞ < ‖xi2 − x0‖∞ < · · · < ‖xid+1 − x0‖∞.

Also, the points xi1, xi2, . . . , xid+1 on li are separated by `∞ distance at least δ = δ(Σ)
from one another. This implies that the points x11, xi j, 2 ≤ j ≤ d + 1, i = 1, 2, are
separated by the `∞ distance at least δ = δ(Σ) from one another as well. Applying
Corollary 2.6 to the set Z consisting of these points and to the restriction of P to the
interval l ∩ Qn

1 (which has `∞ length at most 2), we get the required bound. �

Let us give an example of more subtle topological restrictions.

Theorem 2.11. Each compact set Z ⊂ Q2
1 ⊂ R

2 containing 11 ovals outside one another
is P6(R2)-norming.

Proof. If Z were contained in an algebraic curve Y of degree 6, then each oval of Z
would be an oval of Y . But by the solution of the first part of Hilbert’s 16th problem, Y
cannot contain 11 ovals out from one another. Therefore Z cannot be contained in an
algebraic curve of degree 6. �

Remark 2.12. It is not easy to give an explicit bound on NP6(R2)(Z) in geometric
terms. Producing such bounds (in this and similar situations) is an important open
problem. Its solution would clarify the interconnection of topological and analytical
properties of polynomials. It would also clarify some ‘rigidity’ properties of smooth
functions appearing in the framework of the approach developed in [41] (see also
references therein). This approach transfers to several variables the classical Rolle
lemma and some of its important consequences. In particular, combining the Taylor
remainder formula with a bound for the norming constant in Theorem 2.5 would lead
to the statement that any C7 function f on the plane, vanishing on Z as above and
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satisfying maxx∈Q2
1
| f (x)| = 1, must have its seventh derivative larger than a certain

explicit constant cZ (depending on Z only).

This last statement is directly related to the Whitney extension problem for
smooth functions, especially in the form considered recently by Fefferman; see [21]
and references therein. We expect that Remez-type inequalities can improve our
understanding of the geometry of the Whitney extensions, and plan to present some
results in this direction separately.

3. Remez-type inequalities for fewnomials

3.1. Turán–Nazarov inequality. This is an important nonlinear version of the
Remez inequality having numerous applications in analysis, random functions theory,
sampling theory, etc. (see [4, 31, 32, 37] and references therein), formulated as follows.

Theorem 3.1 [31]. Let p(t) =
∑m

k=0 ckeλkt, t ∈ R, be an exponential polynomial, where
all ck, λk ∈ C. Let I ⊂ R be an interval and Z ⊂ I be a measurable subset. Then

sup
I
|p| ≤ eµ1(I)·max0≤k≤m |Re λk | ·

(cµ1(I)
µ1(Z)

)m
· sup

Z
|p|, (3.1)

where µ1 is the Lebesgue measure on R and c > 0 is an absolute constant.

This result was first established by Turán [37] for all λk being pure imaginary
Gaussian integers and Z ⊂ I being an interval, and in the general form by Nazarov [31].
Its discrete version, in the spirit of [40], was obtained in [22].

Let us prove the multidimensional version of Theorem 3.1.

Theorem 3.2. Let A ⊂ Rn be a d-dimensional affine subspace, B ⊂ A be a convex body
in A, and Z ⊂ B be a Borel subset. Let p(x) =

∑m
k=0 cke fk(x), x ∈ Rn, be an exponential

polynomial, where all ck ∈ C and all fk are complex-valued linear functionals on Rn.
Then

sup
B
|p| ≤ emax0≤k≤m{supx,y∈B Re fk(x−y)} ·

(cdHd(B)
Hd(Z)

)m
· sup

Z
|p|, (3.2)

whereHd is the Hausdorff d-measure on Rn.

Proof. Without loss of generality, we assume that Z is closed and Hd(Z) > 0. Let
x0 ∈ B be such that supB |p| = |p(x0)|. Due to [14, Lemma 3], there exists a ray
l := {x0 + t · e ∈ Rn : ‖e‖2 = 1, t ∈ R+} with the endpoint x0 such that

H1(B ∩ l)
H1(Z ∩ l)

≤
dHd(B)
Hd(Z)

. (3.3)

The restriction of p to l ∩ B has a form
m∑

k=0

(ck · e fk(x0))et· fk(e), 0 ≤ t ≤ t0,

where t0 > 0 is such that x0 + t0 · e belongs to the boundary of B in A.
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Thus according to inequality (3.1),

sup
B
|p| = sup

B∩l
|p| ≤ et0·max0≤k≤m |Re fk(e)| ·

(cH1(B ∩ l)
H1(Z ∩ l)

)m
· sup

Z∩l
|p|.

It remains to use (3.3) and note that t0 · |Re fk(e)| ≤ supx,y∈B Re fk(x − y) and supZ∩l |p| ≤
supZ |p|. �

3.2. Fewnomial Remez-type inequality. We deduce from (3.2) the following
‘fewnomial’ Remez-type inequality. Let (R∗+)n ⊂ Rn be the set of points with positive
coordinates. If x1, . . . , xn are coordinates on Rn we introduce a Riemannian metric on
(R∗+)n by the formula

ds2 =
dx2

1

x2
1

+ · · · +
dx2

n

x2
n
.

The map en : Rn → (R∗+)n, en((x1, . . . , xn)) = (ex1 , . . . , exn ) determines an isometry
between Rn equipped with the Euclidean metric and (R∗+)n equipped with the
Riemannian metric introduced above. Thus, the latter is a geodesically complete
Riemannian manifold, and geodesics there are images by en of straight lines in Rn.
In particular, a geodesic segment joining points x = (x1, . . . , xn) and y = (y1, . . . , yn) in
(R∗+)n has the form

x̂ t ◦ ŷ 1−t := (xt
1 · y

1−t
1 , . . . , xt

n · y
1−t
n ), 0 ≤ t ≤ 1.

One can easily show that such a segment is the usual convex interval joining x and y if
and only if there exist a partition of the set {1, . . . , n} into disjoint subsets I, J (one of
which may be ∅) and a positive number λ such that xi = yi for all i ∈ I and x j = λy j for
all j ∈ J.

A subset S ⊂ (R∗+)n is called logarithmically convex if for each pair of points in S
the geodesic segment joining them belongs to S . In other words, S is logarithmically
convex if it is the image under en of a convex subset of Rn.

In general, logarithmically convex sets are not convex; the class of convex and
logarithmically convex sets is relatively small (for instance, it contains d-dimensional
rectangles in (R∗+)n, 0 ≤ d ≤ n, with edges parallel to coordinate axes).

A submanifold M ⊂ (R∗+)n is called affine if it is the image under en of an affine
subspace of Rn.

For a compact subset S ⊂ (R∗+)n and a natural number d ≤ n, we define

Kd(S ) :=
max{i1,...,id}∈Id {maxS xi1 · · · xid }

min{i1,...,id}∈Id {minS xi1 · · · xid }
,

where Id is the family of all d-point subsets of the set {1, . . . , n}. Clearly, Kd(S ) =

Kd(t · S ) for each t > 0, and if L is a diagonal matrix with positive entries, then
Kn(L(S )) = Kn(S ). Also,

Kd(S ) ≤ K1(S )d for all d. (3.4)

If α = (α1, . . . , αn) ∈ Rn and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ (R∗+)n, we set xα :=
xα1

1 · · · x
αn
n , |α| = α1 + · · · + αn, and x/y := (x1/y1, . . . , xn/yn).
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Theorem 3.3. Let M ⊂ (R∗+)n be a d-dimensional affine submanifold, B ⊂ M be a
d-dimensional logarithmically convex compact subset, and Z ⊂ B be a Borel subset.
Let p(x) =

∑m
k=0 ck xαk , x ∈ (R∗+)n, where all αk ∈ R

n and all ck ∈ R. Then

sup
B
|p| ≤ max

0≤k≤m

{
sup
x,y∈B

( x
y

)αk}
·

(cdKd(B) · Hd(B)
Hd(Z)

)m
· sup

Z
|p|. (3.5)

Proof. The substitution x = en(u), u ∈ Rn, reduces (3.5) to a particular case
of (3.2) for the exponential polynomial p ◦ en. To estimate the ratio of measures
(Hd(e−1

n (B)))/(Hd(e−1
n (Z))) in the inequality obtained, we express the Hausdorff

d-measure of a subset S ⊂ M as

Hd(S ) =

∫
e−1

n (S )
Jd(en|A)(x) dHd(x),

where A = e−1
n (M) ⊂ Rn is a d-dimensional affine subspace and Jd(en|A) is the

d-Jacobian of the map en|A; see [20, Theorem 3.2.3]. Under a suitable affine
parameterization φ = (φ1, . . . , φd) : Rd → A of A we obtain

Hd(S ) =

∫
(φ−1◦e−1

n )(S )

( ∑
{i1,...,id}∈Id

a2
i1,...,id · e

2φi1 (x)+···+2φid (x)
)1/2

dµd(x),

where ai1,...,id is the determinant of the d × d matrix defined by the i1, . . . , id rows of the
linear part of φ. The latter implies, for S ′ := (en ◦ φ)−1(S ),( ∑

{i1,...,id}∈Id

a2
i1,...,id

)1/2
· min
{i1,...,id}∈Id

{min
S

xi1 · · · xid } · µd(S ′) ≤ Hd(S )

≤

( ∑
{i1,...,id}∈Id

a2
i1,...,id

)1/2
· max
{i1,...,id}∈Id

{max
S

xi1 · · · xid } · µd(S ′).

In turn, this yields

Hd(e−1
n (B))

Hd(e−1
n (Z))

=
µd((en ◦ φ)−1(B))
µd((en ◦ φ)−1(Z))

≤
Kd(B) · Hd(B)
Hd(Z)

. �

�

If B = {x = (x1, . . . , xn) ∈ (R∗+)n : ai < xi < bi, 1 ≤ i ≤ n} is an n-dimensional
rectangle, then sinceHn(e−1

n (B)) = ln(b1/a1) · · · ln(bn/an), one obtains easily from the
proof that the constant in (3.5) can be replaced by a smaller one, that is, for Z ⊂ B and
p as above, and a := (a1, . . . , an), b := (b1, . . . , bn),

sup
B
|p| ≤

(
max
0≤k≤m

(b
a

)αk)
·


cn ·

∏n
i=1

(
bi ln

(
bi
ai

))
µn(Z)


m

· sup
Z
|p|.

Also, using inequality (3.4), we obtain the following corollary.
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Corollary 3.4. Under the assumptions and in the notation of Theorem 3.3,

sup
B
|p| ≤ K1(B)m+max0≤k≤m |αk | ·

(cd · Hd(B)
Hd(Z)

)m
· sup

Z
|p|. (3.6)

An important feature of inequality (3.6) is that while the degree deg p :=
max0≤k≤m |αk| of p enters the constant of the inequality as the exponent of a certain
geometric characteristic of B, the exponent of (Hd(B))/(Hd(Z)) is m, that is, it depends
only on the number of terms of p, and not on its degree.

If B ⊂ (R∗+)n in Theorem 3.3 is of the form x0 + Qn
1, x0 ∈ (R∗+)n, then one

easily deduces from inequality (3.5) its discrete version by replacing the Hausdorff
n-measure of Z in (3.5) by a fewnomial version of the metric span of Z. It is defined
as in Definition 2.4 above, with the polynomial Mn,d replaced by its ‘fewnomial’
version; see [23]. Since the expression is rather cumbersome, we do not state this result
explicitly in full generality, restricting ourselves to the particular case of univariate
polynomials.

Theorem 3.5. Let [a, b] b R∗+ and Z ⊂ [a, b] be a measurable subset. Suppose that
p(x) =

∑m
k=0 ck xnk , x ∈ R, where 0 ≤ n0 < · · · < nm are nonnegative integers, is a real

polynomial of degree at most nm. Then

sup
[a,b]
|p| ≤

(b
a

)nm

·


c
(
b ln

(
b
a

))
ωm,1(Z)


m

sup
Z
|p|,

where ωm,1(Z) is the metric span of Z.

Proof. The proof repeats verbatim the proof of Theorem 2.5 above presented in [40].
The only property required in the proof is that, according to the Descartes rule, for
every C ∈ R, the polynomial p −C has at most m positive roots. �

As a simple example of sets Z satisfying fewnomial Remez-type inequalities, we
consider a nested sequence of hypersurfaces Σ = {S 1, . . . , S m+1}, as in Section 2.8
above. Assume that Σ ⊂ Qn

R\Q
n
ρ ⊂ Q1

n, where Qn
s ⊂ R

n stands for the closed `∞ ball
(-‘cube’) of radius s centered at 0 ∈ Rn. As above, let δ = δ(Σ) denote the minimal `∞

distance between S j.
Consider the family of monomials F = {xαk }0≤k≤m, where all αk ∈ Z

n
+ and

N := max0≤k≤m |αk|. The linear space VF generated by F consists of multivariate
polynomials of the form

P(x) =

m∑
k=0

ck xαk , ck ∈ R, x ∈ Rn.

Theorem 3.6. The set S =
⋃m+1

j=1 S j is a VF -norming and, for each P ∈ VF ,

sup
Qn

R

|P| ≤
(R
ρ

)N
·

(cR ln(R/ρ)
δ

)m
· sup

S
|P|.
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Proof. Consider a ray l = {tv, v ∈ Rn, ‖v‖∞ = 1, t ≥ 0} ⊂ Rn with endpoint 0 passing
through a point y ∈ Qn

R such that |P(y)| = maxQn
R
|P|, and apply Theorem 3.5 to

the interval Bl = {tv ∈ l : ρ ≤ t ≤ R} and the subset Zl = S ∩ l. By assumptions, Bl

crosses S at not less than m + 1 points, and we can fix exactly one point x j ∈ l ∩ S j,
j = 1, . . . ,m + 1, so that the points x1, x2, . . . , xm+1 on l are ordered and separated by
`∞ distance at least δ = δ(Σ) from one another. Applying the estimate of the metric
span in Corollary 2.6 above, we conclude that ωm,1(Zl) ≥ δ. This gives us the required
bound. �

4. Lipschitz continuity of the norming constant

Let (X, d) be a metric space. A real function f on X is said to belong to the space
Lip(X) if

L f := sup
x,y

| f (x) − f (y)|
d(x, y)

<∞.

In this case, L f is called the Lipschitz constant of f .
Let ω be an increasing concave function on R+, equal to 0 at 0, and such that

limt→∞ ω(t) = ∞. One can easily check that dω(x, y) := ω(‖x − y‖∞), x, y ∈ Rn, is a
metric on Rn compatible with the standard topology. Note that C(Qn

1) =
⋃
ω Lipdω(Qn

1),
where the union is taken over all possible ω. (Indeed, for f ∈ C(Qn

1), set ϕ(t) := t +

ω(t; f ), ψ(t) :=
∫ t

0 ϕ
−1(s) ds, t > 0, where ω(·; f ) ∈ C(R+) is the modulus of continuity

of f defined with respect to the metric ‖ · ‖∞. Then the inequality ψ(t) ≤ ϕ−1(t),
t ∈ [0, 1], implies that f ∈ Lipdω(Qn

1) for ω := ψ−1.)
Let V ⊂ Lipdω(Qn

1), for some ω as above, be a finite-dimensional space.

Proposition 4.1. There exists a constant M > 0 such that, for each f ∈ V,

L f ≤ M sup
Qn

1

| f |. (4.1)

Proof. Let F = { f1, . . . , fl}, l := dim V , be a basis in V . For f =
∑l

i=1 ai fi ∈ V , we set
‖ f ‖1 :=

∑l
i=1 |ai|. Since V is l-dimensional, ‖ · ‖1 is a norm on V equivalent to the norm

induced from C(Qn
1). In particular, for some c̃ > 0 and all x, y ∈ Qn

1, x , y, we have

| f (x) − f (y)|
dω(x, y)

≤
(
max
1≤i≤l

L fi

)
· ‖ f ‖1 ≤

(
max
1≤i≤l

L fi

)
· c̃ · sup

Qn
1

| f |. �

The optimal constant MV in (4.1) is called the Markov constant of V . For instance,
the classical A. Markov polynomial inequality implies that MV = d2n if V = Pd(Rn)
and ω(t) := t. In turn, the classical Bernstein inequality implies that MV = πdn if V
is the space of trigonometric polynomials of degree d on Rn of period 2 in each
coordinate and ω(t) = t. The constant MV can be effectively estimated applying the
Gram–Schmidt process to a basis F = { f1, . . . , fl} in V considered in a suitable space
L2(µ) on Qn

1:
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Proposition 4.2. Suppose that all fi ∈ Lipdω(Qn
1) and the family F is orthonormal with

respect to a regular Borel measure µ on Qn
1. Then

MV ≤
(
max
1≤i≤l

L fi

)
·
√

l ·
√
µ(Q1

n).

Proof. For f =
∑l

i=1 ai fi ∈ V , we have

‖ f ‖1 ≤
√

l ·
( l∑

i=1

|ai|
2
)1/2

=
√

l ·
(∫

Qn
1

f 2 dµ
)1/2
≤
√

l ·
√
µ(Q1

n) · sup
Qn

1

| f |.

This and the argument of the proof of Proposition 4.1 give the required inequality. �

Let Kn be the set of all closed subsets of Qn
1 equipped with the Hausdorff metric

dH: if K0,K1 ∈ Kn, then

dH(K0,K1) := max
i=0,1

{
sup
y∈Ki

inf
x∈K1−i

‖x − y‖∞
}
.

It is well known that (Kn, dH) is a compact metric space. Let us consider Kn with
the metric dωH := ω ◦ dH . Then one can check easily that (Kn, dωH) is compact as well
and that the metrics dH and dωH determine the same topology on Kn.

The main result of this section is the following Lipschitz continuity property of
norming constants NV (Z), Z ∈ Kn.

Theorem 4.3. The function 1/NV ∈ LipdωH
(Kn) and its Lipschitz constant L1/NV ≤ MV .

(Here we define 1/(NV (Z)) = 0 for Z not V-norming.)

Proof. Let Z1, Z2 ∈ Kn be V-norming sets. Assume without loss of generality that
NV (Z1) ≥ NV (Z2). Suppose that f ∈ V is such that supZ1

| f | = 1 and supQn
1
| f | = NV (Z1).

For each z2 ∈ Z2, we choose z1 ∈ Z1 so that ‖z2 − z1‖∞ ≤ dH(Z2,Z1). Then

| f (z2)| ≤ | f (z2) − f (z1)| + | f (z1)| ≤ MV · dωH(Z1,Z2) · NV (Z1) + 1.

Thus, by the definition of NV (Z2),

NV (Z1) = sup
Qn

1

| f | ≤ (MV · dωH(Z1,Z2) · NV (Z1) + 1) · NV (Z2).

This implies the required statement:

NV (Z1) − NV (Z2) ≤ MV · dωH(Z1,Z2) · NV (Z1) · NV (Z2).

Further, assume that Z1 is not V-norming, while Z2 is. Then due to Proposition 1.4
there exists a function f ∈ V such that f |Z1 = 0 and supQn

1
| f | = 1. Arguing as above

(with NV (Z1) replaced by 1), we obtain

1 = sup
Qn

1

| f | ≤ MV · dωH(Z1,Z2) · NV (Z2),

that is,
1

NV (Z2)
−

1
NV (Z1)

≤ MV · dωH(Z1,Z2). �
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Corollary 4.4. If Z ∈ Kn is V-norming, then each Y in the open ball of radius
1/(MV NV (Z)) with center at Z is V-norming and

NV (Y) ≤
NV (Z)

1 − MV · NV (Z) · dωH(Z,Y)
.

Proof. From the previous theorem we obtain

1
NV (Y)

=
1

NV (Z)
−

( 1
NV (Z)

−
1

NV (Y)

)
≥

1
NV (Z)

− MV · dωH(Z,Y) > 0.

Passing here to reciprocals, we get the required statement. �

In particular, the set of non-V-norming sets is a closed subset of Kn. In many cases
(for example, if V consists of analytic functions) this set is meagre.

Proposition 4.5. The set of non-V-norming sets is a meagre subset of Kn if and only if
zero loci of functions in V\{0} are meagre subsets of Qn

1.

Proof. Suppose that zero loci of functions in V\{0} are meagre subsets of Qn
1 but the

set of non-V-norming sets is not meagre in Kn. Then there exists a non-V-norming set
Z ⊂ Qn

1 and ε > 0 such that each Y ∈ Kn with dH(Z; Y) ≤ ε is non-V-norming as well.
In particular, this is valid for Y = [Z]ε, the closed ε-neighborhood of Z in Qn

1. Then
Proposition 1.4 produces a function f ∈ V\{0} such that f |[Z]ε = 0. Since [Z]ε contains
interior points, the zero locus of f is not meagre, a contradiction.

Conversely, suppose that the set of non-V-norming sets is a meagre subset of Kn

but there exists f ∈ V\{0} whose zero locus contains an open ball Qn
ε := {x ∈ Rn :

‖x − y‖∞ < ε} ⊂ Qn
1 for some z ∈ Qn

1, ε > 0. Each Y ∈ Kn such that dH(Y, {z}) < ε is
a subset of Qn

ε(z) and so is non-V-norming, that is, the set of non-V-norming sets
contains an interior point, a contradiction completing the proof. �
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[34] E. J. Remez, ‘Sur une propriété des polynomes de Tchebycheff’, Comm. Inst. Sci. Kharkov 13
(1936), 93–95.

[35] B. A. Taylor and N. Levenberg, ‘Comparison of capacities in Cn’, in: Analyse Complexe, Lecture
Notes in Mathematics, 1094 (eds. E. Amar, R. Gay and T. Van Nguyen) (Springer, Berlin, 1984),
162–172.

[36] A. F. Timan, Theory of Approximation of Functions of Real Variable (Pergamon Press, Oxford,
1963).

[37] P. Turán, Eine neue Methode in der Analysis und deren Anwendungen (Akadémiai Kiadó,
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