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Logarithmic derivatives of Artin L-functions
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Abstract

Let K be a number field of degree n, and let dK be its discriminant. Then, under
the Artin conjecture, the generalized Riemann hypothesis and a certain zero-density
hypothesis, we show that the upper and lower bounds of the logarithmic derivatives
of Artin L-functions attached to K at s= 1 are log log |dK | and −(n− 1) log log |dK |,
respectively. Unconditionally, we show that there are infinitely many number fields with
the extreme logarithmic derivatives; they are families of number fields whose Galois
closures have the Galois group Cn for n= 2, 3, 4, 6, Dn for n= 3, 4, 5, S4 or A5.

1. Introduction

Let K be a number field of degree n with discriminant dK , and let ζK(s) be the Dedekind zeta
function of K, with the following Laurent expansion at s= 1:

ζK(s) = c−1(s− 1)−1 + c0 + c1(s− 1) + c2(s− 1)2 + · · · .

Then γK = c0/c−1 is called the Euler–Kronecker constant of K. If K =Q, then γQ is just the
Euler constant γ = 0.57721566 . . . . When K is an imaginary quadratic field, the Kronecker limit
formula expresses γK in terms of special values of the Dedekind η-function. It was Ihara who
began a systematic study of the Euler–Kronecker constant; we refer to [Iha06] for details.

We can see that ζ ′K/ζK(s) =−1/(s− 1) + γK + (s− 1)h(s), for some holomorphic function
h(s) at s= 1. Let K̂ be the Galois closure of K. Then we have ζK(s) = ζ(s)L(s, ρ) for some
(n− 1)-dimensional complex representation ρ of the Galois group Gal(K̂/Q). So

γK = γ +
L′

L
(1, ρ). (1.1)

This leads to a study of the logarithmic derivative of L(s, ρ) at s= 1. In [Iha06], Ihara found
an upper bound and a lower bound for γK under the generalized Riemann hypothesis (GRH).
The main terms in his upper and lower bounds under the GRH are

2 log log
√
|dK |, −2(n− 1) log

(
log
√
|dK |

n− 1

)
.

In [IMS09, p. 260], the authors remarked that in the case of Dirichlet characters, the
coefficient 2 can be replaced by 1 + o(1). In § 10 we prove that under the Artin conjecture,
the GRH and a certain zero-density hypothesis (Conjecture 10.4), the upper and lower
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Logarithmic derivatives of Artin L-functions

bounds are

log log |dK |+O(log log log |dK |), −(n− 1) log log |dK |+O(log log log |dK |),

respectively.
When K is a quadratic field Q(

√
d), the value L′

L (1, χd) determines γQ(
√
d), where χd is the

Dirichlet character attached to the quadratic field Q(
√
d). Recently, Mourtada and Murty [MM]

showed unconditionally that there are infinitely many Dirichlet L-functions of quadratic character
whose logarithmic derivatives at s= 1 have large values. Specifically, there are infinitely many
fundamental discriminants d such that |−L′

L (1, χd)| � log log |d|. This implies that |γQ(
√
d)| �

log log |d| for infinitely many quadratic fields Q(
√
d). We realized that the techniques we used

to obtain extreme values of L(1, ρ) in [Cho, CKa, CKb] can be applied to generalize Mourtada
and Murty’s result to arbitrary Artin L-functions.

Let f(x, t) be an irreducible polynomial of degree n, giving rise to a regular Galois extension
over Q(t) with Galois group G. Let Kt be the number field obtained by adjoining a root of f(x, t)
with a specialization t ∈ Z. We study the Artin L-functions L(s, ρ, t) = ζKt(s)/ζ(s). Under several
assumptions (the strong Artin conjecture and Assumptions 4.1 and 4.2), we show in § 4 that there
are infinitely many number fields such that

L′

L
(1, ρ, t)> log log |dKt |+O(log log log |dKt |) (1.2)

and infinitely many number fields such that

L′

L
(1, ρ, t)6−(n− 1) log log |dKt |+O(log log log |dKt |). (1.3)

The idea is to calculate the average of the logarithmic derivatives over certain sets. Here the
estimate in Proposition 4.5 is crucial. It follows from Weil’s theorem on the number of rational
points of algebraic curves over finite fields. In a continuation paper [CKc], we prove a refinement
of Weil’s theorem (Theorem 5.4).

In §§ 6–8, we exhibit several examples from [Cho, CKa, CKb] for which the strong Artin
conjecture and Assumptions 4.1 and 4.2 hold. These are number fields whose Galois closures
have Galois groups Cn for n= 2, 3, 4, 6, Dn for n= 3, 4, 5, S4 or A5. So in these cases, (1.2)
and (1.3) are true unconditionally. In the case of A4, we were not able to verify Assumption 4.2;
so in this case (1.2) and (1.3) are true modulo Assumption 4.2. See Remark 6.3 for the case
of C5.

2. Regular extensions and their Galois representations

A finite extension E of the rational function field Q(t) is said to be regular if Q ∩ E =Q. Suppose
that f(x, t) is an irreducible polynomial of degree n and gives rise to a regular Galois extension
over Q(t) with Galois group G. Let Kt be a field obtained by adjoining to Q a root of f(x, t)
with a specialization t ∈ Z, and let K̂t be the Galois closure of Kt. Let C be any conjugacy class
of G. Serre made the following important observation regarding the distribution of Frobenius
elements in a regular Galois extension [Ser08, p. 45].

Theorem 2.1. There is a constant cf > 0, depending on f , such that for any prime p> cf there

is a tC ∈ Z such that for any t≡ tC (mod p) with Gal(K̂t/Q)'G, p is unramified in K̂t/Q and
Frobp ∈ C.
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Recall the following regular inverse Galois problem.

Conjecture 2.2. Given a finite group G, there exists a polynomial f(x, t) ∈ Z[t][x] such that
the splitting field of f(x, t) over Q(t) has the Galois group G and is a regular extension.

In [Ser08, p. 35], Serre called this the GalT property. It is known that the GalT property is
satisfied for abelian groups, dihedral groups, An and Sn.

With the specialization t ∈ Z, let n= [Kt :Q]. We can consider the following refinement.
Let K(n, G, r1, r2) be the set of number fields of degree n with signature (r1, r2) whose normal
closures have G as their Galois group (if they exist).

Conjecture 2.3. Given a finite group G, there exists a polynomial f(x, t) ∈ Z[t][x] such that
the splitting field of f(x, t) over Q(t) has the Galois group G and is a regular extension, and
there exists a certain infinite subset S ⊂ Z such that Kt ∈ K(n, G, r1, r2) for t ∈ S.

In the explicit examples of §§ 6–9, we specify S.

3. Approximation of L′

L
(1, ρ) and the zero-free region

Proposition 3.1 [Dai06]. Let F/Q be a finite Galois extension and let ρ be an n-dimensional
complex representation of Gal(F/Q) with conductor N . Let 6/7< α < 1. If L(s, ρ) is entire and
free from zeros in the rectangle [α, 1]× [−(log N)2, (log N)2], and if N is sufficiently large, then

1
2πi

∫
(2)

L′

L
(s+ u, ρ)Γ(s)xs ds− L′

L
(u, ρ)�n

x2

(1− α)2
√
N

+
(log N)2

(1− α)3x(1−α)/8

for 16 u6 3/2 and x> 1.

Set u= 1 in Proposition 3.1. Then

−L
′

L
(1, ρ) +

1
2πi

∫
(2)

L′

L
(s+ 1, ρ)xsΓ(s) ds�n

x2

(1− α)2
√
N

+
(log N)2

(1− α)3x(1−α)/8
. (3.2)

Let

L(s, ρ) =
∏
p

L(s, ρ)p =
∞∑
n=1

λ(n)n−s, L(s, ρ)p =
n∏
i=1

(1− αi(p)p−s)−1.

Then λ(p) =
∑n

i=1 αi(p) and |λ(p)|6 n. By taking the logarithmic derivative of L(s, ρ) and the
Mellin inversion of Γ(s), we obtain

− 1
2πi

∫
(2)

L′

L
(s+ 1, ρ)Γ(s)xs ds=

n∑
i=1

∑
p

log p
∞∑
k=1

αi(p)kp−ke−p
k/x.

Since the terms with k > 2 converge absolutely, we only need to estimate∑
p

λ(p)
log p
p

e−p/x.

Let x be a constant with (log N)16/(1−α) 6 x6N1/4. Then the error term in (3.2) is On,x,α(1).
On the other hand, ∑

p6x

log p
p

(1− e−p/x)< 1,
∑
p>x

log p
p

e−p/x� 1.
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Hence we obtain an approximation of L′

L (1, ρ) as a sum over a short interval, which can be
summarized as follows.

Proposition 3.3. Suppose that L(s, ρ) is entire and free from zeros in the rectangle [α, 1]×
[−(log N)2, (log N)2]. If N is sufficiently large, then for any constant x with (log N)16/(1−α) 6
x6N1/4,

L′

L
(1, ρ) =−

∑
p6x

λ(p) log p
p

+On,x,α(1).

Because we lack the GRH, we cannot use the above result directly. We extend the result of
Kowalski and Michel to isobaric automorphic representations of GL(n).

Let n= n1 + · · ·+ nr, and let S(q) be a set of isobaric representations π = π1 � π2 � · · ·
� πr, where each πj is a cuspidal automorphic representation of GL(nj)/Q and satisfies the
Ramanujan–Petersson conjecture at the finite places. We assume that given two representations
π, π′ ∈ S(q), for each j, πj is not equivalent to any π′k if nj = nk. Moreover, S(q) satisfies the
following conditions.

(1) There exists e > 0 such that for π = π1 � π2 � · · ·� πr ∈ S(q), Cond(π1) · · · Cond(πr)
6 qe.

(2) There exists d > 0 such that |S(q)|6 qd.
(3) The Γ-factors of πj are of the form

∏nj
k=1 Γ(s/2 + αk) where αk ∈ R.

For α> 3/4 and T > 2, let

N(π; α, T ) = |{ρ : L(ρ, π) = 0, Re(ρ)> α, |Im(ρ)|6 T}|.

Then, clearly, N(π; α, T ) =N(π1; α, T ) + · · ·+N(πr; α, T ).

Theorem 3.4. For some B > 0,∑
π∈S(q)

N(π; α, T )� TBqc0(1−α)/(2α−1).

One can choose any c0 > c′0, where c′0 = 5n′e/2 + d with n′ = max{ni}16i6r.

Proof. Let S(q)j be the set of cuspidal automorphic representations consisting of the jth
component of π. By assumption, |S(q)j |= |S(q)| for all j = 1, 2, . . . , r. Then, clearly, Cond(πj)6
qe and |S(q)j |6 qd. So∑

π∈S(q)

N(π; α, T ) =
∑

π∈S(q)

r∑
j=1

N(πj ; α, T ) =
r∑
j=1

∑
πj∈S(q)j

N(πj ; α, T ).

Now we apply the result of Kowalski and Michel [KM02] to the inner sum. They assumed that
the Γ-factors of πj are the same; however, that assumption is used only to obtain the convexity
bound in [KM02, Lemma 10], and our Γ-factors provide the same convexity bound. Hence our
result follows. 2

In the following, we apply the above result to a family of Artin L-functions. In this case, the
Γ-factors are a product of Γ(s/2) and Γ((s+ 1)/2).
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4. Extreme values of L′

L
(1, ρ)

In this section, we describe how to obtain extreme positive and negative values of L′

L (1, ρ) in
a general setting. Let f(x, t), Kt, K̂t and G be as in § 2. Suppose Kt ∈ K(n, G, r1, r2). Let ρ
be the (n− 1)-dimensional complex representation of the Galois group Gal(K̂t/Q) given by
ζKt(s) = ζ(s)L(s, ρ, t). Then the conductor of ρ is |dKt |. Now we assume that ρ is modular,
i.e. an automorphic representation of GLn−1; this is called the strong Artin conjecture. The
discriminant of f(x, t) is a polynomial in t. We expect the regular Galois extension property to
imply that the field discriminant |dKt | will increase with respect to t.

Assumption 4.1. log |dKt | �f log |t|.

4.1 Extreme positive values of L′

L
(1, ρ)

Let G be a finite group having the GalT property, and let f(x, t) ∈ Z[t][x] be an irreducible
polynomial of degree n whose splitting field over Q(t) is a regular extension with Galois group G.
Let Kt be the number field obtained by adjoining a root of f(x, t) to the rational number field Q
for a specialization t ∈ Z, and let K̂t be its Galois closure. Let L(s, ρ, t) =

∑∞
l=1 λ(l, t)l−s be the

Artin L-function ζKt(s)/ζ(s).
Note that the conductor of L(s, ρ, t) is |dKt |, and for an unramified prime p, λ(p, t) =N(p, t)−

1 where N(p, t) is the number of solutions of f(x, t)≡ 0 (mod p). Hence −16 λ(p, t)6 n− 1.

The Galois group Gal(K̂t/Q)'G acts on the set X = {x1, x2, . . . , xn} of roots of f(x, t)
transitively. Let G0 be the set of all g ∈G with no fixed points. Then G0 is not empty and
|G0|/|G|> 1/n (see [Ser03, p. 430]). Choose any g0 ∈G0 and let [g0] be the conjugacy class of
g0 in G. If the Frobenius element of p belongs to [g0], then f(x, t)≡ 0 (mod p) has no root and
hence λ(p, t) =−1.

Since f(x, t) gives rise to a regular extension, by Theorem 2.1 there is a constant cf (depending
on f) such that for any prime p> cf there is an integer ip such that for any t≡ ip (mod p) with
Gal(K̂t/Q)'G, the Frobenius element of p belongs to [g0]. For X > 0, let y = (log X)/(log log X)
and M =

∏
cf6p6y

p. Note that M � ey = e(logX)/(log logX)�ε X
ε for any ε > 0.

Let iM be an integer such that iM ≡ ip (mod p) for all cf 6 p6 y. Thus, if t≡ iM (modM),
then for all cf 6 p6 y, Frobp belongs to [g0] and λ(p, t) =−1.

Assume that the discriminant of f(x, t) is a polynomial in t of degree D. Then there is a
constant C such that |dKt |6 CtD. We define a set L(X) of positive numbers given by

L(X) =
{
X

2
< t <X

∣∣∣ t≡ iM (modM), Gal(K̂t/Q)'G
}
.

Under the strong Artin conjecture, every t in L(X) corresponds to an automorphic L-
function of GL(n− 1) over Q. However, it is possible that different t ∈ L(X) correspond to
the same automorphic L-function, i.e. ζKt1 (s) = ζKt2 (s), in which case we say that Kt1 and Kt2

are arithmetically equivalent. We make the following assumption.

Assumption 4.2. There exists a finite set T ⊂ Z, depending only on f , such that the L(s, ρ, t)
are distinct for all t ∈ L(X)\T .

In order to verify the assumption, we use the following theorem.

Theorem 4.3 [Kli98]. Let K/Q be a number field of degree n6 11. Let K̂ be the Galois closure
and assume that there exists a non-conjugate field K ′ which is arithmetically equivalent to K.
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Then, up to conjugacy, only the following cases are possible for G= Gal(K̂/Q):

– n= 7 and G= GL3(2);

– n= 8 and G= Z/8Z o (Z/8Z)× or G= GL2(3);

– n= 11 and G= PSL2(11).

In §§ 6–9, we consider explicit examples of families of number fields. We show that the Kt are
not isomorphic. In those cases, the degree of Kt is less than 7 and hence, by the above theorem,
the number fields are not arithmetically equivalent. We may have to place more conditions on
L(X) to obtain the property that the Kt are not isomorphic. In any case, we shall show that
X1−ε� |L(X)| �X for any fixed ε > 0.

Let c0 = 5(n− 1)D/2 + 1. We may replace the (n− 1) in c0 by a smaller constant if ρ is
not irreducible. Choose α with c0(1− α)/(2α− 1)< 98/100. By applying Theorem 3.4 to L(X)
with e=D, d= 1 and T = (log CXD)2, we deduce that every automorphic L-function, excluding
exceptional O(X98/100) L-functions, has a zero-free region [α, 1]× [−(log |dKt |)2, log |dKt |)2]. Let
us denote by L̂(X) the set of automorphic L-functions with this zero-free region.

Applying Proposition 3.3 to the L-function L(s, ρ, t) in L̂(X) with x= (log CXD)16/(1−α),
we obtain

L′

L
(1, ρ, t) = −

∑
p6x

λ(p, t) log p
p

+On,x,α(1)

=
∑

cf6p6y

log p
p
−
∑
y<p6x

λ(p, t) log p
p

+On,x,α(1)

= log log X −
∑
y<p6x

λ(p, t) log p
p

+O(log log log X), (4.4)

where we have used the fact that
∑

p6y(log p)/p= log y +O(1) and that y = (log X)/(log log X).

Now we sum the logarithmic derivatives L′

L (1, ρ, t) over L̂(X); that is, we consider∑
L(s,ρ,t)∈L̂(X)

L′

L
(1, ρ, t).

We need to deal with the sum∑
L(s,ρ,t)∈L̂(X)

∑
y<p6x

λ(p, t) log p
p

=
∑
y<p6x

log p
p

∑
L(s,ρ,t)∈L̂(X)

λ(p, t).

In the next section, we prove the following proposition.

Proposition 4.5. For all y < p6 x,∑
L(s,ρ,t)∈L̂(X)

λ(p, t)� |L̂(X)|
√
p

+
|L̂(X)|

(log X)1/2
,

where the implied constant is independent of p.
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Proposition 4.5 implies that∑
L(s,ρ,t)∈L̂(X)

∑
y<p6x

λ(p, t) log p
p

� |L̂(X)|
∑
y<p6x

log p
p3/2

+
|L̂(X)|

(log X)1/2
∑
y<p6x

log p
p

� |L̂(X)|
y1/2

+
|L̂(X)| log log X

(log X)1/2
.

Hence we have∑
L(s,ρ,t)∈L̂(X)

L′

L
(1, ρ, t) = |L̂(X)| log log X +O(|L̂(X)| log log log X).

Now note that |dKt |6 CtD and t < X. So if there are only finitely many L-functions with
L′

L (1, ρ, t)> log log |dKt |+O(log log log |dKt |), they cannot reach the average value log log X as
X increases. Therefore we have proved the following result under Assumptions 4.1 and 4.2.

Theorem 4.6. There are infinitely many L(s, ρ, t) in K(n, G, r1, r2) such that

L′

L
(1, ρ, t)> log log |dKt |+O(log log log |dKt |).

4.2 Extreme negative values of L′

L
(1, ρ)

To generate a L′

L (1, ρ, t) that is negative but whose absolute value is large, we need to manipulate
λ(p, t) so that λ(p, t) = n− 1 for all primes p between cf and y = (log X)/(log log X) in (4.4).

Since f(x, t) gives rise to a regular Galois extension, Theorem 2.1 tells us that for any prime
p> cf there is an integer sp such that for any t≡ sp (mod p) with Gal(K̂t/Q)'G, the Frobenius
element of p is the identity in G. For X > 0, let M =

∏
cf6p6y

p. Let sM be an integer such that
sM ≡ sp (mod p) for all cf 6 p6 y. So, if t≡ sM (modM), for all cf 6 p6 y we have that p splits
completely in K̂t and λ(p, t) = n− 1.

We define L(X) and L̂(X) as in § 4.1. Then, as in (4.4),

L′

L
(1, ρ, t) =−(n− 1) log log X −

∑
y<p6x

λ(p, t) log p
p

+O(log log log X).

By Proposition 4.5,∑
L(s,ρ,t)∈L̂(X)

L′

L
(1, ρ, t) =−(n− 1)|L̂(X)| log log X +O(|L̂(X)| log log log X).

Thus we have proved the following result under Assumptions 4.1 and 4.2.

Theorem 4.7. There are infinitely many L-functions L(s, ρ, t) in K(n, G, r1, r2) with

L′

L
(1, ρ, t)6−(n− 1) log log |dKt |+O(log log log |dKt |).

5. Proof of Proposition 4.5

For a fixed prime p, consider the equation f(x, t)≡ 0 (mod p). Now we view f(x, t) as an
algebraic curve over Z/pZ. Let Ai be the number of t (mod p) such that λ(p, t) = i, i.e. such
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that f(x, t)≡ 0 (mod p) has i+ 1 roots. Then we have
n−1∑
i=−1

Ai = p+O(1),

where O(1) is bounded by D, the degree of the discriminant of f(x, t).
Recall Weil’s celebrated theorem on rational points of a curve over a finite field (see, e.g.,

[Sch04, p. 75]).

Theorem 5.1. Let f(x, y) ∈ Fp[x, y] be absolutely irreducible and of total degree d > 0. Let N
be the number of zeros of f in Fp × Fp. Then

|N − p|6 (d− 1)(d− 2)
√
p+ c(d)

for some constant c(d).

Weil’s theorem implies that
n−1∑
i=−1

(i+ 1)Ai = p+O(
√
p).

Hence we obtain
n−1∑
i=−1

iAi =O(
√
p). (5.2)

Now we define Qi = {X/2< t <X | t ∈ L(X) and t≡ i (mod p)} and write

L(X) =Q0 ∪Q1 ∪ · · · ∪Qp−1.

Let R be a finite subset of {0, 1, 2, . . . , p− 1} such that k ∈R if and only if p is ramified for
t ∈Qk. We prove the following in the examples of §§ 6–9:

|Qi|= cp
|L(X)|
p

+O

(
|L(X)|

p(log X)1/2

)
for i 6∈R, (5.3)

where cp is a constant that is close to 1 and independent of i. (We can show that 1/2< cp < 2.)
Since

∑
L(s,ρ,t)∈L̂(X)

λ(p, t) =
∑

L(s,ρ,t)∈L(X) λ(p, t) +O(X98/100), in order to prove Proposi-
tion 4.5 it is enough to show that∑

L(s,ρ,t)∈L(X)

λ(p, t)� |L(X)|
√
p

+
|L(X)|

(log X)1/2
.

If k ∈R, ∣∣∣∣∣ ∑
L(s,ρ,t)∈Qk

λ(p, t)

∣∣∣∣∣6 (n− 1)
|L(X)|
p

+O(1).

If k /∈R, then p is unramified for all t ∈Qk, and λ(p, t) = j(k) for a unique j(k). In that case,∑
L(s,ρ,t)∈Qk

λ(p, t) = j(k)cp
|L(X)|
p

+O

(
|L(X)|

p(log X)1/2

)
.

Hence ∑
L(s,ρ,t)∈L(X)

λ(p, t) =
∑
k∈R

∑
L(s,ρ,t)∈Qk

λ(p, t) +
∑
k/∈R

∑
L(s,ρ,t)∈Qk

λ(p, t).
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Here ∑
k∈R

∑
L(s,ρ,t)∈Qk

λ(p, t)� |L(X)|
p

,

where the implied constant is independent of p. On the other hand,∑
k/∈R

∑
L(s,ρ,t)∈Qk

λ(p, t) =
∑
k/∈R

j(k)|Qk| = cp
|L(X)|
p

∑
k/∈R

j(k) +O

(
|L(X)|

(log X)1/2

)

= cp
|L(X)|
p

n−1∑
j=−1

jAj +O

(
|L(X)|

(log X)1/2

)
.

By (5.2), ∑
L(s,ρ,t)∈L(X)

λ(p, t)� |L(X)|
√
p

+
|L(X)|

(log X)1/2
.

For Proposition 4.5, we do not need to calculate Ai. Nevertheless, we prove the following
theorem in the continuation paper [CKc].

Theorem 5.4. Let G be the Galois group of the splitting field of f(x, t) over Q(t). Fix a prime p.
Let Ci be the union of conjugacy classes C in G such that the trace of ρ at C is equal to i. Then

Ai =
|Ci|
|G|

p+O(
√
p).

Remark 5.5. This is a refinement of Weil’s theorem. It can also be thought of as a reciprocity
law. It may be helpful to compare this result with the Chebotarev density theorem: fix t; then
the number of p < x such that λ(p, t) = i is asymptotic to |Ci||G|

x
log x as x→∞.

In §§ 6–8, we look at explicit examples from [Cho, CKa, CKb] for which the strong Artin
conjecture and Assumptions 4.1 and 4.2 hold. For the A4 and C5 cases, we were not able to
verify Assumption 4.2.

6. Cyclic and dihedral extensions

Cyclic and dihedral extensions satisfy the GalT property. Hence, given a cyclic or dihedral
group G, there exists a polynomial f(x, t) ∈ Z[t][x] whose splitting field over Q(t) is a regular
Galois extension and whose Galois group is G. We give some details for quadratic and cyclic
cubic extensions.

6.1 Quadratic extensions

Consider Kt =Q[
√
t] for t square-free and t≡ 1 (mod 4). Consider, for M = 4

∏
36p6y p,

L(X)1 =
{
X

2
< t <X

∣∣∣ t square-free and t≡ sM (modM)
}
,

L(X)2 =
{
X

2
< t <X

∣∣∣ t square-free and t≡ iM (modM)
}
.
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Then Assumptions 4.1 and 4.2 are clear. We verify (5.3) in the case of L(X)2:

Qi =
{
X

2
< t <X

∣∣∣ t square-free, t≡ iM (modM), t≡ i (mod p)
}
.

Since p > y, (p, M) = 1; and if i 6= 0, then by [Dai06, p. 248] we have

|Qi|=
3
π2

∏
q|M

(1− q−2)−1 X

M
(1− p−2)−1 1

p
+O(X1/2) = cp

|L(X)2|
p

+O(X1/2),

where cp = (1− p−2)−1 and 1< cp < 2. Since p� (log X)16/(1−α), it follows that X1/2�
|L(X)2|/p(log X)1/2. Here we have considered real quadratic fields. However, the same argument
is applicable to imaginary quadratic fields. So Theorems 4.6 and 4.7 can now be stated as follows.

Theorem 6.1. (1) There are infinitely many real and infinitely many imaginary quadratic fields
Q(
√
t) with

L′

L
(1, χt)6−log log |t|+O(log log log |t|).

(2) There are infinitely many real and infinitely many imaginary quadratic fields Q(
√
t) with

L′

L
(1, χt)> log log |t|+O(log log log |t|).

6.2 Cyclic cubic extensions
Consider

f(x, t) = x3 − tx2 − (t+ 3)x− 1
for t ∈ Z+. Its discriminant is g(t)2 with g(t) = t2 + 3t+ 9. Then Kt/Q is a C3 Galois extension,
and L(s, ρ, t) = L(s, χt)L(s, χt) where χt and χt are two non-principal characters of C3. The
conductor fχt of χt is g(t) when g(t) is square-free. Hence we can see that χt � χt′ for t 6= t′.
Note also that L′

L (1, ρ, t) = 2 Re(L
′

L (1, χt)). Consider, for M = 6
∏

56p6y p,

L(X)1 =
{
X

2
< t <X

∣∣∣ g(t) square-free, t≡ sM (modM)
}

L(X)2 =
{
X

2
< t <X

∣∣∣ g(t) square-free, t≡ iM (modM)
}
.

Then Assumptions 4.1 and 4.2 are clear. We verify (5.3) in the case of L(X)2:

Qi =
{
X

2
< t <X

∣∣∣ g(t) square-free, t≡ iM (modM), t≡ i (mod p)
}
.

Define R′ to be the set of solutions t (mod p) for g(t)≡ 0 (mod p). Then R′ has at most two
elements. So it is enough to consider i /∈R′. Since p > y, (p, M) = 1; and for i 6∈R′, by [Duk04]
we have

|Qi| =
∏
q-M

(
1−

(
1 +

(
−3
q

))
q−2

)
X

2M

(
1−

(
1 +

(
−3
p

))
p−2

)−1 1
p

+O(X2/3 log X)

= cp
|L(X)2|

p
+O(X2/3 log X),

where cp = (1− (1 + (−3
p ))p−2)−1 and 1/2< cp < 2. Since p� (log X)16/(1−α), we have

X2/3 log X � |L(X)2|/p(log X)1/2. So Theorems 4.6 and 4.7 can now be stated as follows.
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Theorem 6.2. (1) There are infinitely many L(s, ρ, t) with

L′

L
(1, ρ, t)6−2 log log |dKt |+O(log log log |dKt |),

Re
(
L′

L
(1, χt)

)
6−log log fχt +O(log log log fχt).

(2) There are infinitely many L(s, ρ, t) with

L′

L
(1, ρ, t)> log log |dKt |+O(log log log |dKt |),

Re
(
L′

L
(1, χt)

)
>

1
2

log log fχt +O(log log log fχt).

6.3 Dihedral and cyclic extensions
For higher-degree extensions, we recall the following explicit examples from [CKa, Dai06]:

K(6, C6, 6, 0) : f(x, t) = x6 − 2tx5 − 5(t+ 3)x4 − 20x3 + 5tx2 + 2(t+ 3)x+ 1,
K(4, C4, 4, 0) : f(x, t) = x4 − 2tx3 − 6x2 + 2tx+ 1,
K(5, D5, 5, 0) : f(x, t) = x5 − tx4 + (2t− 1)x3 − (t− 2)x2 − 2x+ 1, t > 7,
K(5, D5, 1, 2) : f(x, t) = x5 + tx4 − (2t+ 1)x3 + (t+ 2)x2 − 2x+ 1, t> 0,
K(4, D4, 4, 0) : f(x, t) = x4 − tx3 − x2 + tx+ 1,
K(4, D4, 2, 1) : f(x, t) = x4 − tx3 + 3x2 − tx+ 1,
K(4, D4, 0, 2) : f(x, t) = x4 − x3 + (t+ 2)x2 − x+ 1,
K(3, D3, 3, 0) : f(x, t) = (x− t)(x− 4t)(x− 9t)− t,
K(3, D3, 1, 1) : f(x, t) = x3 + tx− 1.

For the cyclic and dihedral Galois extensions, the representation ρ is no longer irreducible. We
need to show that the irreducible components of the representations ρ are not equivalent for
different t by computing their Artin conductors.

In the case of the simplest sextic fields, let Kt be a sextic field obtained by adjoining a root
of f(x, t) to Q. Here we do not need to specialize t as in [CKa], since we do not need to find
units. Note that the discriminant of f(x, t) is 66(t2 + 3t+ 9)5. We assume that t2 + 3t+ 9 is
square-free. Then the cubic field Lt of Kt is the simplest cubic field with the field discriminant
(t2 + 3t+ 9)2 and the quadratic field Mt is Q(

√
t2 + 3t+ 9).

Let σ be the generator of Gal(Kt/Q)' C6, then Lt =K
〈σ3〉
t and Mt =K

〈σ2〉
t . Let χ be the

generator of the group of characters for Gal(Kt/Q) with χ(σ) = e2πi/6. Then Ind〈σ〉〈σ2〉1〈σ2〉 =

1〈σ〉 + χ3, Ind〈σ〉〈σ3〉1〈σ3〉 = 1〈σ〉 + χ2 + χ4 and Ind〈σ〉〈σ3〉ϕ= 1〈σ〉 + χ+ χ5, where ϕ is the non-trivial
representation for 〈σ3〉. Hence the Artin conductor of χ3 equals the field discriminant of Mt, and
the Artin conductors of χ2 and χ4 are both t2 + 3t+ 9. The Artin conductors of χ and χ5 are
equal to (t2 + 3t+ 9)

√
N(b) where b is the Artin conductor of ϕ. Since the product of Artin

conductors of χ, χ2, . . . , χ5 is at most 66(t2 + 3t+ 9)5, N(b) is a bounded constant. Hence for
t2 + 3t+ 9 square-free, as t increases, the Artin conductors also increase. Thus we have verified
that the irreducible components are not equivalent.

In the case of the simplest quartic fields, we assume that t2 + 4 is square-free. When
t2 + 4 is square-free, the field discriminant dKt equals 24(t2 + 4)3, and Kt has the unique
quadratic subfield Mt =Q(

√
t2 + 4). Let H ' C2 be the unique subgroup of order 2 in C4. Then

IndC4
H 1H = 1 + χ2 where χ is the generator of the group of characters for C4 with χ(σ) = e2πi/4.
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Hence the Artin conductor f(χ2) of χ2 equals t2 + 4 when t2 + 4 is square-free. Since dKt =
f(χ)f(χ2)f(χ3) and χ3 = χ, we have f(χ) = f(χ3) = 22(t2 + 4), and thus we have verified that
the irreducible components are not equivalent.

In the case of K(5, D5, 1, 2), ρ= σ1 ⊕ σ2 where σ1 and σ2 are the two 2-dimensional
representations of D5. Assume that 4t3 + 28t2 + 24t+ 47 is square-free. In [CKa], we showed
that their Artin conductors are both 4t3 + 28t2 + 24t+ 47. The case of K(5, D5, 5, 0) is dealt
with in the same way.

When G=D4, the representation ρ is decomposed into a sum of the non-trivial 1-dimensional
representation χ and the 2-dimensional representation ψ of D4. For the case of K(4, D4, 4, 0), we
assume that (t2 − 4)(4t2 + 9) is square-free. In [CKa], it is shown that the Artin conductor of χ is
|t2 − 4| and the Artin conductor of ψ is |(t2 − 4)(4t2 + 9)|. For the case of K(4, D4, 2, 1), the Artin
conductor of χ is |t2 − 4| and the Artin conductor of ψ is |(t2 − 4)(4t2 − 25)| if (t2 − 4)(25− 4t2)
is square-free. For the case of K(4, D4, 0, 2), the Artin conductor of χ is |1− 4t| and the Artin
conductor of ψ is |(1− 4t)(t+ 2)(t+ 6)| if (1− 4t)(t+ 2)(t+ 6) is square-free.

The strong Artin conjecture is valid in all of the above cases. We recall the definition of the
set L(X) in each case (writing only the extreme positive-value version).

K(6, C6, 6, 0) : L(X) =
{
X

2
< t <X

∣∣∣ t2 + 3t+ 9 square-free and t≡ iM (modM)
}

K(4, C4, 4, 0) : L(X) =
{
X

2
< t <X

∣∣∣ t2 + 4 square-free and t≡ iM (modM)
}

K(5, D5, 5, 0) : L(X) =
{
X

2
< t <X

∣∣∣ 4t3 − 28t2 + 24t− 47 square-free and t≡ iM (modM)
}

K(5, D5, 1, 2) : L(X) =
{
X

2
< t <X

∣∣∣ 4t3 + 28t2 + 24t+ 47 square-free and t≡ iM (modM)
}

K(4, D4, 4, 0) : L(X) =
{
X

2
< t <X

∣∣∣ (t2 − 4)(4t2 + 9) square-free and t≡ iM (modM)
}

K(4, D4, 2, 1) : L(X) =
{
X

2
< t <X

∣∣∣ (t2 − 4)(25− 4t2) square-free and t≡ iM (modM)
}

K(4, D4, 0, 2) : L(X) =
{
X

2
< t <X

∣∣∣ (1− 4t)(t+ 2)(t+ 6) square-free and t≡ iM (modM)
}

K(3, D3, 3, 0) : L(X) =
{
X

2
< t <X

∣∣∣ t square-free and t≡ iM (modM)
}

K(3, D3, 1, 1) : L(X) =
{
X

2
< t <X

∣∣∣ 4t3 + 27 square-free and t≡ iM (modM)
}
.

In these cases we proved Assumption 4.1, namely that log |dKt | � log |t|. Let us now make
some remarks about Assumption 4.2. For cyclic and dihedral extensions, we computed the
Artin conductors of the irreducible components of the representation ρ; hence we verified
Assumption 4.2 as a byproduct in these cases.

In the case of K(3, D3, 3, 0), Daileda [Dai06] used the set

L(X) =
{
X

2
< t <X

∣∣∣ t and (36t2 + 1)(400t2 − 27) square-free and t≡ iM (modM)
}
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and showed that Assumption 4.2 holds. In this case, only the lower bound on |L(X)| is obtained,
so it is not clear how to prove (5.3). We therefore use the set

L(X) =
{
X

2
< t <X

∣∣∣ t square-free and t≡ iM (modM)
}
.

Then (5.3) can be proved as in the quadratic case. We verify Assumption 4.2 as follows. Note
that f(x, t) is an Eisenstein polynomial. So p | t if and only if p is totally ramified in Kt: if
p | t, then by [Coh93, p. 315] p is totally ramified; conversely, if p is totally ramified and p - t,
then f(x, t)≡ (x+ a)3 (mod p). If we compare the coefficients of f(x, t) (mod p), we obtain a
contradiction. Therefore, the Kt are distinct for all t ∈ L(X).

Now we show that (5.3) holds for the remaining cases. For C6 and C4, it can be verified as
in the case of cyclic cubic fields. Consider the case of K(5, D5, 1, 2):

Qi =
{
X

2
< t <X

∣∣∣ 4t3 + 28t2 + 24t+ 47 square-free, t≡ iM (modM), t≡ i (mod p)
}
.

Let R′ be the set of solutions t (mod p) of 4t3 + 28t2 + 24t+ 47≡ 0 (mod p). Then R′ has at
most three elements. Hence it is enough to consider i /∈R′. For i /∈R′, by [CKb, Lemma 8.3] we
have

|Qi| =
∏
q-M

(
1− ρ(q2)

q2

)(
1− ρ(p2)

p2

)−1 1
p

X

2M
+O

(
X

pM

(
log

X

pM

)−1/2)

= cp
|L(X)|
p

+O

(
X

pM

(
log

X

pM

)−1/2)
,

where ρ(p2) is the number of solutions of 4t3 + 28t2 + 24t+ 47≡ 0 (mod p)2 and cp = (1−
ρ(p2)/p2)−1. Here 1< cp < 2. Since (1− ε) log X < log(X/pM)< log X for any ε > 0, we have

X

pM

(
log

X

pM

)−1/2

� |L(X)|
p(log X)1/2

.

We can show (5.3) for the cases of K(3, D3, 1, 1) and K(5, D5, 5, 0) by the same argument.
Next, consider the case of K(4, D4, 0, 2):

Qi =
{
X

2
< t <X

∣∣∣ (1− 4t)(t+ 2)(t+ 4) square-free, t≡ iM (modM), t≡ i (mod p)
}
.

Let R′ be the set of solutions t (mod p) of (1− 4t)(t+ 2)(t+ 4)≡ 0 (mod p). Then R′ has at most
three elements. Hence it is enough to consider i /∈R′. For i /∈R′, [Nai76, Theorem B] gives

|Qi| =
∏
q-M

(
1− ρ(q2)

q2

)(
1− ρ(p2)

p2

)−1 1
p

X

2M
+O

(
X

pM

(
log

X

pM

)−1)

= cp
|L(X)|
p

+O

(
X

pM

(
log

X

pM

)−1)
,

where ρ(p2) is the number of solutions of (1− 4t)(t+ 2)(t+ 4)≡ 0 (mod p2) and cp = (1−
ρ(p2)/p2)−1. Here 1< cp < 2. Since (1− ε) log X < log(X/pM)< log X for any ε > 0, we have

X

pM

(
log

X

pM

)−1

� |L(X)|
p(log X)1/2

.

We can show (5.3) for the case of K(4, D4, 2, 1) by the same argument.
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For the case of K(4, D4, 4, 0), consider

Qi =
{
X

2
< t <X

∣∣∣ (t2 − 4)(4t2 + 9) square-free, t≡ iM (modM), t≡ i (mod p)
}
.

We define R′ similarly to the previous cases. For i /∈R′, [Nai76, Theorem C] implies that

|Qi| =
∏
q-M

(
1− ρ(q2)

q2

)(
1− ρ(p2)

p2

)−1 1
p

X

2M
+O

(
X

pM

(
log

X

pM

)−1)

= cp
|L(X)|
p

+O

(
X

pM

(
log

X

pM

)−1)
,

where ρ(p2) is the number of solutions of (t2 − 4)(4t2 + 9)≡ 0 (mod p)2 and cp = (1−
ρ(p2)/p2)−1. Hence we have verified (5.3) for this case.

Therefore Theorems 4.6 and 4.7 are valid for the above examples.

Remark 6.3. We do not include the simplest quintic fields considered in [CKa], because we
cannot verify Assumption 4.2 in that case. For the extreme class number problem, we assumed
that Pt = t4 + 5t3 + 15t2 + 25t+ 25 is cube-free and we proved that the number of possible
repetitions is O(Xε). However, in order to prove Assumption 4.2, we have to assume that Pt
is square-free, and we need the following difficult folklore conjecture: #{1< t <X | Pt is square-
free}= cX +O(X/(log X)d) for some constants c and d.

7. S4 Galois extensions

Consider the following polynomials from [Cho, CKb]:

K(4, S4, 4, 0) : f(x, t) = (x− t)(x− 4t)(x− 9t)(x− 16t)− t,
K(4, S4, 2, 1) : f(x, t) = x2(x− 10t)(x− 18t) + t,
K(4, S4, 0, 2) : f(x, t) = x4 + tx2 + tx+ t.

Assumption 4.1 for these three polynomials was verified in [Cho, CKb]. All these polynomials
generate regular Galois extensions and the strong Artin conjecture is true.

We define L(X) as

L(X) =
{
X

2
< t <X

∣∣∣ t square-free, t≡ iM (modM)
}
.

Note that in these cases, f(x, t) is an Eisenstein polynomial, so as in the K(3, D3, 3, 0) case, we
can show that p | t if and only if p is totally ramified in Kt. Hence the Kt are not isomorphic for
all t ∈ L(X), and Assumption 4.2 holds. In these cases, (5.3) is verified as in the quadratic case.
Therefore Theorems 4.6 and 4.7 are valid unconditionally.

8. A5 Galois extension

Consider the polynomial f(x, t) = x5 + 5(5t2 − 1)x− 4(5t2 − 1) where 5t2 − 1 is square-free.
Here disc(f(x, t)) = 2856t2(5t2 − 1)4.

We claim that the splitting field of f(x, t) over Q(t) is an A5 regular extension. We need
to show that the Galois group of f(x, t) over Q(t) is A5. First, f(x, t) is irreducible over Q(t)
since it is an Eisenstein polynomial with respect to t

√
5 + 1 as a polynomial over Q(t). Since the
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discriminant is a square in Q(t), the Galois group is a subgroup of A5. It is enough to show that
the following sextic resolvent of f(x, t) has no root in Q(t):

θ(y) = (y3 + b2y
2 + b4y + b6)2 − 210 disc(f(x, t))y (8.1)

where b2 =−100(5t2 − 1), b4 = 6000(5t2 − 1)2 and b6 = 4000(5t2 − 1)3. If θ(y) has a root α in
Q(t), we have (α3 + b2α

2 + b4α+ b6)2 = 210disc(f(x, t))α. Hence α should be a square in Q(t).
Since α is a divisor of b26, the possible degrees of α are 0, 2, 4 and 6. When the degree is 0, then
such an α cannot be a root of θ(y). If the degree is 4 or 6, then the degree of the left-hand side
and the degree of the right-hand side in (8.1) do not match. Hence the only possible forms of α
are a(t

√
5 + 1)2 and a(t

√
5− 1)2 for some algebraic number a ∈Q. With the help of a computer

algebra system such as PARI, we can check that each of these cannot be a root of θ(y). Hence,
the splitting field of f(x, t) over Q(t) is an A5 regular extension.

If Kt =Q[αt] for t ∈ Z, then Kt has signature (1, 2). Let K̂t be the Galois closure, and let

G= Gal(K̂t/Q)'A5. Then G has a subgroup H isomorphic to A4 such that K̂t
H

=Kt. Let
IndGH 1H = 1 + ρ be the induced representation of G by the trivial representation of H, where
ρ is the 4-dimensional representation of A5, so that L(s, ρ, t) = ζKt(s)/ζ(s). Now, by [Kim04,
p. 498], ρ is equivalent to a twist of σ ⊗ στ by a character, where σ and στ are the icosahedral
2-dimensional representations of Ã5 ' SL2(F5). Since Kt is not totally real, σ and στ are odd.
Hence, by [KW09, Corollary 10.2], σ and στ are modular, i.e. they are attached to cuspidal
representations π and πτ of GL2/Q. By [Ram00], the functorial product π � πτ is a cuspidal
representation of GL4/Q. Hence L(s, ρ, t) is a cuspidal automorphic L-function of GL4/Q.

Let

L(X) =
{
X

2
< t <X

∣∣∣ 5t2 − 1 square-free, t even, t≡ iM (modM)
}
.

We now prove Assumptions 4.1 and 4.2. Since 5t2 − 1 is square-free, for every prime divisor
p of 5t2 − 1, f(x, t) is an Eisenstein polynomial with respect to p and p does not divide the
index of αt. This implies that dKt is divisible by (5t2 − 1)4, and Assumption 4.1 is satisfied. To
verify Assumption 4.2, by the remark after Assumption 4.2, it suffices to show that the Kt are
not isomorphic; for this, we prove that the totally ramified primes p in Kt are exactly prime
divisors of 5t2 − 1. Since f(x, t) is an Eisenstein polynomial with respect to each prime divisor
of 5t2 − 1, p is totally ramified in Kt. Conversely, assume that a prime p is totally ramified and
is not a prime divisor of 5t2 − 1. If p= 2, then f(x, t)≡ x(x4 + 1) mod 2 since t is even. Hence p
is not totally ramified. Now assume that p 6= 2 and p is not a prime divisor of 5t2 − 1. Then we
should have f(x, t)≡ (x+ a)5 mod p with a 6≡ 0 mod p. This forces p= 5 and a= 4. However, by
the Newton polygon method, we see that 5ZKt = p1p

4
2 with two distinct prime ideals p1 and p2.

We can verify (5.3) as in the cubic field case, and thus Theorems 4.6 and 4.7 are valid.

9. A4 Galois extensions

Consider the following polynomials from [CKb, Smi00]:

K(4, A4, 0, 2) : f(x, t) = x4 − 8tx3 + 18t2x2 + 1
K(4, A4, 4, 0) : f(x, t) = x4 + 18tx3 + (81t2 + 2)x2 + 2t(54t2 + 1)x+ 1.

These polynomials generate regular Galois extensions, and the strong Artin conjecture is true.
In the first case, Assumption 4.1 was verified in [CKb]. The second case is similar. Note
that disc(f(x, t)) = 162t2(27t2 − 4)2(27t2 + 4)2; so if t is square-free, then the Newton polygon
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argument shows that t | dKt . (If p | t, then pZKt = p2 for a prime ideal p.) Hence log dKt � log |t|.
We define L(X) as follows:

K(4, A4, 0, 2) : L(X) =
{
X

2
< t <X

∣∣∣ 27t4 + 1 cube-free and t≡ iM (modM)
}

K(4, A4, 4, 0) : L(X) =
{
X

2
< t <X

∣∣∣ t square-free and t≡ iM (modM)
}
.

In the case of K(4, A4, 0, 2), (5.3) is verified using [CKb, Lemma 8.3]. The case of K(4, A4, 4, 0)
is similar to the quadratic case.

Assumption 4.2 remains to be proved. Hence Theorems 4.6 and 4.7 are valid modulo
Assumption 4.2.

10. Conditional result under zero-density hypothesis

Up to now, we have obtained the average value of logarithmic derivatives of Artin L-functions
in a family. In this section, we assume a zero-density hypothesis and evaluate the logarithmic
derivative of a single Artin L-function.

We use the same notation as in § 4: let f(x, t) ∈ Z[t][x] be an irreducible polynomial of degree
n whose splitting field over Q(t) is a regular extension with Galois group G. Let Kt and K̂t be
as in § 4. Let L(s, ρ, t) =

∑∞
l=1 λ(l, t)l−s be the Artin L-function ζKt(s)/ζ(s). For simplicity of

notation, let L(s, ρ) = L(s, ρ, t), λ(p) = λ(p, t) and N = |dKt |.
If we assume the Artin conjecture and GRH for L(s, ρ), then by [Duk03] we get

L′

L
(1, ρ) =−

∑
p6(logN)2+ε

λ(p) log p
p

+On,x(1).

We show under a certain zero-density hypothesis (Conjecture 10.4) that if w =
(log N)(log log N)2 and x= (log N)2+ε, then∑

w<p<x

λ(p) log p
p

=O(1). (10.1)

Proof of (10.1). By partial summation,∑
w<p<x

λ(p) log p
p

=− 1
w

∑
p<w

λ(p) log p+
1
x

∑
p<x

λ(p) log p+
∫ x

w

∑
p<u λ(p) log p

u2
du. (10.2)

Then (1/w)
∑

p<w λ(p) log p=O(1), and (1/x)
∑

p<x λ(p) log p=O(1) since
∑

p<x log p=O(x).
Let %= β + iγ run over the zeros of L(s, ρ) in the critical strip of height up to T , with

16 T 6 u. Then, by [IK04, p. 112],

ψ(ρ, u) =
∑
n6u

λ(n)Λ(n) =−
∑
|γ|6T

u% − 1
%

+O

(
u log u
T

log(un−1N)
)
. (10.3)

Here ψ(ρ, u) =
∑

p6u λ(p) log p+
∑

pk6u, k>2 λ(pk) log p. Since λ(l)6 dn−1(l), where ζ(s)n−1 =∑∞
l=1 dn−1(l)l−s and dn−1(l)6 d(l)n−1, we have λ(pk)6 (k + 1)n−1. Hence∑

pk6u,k>2

λ(pk) log p�
∑
p6
√
u

log p
∑

k<(log u)/(log p)

(k + 1)n−1�
√
u(log u)n.
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So this error term contributes O(1) to the integral in (10.2). Therefore, we can use ψ(ρ, u)
in the integral in (10.2). We apply (10.3) with T = (log N)(log log N)2. The error term
O(((u log u)/T ) log(un−1N)) gives rise to∫ x

w

(
(n− 1)

u(log u)2

(log N)(log log N)2
+

u log u
(log log N)2

)
du

u2
,

which is O(1).
The sum

∑
|γ|6T 1/% is bounded by (log N)

∑T
k=1 1/k� log N log T and gives rise to

(log N)(log T )
∫ x

w

du

u2
� log N log T

w
=O(1).

Now we assume the following zero-density hypothesis for L(s, ρ) (cf. [Roj03, p. 6]).

Conjecture 10.4. For u> (log(n− 1) log N)κ and κ> 1,∑
|γ|6T

u%

%
6 u1−c/(log(n−1) logN)κ T d/(log(n−1) logN)κ

for some positive constants c and d which are independent of L(s, ρ).

Remark 10.5. Conjecture 10.4 follows from the GRH if u is large. However, if u is small, of size
(log N)a with a6 2, which is under consideration, it does not follow from the GRH.

If T = (log N)(log log N)2, then

T d/(log(n−1) logN)κ =O(1).

Let b= c/(log((n− 1) log N)κ; then, under Conjecture 10.4,∫ x

w

(∑
|γ|6T

u%

%

)
du

u2
�
∫ x

w
u−1−b du� w−b =O(1).

Hence, under the zero-density hypothesis, we have proved (10.1). 2

Since ∑
(logN)/(log logN)6p6w

log p
p
� log log log N,

we have
L′

L
(1, ρ) =−

∑
cf6p<(logN)/(log logN)

λ(p) log p
p

+O(log log log N). (10.6)

Because −16 λ(p)6 n− 1, we have the following result.

Theorem 10.7. Under the Artin conjecture, the GRH and Conjecture 10.4 for L(s, ρ), the
upper and lower bounds for L′

L (1, ρ, t) are

log log |dKt |+O(log log log |dKt |), −(n− 1) log log |dKt |+O(log log log |dKt |),

respectively.

For X > 0, let y = (log X)/100 and define M , iM and sM as in § 4. So for all cf 6 p6 y,
if t≡ sM (mod M), then p splits completely in K̂t and λ(p, t) = n− 1; if t≡ iM (modM),
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then λ(p, t) =−1. Assume that the discriminant of f(x, t) is a polynomial in t of degree D.
Then there is a constant C such that |dKt |6 CtD. So log|dKt | � log t. We define a set L(X)i by

L(X)i =
{
X

2
< t <X

∣∣∣ t≡ iM (modM), Gal(K̂t/Q)'G
}
.

We define L(X)s similarly. Note that for X/2< t <X, (log|dKt |)/(log log|dKt |)6 y =
(log X)/100 for sufficiently large X. Hence we can control λ(p) for cf 6 p < (log N)/(log log N).
In particular, for t ∈ L(X)s, λ(p) = n− 1; for t ∈ L(X)i, λ(p) =−1. Therefore we have proved
the following theorem.

Theorem 10.8. Under the Artin conjecture, the GRH and Conjecture 10.4 for L(s, ρ, t), for all
t ∈ L(X)i we have L′

L (1, ρ, t) = log log |dKt |+O(log log log |dKt |), and for all t ∈ L(X)s we have
L′

L (1, ρ, t) =−(n− 1) log log |dKt |+O(log log log |dKt |).

Let us assume the strong Artin conjecture for L(s, ρ, t) instead of the Artin conjecture and
GRH. In addition, suppose that Assumptions 4.1 and 4.2 are true. Then, by applying Theorem 3.4
to L(X)s and L(X)i, we obtain sets L̂(X)s and L̂(X)i where every automorphic L-function has
a zero-free region [α, 1]× [−(log |dKt |)2, log |dKt |)2]. Then we have the following result.

Theorem 10.9. Under the strong Artin conjecture, Assumptions 4.1 and 4.2 and
Conjecture 10.4, for t ∈ L̂(X)s we have L′

L (1, ρ, t) =−(n− 1) log log |dKt |+O(log log log |dKt |),
and for t ∈ L̂(X)i we have L′

L (1, ρ, t) = log log |dKt |+O(log log log |dKt |).
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