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Abstract

A closure operation connected with Hall subgroups is introduced for classes of finite soluble groups, and
it is shown that this operation can be used to give a criterion for membership of certain special Fitting
classes, including the so-called ‘central-socle’ classes.

1991 Mathematics subject classification (Amer. Math. Soc.): 20D10.

In this note a closure operation connected with Hall subgroups is introduced for classes
of finite soluble groups. It is shown that this operation can be used to give a criterion
for membership of certain special Fitting classes, namely the so-called ‘central socle’
classes Z,, and the classes e, (A4 ): see Section 1 for definitions. Thus, for example,
let G be a finite soluble group and let o denote the set of primes which divide |soc(G)|;
we show (Theorem 2.6) that G € 2, if and only if the Hall r-subgroups of G belong
to %, for all sets 7 of the form T = ¢ U {r} where ¢ is a prime.

The paper has three sections. The first consists of preliminaries. In the second, the
classes %, are investigated, while the classes e, (.#*) form the subject of the third.

1. Preliminaries

All groups considered here will belong to the class . of finite soluble groups: our
classes of groups are isomorphism-closed and contain all groups of order 1. A Fitting
class is a class of groups closed under the taking of subnormal subgroups and normal
products; a background to Fitting class theory can be found in [6, 10].

If G is a group and & is a Fitting class then Gz denotes the % -radical of G,

© 1995 Australian Mathematical Society 0263-6115/95 $A2.00 + 0.00
204

https://doi.org/10.1017/5144678870003860X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003860X

[2] A Hall-type closure property 205

while Z(G) denotes the centre of G. The set of all primes is denoted by P, p will
always denote a prime and = will always denote some subset of P. Then w-soc(G)
denotes the product of the minimal normal 7 -subgroups of G, while soc(G) denotes
P-soc(G). Let # be a Fitting class, and define classes of groups as follows:

% = (G € & : m-s0c(G) < Z(G)),

e.(F) = (G € & : the G-chief w-factors below G ¢ are central in G),
A = (G € ¥ : G isnilpotent),
S =(G €. Gisam-group ).

In addition, we write 2 = 2, while (1) denotes the class of groups of order 1.

It is well-known that both Z; and e, (%) are Fitting classes, and that 2, is
subdirect-product-closed while e, (%) is a Fischer class: see [6] for definitions, and
[12] for details. Both these families of classes, especially the former, have been
extensively studied and have often been used to furnish examples or counterexamples:
see, for example, [2, 4, 5,7, 12].

Write Hall,; (G) for the set of Hall = -subgroups of G, Hall(G) for the set of all Hall
subgroups of G, and Syl,(G) for the set of Sylow p-subgroups of G. Write C,, for
the cyclic group of order m.

Let 2 C .¥ be a class of groups and % be a Fitting class. Define Hy Z° =
(G e :3X € & and H € Hall(X) with H > Xz suchthat G ~ H), and write
HZ for H;, 2 . It is not hard to check that Hg is a closure operation on classes
of groups in the sense that (i) 2 C He 2", (i) He 2" C He? if 2 C %, and
(i) He Z = HgH 2. If &7 = He 2, we say that 2 is Hg-closed, while an
H-closed class is called Hall-closed: see [1, 2, 3, 8], and the references contained
therein, for results related to Hall-closure.

2. The central-socle classes

The section begins with Proposition 2.1, to the effect that 25, is H_4-closed, and
this is followed by Examples 2.2 to show that %, is not Hall-closed for # # 4. A
converse to Proposition 2.1 is proved as Proposition 2.5, and together these results
yield a criterion, Theorem 2.6, for membership of 2. The section ends with a result,
not strictly connected with the Hg operation, in a similar spirit to 2.5.

2.1 PROPOSITION. Let m C Pandlet G € Z,. Suppose that H is a Hall subgroup
of G with H > soc(G). Then H € %,. Thus %, is H_y-closed.

https://doi.org/10.1017/5144678870003860X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003860X

206 Owen J. Brison [3]

PROOF. It is easy to check that 25 = () ,
generality assume that w = {p} for some p € P.
Suppose for a contradiction that G is a group of minimal order subject to

(i) Ge Z,;and
(i) there exists a Hall subgroup of G which contains soc(G) but does not belong
to Z,.

Let H be a Hall subgroup of G with H > soc(G) but H ¢ %, Write t = {t €
P:¢||H|}; then H € Hall,(G), F(G) € %, F(G) < H, and 0. (G) = 1. Since
Sy C Z,, then p € 1. Let M < -G with F(G) < M: this is possible because
H < G. Then FIM) = F(G) < MNH € Hall,(M), andso M N H € Z, by
minimality. In particular, H £ M. Thus G = M H and |G : M| = q € t. Because
H ¢ Z, thereexists L-< H with L € ., and L £ Z(H). Because F(G) < H,
then [F(G), L] < F(G)YNL < H. Now C;(F(G)) < F(G), because G is soluble,
and so F(G)N L > 1because L > 1. Since L - H, it follows that L < F(G). In
particular, L < M N H. Now L is an irreducible H-module. Since (M N H) < H,
then by Clifford’s Theorem, [9, 3.4.1] or [11, V.17.3], we have

Z,, and so we may without loss of

Limrmy=U®---®U,,

for some n € N, where each U, is an irreducible (M N H)-module. But this means that,
as a normal subgroup of M N H, L is a direct product of minimal normal subgroups.
Thus L < p-soc(M N H). But M N H € Z, and so

(1) L <Z(MnNH).
But L-< H and L £ Z(H); thus
2) H/(M N H) =~ C, acts faithfully and irreducibly on L € .%,.

In particular, p # q.

LetJ = (L% : g € G),thenormal closureof Lin G. Wehave J < F(G) < MNH
because L < F(G). Then(1)impliesthat L < Z(J).ButZ(J) < GandsoJ = Z(J)
is abelian and must now be a p-group, as it is generated by commuting conjugates of
L.

Let S; € Hall..(G). By orders we have G = HS, and M > §,, whence, remem-
bering that L < H, we have

J=(L"heH seS)=(L:s€S8).

By the Frattini argument, using the conjugacy of Hall subgroups, we have G =
MNg(S)). But |G : M| = g, and so there exists a g-element n; € Ng(S;) such that
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G = M{n,). Again by Hall’s Theorem, there exists a € G with n{ € H. Write
n=n{e H\Mand S = §{. Thenn € Ny(S), G=HSandJ =(L° :s € §). It
follows that

3) L is contained in no proper S-invariant subgroup of J.

We have §(n) < G because n € Ny(S) ; also, S(n) € 7, because p € 7, S € &,
and |n| = ¢* with ¢ # p. Now J is a normal, abelian p-subgroup of G and so by
[9,5.2.3] we have

“) J =1/, $(n)] x Cy(S(n)).

Since J < G, there exists J°- <1 G with J° < J. Then J° < p-soc(G) < Z(G)
andso C,;(S{n)) > J® > 1.Thus[J, S(n)] < J by (4). But[J, S(n)]is S(n)-invariant
and so S(n) centralises the non-trivial group J/[J, S(n}]. But then any subgroup lying
between [J, S{n)] and J must be S-invariant. By statement (3) above, it follows that
[/, S{n)]L = J. But then

V£ T/, Sm) =, S(mIL/1J, S{n)] =~ L/(LNJ, Sn)]),

and since all relevant subgroups here are (n)-invariant then the isomorphism is an
(n)-isomorphism. But (n) centralises J/[J, S(n}], and so (n) must centralise a non-
trivial factor group of L. However, n € H\M whence H = (M N H)(n) and so by
statement (2), L must be a faithful, irreducible module for (n)/(n?) >~ C,, contrary to
what we have just seen. This completes the proof.

2.2 EXAMPLES. The main aim of these examples is to show that 2 is not Hall-
closed, so that some such condition as ‘H > soc(G)’ is needed in 2.1. Examples of
classes (i) not H_4 -closed, and (ii) not H - -closed, will be given in 3.2.

(i) Suppose that p, ¢ and r are distinct primes. It is well-known that there exists a
group G with a unique chief series whose factors have orders (reading ‘from the top’)
of the form p, g* and r#, respectively. Then [soc(G)| = r*.

(a) Now suppose that w with @ C w C P (proper inclusions) is given. We show
that &, is not Hall-closed. Choose ¢ € @ and r € P\n. Then G € Z,. Let
H € Hall, ;,(G); then H has a non-central 7 -socle of order g%, so H ¢ 2.

(b) In Proposition 2.1, it is natural to ask whether the conclusion still holds if the
condition ‘H > soc(G)’ is replaced by ‘H > m-soc(G)’. It need not. For take
m = {p,q}. Then G € Z,, while if H € Hall,(G) then H > m-soc(G) although
H¢ Z,.

(ii) We now show that & = % is not Hall-closed: the above example is of no
avail for this purpose.
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Let S denote the group SL(2,3) and let Z denote Z(S), the centre of S. Then
Z = soc(S) has order 2. Let T denote a cyclic group of order 5, and form the
regular wreath product W = SwrT (see [11,§1.15]). We may write W as a semidirect
product W = [S*]T, where S*, the ‘base group’, is a direct product of 5 copies of
S. Then Z* = Z(§8*) is the corresponding direct product of the respective centres of
the 5 copies of S, and has order 2°. Now [Z*, T] has order 2* and is normal in W.
Write W = W/[Z*, T]. Then W has a unique minimal normal subgroup, namely
Z* = Z*/[Z2*,T), and Z* = Z(W). In particular, W € & = 2%. But W has a Hall
{3, 5}-subgroup H of order 3°5 and H ~ CswrCs. Now, C3;wrCs has two minimal
normal subgroups: a central subgroup of order 3 and a non-central subgroup of order
3% Thus H ¢ £ and so % is not Hall-closed.

We next prove some results converse in sense to 2.1.

2.3 LEMMA. Suppose that G € & and that M < -G with |G : M| = q and
M € Z, where p,q € P. Suppose that p-soc(G) < M. Let H € Hall,(G) where
{p.q} St CP.Thenif H € Z, it follows that G € Z,.

PROOF. We may suppose that p-soc(G) # 1. Let N - < G with N € .#,. Then N
is an irreducible G-module; thus by Clifford’s Theorem, N is a completely reducible
M-module. But then N < p-soc(M) < Z(M). Thus M < Cg(N) and so N is
an irreducible G/M-module. Since |G : M| = g € t,then G = MH, and so N
is an irreducible H/(M N H)-module. But then N < p-soc(H) < Z(H). Thus
Cs(N) > M H = G and the assertion follows.

2.4 NOTATION. If G € %, write o = {s € P : s | [soc(G)|}.

2.5 PROPOSITION. Let G € ¥ and n € P. Suppose that Hall,(G) C %, for all
T C Pofthe formt = og U {t} wheret ¢ P.Then G € Z,.

PROOF. It will suffice to prove that G € Z, forall p € m Nog. If soc(G) = G
there is nothing to prove and so we assume that soc(G) < G. Let M < -G with
M > soc(G) and write |G : M| =q € P.

We claim that o = oy. For suppose that s € oy; then there exists K - << M with
K € .%.. The normal closure K € satisfies .%, > K¢ < M, and so there exists L - < G
with L < K¢. Thus s € og. Next suppose that s € 0. Then there exists K - < G
with K € ., and K < M because M > soc(G). Thus there exists L - <1 M with
L < K, whence s € gy, and o5 = oy.

Let t be of the form t = oy U {t} = o¢ U {t}, where ¢t € P. Let H, € Hall,(M)
and let H € Hall, (G) with H, = H N M. By hypothesis, H € %, and so H, € Z,.
By the minimality of G, it follows that M € Z,.
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Now write 7, = og U {q} and fix H e Hall, (G). Let p € & N o; be arbitrary.
Then H € Z,, M € Z,, and {p, q} C 1o; it follows from Lemma 2.3 that G € Z,,
and the proof is complete.

Putting together Propositions 2.1 and 2.5, we obtain the promised criterion for
membership of the central-socle classes as follows.

2.6 THEOREM. LetG € S andn € P.Then G € %, ifand only ifHall (G) C %,
for all T C Poftheformt =05 U {t}witht € P.

We now give another result in the spirit of 2.5.

2.7 PROPOSITION. Let G € & and m C P. Suppose that Hall,(G) € %, for all
sets of primes T with |t| < 2. Then G € %,.

PROOF. Because Z; = [),., 2,, we may without loss of generality assume that
n = {p}. Suppose for a contradiction that G is a counterexample of minimal order.
Then p-soc(G) < G and there exists M < -G with M > p-soc(G). If t C P
with || = 2 and if H € Hall, (M), then H = M N H, where H, € Hall,(G), and
so H € %, Thus M € Z, by minimality. Write |G : M| = g € P. Now the
Hall {p, q}-subgroups of G belong to Z, by hypothesis, and the result follows from
Lemma 2.3.

3. The classes e, (A7)

This section has a similar structure to Section 2. It is proved in Proposition 3.1
that e, (A4*) is H y-closed, and this is followed by some relevant examples (3.2).
Proposition 3.3 is a converse to Proposition 3.1, and together these results yield a
criterion, Theorem 3.4, for membership of the classes e, (.#*). Again the section
finishes with a result, Proposition 3.5, not strictly connected with the H operation,
being an analogue for certain classes e, (%) of Proposition 2.7.

3.1 PROPOSITION. Let 1 € Pand k € Nk > 0. Let G € e, (A*). Suppose
that H is a Hall subgroup of G with H > G _y«. Then H € e, (N*). It follows that
e, (AN*) is H y«-closed.

PROOF. Because e, (A*) = Mpex € (A ¥), we may without loss of generality
assume that 7 = {p} where p € P.

The proof is by induction on k. If k = 0 then #* = 1 and e,(1) = ; the
conclusion clearly holds in this case. We thus suppose that the result holds for all
Gy € e, (A ™) forall ky < k, and for all G, € e,(A*) with |G| < |G|.
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Writet = {qg € P: g | |H|}; then H € Hall,(G). If Aisagroup, write A; = A 4,
the .4/ -radical of A; then G, € .%, and G, < O.(G) < H, where O,(G) denotes
the ., -radical of G. Since ., € e, (A*), then H € e,(#*) if p ¢ 7, and so we
may without loss assume that p € t.

Choose M <-G with M > G, and write |G : K| = q € P. Then M € e,(A™),
M N H e Hall,(M) and M, = G, < M N H. By the induction hypothesis we
have M N H € e,(A*); in particular, M N H # H and so G = M H. Further, all
M N H -chief p-factors below (M N H), are M 1 H-central. Since M N H < H then
by Clifford’s Theorem, any H -chief p-factor, X /Y say, below (M N H), is completely
reducible as an M N H-module and, being then a sum of M N H-trivial modules, must
itself be M N H -trivial. Thus,

(5 The H-chief p-factors below (M N H), are M N H-central.

There are now two cases to consider.

Case (I). Suppose that H, £ M; then H = (M N H)H,. Let X/Y be an H-chief
p-factor in H, in an H-chief series which refines H > H, > H;,_; > 1. By the
Jordan-Holder theorem, we may restrict attention to a fixed chief series.

We firstly claim that X /Y is trivial as an M N H-module. If X < (M N H);, =
MNH,, then X/Yis MNH-centralby (1).IfY £ Mthen X/Y >~y (XNM)/(YNM);
the latter is still H-chief and so again is M N H-trivial by (1). In the remaining case
wehaveY <M, X £ MandY = XNM;thenwehave [ X, MNH]<XNM =Y
and again X/Y is M N H-trivial; this justifies our claim.

Suppose that X /Y lies below H;_,; then X /Y is H-central because H € e,(A" =Ty
by the induction hypothesis and the fact that e,(A*) C e,(#*~"). Suppose, on the
other hand, that X/Y lies between H, and H,_;. By Clifford’s Theorem, X/Y is
completely reducible as an H;-module and so must be a sum of H,-trivial submodules
because H,/H;_, is nilpotent; thus X /Y is a trivial H,-module. But H = (MNH)H,,
and since X/Y is trivial for M N H, it must be trivial for H. It follows that H €
e, (A", as required.

Case (II). Suppose now that H, < M; then H, = (M N H);. Now G, < 0. (G) N
H, < (0.(G)); < Gy, whence G, = 0.(G) N H;.

Let P € Syl,(H,), and write J = (P¢ : g € G), the normal closure of P in G;
note that / < M. Let R be a Hall p-complement in G;; then R = RG-1/G;_1 is
the unique p-complement in G,/G;_, € .4, and so R < G/Gy.,. Now R € H;
and so, since H;/H,_, € .4, we have [R, P] < H,_;. But [R, P] < G, because
R <Gy <G, and so

[R,P}<G\NH_, = O0,(G)NHNH_, =Gyy.

Butthen P < C5(R) < G andso J < Cg(R) N M. Now let x € J be a p’-element.
The G-chief p-factors between G, and G,_, are G-central because G € e, (A" %), and
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so are centralised by x. But then x, being a p’-element, must centralise the Sylow p-
subgroup of G/ G,_1, by [9,5.3.2]. But x € J already centralises the p-complement
RG,_/Gi_, of G;/G,_;, and so x centralises G,/ G,_,. But G,/ G,_, is the Fitting
subgroup of G/G,_;, and so x € G, by [9,6.1.3]. But this implies that JG,/G,
must be a p-group. Since G, € %, and p € 7, it follows that / € .%,. But now
J < 0.(G)and P < O, (G)NH, = G;.Butthen P € Syl,(G,) andso p f |H, : Gy|.

Let %, be a G-chief series between G, and 1, and let 4 be an H-chief series which
refines H, > G, > 1 and which refines %, below G,. Now all the G-chief p-factors
in 6, are G-central because G € e,(A" %); thus they all have order p and so must be
H -chief; moreover, they give us all the p-factors in € because p f |H, : G;|. But
now H € e,(#*), and the proof is complete.

3.2 EXAMPLES. (i) This example is to show that e,(.#?) is not H_-closed. Let
p,q,r and s be distinct primes. There exists a group G with a unique chief series
whose factors have orders (reading ‘from the top’) of the form g, p*,r? and s”
respectively. Then G € e, (A 2) because |G 42| = s*rf. Let H e Hall(G) with
|H| = s¥p“q. Then |H 4| = s*p® and H ¢ e,(4#?). However, H > G 4, and so
e,(#?) is not H_,-closed.

(ii) This example shows that e,(.#;) is not Hy, -closed when 7 C P with || > 2.
Let G be the group of Example 2.2(i) with {p,q} C 7, r ¢ 7, and H € Hall,(G).
Then H > 0,(G) = 1. Now G € ¢,(%;) while H ¢ ¢,(#;). Thus 3.1 is not valid
if we replace 4% by an arbitrary Fitting class #.

The next result is an analogue of Proposition 2.5, being converse in sense to 3.1;
it is valid for arbitrary e, (%) and not just for the classes e, (#*) : as we have just
seen, 3.1 is not valid for arbitrary e, (F).

3.3 PROPOSITION. Let G € ¥ and n C P. Let ¥ be a Fitting class. Suppose
that Hall,(G) C e, (¥#) for all T C P of the form t = pg U {t} wheret € P and
pc=1{s€P:s5s||Gg|}. Then G € e, ().

PROOF. Suppose for a contradiction that G is a counterexample of minimal order.
Then G & < G as otherwise o contains all primes dividing |G| andso G € e,(#) by
hypothesis. Let M <1- G with M > G, and write |G : M| = q. Then Mz = G 2,
and so py = pg. If H € Hall,(M) then H = H, N M for some H, € Hall,(G) and
so M € e, (%) by minimality. Because G ¢ e, (%), there exists a G-chief w-factor
X/Y below G g which is not G-central. By Clifford’s Theorem, X/Y is completely
reducible as an M-module, and so X /Y is M-central because M € e, (#). Thus X/Y
is faithful and irreducible for G/M =~ C,. Let H € Hall.(G) where T = pg U {g}.
Then G = M H. Thus X /Y is faithful and irreducible for H/(H N M) >~ G/M, and
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so is non-trivial for H. Now H > Hz > Gz > X > Y, and so X/Y is H-central
because H € e, (%), in contradiction to the preceding statement. The result follows.

Putting together Propositions 3.1 and 3.3, we obtain our criterion for membership
of the classes e, (%) as follows.

3.4 THEOREM. Let G € ., m CPandk ¢ N,k > 0. Then G € e (AN*) if and
only if Hall,(G) C e, (A™*) for all T C P of the form t = p; U {t} where t € P and
pc =1{s € P:s| |G|}

The next result is an analogue of Proposition 2.7 for the classes e, ().

3.5 PROPOSITION. Let G € ¥ and m C P. Let & be a Hall-closed Fitting class.
Suppose that Hall,(G) C e, (F) forall t C P with|t| <2. Then G € e,(F).

PROOF. The proof is by induction on |G|, the result being trivial if |G| = 1. If
M <-G and T C P with |t| < 2 then Hall, (M) C ¢,(%) and so M € e, (%) by
induction. It follows that G contains a unique maximal normal subgroup, which we
call M; then M > G’ and |G : M| = q € P. Let now X/Y be a G-chief m-factor
below Gg. If X £ M then X = G and Y = M by the unicity of M < -G, and
then X/Y is certainly G-central. Suppose that X < M. Then X/Y is below Mg,
and by Clifford’s Theorem must be M-central. Now X/Y € %, for some p € n.
Let H € Hall,(G) where t = {p,q}. Then G = MH and X/Y is a module for
H/HNM ~G/M.ButX <YHandsoX =XNTH =Y(X N H), whence

XY~y (XNH)/(YNH).

Now M4z N H € Hall,(Mg) C &, the final inclusion because .# is Hall-closed, and
SOXNH<MzNH < Hg. But H € e,(%#), and it follows that X/Y is H-central
and thus G-central, as required.
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