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Abstract

Recently, Alanazi et al. [‘Refining overpartitions by properties of nonoverlined parts’, Contrib. Discrete
Math. 17(2) (2022), 96–111] considered overpartitions wherein the nonoverlined parts must be �-regular,
that is, the nonoverlined parts cannot be divisible by the integer �. In the process, they proved a general
parity result for the corresponding enumerating functions. They also proved some specific congruences for
the case � = 3. In this paper we use elementary generating function manipulations to significantly extend
this set of known congruences for these functions.
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1. Introduction

A partition of a positive integer n is a finite nonincreasing sequence of positive
integers λ1 ≥ λ2 ≥ · · · ≥ λk such that λ1 + λ2 + · · · + λk = n. We refer to the integers
λ1, λ2, . . . , λk as the parts of the partition. For example, the number of partitions of the
integer n = 4 is 5, and the partitions counted in that instance are

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

For more information about integer partitions, see [3, 4].
An overpartition of a positive integer n is a partition of n wherein the first

occurrence of a part may be overlined. The modern study of overpartitions was
initiated in the groundbreaking work of Corteel and Lovejoy [11].

As an example, the number of overpartitions of n = 4 is 14, and the overpartitions
are

(4), (4), (3, 1), (3, 1), (3, 1), (3, 1), (2, 2), (2, 2),

(2, 1, 1), (2, 1, 1), (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

The number of overpartitions of n is often denoted p(n), so from the example above
we see that p(4) = 14.
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As part of a larger study of overpartitions with restrictions on the nonoverlined
parts, Alanazi et al. [1] considered the family of functions R

∗
�(n) which counts the

number of overpartitions of weight n wherein nonoverlined parts must be �-regular
(that is, the nonoverlined parts are not allowed to be divisible by �) and there
are no restrictions on the overlined parts. For example, R

∗
3(4) = 12 thanks to the

overpartitions

(4), (4), (3, 1), (3, 1), (2, 2), (2, 2),

(2, 1, 1), (2, 1, 1), (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

Note that the two overpartitions of n = 4 which are ‘removed’ from those counted by
p(4) in order to create the above list are (3, 1) and (3, 1); these are not counted by R

∗
3(4)

because they contain a nonoverlined part which is divisible by � = 3.
We note that the values of R

∗
2(n) appear in the On-Line Encyclopedia of Integer

Sequences [24, A022567], where they are interpreted as the number of partitions of n
into two different colours of distinct parts.

One can readily see that an overpartition counted by R
∗
�(n) can be viewed as an

ordered pair of partitions (μ, ν) where μ is an �-regular partition (which accounts for
the nonoverlined parts in an overpartition) and ν is a partition into distinct parts (which
accounts for the overlined parts in an overpartition) such that the weight of μ plus
the weight of ν equals n. We will use this representation of an overpartition in our
discussions below.

Over the last several years, a number of authors have proven divisibility properties
satisfied by p(n) and several restricted overpartition functions. See [2, 5–10, 12, 13, 15,
16, 18–23, 25–39] for examples of such work.

In [1], Alanazi et al. proved the following congruence properties satisfied by
overpartitions with �-regular nonoverlined parts:

THEOREM 1.1 [1, Theorem 3.1]. For all n ≥ 1, R
∗
�(n) ≡ 1 (mod 2) if and only if � | n

and the number of partitions of n/� into distinct parts is odd.

THEOREM 1.2 [1, Theorem 3.2]. For all n ≥ 0, R
∗
3(9n + 4) ≡ R

∗
3(9n + 7) ≡ 0 (mod 3).

The proofs of Theorems 1.1 and 1.2 given in [1] rely solely on generating function
manipulations.

Our overarching goal in this brief work is to revisit the two theorems above,
using them as a springboard for additional results. In Section 2 we collect all of the
tools necessary to complete the proofs of our results. Section 3 will focus on proofs
of results modulo 2 and 4 satisfied by infinitely many functions in this family. In
particular, we provide a combinatorial argument for Theorem 1.1 as well as a more
effective way to ‘test’ whether R

∗
�(n) is even or odd for a particular value of n. We

will also provide an infinite family of congruences modulo 4 satisfied by this family of
functions. In Section 4 we return specifically to the function R

∗
3(n), which is the focus
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of Theorem 1.2. We provide a slightly different proof of Theorem 1.2, and we extend
the result significantly by finding an infinite family of mod 3 congruences satisfied by
this function. We then prove an infinite number of congruences for R

∗
3(n) modulo 4.

Finally, we share a few closing remarks in Section 5.

2. Necessary tools

Based on the fact that R
∗
�(n) counts overpartitions wherein there are no restrictions

on the overlined parts while nonoverlined parts must be �-regular, it is straightforward
to see that the corresponding generating function is given by

∞∑
n=0

R
∗
�(n)qn =

(∏
i≥1

(1 + qi)
)(∏

i≥1

(1 − q�i)
(1 − qi)

)

=
∏
i≥1

(1 − q�i)(1 − q2i)
(1 − qi)2 =

f� f2
f 2
1

(2.1)

where we define

fk := (1 − qk)(1 − q2k)(1 − q3k) . . . .

We will rely heavily on the generating function (2.1) in our work below. We will also
use an alternative representation for the generating function for R

∗
�(n) which involves

Ramanujan’s theta function,

ϕ(q) :=
∞∑

k=−∞
qk2
= 1 + 2

∞∑
k=1

qk2
. (2.2)

The connection between ϕ(q) and the generating function for R
∗
�(n) is clear once we

note the following two lemmas.

LEMMA 2.1 (Hirschhorn [14, (1.5.8)]). We have

ϕ(−q) =
f 2
1

f2
.

LEMMA 2.2 (Hirschhorn [14, (1.5.16)]). We have

1
ϕ(−q)

=
∏
i≥0

ϕ(q2i
)2i

.

Thanks to Lemmas 2.1 and 2.2, we see that the generating function for R
∗
�(n) can

also be written as
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∞∑
n=0

R
∗
�(n)qn = f�

∏
i≥0

ϕ(q2i
)2i

. (2.3)

This representation is extremely beneficial when proving congruences modulo powers
of 2 satisfied by R

∗
�(n) since

ϕ(q) = 1 + 2
∞∑

k=1

qk2
.

We will rely on a few other classical results from the theory of q-series.

LEMMA 2.3 (Euler’s Pentagonal number theorem; see Hirschhorn [14, (1.6.1)]). We
have

f1 =
∞∑

j=−∞
(−1)jqj(3j+1)/2.

LEMMA 2.4 (Jacobi; see Hirschhorn [14, (1.7.1)]). We have

f 3
1 =

∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2.

We will also utilise the following 3-dissection.

LEMMA 2.5 (Hirschhorn and Sellers, [17]). We have

f1 f2 =
f6 f 4

9

f3 f 2
18

− q f9 f18 − 2q2 f3 f 4
18

f6 f 2
9

.

Lastly, we will need the following well-known fact which follows, in essence, from
the binomial theorem.

THEOREM 2.6. For a prime p and positive integers k and l, we have

(1 − qk)pl ≡ (1 − qpk)pl−1
(mod pl).

3. General results modulo 2 and 4

We are now in a position to give alternative proofs of Theorems 1.1 and 1.2 as well
as additional results. We begin by focusing on Theorem 1.1. In doing so, we provide
an equivalent statement which provides a more effective way of checking the parity
of R

∗
�(n).

THEOREM 3.1. For all n ≥ 1, R
∗
�(n) ≡ 1 (mod 2) if and only if n = � · j(3j + 1)/2 for

some integer j.
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PROOF. Beginning with (2.3),
∞∑

n=0

R
∗
�(n)qn = f�

∏
i≥0

ϕ(q2i
)2i

≡ f� (mod 2) thanks to (2.2)

=

∞∑
j=−∞

(−1)jq�·j(3j+1)/2 thanks to Lemma 2.3.

The result follows. �

Next, we wish to use Theorem 3.1 as a springboard in two different directions. First,
we provide an alternative proof of Theorem 3.1.

COMBINATORIALLY INSIGHTFUL PROOF OF THEOREM 3.1. Consider an overparti-
tion of the positive integer n which contains at least one part which is not a multiple
of �. Let λ∗ be the largest such part. One can then naturally pair this overpartition with
the corresponding overpartition wherein λ∗ is switched from overlined to nonoverlined
(or vice versa, depending on its original status in the overpartition). Clearly, this pairs
all of the overpartitions of n wherein at least one part is not a multiple of �. Thus,
modulo 2, this set of overpartitions can be ignored. The remaining overpartitions are
those wherein all of the parts must be multiples of �. By definition, all such parts must
be overlined, and in order for this to take place, it must be the case that each such part
appears exactly once (one can only overline the first occurrence of any part in a given
partition). Hence, the overpartitions which are not naturally paired as described above
must be of the form

(� · λ1, � · λ2, . . . , � · λk)

where every part is overlined and λ1 > λ2 > · · · > λk, that is, where the parts are all
distinct. Clearly, the sum of these parts must be a multiple of �, and it is well known
that the generating function for such partitions is given by

∏
i≥1

(1 + q�·i).

This is congruent, modulo 2, to
∏
i≥1

(1 − q�·i)

and the result then follows from Lemma 2.3.

Next, we wish to extend Theorem 3.1 to a result for the modulus 4 (thanks to insights
gained from (2.3)). We will stop short of writing down a characterisation modulo 4.
Instead, we will settle for proving the following theorem which provides an infinite
family of Ramanujan-like congruences modulo 4 for these functions.
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THEOREM 3.2. Let p be an odd prime, and let r, 1 ≤ r ≤ p − 1, be a quadratic
nonresidue modulo p. Then, for all n ≥ 0, R

∗
p(pn + r) ≡ 0 (mod 4).

PROOF. Beginning with (2.3),

∞∑
n=0

R
∗
p(n)qn = fp

∏
i≥0

ϕ(q2i
)2i

≡ fpϕ(q) (mod 4)

= fp

(
1 + 2

∞∑
k=1

qk2
)
.

Because fp is a function of qp, and because we are interested in arguments which are
arithmetic progressions of the form pn + r where 1 ≤ r ≤ p − 1, we see that we simply
need to consider whether we can represent pn + r as

pn + r = k2.

If this is possible, then we know that r ≡ k2 (mod p). However, r is assumed to be a
quadratic nonresidue modulo p. Therefore, there are no such solutions, and this implies
that, for all n ≥ 0, R

∗
p(pn + r) ≡ 0 (mod 4). �

Clearly, the above yields infinitely many congruences modulo 4 satisfied by
functions within this family, the ‘first’ of which is that, for all n ≥ 0,

R
∗
3(3n + 2) ≡ 0 (mod 4). (3.1)

4. Returning to R
∗
3(n)

We next turn our attention specifically to the function R
∗
3(n). We begin by providing

an alternative proof of Theorem 1.2 which will motivate much of the work in the rest
of this section.

ALTERNATIVE PROOF OF THEOREM 1.2. We begin with (2.1) and work modulo 3:

∞∑
n=0

R
∗
3(n)qn =

f3 f2
f 2
1

≡
f 3
1 f2

f 2
1

(mod 3) thanks to Theorem 2.6

= f1 f2

=
f6 f 4

9

f3 f 2
18

− q f9 f18 − 2q2 f3 f 4
18

f6 f 2
9

thanks to Lemma 2.5.
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Thanks to this 3-dissection of the generating function of R
∗
3(n) (mod 3), we can

immediately see that
∞∑

n=0

R
∗
3(3n + 1)qn ≡ 2 f3 f6 (mod 3).

Because this last expression is a function of q3, we know that, for all n ≥ 0,

R
∗
3(3(3n + 1) + 1) = R

∗
3(9n + 4) ≡ 0 (mod 3)

and

R
∗
3(3(3n + 2) + 1) = R

∗
3(9n + 7) ≡ 0 (mod 3).

We note that the proof above is similar in nature to the proof of Theorem 1.2 in [1].
Even so, we share the above for the sake of completeness, and also so that we might
provide a proof of the following new ‘internal congruence’ satisfied by R

∗
3(n).

LEMMA 4.1. For all n ≥ 0, R
∗
3(9n + 1) ≡ 2R

∗
3(n) (mod 3).

PROOF. From the proof of Theorem 1.2 provided above, we see that
∞∑

n=0

R
∗
3(3n + 1)qn ≡ 2 f3 f6 (mod 3).

Because the right-hand side of this congruence is a function of q3, we know that the
generating function for R

∗
3(9n + 1) satisfies
∞∑

n=0

R
∗
3(9n + 1)q3n ≡ 2 f3 f6 (mod 3)

or
∞∑

n=0

R
∗
3(9n + 1)qn ≡ 2 f1 f2 (mod 3)

= 2
∞∑

n=0

R
∗
3(n)qn

thanks to the proof of Theorem 1.2 above. The result follows immediately. �

Lemma 4.1 now provides the machinery necessary to prove the following new
congruence family.

THEOREM 4.2. For all n ≥ 0 and all α ≥ 1,

R
∗
3

(
9αn +

33 · 9α−1 − 1
8

)
≡ 0 (mod 3)
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and

R
∗
3

(
9αn +

57 · 9α−1 − 1
8

)
≡ 0 (mod 3).

PROOF. We prove this result by induction on α. The basis case (α = 1) states that

R
∗
3 (9n + 4) ≡ R

∗
3 (9n + 7) ≡ 0 (mod 3).

These congruences were proven in Theorem 1.2, so the basis case holds.
Next, we prove the induction step holds for each case. Assume that, for all n ≥ 0

and some α ≥ 1, we have

R
∗
3

(
9αn +

33 · 9α−1 − 1
8

)
≡ 0 (mod 3).

We wish to prove that

R
∗
3

(
9α+1n +

33 · 9α − 1
8

)
≡ 0 (mod 3).

Note that

9α+1n +
33 · 9α − 1

8
= 9α+1n +

33 · 9α − (9 − 8)
8

= 9α+1n +
33 · 9α − 9

8
+ 1

= 9
(
9αn +

33 · 9α−1 − 1
8

)
+ 1.

Therefore, with Lemma 4.1 in hand,

R
∗
3

(
9α+1n +

33 · 9α − 1
8

)
= R

∗
3

(
9
(
9αn +

33 · 9α−1 − 1
8

)
+ 1
)

≡ 2R
∗
3

(
9αn +

33 · 9α−1 − 1
8

)
(mod 3)

≡ 0 (mod 3)

thanks to the induction hypothesis. Similarly, assume that, for all n ≥ 0 and some
α ≥ 1, we have

R
∗
3

(
9αn +

57 · 9α−1 − 1
8

)
≡ 0 (mod 3).

We wish to prove that

R
∗
3

(
9α+1n +

57 · 9α − 1
8

)
≡ 0 (mod 3).
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Note that

9α+1n +
57 · 9α − 1

8
= 9α+1n +

57 · 9α − (9 − 8)
8

= 9α+1n +
57 · 9α − 9

8
+ 1

= 9
(
9αn +

57 · 9α−1 − 1
8

)
+ 1.

Therefore, with Lemma 4.1 in hand,

R
∗
3

(
9α+1n +

57 · 9α − 1
8

)
= R

∗
3

(
9
(
9αn +

57 · 9α−1 − 1
8

)
+ 1
)

≡ 2R
∗
3

(
9αn +

57 · 9α−1 − 1
8

)
(mod 3)

≡ 0 (mod 3)

thanks to the induction hypothesis. This completes the proof. �

We close this section by providing an infinite family of congruences modulo 4
satisfied by R

∗
3. In order to do so, we first prove the following lemma which is extremely

helpful.

LEMMA 4.3. We have
∞∑

n=0

R
∗
3(3n + 1)qn ≡ 2 f 3

3 (mod 4).

PROOF. In [1], the authors prove that
∞∑

n=0

R
∗
3(3n + 1)qn = 2

f 3
2 f 3

3

f 6
1

.

Thanks to Theorem 2.6, we know f 3
2 ≡ f 6

1 (mod 2). Thus, we have
∞∑

n=0

R
∗
3(3n + 1)qn = 2

f 3
2 f 3

3

f 6
1

≡ 2
f 6
1 f 3

3

f 6
1

(mod 4)

= 2 f 3
3 . �

We have already seen in (3.1) that, for all n ≥ 0,

R
∗
3(3n + 2) ≡ 0 (mod 4).

In addition to this single congruence, we can prove two additional ‘isolated’
congruences.
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THEOREM 4.4. For all n ≥ 0,

R
∗
3(9n + 4) ≡ R

∗
3(9n + 7) ≡ 0 (mod 4).

PROOF. Thanks to Lemma 4.3,
∞∑

n=0

R
∗
3(3n + 1)qn ≡ 2 f 3

3 (mod 4).

Clearly, 2 f 3
3 is a function of q3, so the corresponding series expansion will contain

only powers of q with exponents that are multiples of 3. Therefore, for all n ≥ 0,

R
∗
3(3(3n + 1) + 1) = R

∗
3(9n + 4) ≡ 0 (mod 4)

and

R
∗
3(3(3n + 2) + 1) = R

∗
3(9n + 7) ≡ 0 (mod 4). �

We now provide the following infinite family of congruences.

THEOREM 4.5. Let p ≥ 5 be prime and let r, 1 ≤ r ≤ p − 1, be such that inv(3, p) · 8 ·
r + 1 is a quadratic nonresidue modulo p where inv(3, p) is the inverse of 3 modulo p.
Then, for all n ≥ 0, R

∗
3(3(pn + r) + 1) ≡ 0 (mod 4).

PROOF. Thanks to Lemmas 4.3 and 2.4,
∞∑

n=0

R
∗
3(3n + 1)qn ≡ 2

∞∑
j=0

(−1)j(2j + 1)q3j(j+1)/2 (mod 4).

Therefore, if we wish to consider values of the form R
∗
3(3(pn + r) + 1), then we need to

know whether we can write pn + r = 3j(j + 1)/2 for some nonnegative integer j. If we
can show that no such representations exist, then the theorem is proved. Note that, if
a representation of the form pn + r = 3j(j + 1)/2 exists, then r ≡ 3j(j + 1)/2 (mod p).
Since p ≥ 3, this is equivalent to inv(3, p) · r ≡ j(j + 1)/2 (mod p). We complete the
square to obtain inv(3, p) · 8 · r + 1 ≡ (2j + 1)2 (mod p). However, we have assumed
that inv(3, p) · 8 · r + 1 is a quadratic nonresidue modulo p. Therefore, no such
representation is possible, and this completes the proof. �

Two sets of comments are in order in light of the above theorem. First, it is clear
that, for any prime p ≥ 5,

inv(3, p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2p + 1
3

if p ≡ 1 (mod 3),
p + 1

3
if p ≡ 2 (mod 3).

So from a computational standpoint, for any given prime p ≥ 5, it is very straight-
forward to determine the values r which provide the congruences mentioned in the
theorem.
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Secondly, we see that Theorem 4.5 provides 1
2 (p − 1) Ramanujan-like congruences

modulo 4 for any prime p ≥ 5. So, for example, it is easy to determine that, for all
n ≥ 0,

R
∗
3(3(5n + 1) + 1) = R

∗
3(15n + 4) ≡ 0 (mod 4),

and

R
∗
3(3(5n + 2) + 1) = R

∗
3(15n + 7) ≡ 0 (mod 4).

5. Closing thoughts

We close this work with two comments for potential future work.

(1) In light of (2.3), it is possible to obtain congruences satisfied by R
∗
�(n) for moduli

which are higher powers of 2. See, for example, the work of Munagi and Sellers
[23] for such a result modulo 8.

(2) Some of the results above, particularly Theorem 3.2, can be generalised to the
functions R

∗
pt (n) for t > 1.

The interested reader may choose to pursue these items further.
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