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DERIVATIVE-TYPE ASCENT FORMULAS FOR KERNELS OF
SOME HALF-SPACE DIRICHLET PROBLEMS
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Abstract

Derivative-type ascent formulas are deduced for the kernels of certain half-space Dirichlet
problems. These have the character of differentiation formulas for the Bessel functions but
involve modifying variables after completing the differentiations. The Laplace equation and
the equation of generalized axially-symmetric potential theory (GASPT) are considered in
these. The methods employed also permit treating abstract versions of Dirichlet problems.

1. Introduction

In studies of the wave and other hyperbolic initial value problems, Hadamard [9]
introduced the method of descent. To solve a wave problem in an even number of
space dimensions, he first solved an associated problem with one additional space
dimension and then projected out the extra variable by integration. This permitted
him to develop kernel functions for these even-space dimensional wave problems. He
described this approach by "he who can do more can do less". This approach has
been extended by others but the main difficulty is "doing the more" before tackling
"the less". An alternative to this is the ascent approach whereby one seeks to solve
problems involving several space variables from solutions of similar problems having
fewer such variables. In [6], Bureau added space variables into the solution of a
lower-order wave problem and then carried out smoothing operations on this to obtain
the solution of a higher-dimensional wave problem. The operational calculus together
with developments in semigroup theory have led to developing integral ascent formulas
for solving regular and singular initial value problems, Dirichlet problems and abstract
differential equation problems ([2, 4] and [10]). In these cases, the introduction of
additional variables (or operators) was effected by means of real- and complex-type
convolutions on solutions of associated single variable (or operator) problems. Ascent
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methods for other boundary problems have been discussed by Gilbert [8] and Norwood
[12]. In this paper, we treat ascent for a variety of Dirichlet problems from a different
view point by constructing repeated derivative-type ascent formulas for their kernels.
This permits expressing kernels for higher-dimensional problems in terms of a few
starting functions. We now introduce notation and background for this for classical
half-space Dirichlet problems.

Let* = (JC,,JC2 xn), f = (£, ,&,. . . ,£„) and ||JC||; = £ ; . , * ? . Take c,,
c2, . • . , cn and a to be real parameters with a > 0 and let Dj = d/dxj ,j=l,...,n.
We are concerned with the structure formulas for kernel functions kn(x, v) (or, al-
ternatively, kn(x,y)) associated with certain half-space Dirichlet problems. These
include

vyy(x,y) + Anv(x,y) + ^22CjDjV(x,y) -a2v(x,y) = 0, y > 0,
;=i (1-1)

where An denotes the Laplacian operator ]T""=i &]• With this kn, we have

v(x,y)= f kn(x-^y)4>^)d^, (1.2)

where En denotes Euclidean rc-space and d% denotes its element of volume. Using
transmutations connecting solutions of initial value heat problems to these types of
Dirichlet problems ([1,5]) and the properties of the Laplace transform, ascent formulas
for the functions kn{x,y) are obtained that involve repeated derivatives of expressions
involving the modified Bessel functions Kv. Their precise forms depend upon the
parity of n. For example, the choices n = 2m and cj = 0,j = 1,2,... ,n , lead to
the formula

k2m(x, y) = y {-n-'Dr)
m \r-l<2e-°r"2} I , (1.3)

where Dr = d/dr. The right member of this has an "ascent" character in the sense
that each differentiation increases by two the number of terms xj that appear in the
expression for r. The dependence of r upon the number of differentiations makes
evident the difference between the derivative form in (1.3) and the Rodrigue-type
formulas for the Hermite and other special polynomials (see [11]). When a = 0, a
simple calculation in (1.3) yields the familiar Dirichlet kernel function

, , N ( 2 m ) ! r 2 2 , _ ( m + i /2 )
k2m{X'y) = ~(W^y[y +l|x|l&»] • ( L 4 )

For deducing these ascent formulas, we recall, in Section 2, transmutations that
relate solutions of generalized heat problems to solutions of the above Dirichlet
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problems. The first is employed in Sections 3 and 4 to develop the ascent forms for the
kernel functions for the problem (1.1) first when n — 2m and then when n = 2m+1. In
this second case, the kernel is expressible in terms of the modified Bessel function K\.
For certain choices of the constants c,, it is necessary to restrict the support or the
growth of the data function cp(x) to ensure that the integral in (1.2) exists. At the end
of Section 4, we note a connection between some of these formulas and "descent".
In Section 5 we note the corresponding derivative ascent formulas for kernels of
Dirichlet type problems that involve the equation of generalized axially-symmetric
potential theory (GASPT). Finally, in Section 6, we treat an abstract version of the
Dirichlet problem and then apply these ascent formulas to solve a specific example.

2. Basic transmutations

Withx as above, take D = (Dt, D2,... , Dn) and let P(x, D) denote a strongly
elliptic operator. We recall from [5] that if the function u (x, t) is a bounded continuous
solution of the "generalized" heat problem

u,(x,t) = P(x,D)u(x,t), t>0;

with 4>{x) continuous, then the function

v(x,y) = -%=[ e-y2aa-l/2u(x,l/(4a))da (2.2)
V7T JQ

is a bounded solution of the Dirichlet problem

vyy(x,y) + P(x,D)v(x,y) = O, y > 0;
v(x,0+) = (j>(x).

Similarly, if fi < 1, it follows from [1] that the function

/ e~" ^~{"+1) /2«(*. V(4a)) da (2.4)
Jo

(2.5)

Using the theory of distributions, it has been established that these transmutations
transform fundamental solutions into fundamental solutions [7]. In particular, the

— (*)/*•)

is a solution of the singular Dirichlet problem

Uyy(x,y) + ^ Uy(x, y) + P(x, D) U(x, y) = 0, y > 0;
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integral operators in (2.2) and (2.4) transform the kernel function of (2.1) into the
kernel functions for the respective problems (2.3) and (2.5). We will make use of this
fact in the sections to follow.

Finally, if VK*i. X2, • • • ,xn) has continuous first partial derivatives with respect to
each of the variables xj, j = 1,2,... , n and if bx, b2,... ,bn are real parameters
independent of the Xj, then we have the exponential translation relation

eEU ») D<x}r(Xi, X2,... , Xn) = f(xi+bl,x2 + b2,...,xn + bn). (2.6)

3. Kernel for (1.1) when n = 2m

Consider first the Dirichlet problem (1.1) with n even. We establish the formula
(1.3) corresponding to c; = 0 for all). A "heat type" problem related to this is given
by

u,{x, t) = A2mu{x,t) -a2u(x, t), t > 0;

This has the symbolic and analytic solution

u(x, t) = g'(A2™~" ^(f>(x) = e~a 'e'A2m<p(x)

f.-"2' C , . . . . r

(3.2)
J Elm JE2{Ant)"

with h2m given by

hlm{x - £, 0 = (47ttyme-a2'e-^-^/'i'. (3.3)

From (2.2), it follows that the kernel function of problem (3.1) is defined by

k2m(x, ?) = - ? = / e-S°o-V1jz-mome-^°e-all*a da
V 3 7 ./o

r
JQ

a. (3.4)

Using the Laplace transform formula number 6 on page 22 of [13], we obtain the
following theorem.
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THEOREM 3.1. The kernel k2m{x, y) for the Dirichlet problem (3.1) can be expressed
by the ascent type derivative formula

)=y{-n-iDr)
mr-i*e-°r"2 (3.5)

with r replaced by y2 + \\x ||2m after carrying out the m differentiations.

Alternatively, let Fm(r) = (-n-lDrrr~l'2e-"r'". Then k2m(x, y) = yFm(r2m)
where r2m = y2 + ||*||2m. The ascent from the kernel k2m-2(x,y) to the kernel
k2m{x,y) can be implemented as follows. Start with k2m_2(x,y) = yFm_i(r2m_2).
Now replace r2m_2 in the last member of this by r and then operate on this newly-
obtained term by the operator (—n~lDr). After completing this, replace r by r2m and
this yields k2m(x, y). Similar discussions can be given after the theorems to follow.

Next, suppose that at least one of the c; in the problem (1.1), with n = 2m, is not
zero. Associated with this problem is the generalized heat problem

2m

u,(x, t) = A2mu(x, t) + Y]2cjDjU(x, y) - a2u(x, y) = 0, y > 0;
y=i (3.6)

M(JC,O+) = •

A solution of this is given by the integral formula

u(x, t) = / H2m(x - §, f)0(£) rff, (3.7)
J Elm

in which, by (2.6) and some simplification,

We obtain the kernel function k2m{x, y) for the Dirichlet (3.6) by applying the trans-
mutation formula (2.2) to H2m(x, t). If we introduce this "heat" kernel into (2.2) and
carry out the necessary algebraic simplifications, we find

V~2» V f°°
ki (x v") = e~^'=lCjX' -—— n~m I am ' e~rae '" da H Q1

where r has the same meaning as before and where b = (a2 + Y?"Li <?)/4- The
integral in the last member of this has the same form as the integral in the last member
of (3.4). With a similar type of evaluation, we have the following theorem.
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THEOREM 3.2. The kernel k2m(x,y) associated with the Dirichlet problem (1.1)
with n = 2m is given by the derivative ascent-type formula

in which r is replaced by y2 + \\x\\\m and X is replaced by (a2 + ̂ -™, cj)l/2 after
carrying out the m differentiations.

Note that this differs from the right member of (3.5) only by the factor e~ £>-' CJXJ

and the replacement of a in (3.5) by X. We call on this observation in Sections 4 and 5.

4. Kernel for (1.1) when n = 2m + l

In analogy with the previous section, we first consider the Dirichlet problem

vyy{x,y) + A2m+iv(x,y)-a2v(x,y) = 0, y > 0;
v(x,0+) = <P(x).

A heat problem associated with this is given by

u,(x,t) = A2m+lu(x,t)-a2u(x,t) = 0, t > 0;

II(JC,O+) = 0(JC).

Just as in Section 3, the solution function u(x, t) of this can be expressed as

(4.3)u(x,t)= f

where the h2m+\ function is as in (3.3) but with 2m replaced with 2m + 1 . Applying the
transmutation (2.2) to this "heat" kernel, we obtain the Dirichlet kernel k2m+l for (4.1):

k2m+l(x ,y) = 4= I" e-t'o-We-^
V71" Jo

= L(-n-lDr)
m f e-rae-a

n v Jo

= L (-n-lDr)
m {ar^K^ar1'2)}, (4.4)

where K{ denotes a modified Bessel function (see [11]). The last member of (4.4)
follows from the third member by applying formula number 8, page 22 of [13].

THEOREM 4.1. The kernel &2m+i(x> y) associated with the Dirichlet problem (4.1)
is given by the last member of (4.4) with r replaced by y2 + \\x \\lm+l after carrying
out the m differentiations.
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In analogy with the deduction of Theorem 3.2, we can similarly prove the following
theorem.

THEOREM 4.2. The kernel k2m+i(x, y) associated with the Dirichlet problem (1.1)
with n — 2m + 1 is given by

W * . y) = £«-£#'™ (-n-'Dr)
m {kr-^Kd^f2)}, (4.5)

in which r is replaced by y2 + ||JC ll^+i and X is replaced by {a1 + ^,™T' cfi1/2 after

carrying out the m differentiations.

Finally, let us note a connection between the ascent formulas (3.5) and (4.4) and the
descent method. For this purpose, let Xn = (*,, x2, • • • , xn), Sn = (aua2,... , on)
and d"En = da^da2 • • • dan. Further, let 4>(Xn) denote an arbitrary infinitely differen-
tiable function with compact support in En (that is, a testing function) and let kn (Xn, t)
denote the kernel in (3.5) or (4.5) according as n is even or odd. Then for n > 1, we
have

ff kn+l(Xn+l - £„+,, r)0(EB)<*£„+, = / kn(Xn -

or

j (j +̂
= f K

JE»
(4.6)

Since <j> is arbitrary, we obtain the integral formula

/•OO

/ kn+i (Xn+i — £ n + i , 0 don+l = kn(Xn — Sn , 0
J-00

which has the "descent" character.

5. Kernels for GASPT-type Dirichlet problems

Next, consider the problem

Vyyix, y) H—vy(x, y) + Anv(x, y) - a v(x, y) = 0, y > 0;
(5-1)

The equation in this is a GASPT-type equation with \x < 1. In view of Theorems 3.2
and 4.2, it is clear that if we obtain kernel functions (5.1) corresponding to the cases
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n = 2m and n = 2m + 1, then we need only make minor modifications of these to
obtain kernels for the Dirichlet problems

vyy(x,y) + -vy(x,y) + Anv(x, y) + ^CjDjv(x, y) - a2v(x, y) = 0, y > 0;

We leave these changes to the reader. We now apply the transmutation (2.3) to the
function h2m in (3.3) and the corresponding function /i2m+i employed in Section 4
along with formula 8, page 22 of [13].

THEOREM 5.1. The kernel functions k%(x,y) associated with Dirichlet problems
involving (5.1) and corresponding respectively to the cases n = 2m and n = 2m + 1
are given by

I Ur \ r_(l

2) ("f
(5.2)

in which r is replaced by y1 + ||JC ||2m i/i (a) a/fer carrying out the m differentiations
and by y2 + \\x \\lm+l in (b) after carrying out the m differentiations.

We note that if \x = —2p with p = 0, 1, . . . in (5.2a) or fj, = 1 - 2p with
p = 1,2,... in (5.2b), then the respective Bessel functions defining the respective
kernels have indices that are halves of odd integers. In these cases, the Bessel functions
appearing can also be represented as repeated derivatives of a simple quotient involving
an exponential function [11].

6. Application to abstract Dirichlet problems

Finally, let X be a Banach space and let A2, j = 1,2,... ,2m, denote a set
of infinitesimal generators of bounded semigroups UAj (t) in X where the Aj are
generators of continuous groups GAj (t) in X with AtAj = AjAj for all i andy. From
(2.1) of [2], it follows that if fy e D(A2), the domain of Aj in X, then

/•O

J— O
j^j)<Pj)d^. (6.1)

Now, consider the abstract Dirichlet problem

- ^ > 0; V(0+) = (/>, (6.2)
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a > 0 and 4> e H;=i D(Aj). We establish that this has a solution in the integral form

E f [ j j < l > \ d $ , (6.3)

where £ = (£i, &. • • • . Him), d% = d$\d$2- •• d%2m and where the kernel function
klm(S, y, a) is given by £2m(£, y, a) = y(7t-lDr)

m(r-^2e-arl'2) with r replaced by
y2 + 52y™| tjf after completing the differentiations. This kernel function has the same
form as the one given by (3.5).

The development of (6.3) follows the approach of Section 3 by starting with the
abstract heat problem

«,(0 = ( XX 2 ) «(r) - a2u(t) =0, t > 0;
/ (6-4)

This has the semigroup solution form u(t) = e~"2'{ Y\2jZ\ UA} (0)0- By calling upon
the connecting formula (6.1) for each of the UAj (t), we find, after changing orders of
integration, that this formula for u(t) becomes

) \ 4> d$.ii(0 = (4*0"" f£ e-<tt> V*' m GAj %)\ 4> d$. (6.5)

Then (6.3) follows by applying the transmutation formula (2.2) to this. We have

/•OO

V(y) = n-i/2y / a-|/2e"<"5u{\/Ao)do (6.6)= n-i/2y /

' / 2m \ "1

I GA,(|/) ]<P Of-

Following the procedure of Section 3 and using the Laplace transforms employed
there, the reader can readily show that the last member of this reduces to (6.3). For a
specific example of this, consider the Dirichlet problem

/ 3 \ 2 / 3 \ 2

Vyy(x,y)+[xi—) V(x,y) + (xl—- ) V(x, y) - a2 V(x, y) = 0, y > 0;
\ 0*1/ \ ox2j

in which a = 21/(21 + 1) for / a positive integer and where 0(xi, x2) is bounded and
has continuous derivatives in xt and x2. Now the operator A, = xx (9/3x0 defines the
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group relation GAl (t)f {x\) — f (x.\e') while the operator A2 = x"(d/dx2) defines the
group relation GAl(t)g(x2) = g({x^a + (1 - <x)t}1/(l-a)) (see [3, page 104]). Since
2m = 2 in this problem, it follows by the solution form (6.6) that

k2G,y,a)=y(k-n-lD,

1

Using this, the group relations noted above and (6.3), we finally obtain

V(x, y) = J *2(£, y, a)<t>

The reader can develop formulas analogous to (6.3) for the problem (6.2) with 2m
replaced by 2m + 1 as well as for abstract versions of Dirichlet problems involving
the GASPT equation.
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