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Low-frequency phenomena in an incompressible pressure-induced laminar separation
bubble (LSB) on a flat plate is investigated using direct numerical simulation. The
LSB configuration of Spalart and Strelets (J. Fluid Mech., vol. 403, 2000, pp.
329–349) is used. Wall pressure spectra indicate low-frequency-flapping (St ∼ 0.08) and
high-frequency-shedding (St ∼ 1.52) regimes. Conditional velocity averages based on
the fraction of reversed flow reveal the low frequency as an expansion/contraction of
the LSB. While the high frequency only exhibits exponential growth within the LSB
up to breakdown of the spanwise rollers, the low frequency and velocity fluctuations
exhibit exponential growth upstream of separation. Instantaneous flow fields reveal large
streamwise streaky structures forming within the LSB and extending past reattachment,
much like high and low speed streaks in turbulent boundary layers. A predominance
of sweep-like events (Q4) is observed during contraction and of ejection-like events
(Q2) during expansion. These motions appear as dominant low-frequency modes in
three-dimensional proper orthogonal and dynamic mode decompositions, exhibiting
spatial amplification from separation to reattachment. The advection of a group of
spanwise alternating streaky structures past the LSB results in an overall contraction after
which the bubble expands to its ‘unforced’ state in the absence of the streaks. The low
frequency then corresponds to the time it takes for streaks to form, amplify and advect
past the LSB from separation to reattachment. This behaviour is linked to the mean flow
deformation reported by Marxen and Rist (J. Fluid Mech., vol. 660, 2010, pp. 37–54),
where the presence of streaks results in reduced mean bubble size. The formation of
these streaky structures, in the absence of free stream turbulence, may be attributed to
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an absolute instability of the LSB due to the development of a secondary bubble within
the primary.

Key words: separated flows, transition to turbulence

1. Introduction

A boundary layer will separate from its bounding surface when confronted with
a sufficiently strong adverse pressure gradient (APG) or a sufficiently abrupt
geometrical change. Boundary layer separation is therefore broadly categorized as either
pressure-induced or geometry-induced. In the case of pressure-induced separation, the
APG is generated either through local suction or by an incident shock (Sandham 2011).
In either case, the separated shear layer can reattach to the wall to form a closed
recirculating region known as a separation bubble. For incompressible flows, reattachment
occurs naturally from the combined effect of the shedding of coherent structures from
the shear layer and wall-normal momentum exchange accompanying turbulence (Marxen
& Henningson 2011; Simoni, Ubaldi & Zunino 2014). More broadly, reattachment can
be encouraged by inducing a favourable pressure gradient (FPG) through blowing,
geometrical features, shocks or compression waves.

Whether the separation bubble is pressure-, geometry- or shock-induced, the flow
incompressible or compressible, and the upstream boundary layer laminar, transitional or
turbulent, low frequency unsteady behaviour of the separation bubble has been observed.
Among flow configurations, we observe low-frequency unsteadiness of separation bubbles
involving backward-facing steps (BFSs) (cf. (A.1)), forward-facing steps (FFSs) (cf.
(A.2)), forebody–splitter plate combinations (Cherry, Hillier & Latour 1983; Castro &
Haque 1987; Hudy, Naguib & Humphreys 2003), bumps (Passagia, Leweke & Ehrenstein
2012), blunt plates (cf. (A.3)), flat plates (cf. (1.1)), airfoils (cf. (A.4)) and hydrofoils
(Miozzi et al. 2019). Yet, despite the ubiquity of low-frequency unsteadiness in the
separation bubble literature, the physical mechanism by which it is produced remains
unclear. Furthermore, it is unclear whether the low-frequency unsteadiness in all the
aforementioned flow regimes and configurations arises from the same or similar physical
mechanisms.

In the context of laminar separation bubbles (LSBs), the term ‘flapping’ is often
used to describe a low-frequency-vertical motion or wavering of the shear layer and,
coincidentally, to low-frequency excursions of the reattaching surface in the streamwise
direction. In other words, the LSB exhibits phases of expansion and contraction largely
in the aft portion. In the context of turbulent separation bubbles (TSBs), the term
‘breathing’ is instead used to describe a low-frequency growth and shrinkage of the
separation bubble in length and height; therefore, both the separating and reattaching
surfaces exhibit excursions upstream and downstream. Nevertheless, the terms ‘flapping’
and ‘breathing’ are often used interchangeably (Weiss et al. 2021), particularly in lower
Reynolds number flows. Indeed, a true distinction in terminology may do the scientific
community a disservice at this stage as it insinuates that the two phenomena are unrelated
while neither phenomenon is completely understood to date.

We conjecture that the flapping and breathing phenomena can be explained by similar
driving physical mechanisms. We therefore opt to use the umbrella term ‘low-frequency
unsteadiness’ throughout this work. Although we only consider incompressible laminar
pressure-induced separation bubbles on flat plates with natural reattachment, making no
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assumption as to the origin of the low-frequency unsteadiness, we maintain that it is
important to consider the literature for different flow regimes and configurations to develop
a proper understanding of the mechanisms at play. We provide such an extended literature
review in Appendix A. The body of literature on these topics is immense and often enough,
but while the presence of low-frequency unsteadiness is evoked, it is not the primary
focus of study. Our extended review is therefore by no means exhaustive, but serves to
demonstrate the commonalities and provide direction in the study of our LSB. Below, we
discuss the low-frequency unsteadiness observed strictly in the case of separation bubbles
forming over flat plates.

1.1. Flat plates
In the case of TSBs forming over flat plates, there is evidence that the movement of the
separation and reattachment surfaces results from the advection of coherent structures
originating upstream of separation in the zero pressure gradient (ZPG) boundary layer.
For example, Na & Moin (1998) study a pressure-induced TSB forming over a flat
plate using direct numerical simulation (DNS; Reθ = 300, where Reθ is the Reynolds
number based on the inlet free stream velocity and momentum thickness θ ). They feed a
modulated frozen turbulent velocity field at the inlet of the domain, preserving physically
realistic structural features of the boundary layer. For ZPG turbulent boundary layers
(TBLs), large-scale and very large-scale motions can develop (Hutchins & Marusic 2007;
Lozano-Durán & Jiménez 2014; Hack & Schmidt 2021) and they may therefore have an
important effect on the separation bubble. Na & Moin (1998) clearly observe the separation
and reattachment surfaces to move upstream and downstream, the low frequency being
more clearly observed at the reattachment end, suggesting an inherent amplification of this
frequency regime. Similar observations were also made experimentally by Simpson, Chew
& Shivaprasad (1981a,b) and Patrick (1987). In particular, Na & Moin (1998) demonstrate
that an alternating pattern of high- and low-speed streaks originating from the upstream
ZPG TBL create a spanwise undulation of the separation surface. No undulations are
observed in the reattachment surface. Turbulent hairpin-like structures, likely accompanied
by the streaks (Adrian 2007), amplify within the shear layer of the separation bubble,
agglomerate and impinge on the wall at reattachment. They observe that their growth
along the shear layer coincides with an expansion of the aft portion of the bubble, and
their impingement on the wall a contraction.

If the passage of these large-scale motions is related to the low-frequency unsteadiness
in flat plate TSBs, then there is interest in exploring similar structures as the underlying
mechanism for flat plate LSBs. However, in the case of LSBs, the upstream flow
is laminar and may possess only some level of free stream turbulence. For similar
large-scale motions to be responsible for the low-frequency unsteadiness in LSBs, they
must therefore be generated and/or sufficiently amplified by the separated flow before
reattachment to produce a notable excursion of the reattachment surface and, consequently,
an expansion/contraction of the bubble.

Simoni et al. (2014) investigate an LSB forming over a flat plate experimentally with
an inlet turbulence intensity of 1.5 %. They demonstrate the presence of a low-frequency
band in the velocity spectra that is amplified up to and past separation. Likewise, they
observe an amplification of the streamwise velocity fluctuations in the fore portion of
the bubble (Simoni, Ubaldi & Zunino 2012), which suggests the presence and growth
of streamwise streaky structures. Such structures have also been observed to form
in the DNS by McAuliffe & Yaras (2010) and Lardeau, Leschziner & Zaki (2012).
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Simoni et al. (2014) propose that low-frequency disturbances in the free stream in the form
of streamwise vortices induce the formation of alternating low- and high-speed streamwise
streaky structures upstream of separation. These structures grow exponentially in the fore
portion of the bubble and saturate prior to the formation of the spanwise rollers.

Hosseinverdi & Fasel (2019) explicitly investigate the role of free stream turbulence,
with intensity 0.1 % to 3 %, in LSBs forming over a flat plate using DNS. They demonstrate
that vortical free stream turbulent fluctuations induce the growth of low-frequency
Klebanoff modes (spanwise alternating streamwise streaks) within the separation bubble.
As the free stream turbulence intensity increases, the low-frequency Klebanoff mode is
observed to be more pronounced and dominates the transition process. In the absence
of external disturbances, the streaks are no longer observed and transition to turbulence
occurs purely as a result of the Kelvin–Helmholtz instability. By contrast, the blunt plate
simulations of Tafti & Vanka (1991b) described in § A.3 did not explicitly introduce any
free stream disturbances and yet the low-frequency unsteadiness was observed. Likewise,
Spalart & Strelets (2000) conduct a DNS of an LSB over a flat plate created through
an applied suction. They still observe wavering or flapping of the shear layer in their
simulations despite actively suppressing upstream disturbances down to O(10−4) using
their fringe method. Vorticity begins to appear early within the separation bubble and
this is accompanied by ‘peaks’ and ‘valleys’ of their scalar field (cf. figure 1 in their
study) which can be seen close to the wall prior to and downstream of reattachment.
This is consistent with the presence of streaky structures and the correlations of (±u, ∓v)

observed by Tafti & Vanka (1991b) in the case of a blunt plate (cf. (A.3)). The amplification
of small upstream vortical perturbations may therefore be a sufficient but not a necessary
condition for the formation of streaks and the observation of the low frequency in LSBs.

Disturbances in the case of LSBs in general may not only result from free stream
turbulence, but may also arise naturally from absolute instability (Wee et al. 2004). A local
spatial region of absolute instability can act as a global oscillator, allowing disturbances to
propagate and amplify both upstream and downstream in the absence of external sources
(Huerre & Monkewitz 1990). Several studies use the peak reversed flow as an indicator
for absolute instability in LSBs forming over a flat plate (Pauley, Moin & Reynolds
1990; Hammond & Redekopp 1998; Rist & Maucher 2002; Embacher & Fasel 2014).
Absolute instability of LSBs towards a three-dimensional (3-D) state has been suggested
to occur for peak reversed flows of at least 16 % of the free stream velocity (Alam &
Sandham 2000; Rist & Maucher 2002; Embacher & Fasel 2014). However, as noted by
Rodríguez, Gennaro & Souza (2021), some studies demonstrate a 3-D state of the LSB
for peak reverse flows below 8 % in the absence of explicit external disturbances. They
therefore examine the absolute instability of LSBs without external disturbances using
DNS. They demonstrate that the primary instability gives rise to spanwise modulations of
the nominally two-dimensional (2-D) separation bubble and the global oscillator becomes
self-sustained for peak reverse flows above 8 %. In addition, they observe that absolute
instability is consistent with the criterion proposed by Avanci, Rodríguez & Alves (2019),
namely, when an inflection in the streamwise velocity occurs below the dividing streamline
of the LSB.

1.2. Scope and objectives
It is rather widely observed that low-frequency unsteadiness is directly linked to the
advection of large scale coherent structures in the flow. We conjecture the driving
mechanism to be the same in LSBs and TSBs, and we must therefore observe similar
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Figure 1. Schematic of the flow configuration used for the direct numerical simulation of an incompressible
pressure-induced laminar separation bubble over a flat plate.

coherent structures in both cases, regardless of their origin. In this work, we aim to
demonstrate that the generation and passage of the commonly observed large-scale high-
and low-speed streamwise streaky motions are responsible for the low frequency. In
TSBs, they are influenced by the very large-scale motions (streaks) already present in
structurally developed TBLs. In LSBs, these structures are generated via the amplification
of disturbances present either in the free stream or generated through instability within
the bubble. The LSB of Spalart & Strelets (2000) is reported to exhibit the flapping
motion, which is associated with the low-frequency unsteadiness, in the absence of explicit
external disturbances. Therefore, we consider the same LSB as Spalart & Strelets (2000) to
further explore the low-frequency characteristics of the flow. The details of the numerical
simulations are discussed in § 2.

In §§ 3.1 and 3.2, we respectively compare the mean and instantaneous flow behaviours
of our LSB to the original results of Spalart & Strelets (2000) for validation. We clearly
demonstrate the existence of the low frequency for the LSB in § 3.3. With our hypothesis
that the low-frequency unsteadiness is driven by the advection of coherent structures,
we reveal these structures using modal decomposition methods in § 3.4 and discuss their
influence using reduced-order models. In § 4, we summarize the major results of this work
and offer some concluding remarks.

2. Numerical simulations

We perform a DNS within a rectangular computational domain with physical size 8h ×
1h × 0.6h, as shown in figure 1. This domain is adjusted to the computational domain
used by Spalart & Strelets (2000) as a reference benchmark. Moreover, the objective here
is also to identify whether a low-frequency phenomenon is present in these benchmarks,
as the phenomenon is sometimes evoked, but rarely explored in detail, except in recent
years where an increasing number of studies focus on it. The streamwise, wall-normal
and spanwise directions are denoted by x, y and z, respectively. The flow evolves in the
streamwise direction. All parameters are non-dimensionalized with respect to the height
of the domain h and the free stream velocity U∞.

The boundary condition at the inlet plane is specified as a laminar Blasius velocity
profile having free stream velocity U∞ and boundary layer thickness δB = 0.0258.
A no-slip boundary condition is imposed at the bottom wall (y = 0). The boundary
condition along the spanwise direction is taken as periodic due to the assumption of
flow homogeneity in this direction. To generate an APG, a wall-normal suction velocity
profile is imposed within a narrow streamwise region on the top wall (cf. figure 1).
Flow separation therefore occurs as a result of the suction velocity which produces a
sufficiently strong APG. The suction velocity distribution is defined using a Gaussian
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function, namely,

Vtop(x) = Vmax exp

(
−(x − xc)

2

σ 2

)
, (2.1)

where Vmax is the maximum suction velocity, xc is the centre of the imposed suction region
and σ is the characteristic width of the suction profile (Spalart & Strelets 2000). The
nominal deceleration parameter, introduced by Pauley et al. (1990) and Spalart & Strelets
(2000), integrates both Vmax and σ into a single parameter S,

S = 1
hU∞

∫ Lx

0
V(x) dx. (2.2)

Spalart & Strelets (2000) demonstrated that the flow can separate from the wall without
requiring any incoming disturbances by defining the parameters of the suction velocity
profile as σ = 0.24h and Vmax = 0.7U∞, indicating S = 0.3. The Reynolds number at
the location of peak suction velocity in their work was determined at Rexc = 105 and the
Reynolds number based on the height is Reh = Rexc/3. The value of S indicates that 30 %
of the flow rate is extracted from the inflow. Here, we use the same parameters and choose
xc = 2.5h.

Since an inviscid boundary condition is applied on the top wall, the other two velocity
components are adjusted so that zero spanwise (ωz) and streamwise (ωx) vorticity
conditions are satisfied, namely,

ωz|x,h,z,t =
(

∂v

∂x
− ∂u

∂y

)∣∣∣∣
x,h,z,t

= 0, ωx|x,h,z,t =
(

∂w
∂y

− ∂v

∂z

)∣∣∣∣
x,h,z,t

= 0, (2.3a,b)

and therefore
∂u
∂y

∣∣∣∣
x,h,z,t

= dVtop(x)
dx

,
∂w
∂y

∣∣∣∣
x,h,z,t

= 0. (2.4a,b)

A convective boundary condition, proposed by Lowery & Reynolds (1986), is applied at
the outlet section for all velocity components ui:

∂ui

∂t
+ uc

∂ui

∂x
= 0, (2.5)

where uc is the local streamwise velocity at the outlet section. This condition enables
vortices to move out of the domain without considerable disturbances (Pauley, Moin &
Reynolds 1988). The initial condition is set to zero without any perturbations.

The incompressible Navier–Stokes equations with the above boundary conditions are
solved numerically using DNS calculations. The finite difference code Incompact3d is
used to simulate the flow (Laizet & Lamballais 2009; Laizet & Li 2011). A highly refined
mesh with a sufficiently small time step is required in the DNS simulation to resolve all the
spatial and temporal scales of turbulent motion. The domain is discretized on a Cartesian
grid of 851 × 257 × 128 points, with a sixth-order finite-difference compact scheme in
space, while the time integration is performed with a third-order Adams–Bashforth scheme
with a time step �t = 2.5 × 10−4 (non-dimensionalized by h/U∞). The grid is uniform in
the streamwise and spanwise directions, whereas a stretched grid is used in the wall-normal
direction. Based on the mean skin friction velocity after separation, the streamwise and
spanwise spacings are respectively 8.3 and 4.1 wall units. In the wall-normal direction, the
minimum grid spacing is �y+ = 0.9, which is made possible since the code Incompact3d
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uses a spatial scheme designed to introduce a small amount on numerical dissipation
at wavenumbers close to the cutoff wavenumber (Lamballais, Fortuné & Laizet 2011).
The maximum grid spacing is �y+ = 8.3 at the maximum height reached by turbulent
fluctuations, which yields a grid spacing of approximately 5–10 times the Kolmogorov
length scale after the vortex breakdown. To investigate the spectral content of the flow
and, in particular, to observe whether low-frequency unsteadiness is present, the simulation
time for the DNS surpasses 1650, representing over 6.6 × 106 iterations. To achieve this
goal, computations are performed on 1200 computational cores on Niagara, a Digital
Research Alliance of Canada compute cluster housed by the University of Toronto.

All spectral analyses are based on Welch’s method by averaging Fourier transform of
segments of the fluctuating quantity windowed with the Hamming window, and using an
overlap of 50 %. To improve statistical convergence, averages also include spectra from
each spanwise position.

3. Results and discussion

As outlined in § 2, in this study, we consider the same LSB as Spalart & Strelets (2000). In
their study, they identify that the shear layer does indeed undergo a ‘flapping’ or ‘wavering’
motion; however, the mechanism behind this unsteadiness was not of primary interest
and its frequency was not determined. In a similar fashion to Spalart & Strelets (2000),
we first describe the mean flow behaviour in § 3.1 followed by the instantaneous flow
in § 3.2. These two sections serve partly to validate our DNS against that of Spalart &
Strelets (2000) and, more importantly, to demonstrate additional features of the LSB that
we observe to be relevant to the low-frequency unsteadiness. We further characterize the
low-frequency unsteadiness in § 3.3 and explore the coherent structures that play a role in
the physical manifestation of the phenomenon in § 3.4.

3.1. Mean flow behaviour
Figure 2 permits the definition of a reference separation bubble using the time- and
spanwise-averaged flow. We denote time- and spanwise-averaged quantities using a tilde
(e.g. Ũ). The streamlines (solid black lines) clearly depict the recirculating region within
the LSB. The core of the mean recirculating region occurs slightly downstream of the
mean bubble height (h̃b = 0.15 at x̃ = 3.19). The mean separation and reattachment
points occur at x̃s = 1.76 and x̃r = 3.80, respectively, which we can also visually identify
in figure 2 with the help of the Ũ = 0 isocontour (dashed white line) separating the
forward and reverse flow regions. The mean bubble length is therefore L̃b = 2.04. The
mean bubble height, length and streamline pattern agree with those of Spalart & Strelets
(2000) (cf. figure 9 in their study). Contours of averaged streamwise velocity show a
significant proportion of reversed flow within the LSB relative to the portion of forward
flow. In other words, the portion or area of the LSB below the Ũ = 0 isocontour is larger
than that between the Ũ = 0 isocontour and the dividing streamline of the bubble. The
curvature of the streamlines near the wall centred at approximately x̃ = 2.7 suggests
that a small secondary bubble has formed within the larger primary bubble. We note
here that the presence of a secondary bubble in this study may very well play a role in
the mechanism behind the low-frequency unsteadiness. Cherubini, Robinet & De Palma
(2010) demonstrate that such a topological change in the base flow of a 2-D LSB can
produce a low-frequency unsteadiness as a result of the superposition of convective
non-normal modes. However, Pauley et al. (1990) observe a quasi-periodic phenomenon in
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Figure 2. Time- and spanwise-averaged streamwise velocity Ũ of the laminar separation bubble. Streamlines

are depicted using solid black lines and the Ũ = 0 isocontour using a dashed white line.

their 2-D LSB simulations where the secondary bubble grows and pinches off a portion of
the larger bubble which is then advected downstream. We do not observe such a pinch-off
phenomenon in our 3-D simulations. Nevertheless, as suggested by the work of Tafti &
Vanka (1991b), low-frequency unsteadiness appears to require a 3-D study and it is likely
not the case that a 2-D analysis can adequately capture the dynamics of the phenomenon.

In figure 3, we illustrate several critical curves to further characterize the time-
and spanwise-averaged separation bubble. The dividing streamline (solid black line) is
computed as the locus of points where the integral of the streamwise velocity is zero
starting from the wall (i.e.

∫ yd
0 Ũ(x, y) dy = 0). The dividing streamline is skewed towards

the aft portion of the bubble, in other words, the streamwise length from separation to
peak (�x̃ = 1.43) is longer than that from peak to reattachment (�x̃ = 0.61). The skewed
shape of the bubble is expected given the overall direction of the flow, causing a general
streamwise elongation of the bubble, and the rapid transition to turbulence in the aft
portion of the bubble, prompting rapid reattachment. Given the enlarged wall-normal
scale in figure 3, we can observe the dividing streamline of the secondary bubble. The
mean separation and reattachment points of the secondary bubble are located respectively
at x̃s2 = 3.01 and x̃r2 = 2.85. Bear in mind that x̃r2 < x̃s2 for the secondary bubble as
it separates downstream and reattaches upstream due to the reverse flow induced by
the primary bubble. The isocontour Ũ = 0 (dashed red line) in figure 3 demonstrates
more clearly the significant portion of reverse flow present in the separation bubble
relative to the portion of forward flow contained between the dividing streamline and
the Ũ = 0 isocontour. The locus of points marking the locations of maximum reverse
flow (dash-dotted blue line) demonstrates the asymmetry within the region of reversed
flow (i.e. below Ũ = 0). The maximum reversed flow ũrev = 16.8 % occurs at x̃ = 3.32
and ỹ = 0.0135. The present LSB therefore possesses a maximum reverse flow within the
range of absolute instability proposed by Alam & Sandham (2000) and Rist & Maucher
(2002). The locations of peak reversed flow occur further away from the wall in the
fore portion of the bubble than in the aft portion, this again being due to transition to
turbulence in the aft portion. The location of peak reversed flow occurs furthest from
the wall between the peak height and reattachment of the secondary bubble (x̃ = 2.90).
The locus of the first inflection points of the streamwise velocity from the wall (solid
green line) highlights the importance of the secondary bubble in the observed behaviour
of the primary bubble. The inflection curve begins at x̃i = 2.60. Avanci et al. (2019)
propose that absolutely unstable Kelvin–Helmholtz waves for an LSB requires that the
inflection point falls below the dividing streamline. For the present LSB, the formation
of the secondary bubble is accompanied by a surrounding ‘bubble’ of inflection of the
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Figure 3. Time- and spanwise-averaged dividing streamlines (solid black lines), Ũ = 0 isocontour (dashed
red line), maximum reversed flow (dash-dotted blue line) and streamwise velocity inflection (solid green line).

streamwise velocity profile lying within the dividing streamline of the larger primary
bubble. The proposed condition of Avanci et al. (2019) is therefore satisfied, on average, in
the present study. We therefore expect to observe upstream propagation of disturbances and
unstable behaviour in the vicinity of x̃i = 2.60. Cherubini et al. (2010) demonstrate that
disturbances introduced in the first half of a (2-D) LSB are amplified to nearly the same
extent as disturbances introduced entirely upstream of separation. If the low-frequency
unsteadiness is a phenomenon that is excited by free stream disturbances, an absolute
instability within the LSB combined with the observations of Cherubini et al. (2010)
suggest that free stream disturbances may not be a necessary criterion for the onset of
low-frequency unsteadiness in LSBs when a secondary bubble is formed.

Figure 4 shows the evolution of the wall pressure and friction coefficients in the
streamwise direction computed from the time- and spanwise-averaged flow field. To
compare with the results of Spalart & Strelets (2000) whose separation point occurs at
x̃s = 2.25, we simply shift their data upstream such that their separation point coincides
with that of the present study (x̃s = 1.76). This shift is due to the treatment of their inflow
and outflow with the fringe method that ends at x � 0.5 from the domain virtual origin,
thus imposing a ‘useful region’ smaller than the full computational domain. The wall
pressure coefficient, shown in figure 4(a), is defined by C̃p = (P̃ − P∞)/(1

2ρU2∞), where
P∞ is the pressure at the inlet section and P̃ is the time- and spanwise-averaged wall
pressure. The wall pressure coefficient agrees very well with the DNS of Spalart & Strelets
(2000). The presence of the suction profile (peak at x = 2.50) causes an APG to begin to
develop upstream of separation, resulting in a gradual thickening of the boundary layer
(cf. figure 5) and increase in C̃p. A pressure plateau then arises from the displacement of
the boundary layer accompanying the separated flow in the vicinity of peak suction. This
is followed by a steep increase in pressure prior to and past reattachment (x̃r = 3.80) due
to the transition to turbulence. The wall pressure coefficient eventually reaches a constant
value towards the end of the flow domain (x = 8), which is different from the inlet value
due to the portion of flow that is extracted and not reinjected.

We present the skin friction coefficient C̃f = τ̃w/(1
2ρU2∞) (solid black line) and its

fluctuating counterpart C̃′
f (dashed blue line) with streamwise position in figure 4(b),

where τ̃w is the time- and spanwise-averaged wall shear stress. The locations of the mean
separation and reattachment points are defined as the points where C̃f is zero and where C̃′

f
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Figure 4. (a) Time- and spanwise-averaged wall pressure coefficient C̃p. (b) Time- and spanwise-averaged
skin friction coefficient C̃f (solid black line) and fluctuating skin friction coefficient C̃′

f (dashed blue line). The
results of Spalart & Strelets (2000) are represented by the circular markers.
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Figure 5. (a) Time- and spanwise-averaged displacement thickness δ̃∗ and (b) momentum thickness θ̃ . Solid
lines denote the results of the present study and the circular markers those of Spalart & Strelets (2000).

has attained a local maximum. It is interesting to observe that C̃′
f peaks at mean separation,

implying that the separation surface does exhibit some small excursions in the streamwise
direction. Past mean separation (x̃s = 1.76), the skin friction coefficient C̃f attains a local
minimum followed by a weak increase in amplitude (positive slope). The skin friction
does cross the abscissa and changes sign in the range 2.80 < x̃ < 2.94, which agrees with
the location of the secondary bubble described earlier using its dividing streamline. We
observe that the results of Spalart & Strelets (2000) indicate a minimum C̃f slightly larger
in magnitude than that of the present study. Furthermore, the skin friction coefficient of
Spalart & Strelets (2000) shows slight variations particularly past reattachment whereas
our results show a smooth decay. The observed differences in the skin friction coefficient
(as well as in the displacement and momentum thicknesses in figure 5) with those of
Spalart & Strelets (2000) are likely due to the long time interval used for averaging
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in our study, namely, 5 600 snapshots spanning a total non-dimensional time of 1400
(�t = 0.25). No significant differences are observed using a longer averaging time.

Following Spalart & Strelets (2000), we also present the time- and spanwise-averaged
displacement δ̃∗ and momentum θ̃ thicknesses in figure 5 and compare with their results
for validation. Following their approach, the boundary layer thicknesses are computed
based on the pseudo-free stream velocity defined as the integral of the spanwise vorticity
along the wall-normal direction Ū(x, y) = − ∫ y

0 ωz(x, y′) dy′. The displacement thickness
δ̃∗ (cf. figure 5a) increases slowly up to separation due to the upstream influence of
the imposed APG. The displacement thickness then increases abruptly as the boundary
layer separates from the wall and peaks near the maximum bubble height (x̃ = 3.19).
Approaching reattachment, the bubble height is diminished and therefore accompanied by
a decrease in displacement thickness which continues past reattachment until attaining a
weakly increasing plateau in the TBL. The momentum thickness θ̃ (cf. figure 5b), however,
increases slowly up to the location of the secondary bubble and the onset of spanwise
roller formation where a slight decrease is observed. This location occurs slightly before
the maximum bubble height where breakdown of spanwise rollers appears to begin. The
breakdown of spanwise rollers results in an important loss of momentum in the boundary
layer and consequently a rapid increase in momentum thickness until also attaining a
weakly increasing plateau in the developing TBL. Again, the observed differences in
the boundary layer thicknesses with those of Spalart & Strelets (2000), particularly past
reattachment, are likely due to averaging over a longer time interval in our study.

3.2. Instantaneous flow behaviour
In figure 6, we visualize unsteady vortical structures using isosurfaces of λ2 (Jeong &
Hussain 1995) at a selected time instant (t = 1146.5), where the colour scale represents
the local instantaneous streamwise velocity. Shedding of coherent spanwise rollers occurs
near x = 2.7, which is situated close to the start of the mean inflection curve of the
secondary bubble (x̃i = 2.60). The vortex shedding occurs at a frequency (equivalent to
a Strouhal number, based on U∞ and h) of St = 1.56 based on the pre-multiplied power
spectral density (PSD) of the velocity fluctuations u′ and v′ close to the mean position of
maximum bubble height (x, y, z) = (3, 0.15, 0); cf. figure 7. The rollers are shed from the
shear layer with what appears to be immediate spanwise undulations having a spanwise
wavelength of approximately twice that of the streamwise wavelength, as also observed by
Michelis, Yarusevych & Kotsonis (2018). Such spanwise undulations can arise as a result
of unstable oblique disturbances present upstream of shear layer rollup (Michelis et al.
2018). Oblique disturbances may be present entirely upstream of separation as a result
of upstream propagation of numerical error (Spalart & Strelets 2000). Nevertheless, we
also observe near-wall vortical structures in figure 6 as early as x = 2.6, in particular, the
lifting-up and reversal of a Λ-like vortex initially propagating upstream due to the reversed
flow near the wall. The formation of the near-wall structures occurs necessarily at the
expense of streamwise momentum, retarding the flow in its vicinity. This may be a cause
of the observed undulation in the spanwise rollers. However, at this stage, we may also
conjecture the reverse and suggest that the spanwise undulation of the rollers, due to some
underlying instability, induces a secondary or tertiary instability near the wall. Following
the formation of the spanwise rollers, their breakdown begins near the mean location of
maximum bubble height (x̃ = 3.19), as also observed by Simoni et al. (2014). Breakdown
of the rollers is a result of several factors including secondary instabilities of and between
the vortex cores (Marxen, Lang & Rist 2013) and, as we observe, their interaction with
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Figure 6. Instantaneous isosurfaces of λ2 = −5, coloured by streamwise velocity, in perspective and top
views at t = 1146.5.
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Figure 7. Pre-multiplied power spectral density of instantaneous velocity at x = 3, y = 0.15 and z = 0 for
(a) u′ and (b) v′.

the structures forming at the wall. The transition to turbulence occurs abruptly prior to
reattachment, within only 2–3 streamwise wavelengths.

We further dissect the 3-D behaviour in figure 8 using contours of vorticity magnitude
at the same instant within the wall plane, a spanwise boundary and within the x = 2.6,
3.0, 3.9 and 4.5 planes. In the wall plane, vorticity magnitude appears as far upstream
as x ∼ 2.4, demonstrating that the small-scale near-wall structures observed in figure 6
emerge and develop prior to shear layer rollup and even before the mean streamwise
velocity inflection caused by the secondary bubble. The transverse planes at x = 2.6
and 3.0 show a considerable increase in vorticity magnitude generated within the bubble
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Figure 8. Contours of vorticity at the bottom wall, the z = −0.3 plane and at selected yz planes at x = 2.6,
3.0, 3.9 and 4.5.

(i.e. below the clearly visible shear layer). By x = 3.9, just past reattachment, the vorticity
magnitude already suggests a rather turbulent flow and we begin to see the ‘peaks’ and
‘valleys’ observed by Spalart & Strelets (2000). Packets of vorticity are being ejected away
from the wall (the ‘peaks’), while other portions are drawn towards the wall (the ‘valleys’).
These peaks and valleys persist downstream and possess the same spanwise wavelength as
the undulations we observe in the spanwise rollers. At x = 4.5, the peaks and valleys of
vorticity are more apparent and appear in reverse order from those at x = 3.9. From the
vorticity plotted in the spanwise boundary, we observe that the structures at x = 4.5 are
part of a disconnected packet of vorticity from those at x = 3.9.

In figure 9, we show isosurfaces of u′ = −0.12 (blue) and u′ = 0.12 (red) at the same
time instant of figures 6 and 8. We observe that the ‘peak’ observed in the x = 4.5 plane
coincides with a region of negative u′ and the ‘valley’ with a region of positive u′. The
portions of fluid ejected from the wall are therefore deficient in streamwise momentum
relative to the mean. The regions of positive and negative u′ occur on a rather large
scale displaying a spanwise wavelength of the order of the domain width (λz ∼ 0.6) and
an elongation in the streamwise direction (λx > 1), similar to the large-scale ejection
and sweep motions observed in TBLs in the form of streaks (Adrian 2007). Spalart &
Strelets (2000) identify streaks further downstream, yet in figure 9, we can observe the
streaks extending well within the LSB (x̃r = 3.80). Hosseinverdi & Fasel (2019) recently
demonstrated the importance of the occurrence and amplification of streaks in LSBs as
they play an important role in the transition process for moderate (0.5 to 1 %) to high (2
to 3 %) free stream turbulence intensity. In our study, free stream turbulence is due only to
numerical error and is O(10−5) to O(10−4). The Klebanoff (or K) mode is therefore not
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Figure 9. Instantaneous isosurfaces of |u′| = 0.12, represented by blue (negative u′) and red (positive u′).

expected to be a dominant mechanism in the transition to turbulence of the present LSB
in view of the work of Hosseinverdi & Fasel (2019).

Figure 10 shows the probability density function with respect to the variables u′ and
v′ within the 3-D domain at two time instants, one at which the LSB appears smaller
than the mean (t = 1370.75) and the other at which it appears larger than the mean (t =
1146.5). When the LSB appears smaller (t = 1370.75), the probability density function
shows predominant fluctuations in the fourth quadrant (Q4), namely, fluctuations having
positive u′ and negative v′. When the LSB appears larger (t = 1146.5), the probability
density function shows predominant fluctuations in the second quadrant (Q2), namely,
fluctuations having negative u′ and positive v′. A predominance of sweep-like structures
(Q4) is therefore linked to shrinkage of the bubble relative to the mean and of ejection-like
structures (Q2) to growth of the bubble. While we certainly do not have a fully developed
TBL, it is interesting to observe that the quadrant analysis is converging towards what is
expected in TBLs (Adrian 2007).

Marxen & Rist (2010) demonstrate the role of so-called mean flow deformation in
LSBs, where the amplification of disturbances causes a reduction in the mean size of
the bubble. From the perspective offered by the quadrant analysis, the addition of the
mean flow will ‘shift’ events from the second quadrant of the (u′, v′) plane into the
first quadrant of the (u, v) plane, while events in the fourth quadrant will largely remain
within the fourth quadrant. The presence or development of disturbances in the present
LSB therefore bias the flow towards the fourth quadrant in the (u, v) plane (sweep-like
motions) such that a simple ensemble mean will forcibly produce events in the second
quadrant, whether these events are physical or not. In other words, in the case of an LSB,
it may be more beneficial to our understanding if we adopt the perspective of a base flow
with perturbations rather than the classical turbulence approach of an ensemble mean with
fluctuations. The reduction in the size of the bubble associated with a receding reattaching
surface can then be seen as the passage of a group of sweep-like perturbations with varying
spanwise intensity emerging either from within the LSB or from free stream turbulence
upstream of the LSB. Conversely, the growth of the bubble associated with the downstream
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Figure 10. Normalized probability density function of u′ and v′ within the 3-D domain (a) when the LSB is
smaller than the mean size (t = 1370.75) and (b) when the LSB is larger than the mean size (t = 1146.5). The
colour scale represents the probability from white (zero) to black (one).

excursion of the reattaching surface corresponds to a return to an ‘unforced’ state when
these perturbations pass. This perspective is not only consistent with the observed mean
flow deformation in LSBs (Marxen & Rist 2010), but provides a link between the ‘flapping’
dynamics and the observation of spanwise alternating patterns of streak-like motions in the
fluctuating flow field.

3.3. Low-frequency unsteadiness
In figure 11, we show the variation of the spanwise-averaged wall pressure with time
in the aft portion of the LSB. The location of the mean reattachment point is marked
by a dashed white line. The spectral content of the spanwise-averaged wall pressure is
clearly rich in frequencies, similar to experimental (Mohammed-Taifour & Weiss 2016)
and numerical (Wu, Meneveau & Mittal 2020) observations from TSBs. We observe
several intermittent events acting over many different time scales, from frequencies in the
range of the vortex shedding (St ∼ 1) to very low frequencies (St ∼ 0.001). Excursions
on a time scale of t ∼ 100 are also apparent and, upon closer inspection, we observe
excursions on a time scale of t ∼ 10. These lower frequency excursions of the wall
pressure occur most clearly prior to reattachment (i.e. between x ∼ 3.4 and 3.7). The
continuous wavelet transform of the wall-pressure fluctuations at x = 3.0 (figure 12a)
shows the dominance of the high-frequency regime at St ∼ 1.5, where vortex shedding
occurs. Low-frequency signatures are also observed. Closer to reattachment, at x = 3.47
(figure 12b), the low-frequency regime with St ∼ 0.1 is predominant. Signatures at even
lower frequencies are also clearly observed, as low as St ∼ 0.01. However, such events
are characterized by a strong intermittency which may not be clearly detected by more
classical spectral analysis.

To further examine the frequency content of the wall pressure, figure 13 shows the
power spectra taken at various streamwise locations. Far upstream (x ∼ 0), no dominant
frequencies appear. As we approach mean separation (x̃s = 1.76), we observe an overall
amplification of low frequencies and, in particular, the emergence of a peak centred at St ∼
0.08 which continues to grow up to mean reattachment (x̃r = 3.80). This amplification
of low-amplitude, low-frequency spectral content suggests that low-frequency upstream
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Figure 11. Evolution of spanwise-averaged wall pressure with time.
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Figure 12. Wavelet analysis of spanwise-averaged wall pressure at (a) x = 3.0 and (b) x = 3.47.

disturbances, however small, exist ahead of separation and are selectively amplified by
the deceleration imposed by the APG and later by the separation bubble itself (Cherubini
et al. 2010). The amplification is significant in the case of LSBs, with Rist & Maucher
(2002) suggesting that upstream disturbances even of order 10−4 can be considered high.
In figure 13, the low frequency centred at St ∼ 0.08 persists long past mean reattachment,
including some of its harmonics. The persistence of the low frequency downstream
of reattachment suggests that it is associated with the advection of spatiotemporally
coherent structures downstream. Normalizing the dominant low-frequency unsteadiness
with the mean length of the separation bubble yields Stb = 0.163 which falls within
the range 0.08–0.2 of flapping frequencies previously reported by Hudy et al. (2003)
in geometry-induced separation bubbles. Michelis, Yarusevych & Kotsonis (2017) and
Jaroslawski et al. (2023) used the displacement thickness δ∗ at the separation point to
normalize frequencies, and both studies found that the low-frequency Strouhal number
is below Stδ∗ = 0.005, although without clearly identifying an emerging spectral peak,
but this is consistent with our low frequency of Stδ∗ = 0.002. Within the LSB, from
x ∼ 2.60, a higher frequency peak centred at St ∼ 1.52 begins to emerge and amplify
which corresponds to the vortex shedding. Normalized with the momentum thickness and
the local free stream velocity at separation, the Strouhal number for vortex-shedding is
Stθ = 0.0067, which is slightly lower than the references presented by Rodríguez et al.
(2021) (see their table 1), but is very close to the value of 0.0068 reported by Pauley
et al. (1990) and of 0.0062 obtained by Jaroslawski et al. (2023). However, care must be
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Figure 13. Power spectral density of wall-pressure fluctuations.

taken concerning such comparisons. In the case of Jaroslawski et al. (2023), separation
is studied on an aerofoil, where reference quantities used for scaling might not have
a clear definition. More importantly, Pauley et al. (1990) conducted a 2-D simulation,
while in the 3-D case performed by the same first author (Pauley 1994), the Strouhal
number is approximately twice that of the 2-D case. In the present study, imposing
non-natural periodic conditions in the spanwise direction should better match the 2-D
case (cf. Alizard, Cherubini & Robinet (2009), who obtained the same Strouhal numbers
by investigating the linear convective instability mechanism), as in experiments, these
conditions cannot be imposed. With x = 2.60 corresponding to the earliest location of
inflection in the streamwise velocity profile, by the criterion of Avanci et al. (2019), the
high-frequency shedding may be triggered by an absolute instability of the bubble. From
mean reattachment (x̃r = 3.80) onwards, this high-frequency peak decays rapidly unlike
the low-frequency peak. As observed in the instantaneous flow fields in figures 6 and 8,
the spanwise rollers rapidly breakdown even prior to reattachment.

In figure 14(a), we isolate the amplification of the low (St ∼ 0.08) and high (St ∼ 1.52)

frequencies observed in the power spectra of the spanwise-averaged wall pressure with
streamwise location. The low frequency shows exponential growth ahead of separation
likely due to the effects of the APG from the imposed suction extending upstream. At
separation, the amplification of the low frequency slows as the higher frequency begins
to grow exponentially. The high frequency peaks at x ∼ 3.2, at the maximum bubble
height, and subsequently decays coinciding with the undulation and breakdown of the
shed vortices in figure 6. The low frequency exhibits a second stage of rapid growth
coinciding with the initial location of velocity profile inflection caused by the presence of
the secondary bubble (x ∼ 2.6). This is followed by a third stage coinciding with the peak
of the high-frequency amplification. The third stage of growth of the low frequency occurs
regardless of the breakdown of the shed vortices. The low frequency attains its peak at
x ∼ 3.5, after which it weakly decays until remaining rather constant and yet significantly
more dominant than the shedding frequency.

The amplification patterns of the high- and low-frequency signatures respectively
resemble those of the spectral disturbance kinetic energies of the 2-D Kelvin–Helmholtz
modes (fundamental frequency) and the 3-D Klebanoff modes (low frequency) observed
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Figure 14. (a) Power spectral density of the two selected dominant frequencies of pressure at the wall.
(b) Maximum root-mean-square of velocity fluctuations within the boundary layer.

by Hosseinverdi & Fasel (2019). They show that the higher the level of free stream
turbulence, the earlier and more significant the amplification of the low-frequency
Klebanoff streaks. While we cannot eliminate upstream disturbances caused by numerical
propagation in our study, we maintain that the velocity fluctuations upstream are initially
fairly weak O(10−5); cf. figure 14(b). However, prior to separation, all fluctuations have
exhibited significant amplification, as suggested by Rist & Maucher (2002) and Cherubini
et al. (2010). By comparing figure 14(a) with the results in figure 18 of Hosseinverdi &
Fasel (2019), we observe that the low frequency attains its peak amplification later than the
high frequency in the present LSB, whereas the reverse is true in the study by Hosseinverdi
& Fasel (2019). Given that we do not explicitly introduce such disturbances in our study,
the delay in the low-frequency peak indicates that other factors (e.g. the secondary bubble)
can still result in a dominant low-frequency unsteadiness in the case of low free stream
turbulence. Furthermore, we infer from figures 6, 8 and 9 that the disturbances generated
within the LSB itself may be a sufficient trigger to low-frequency unsteadiness in the
absence of free stream turbulence altogether. In view of the results of Spalart & Strelets
(2000), the velocity fluctuations in the inlet region are one order of magnitude higher than
those observed in figure 14(b). This discrepancy can be attributed to differences in the
initial conditions, as their study used 3-D random perturbations, whereas our present study
does not include any perturbations. Moreover, they found that velocity fluctuations (u′ and
w′) within the boundary layer exist and grow upstream of separation until attaining maxima
near reattachment, after which the largest fluctuations roughly stabilize or weakly decay.
We show this behaviour in figure 14(b) for all three velocity fluctuations. The three velocity
fluctuations follow a similar amplification behaviour as the low frequency up to their peak
at x ∼ 3.5, with the growth of u′ being the most significant. This suggests that the low
frequency is correlated with a significant source of u′ in the flow. The growth of w′ is very
steep at separation, whereas that of u′ is slowed and v′ slowed to a lesser extent. While
this indeed demonstrates that the 3-D characteristics are amplified soon after separation,
it is also suggestive of a realignment of spanwise vorticity into streamwise or wall-normal
vorticity, both of which can produce regions of low and high streamwise momentum.

In TSBs, the low frequency is attributed to a so-called breathing motion, where the
bubble grows and shrinks in size. In LSBs, flapping refers to the wavering of the shear
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Figure 15. (a) Fraction of reverse flow area (fRFA) over the whole 3-D domain (solid black line) and within
the midspan plane (dashed blue line). (b) Power spectral density of the fraction of reverse flow area computed
from the 3-D domain.

layer and therefore to excursions of the reattachment surface upstream and downstream. In
a sense, flapping of an LSB has the low-frequency signature of a ‘half-breathing’ of a TSB.
To analyse the unsteadiness in the shape and size of the LSB, we therefore follow Pearson,
Goulart & Ganapathisubramani (2013) and Mohammed-Taifour & Weiss (2016), and
compute conditional averages based on the reverse flow area. As a measure of reverse flow
area, we simply compute the fraction of nodes possessing a negative streamwise velocity.
Figure 15(a) shows the temporal evolution of the fraction of reverse flow computed within
the midspan plane (blue) and over the whole 3-D domain (black). The mean fraction of
reverse flow is approximately 0.06 for both the 2-D and 3-D computations. The temporal
oscillations of the fraction of reverse flow reveal a quasi-periodic expansion (larger
fraction) and contraction (smaller fraction) of the bubble. We show the power spectrum of
the fraction of reverse flow in figure 15(b). We observe a dominant low-frequency peak
at St = 0.06. This frequency is close to that reported earlier in figure 13 (St = 0.08),
the difference largely arising from the pollution of the fraction of reverse flow signal by
considering the whole domain, whereas the pressure is averaged only at the wall.

To capture the flapping motion of the LSB and therefore its expansion and contraction,
we now perform conditional averages based on the fraction of reverse flow. Figure 16
shows the dividing streamlines of the LSB in its minimum, mean and maximum states
within the midspan plane using conditional averages. The minimum and maximum bubble
sizes are based on those instants with a fraction of reverse flow lying respectively below
and above 1.5 standard deviations from the mean, which essentially captures the minima
and maxima at the low frequency. While there is a noticeable streamwise excursion of the
reattaching surface of length �xr = 0.4, there is only a slight variation at separation (of the
order of 2�x), as confirmed by the fluctuating skin friction coefficient C̃′

f in figure 4(b).
The expansion and contraction of the bubble in the wall-normal direction is also clearly
observed, corresponding to the so-called ‘flapping’ or ‘wavering’ motion of the shear layer.

3.4. Modal decomposition
Up to this point, we have shown that the present LSB may be subject to an absolute
instability, as proposed by Avanci et al. (2019), arising from the formation of a secondary
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Figure 16. Conditionally averaged dividing streamlines using the fraction of reverse flow area. The minimum
(dash-dotted green line), mean (solid white line) and maximum (dashed black line) states are shown. Contours
represent the time- and spanwise-averaged streamwise velocity for reference.

bubble within the larger primary LSB. This instability is supported by the presence of an
inflection of the streamwise velocity falling below the dividing streamline of the primary
LSB within the range 2.60 < x̃ < 3.14 as well as the onset of spanwise roller formation
near x = 2.60, namely the start of the inflection curve. Accompanying the supposed
instability is the propagation of near-wall disturbances upstream. Indeed, we do also
observe spots of near-wall vortical structures forming from x � 2.40 in the instantaneous
flow field. The consequence of these structures is to retard the flow in the streamwise
direction, causing a rapid spanwise undulation in the rollers of wavelength ∼6 times
that of the diameter of the rollers, or approximately twice the streamwise wavelength
of the rollers. Despite spanwise roller breakdown beginning at maximum bubble height
(x̃ ∼ 3.19), the peaks and valleys observed further downstream in the instantaneous flow
fields appear to preserve this spanwise wavelength (up to at least x ∼ 8).

We observe a particular low-frequency signature with St ∼ 0.08. By comparison with
the fraction of reverse flow, we are able to show that expansion (more reverse flow)
and contraction (less reverse flow) occur for the LSB at a similar frequency, similar
to the breathing motion observed in the context of TSBs. In the case of an LSB, this
motion occurs largely on the reattachment side where wavering of the shear layer causes
the reattachment surface to migrate upstream and downstream. Furthermore, the low
frequency was observed to exhibit three stages in its amplification: (1) early amplification
by the APG; (2) slowed growth coinciding with the excitation of spanwise rollers; (3)
renewed amplification coinciding with the formation and rapid breakdown of the spanwise
rollers. The low frequency subsequently decays to a plateau further downstream. The
growth of all three velocity fluctuations within the boundary layer follows a similar
tendency, the peak instead occurring at the location of roller breakdown. The low
frequency is therefore strongly linked to the amplification of velocity fluctuations and their
persistence downstream.

The third stage of amplification of the low frequency coincides with the formation of
the near-wall structures (x̃ = 2.60) observed in figures 6 and 8. Given that the velocity
fluctuations within the boundary layer are only amplified up to spanwise roller breakdown,
this suggests that they too are associated with the dynamics caused by the near-wall
structures, namely the local deceleration of the flow, the undulation of the spanwise rollers
and the persistence of this wavelength downstream in the form of large streamwise packets
of vortical structures which cause the peaks and valleys observed in the instantaneous
flow field. As a consequence, it appears that the low-frequency behaviour is linked to
the effects and propagation of flow that is deficient in streamwise momentum (more
negative u′) and flow that is not (more positive u′), bearing some resemblance to the low-
and high-speed streaks in TBLs. Proper elucidation of these structures and whether they
truly are tied to the low-frequency unsteadiness requires an extraction and analysis of the
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coherent structures of the flow. In what follows, we use modal decomposition methods to
elucidate these structures and analy-e their behaviour in the context of the low frequency
unsteadiness.

3.4.1. Proper orthogonal decomposition
Proper orthogonal decomposition (POD) is a commonly used technique to decompose a
turbulent flow into spatially coherent modes ranked by their turbulent kinetic energy. In
this section, we apply space-only POD using the method of snapshots (Sirovich 1987)
rather than spectral POD which is concerned with spatiotemporal coherence (Towne,
Schmidt & Colonius 2018).

Briefly, we define the snapshot matrix X as the collection of all snapshots (i.e. discrete
time instants k) of the fluctuating velocity field as follows:

X =
⎡
⎣ | | |

x1 · · · xk · · · xn
| | |

⎤
⎦ where xk =

⎡
⎣u′

k
v′

k
w′

k

⎤
⎦ . (3.1)

In space-only POD, the flow is represented by a linear combination of spatially orthogonal
modes, each with their own time dynamics, which can be expressed succinctly as

X = ΦA, (3.2)

where the columns φk of Φ denote the proper orthogonal modes and the rows ak of
A denote their respective time dynamics. The proper orthogonal modes and their time
dynamics are computed from

Φ = X Φ̃Λ−1/2 and A = ΦTX , (3.3a,b)

where Λ and Φ̃ represent the eigenvalues and eigenvectors, sorted in decreasing order of
λk, of the following eigenvalue problem:

CΦ̃ = Φ̃Λ (3.4)

with correlation matrix C = X TX .
We perform space-only POD using 3000 snapshots of the 3-D flow field extracted in

increments of �t = 0.05. The total time considered is therefore 150, which we found to be
sufficient; no significant differences were observed using as few as 1000 snapshots. The
spatial domain spans the entire spanwise width z ∈ [0, 0.6] and is limited to x ∈ [1.5, 4.7]
in the streamwise direction and y ∈ [0, 0.5] in the wall-normal direction, encompassing
key features of the separated and reattached flow. Given the large volume of data,
we compute the POD in a streaming fashion, where the symmetric correlation matrix
C is constructed one snapshot at a time, after which the eigenvalue problem (3.4) is
computationally manageable and any POD mode φm, as given by the columns of Φ in
(3.3a,b), can then be computed through a running sum one snapshot at a time,

φm = 1√
λm

X φ̃m = 1√
λm

n∑
k=1

xkφ̃km, (3.5)

where xk is the kth snapshot vector as in (3.1), φ̃m represents the mth column vector of Φ̃

and φ̃km represents the kth component (or row) of φ̃m.
We present the distribution of turbulent kinetic energy among the first 20 proper

orthogonal modes in figure 17. The first three proper orthogonal modes carry a larger
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Figure 17. Turbulent kinetic energy distribution among the first 20 modes.

portion of the turbulent kinetic energy (2.85 %, 1.86 %, 1.60 %). The distribution of
turbulent kinetic energy then decays in a staircase-like fashion, which is a common
indication of advective structures captured by the modes, in this case, the shedding
and advection of the spanwise rollers. Proper orthogonal modes of advective coherent
structures come in pairs carrying similar turbulent kinetic energy along with a
spatiotemporal shift.

The time dynamics of (space-only) proper orthogonal modes generally consist of the
full spectrum of available frequencies. However, specific frequencies are often still found
to dominate the dynamics of certain modes. We present the power spectra of the time
dynamics of the first five modes in figure 18. The first three modes (figure 18a) all display
peaks at St = 0.06, which is identical to the low frequency detected from the fraction of
reverse flow. Unlike the first and second modes, the third mode reveals additional peaks at
St = 0.03, 0.11 and 0.14. The first is a subharmonic of the principal low frequency and the
latter two frequency peaks agree with those additional peaks observed in the fraction of
reverse flow (figure 15b). The fourth and fifth modes display a dominant frequency peak
at St = 1.57, corresponding to the shedding frequency of the spanwise rollers identified
earlier. Several additional frequency peaks are present in the time dynamics of modes 4
and 5, though these are likely associated with the breakdown of the spanwise rollers as we
will demonstrate shortly. We observe in figure 18 that by simply decoupling spatial modes
based on their turbulent kinetic energy content, space-only POD has also successfully
decoupled the low-frequency unsteadiness from the high-frequency vortex shedding. No
high-frequency peak is observed in modes 1–3 and only relatively weak low-frequency
peaks are observed in modes 4 and 5.

In the case of TSBs forming over flat plates (Mohammed-Taifour & Weiss 2016),
full steps (Fang & Tachie 2019) and Ahmed bodies (Thacker et al. 2013), a strong
correlation is observed between the time dynamics of the first POD mode (a1) and a
measure of separation bubble size. The correlation suggests that the coherent structures
associated with the first proper orthogonal mode are responsible or strongly linked to the
low-frequency breathing of TSBs. The application of POD in these studies is however
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Figure 18. Power spectral density of the time dynamics of (a) the first, second and third proper orthogonal
modes and (b) the fourth and fifth modes.

limited to a 2-D cross-section. We therefore also explore the correlation between the time
dynamics of the first mode (a1) and the fraction of reverse flow (a measure of bubble size)
in figure 19. Figure 19(a) shows their variation in time and already suggests a visibly clear
correlation between the two signals. We demonstrate this correlation further by computing
the cross-correlation of the two signals in figure 19(b), where we observe a peak correlation
of 0.85 at zero lag. In contrast to TSB studies, we also observe modest cross-correlations
of the time dynamics of the second and third modes with the fraction of reverse flow.
However, the correlation of modes 2 and 3 with the fraction of reverse flow demonstrate
that they also fluctuate on a subharmonic frequency (St ∼ 0.015), coming in and out of
phase in a cyclic fashion. The remaining modes correlate rather poorly and, increasingly,
the low frequency becomes less relevant to the lower energy, higher frequency modes. The
coherent structures captured by the first three proper orthogonal modes therefore play an
important role in the low-frequency unsteadiness of the LSB.

To further demonstrate the importance of the coherent structures observed in the first
three modes to the low-frequency unsteadiness of the LSB, we construct a reduced-order
model of the flow using these very three modes (i.e. Φr = U + a1φ1 + a2φ2 + a3φ3).
Figure 19(a) also compares the reverse flow area of the leading three-mode model with
its corresponding correlation in figure 19(b). Figure 20 shows the minimum, mean and
maximum bubble sizes of the reduced-order model computed in the same way as described
for figure 16.

Few studies explore the characteristics of the full 3-D low-frequency structures observed
in the proper orthogonal modes of separation bubbles. In figure 21, we therefore depict the
spatial structures of the first five proper orthogonal modes using two sets of isosurfaces of
the u component of the modes (+0.0003 in red, −0.0003 in blue). The first mode in panel
(a) possesses streak-like structures with a spanwise wavelength of λz ∼ Lz/2 linked to
the shear layer, as also observed by Statnikov et al. (2016) in the case of low-frequency
unsteadiness behind a BFS. In view of figure 19, the mode is indeed modulated in
amplitude at the low frequency of the LSB. However, an overall tendency to shift from
negative to positive amplitude in time is observed as though a much lower frequency of
the order of 10−3 may emerge. In the regions where a negative isosurface is present in
figure 21(a), a decrease in amplitude of the coefficient a1 corresponds to local retraction
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Figure 19. (a) Fraction of reverse flow (solid black line) and time dynamics of the first POD mode a1 (dashed
blue line). The fraction of reverse flow from a reduced-order model consisting of the leading three proper
orthogonal modes is also shown (dash-dotted red line). (b) Correlation between the fraction of reverse flow
and either the time dynamics of the first POD mode (solid black line) or the leading three-mode reduced-order
model (dashed blue line).
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Figure 20. Conditionally averaged dividing streamlines using the fraction of reverse flow area of the leading
three-mode reconstruction. Minimum (dash-dotted green line), mean (solid white lines) and maximum (dashed
black line) states are shown. Contours represent the time- and spanwise-averaged streamwise velocity for
reference.

of the bubble, while an increase corresponds to expansion. The second (panel b) and
third (panel c) modes, however, show clear streamwise streaks alternating in sign in the
spanwise direction, also with a spanwise wavelength of λz ∼ Lz/2. Interestingly, as we
show in panel (d), the positive isosurfaces of modes 2 and 3 fit into the pockets of mode
1, while the negative isosurfaces coincide or extend the negative isosurfaces of mode 1.
The three modes are intimately related. The linear combination of the three modes will
result in periods of uniform expansion/contraction of the LSB when the coefficient of
the first mode is out-of-phase with modes 2 and 3. This expansion/contraction occurs
primarily in the streamwise direction and less so in the wall-normal direction. When
the three modes are in-phase, a strong spanwise undulation is induced. The streaks in
figures 21(a)–21(c) appear prior to the location of maximum bubble height (x ∼ 3) and
persist past reattachment up to the end of the domain used for the POD (x ∼ 4.7). The
fourth (panel d) and fifth (panel e) modes describe a pair of convective modes and
capture the coherent spanwise rollers with little to no spanwise undulation. Downstream,
these modes show larger structures and alternating streamwise velocity fluctuations,
accompanying the general process of undulation and breakdown of the rollers. Several
subsequent modes capture convective motions associated with the breakdown of the
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Figure 21. Streamwise component of the leading five POD modes. Isosurfaces of |u′| = 0.0003 are shown,
positive values in red and negative values in blue. (a) First, (b) second and (c) third modes, (d) superposition
of the first three modes, (e) fourth and ( f ) fifth modes.

spanwise rollers which results in structures or packets of varying streamwise length scales
(such a packet is observed in figure 8 for example).

Figure 22 shows the v component of the second mode within six different cross-stream
planes, namely, x = 2.2–4.2 in increments of 0.4. We begin to observe the development of
these streamwise streaks as far upstream as x = 2.2, which demonstrates that the streaks
do indeed begin to form prior to the formation of the spanwise rollers and prior to the
mean location of the secondary bubble. By x = 2.6, an alternating pattern of streaks
has already formed near the wall with spanwise wavelength λz ∼ Lz/20. As we observe
for the amplification of the velocity fluctuations in figure 14(b), the amplification of the

999 A99-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.962


F. Malmir and others

–0.2

0.2

0.3

0.4

0.1

0

0.2

0.3

0.4

0.1

0

0.2

0.3

0.4

0.1

0
0.20

z

y

0.2

0.3

0.4

0.1

0

0.2

0.3

0.4

0.1

0

0.2

0.3

0.4

0.1

0

y

–0.2 0.20

z
–0.2 0.20

z

–0.2 0.20 –0.2 0.20 –0.2 0.20

(e)

(b)(a) (c)

(d ) ( f )

Figure 22. Transverse (yz) planes of the v component of the second POD mode at (a) x = 2.2, (b) x = 2.6,
(c) x = 3.0, (d) x = 3.4, (e) x = 3.8 and ( f ) x = 4.2.

streaks within the LSB occurs rapidly up to x = 3.5, growing in spanwise wavelength
up to approximately Lz/2. When normalized with the momentum thickness at separation
θ , we obtain λz � 64θ , falling in the range provided by Rodríguez et al. (2021), who
compare measurements of the spanwise wavelength of coherent structures developing
in LSBs studied in the literature (it was also found that the results of a simulation with
twice the domain size in the spanwise direction did not change this wavelength). By
reattachment (x = 3.8), the streaks have reached their maximum size. The streaks then
persist downstream and slowly decay, as we demonstrate by the smaller structures at
x = 4.2 compared with those at x = 3.8. We note that regions of positive v component
coincide with regions of negative u component and vice versa (e.g. at x = 3.8). The streaks
therefore exhibit the features of the ejection (−u′, +v′) and sweep (+u′, −v′) motions
described earlier; e.g. compare with figure 21(b). The first and third modes show similar
behaviour and are therefore not shown, the main difference being that the overall sizes of
the structures decrease from the first mode down to the third. Notably, similar large-scale
u′ motions in transverse planes have been shown in the APG and separated regions by Abe
(2019). Their study confirmed that these structures are associated with periodic sweep and
ejection events caused by the flapping motions of the separation bubble.

The formation of streaks in TBLs are generally accompanied by counter-rotating
near-wall streamwise vortices (Cossu & Hwang 2017). To illustrate this vortical motion,
we show the w component of the leading three modes in figure 23. We observe
spanwise-alternating patterns of streamwise-elongated w′ for all three modes. By
comparing the positions of the w′ patterns for the second mode in figure 23(b) with those
of the v′ patterns in figure 22, we observe that the streaks (regions of ±v′) are positioned
precisely between the alternating streamwise-elongated patterns of w′. Regions of positive
v′ therefore lie between two counter-rotating streamwise vortices creating a lift-up effect,
while regions of negative v′ lie between two counter-rotating streamwise vortices creating
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Figure 23. Spanwise component of the first, second and third modes at the bottom wall. Mean separation and
reattachment lines are respectively denoted by dotted and dashed lines.

a pull-down. The leading three POD modes therefore describe all the characteristics of the
lift-up effect in transitional and turbulent shear flows (Brandt 2014).

The streamwise wall-normal (xy) plane is often the plane of choice in separation
bubble studies for depicting the POD modes. We can now link the modes observed in
the streamwise wall-normal plane with their corresponding 3-D modes in the present
LSB (cf. figure 21). In figure 24, we show the u component of modes 1–3 within the
mid-span planes. The first mode shows a large portion of u′ in the aft portion of the
bubble extending on both sides of the mean dividing streamline. The second and third
modes show what appear to be large alternating structures advected in the streamwise
direction. Similar structures have been observed as the leading modes in several TSB
studies (Mohammed-Taifour & Weiss 2016; Elyasi & Ghaemi 2019; Le Floc’h et al.
2020) and APG TBLs (Sanmiguel Vila et al. 2017). In particular, for TSBs, the structure
in the first mode extends even upstream of separation, causing both the separation and
reattachment points to move. Given that for the present LSB, these structures correspond to
large-scale streamwise streak-like motions, the same structures may represent the leading
POD modes of TSBs. To support this view, we refer to Wu et al. (2020) who show
streak-like modes associated with low-frequency unsteadiness for their TSB using dynamic
mode decomposition (DMD). The separation point in their TSB remains rather stationary
(like the present LSB) and does not exhibit the large excursions typically observed in
TSB breathing (Na & Moin 1998; Mohammed-Taifour & Weiss 2016; Le Floc’h et al.
2020). The modal structure of their low-frequency mode (cf. figures 22 and 23 in their
work) bears a striking resemblance to that of POD modes 2 and 3 in figures 21–24
in this work. Subsequent modes describe the vortex shedding and breakdown rather
clearly in the xy plane. In figure 25, we show modes 4 and 5, together representing the
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Figure 24. Streamwise component of the first, second and third modes in the mid-span plane. The solid black
lines represent the dividing streamline of the time- and spanwise-averaged flow for reference.

advection of spanwise rollers and their growth downstream as they breakdown. Due to
the spatiotemporal complexity of the breakdown process, many more modes are required
to capture the dynamics; for example, we observe similar patterns for modes 4–12
(cf. figure 25 for mode 8).

3.4.2. Dynamic mode decomposition
Since POD does not generally distinguish modes based on their frequency, it is of value
to compare with another method such as dynamic mode decomposition (Schmid 2010;
Tu et al. 2014). DMD can decompose a turbulent flow into spatially coherent modes each
with a unique frequency. In this section, we will compare the spatial structures of low-
and high-frequency dynamic modes with those obtained from POD to further validate the
frequency-structure associations of the proper orthogonal modes.

We use the exact DMD method of Tu et al. (2014) for the same snapshots and spatial
domain as for the POD. Given a snapshot matrix X , containing snapshots 1 to n − 1, and
Y , containing snapshots 2 to n, the exact DMD modes are obtained from

Ψ = YVΣ−1WΛ−1 (3.6)

after computing the singular value decomposition X = UΣV ∗ and the solution to the
eigenvalue problem ÃW = WΛ, where Ã = U∗YVΣ−1. In particular, given the large
volume of data, the direct streaming approach of Hemati, Williams & Rowley (2014) was
used (i.e. without POD compression).

The discrete-time eigenvalues (λk) are plotted in the complex plane in figure 26(a);
the eigenvalues are symmetric about the real axis. All the eigenvalues are located on
the unit circle which implies that the time dynamics of the modes exhibit no growth or
decay, they exhibit stable oscillations at unique frequencies. The frequency spectrum of
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Figure 25. Streamwise component of the fourth, fifth and eighth modes in the mid-span plane. The solid
black lines represent the dividing streamline of the time- and spanwise-averaged flow for reference.

the dynamic modes is shown in figure 26(b). The amplitudes in the spectrum are computed
from b = Λ−1Ψ +x2, where the superscript + denotes the pseudo-inverse. The spectrum
shows a significant low-frequency peak at St = 0.073 (dotted vertical line), similar to
our reverse flow area and POD analyses. Additional low-frequency peaks appear in close
proximity, indicating that the low-frequency unsteadiness spans a range of low frequencies
and cannot be precisely associated to any single unique frequency. The higher frequency
is less apparent since turbulence also produces frequencies in this range. Nonetheless, we
do observe a bump in the range corresponding to the vortex shedding and we will consider
a frequency of St = 1.51 (dashed vertical line) in what follows.

Figure 27 shows the u component of the spatial structures (real part) of a low- (St =
0.073) and high- (St = 1.51) frequency mode. The low-frequency mode (figure 27a),
as we observe for the POD, shows streak-like motions. The side and top views of the
low frequency, presented in figure 28(a), indicate that streaky structures emerge as early
as x ∼ 2.6 and further develop downstream. Other low-frequency peaks show similar
structures and are therefore not shown. The high-frequency mode (figure 27b) depicts
the vortex shedding and other modes in this frequency range show similar structures.
The side view of these structures, as shown in figure 28(b), demonstrates a high degree
of coherence along the spanwise direction. Moreover, the top view clearly displays the
undulations of spanwise rollers. The comparison between the structures associated with
the low-frequency mode and high-frequency modes reveals that the appearance of streaky
structures occurs upstream of the location where spanwise rollers emerge.

4. Further discussion and conclusions

We have investigated the low-frequency unsteadiness of a pressure-induced incompressible
LSB formed over a flat plate using DNS. The LSB is the same as that of Spalart & Strelets

999 A99-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.962


F. Malmir and others

–1.0
0

0.2

0.4

0.6

0.8

1.0

150

100
|b|

50

0
–0.5 0 0.5 1.0 10–2 10–1

StRe(λk)

Im
(λ
k)

100 101

(b)(a)

Figure 26. (a) Eigenvalues of DMD modes and (b) spectrum of DMD modes. The vertical dotted blue and
dashed red lines represent the dominant frequencies of Stl = 0.073 and Sth = 1.51.
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Figure 27. Isosurfaces of the real part of the dynamic modes corresponding to (a) the low frequency and (b)
the high frequency.
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Figure 28. Isosurfaces of the real part of the dynamic modes in the xy and xz planes corresponding to (a) the
low frequency and (b) the high frequency.
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(2000), selected due to the reported presence of wall-normal excursions (wavering) of the
shear layer, a common feature associated with the low-frequency unsteadiness of LSBs.

Through spectral analysis of the spanwise-averaged wall pressure, we observe two
dominant frequency regimes in the studied flow configuration. The high-frequency regime
(St ∼ 1.52) corresponds to the shedding of spanwise rollers while the low-frequency
regime (St ∼ 0.08) corresponds to the unsteadiness commonly referred to as flapping.
The physical relationship between the high frequency and the shed spanwise rollers is
easily observed from instantaneous streamwise and wall-normal velocity spectra taken at
points falling within the passage of the shed spanwise rollers. The physical manifestation
of the low frequency is less evident, but can be observed from the fraction of reverse
flow in the 3-D domain. The spectrum of the fraction of reverse flow exhibits a clear
coherent low-frequency oscillation, where a lower fraction suggests a smaller recirculation
region and a higher fraction a larger recirculation region. Conditional averages of the
flow field based on high and low fractions of reverse flow clearly reveal that the physical
manifestation of the low frequency corresponds to the expansion/contraction of the LSB,
largely in the aft portion, as well as a wavering of the shear layer (i.e. wall-normal
excursions). Unlike the high frequency, the low frequency exhibits exponential growth
beginning far upstream of separation. At separation, the exponential growth of the low
frequency is considerably reduced up to the location of presumed absolute instability
where the inflection of the streamwise velocity profile within the LSB begins. This
is followed by a third stage of rapid exponential growth peaking just prior to mean
reattachment. The growth of the maximum velocity fluctuations follows a similar pattern
as the low-frequency amplification, suggesting that the mechanism behind the unsteadiness
is structural and advective in nature.

From the instantaneous flow fields, as reported by Spalart & Strelets (2000), we
observe peaks and valleys in the 3-D vorticity fields. An instantaneous visualization of
the streamwise velocity fluctuation reveals low- and high-speed streamwise streak-like
motions extending from within the LSB to past reattachment. Using a quadrant analysis,
we demonstrate that at instants of high fraction of reverse flow, a predominance of ejection
(Q2) events are present while at instants of low fraction of reverse flow, a predominance
of sweep (Q4) events are present. In other words, the formation of streaky structures
within the LSB and their advection downstream are strongly related to the low-frequency
unsteadiness. Elongated streamwise streaks are well known to form in TBLs and they have
been correlated with the modulation of the bubble size in TSBs (Pearson et al. 2013; Fang
& Tachie 2019). Using proper orthogonal and dynamic mode decomposition, we are able
to show that a spanwise-alternating pattern of low- and high-speed streamwise elongated
streaky structures appear as dominant (high energy) modes at the low frequency. Modal
decomposition permits the observation of the growth of these streak-like motions within
the LSB from separation to reattachment accompanied by streamwise vortices near the
wall. In the case of POD, a flow reconstruction using the three leading proper orthogonal
modes is required to adequately reproduce the 3-D dynamics of the low-frequency
unsteadiness. This leaves us with two questions: (1) How can a spanwise-alternating
pattern of low- and high-speed streamwise streak-like motions be physically responsible
for expansion/contraction of the LSB? (2) How do the streaks form in the LSB in the first
place?

In this work, we propose an answer to the first of the two questions. An array of
spanwise-alternating streaks modulates the size of the bubble. The passage of an ensemble
of streaks through the reattachment region reduces the overall bubble size. In the absence
of streaks, the bubble is permitted to grow. The low frequency then corresponds to the
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time it takes for streaks to form, amplify and advect past the LSB from separation to
reattachment. This mechanism emphasizes the importance of mean flow deformation as
described by Marxen & Rist (2010) and Jaroslawski et al. (2023), where ‘forcing’ is
seen to reduce the mean bubble size. In other words, the advection of streaks (forcing)
causes low-frequency bubble contractions such that the mean bubble size is reduced. In
the context of the quadrant analysis, these streaks appear in the Q2 and Q4 quadrants of
the (u′, v′) plane, just as ejections and sweeps do in TBLs. With the addition of the mean
flow, events in the second quadrant of the (u′, v′) plane are shifted to the first quadrant
of the (u, v) plane, while events in the fourth quadrant are pushed further into the fourth
quadrant. The flow is biased towards positive streamwise velocity such that a spanwise
array of alternating low- and high-speed streaks behaves globally as a perturbation in the
form of an array of high-speed streaks. In brief, analysis of the low-frequency unsteadiness
is better suited to analysis as a base flow (larger bubble) with perturbations, rather than as
a mean flow (smaller bubble) with fluctuations.

The physical mechanism behind the generation of the streaks remains unanswered
by this work. Nevertheless, the mechanism by which they produce the low-frequency
unsteadiness of a separation bubble is the same. In the case of LSBs, streaks may
be generated by four mechanisms: selective amplification of low-frequency free stream
disturbances (Simoni et al. 2014), a Görtler-type instability due to the convex curvature of
the separating material surface (Wu et al. 2020), elliptical instability (spanwise undulation)
of the shed vortices (Marxen et al. 2013), or primary and secondary instability mechanisms
of the separation bubble itself (Rodríguez et al. 2021). In the former case, streaks
develop as a non-modal instability and they are subsequently amplified by the shear layer
of the LSB, causing an earlier transition to turbulence (e.g. bypass or Klebanoff-type
transition). In our study, we did not impose free stream turbulence, though by separation,
the amplitude of the streamwise velocity fluctuations have nearly attained 10−2, which is
rather high for an LSB (Rist & Maucher 2002). We conjecture that an LSB can nonetheless
exhibit low-frequency unsteadiness in the complete absence of free stream disturbances.
In the present work, we have demonstrated that a secondary bubble exists (on average)
within the primary LSB, suggesting the flow to be absolutely unstable by the geometric
criterion of Avanci et al. (2019). In the presence of absolute instability, the self-excited
unsteadiness within the bubble propagates upstream within the recirculation region itself.
As demonstrated by Cherubini et al. (2010), disturbances occurring within the fore portion
of an LSB can exhibit amplification to a similar extent as upstream disturbances.

In the case of sufficiently developed TBLs, the presence of large- and very large-scale
motions in the form of high- and low-speed streaks is well known (Hack & Schmidt 2021).
It is therefore reasonable to assume that these streaks will result in the motion of both the
separation and reattachment surfaces of TSBs in the same way they cause motion of the
reattachment surface for LSBs. In other words, a large-scale low-speed motion will locally
cause the separation surface to move upstream and the reattachment surface to move
downstream (expansion), and vice versa for large-scale high-speed motions (contraction)
(Le Floc’h 2021; Le Floc’h, Di Labbio & Dufresne 2023). In this sense, the ‘flapping’
of LSBs corresponds to only half of the ‘breathing’ of TSBs since streaks either do not
exist or are not sufficiently developed upstream of separation for LSBs, therefore having
little to no effect on the motion of the separation surface. Likewise, TSBs that do not
have sufficiently developed upstream boundary layers may not have sufficiently developed
streaks, causing little to no motion of the separation surface and behaving for all intents
and purposes like LSBs with excessive free stream turbulence. This may be the case
in such studies as those by Abe (2017) and Wu et al. (2020). Some indication of the

999 A99-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.962


Low-frequency unsteadiness in laminar separation bubbles

relationship between large-scale motions and the low-frequency unsteadiness of TSBs
has also been provided by Pearson et al. (2013) and Fang & Tachie (2019). This could
imply that the low frequency might be driven by the characteristic length and time scales
of the upstream streaks, which is directly related to how well developed the upstream
TBL is. The application of recycling/rescaling methods is an example where large streaks
do not have enough length/time to fully develop. This could also explain why in some
numerical simulations, the low frequency is not clearly observed. We note, however, that
restriction of a modal decomposition analysis to the xy plane, as is commonly the case in
such studies, is misleading. The leading POD mode gives the impression of a large low- or
high-speed motion that is advected past the bubble and alternates in sign in the streamwise
direction. Subsequent modes are simply thought to relate to shedding or to an intermediate
frequency. These observations are made by Mohammed-Taifour & Weiss (2016), Fang
& Tachie (2019) and Richardson, Zhang & Cattafesta (2023) for example. In our study,
we observe the same signature in the mid-span plane; however, we demonstrate that in
three dimensions, there is no such uniform structure, there are only low- and high-speed
streamwise streaks alternating in the spanwise direction. Furthermore, the first three modes
correspond to the low frequency and are required in the low-order model to capture the
low-frequency dynamics.

Funding. F.M. gratefully acknowledges financial support from the Simulation-based Engineering Science
program funded through the CREATE program of the Natural Sciences and Engineering Research Council
of Canada (NSERC). G.D.L. would like to acknowledge support from the postdoctoral fellowships of the
Fonds de recherche du Québec – Nature et technologies (FRQNT) and NSERC. This research was enabled
in part by support provided by Calcul Québec (www.calculquebec.ca) and the Digital Research Alliance of
Canada (alliancecan.ca). The simulations were performed on the Niagara supercomputer at the SciNet HPC
Consortium. SciNet is funded by Innovation, Science and Economic Development Canada, the Digital Research
Alliance of Canada, the Ontario Research Fund: Research Excellence, and the University of Toronto.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Fatemeh Malmir https://orcid.org/0009-0006-8721-9620;
Giuseppe Di Labbio https://orcid.org/0000-0002-1452-9074;
Julien Weiss https://orcid.org/0000-0001-7746-2930;
Jérôme Vétel https://orcid.org/0000-0002-4794-678X.

Appendix A. Low-frequency unsteadiness in other flow configurations

A.1. Backward-facing steps
Eaton & Johnston (1982) are among the first to describe the low-frequency unsteadiness
of separation bubbles in more detail. They study the flow forming behind a BFS
experimentally with oncoming laminar and turbulent boundary layers having Reθ = 240
and 950, respectively, where Reθ is the Reynolds number based on the inlet free stream
velocity and the momentum thickness θ at separation. In both cases, the mean reattachment
point is identified as that moving downstream 50 % of the time (forward flow fraction,
γ = 0.5). For the TBL, near reattachment, they observe bursts of turbulent activity at the
wall propagating downstream. This is interpreted as the passage of large-scale motions
with 10–20 times the period of the largest observed eddies, namely, the spanwise vortices
shed from the shear layer. The same low-frequency range is found to be associated with
a significant portion of energy in streamwise velocity spectra near reattachment and can
be observed in their moving short-time average estimate of the reattachment length. The
nature of these large-scale motions was, however, not investigated further. Nevertheless,
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Eaton & Johnston (1982) discuss several possible mechanisms and ultimately propose that
the low-frequency behaviour is due to momentary imbalances between mass carried away
from the bubble by the shear layer and mass reinjected at reattachment.

Subsequent experimental works observe phenomena that are conjectured to explain this
low-frequency unsteadiness. For example, Troutt, Scheelke & Norman (1984) demonstrate
the presence of larger-than-normal spanwise vortices arising from vortex pairing
interactions in their turbulent BFS flow (Reθ = 920). They attribute the low-frequency
unsteadiness to the passage of these large-scale motions through the reattachment region.
Likewise, Driver, Seegmiller & Marvin (1987) and Lee & Sung (2001) also associate the
low-frequency unsteadiness to these vortices (Reθ = 5000 and 1300, respectively), with
Driver et al. speculating that they are responsible by occasionally carrying away excess
mass and momentum. Spazzini et al. (2001) observe yet another phenomenon linked to
the low-frequency unsteadiness, namely that the secondary inner bubble, often called the
Moffatt vortex, exhibits cycles of growth and bursting that coincide with the low-frequency
unsteadiness of the larger primary bubble. Although this behaviour is not widely observed,
it does suggest that if an advective mechanism is responsible, it must begin early in the fore
portion of the bubble to result in expansion/contraction of the secondary bubble as well.

An advective mechanism behind the low-frequency unsteadiness ultimately requires the
development and advection of large-scale coherent structures and an effect or instability
by which the structures are created or amplified in the first place. Wee et al. (2004)
conduct a linear stability analysis on 2-D BFS flows to further investigate the origin of
the low-frequency motion. They observe that the frequency is largely dependent on the
shear layer thickness and the growth rate on the magnitude of the reversed flow. They
therefore hypothesize that the oscillations responsible for the low frequency arise in the
middle of the recirculation region, where maximum reverse flow occurs. The turbulent
BFS experiments of Ma & Schröder (2017), having Reθ ∼ 1300, further demonstrate
that the flapping motion does indeed begin at the streamwise location of maximum
reverse flow, roughly located in the middle of the bubble. Furthermore, using POD in a
streamwise-vertical plane, they show that flapping is associated with high turbulent kinetic
energy due to large-scale sweep- and ejection-like motions that contribute significantly to
the Reynolds shear stress in the aft portion of the bubble.

Ma, Tang & Jiang (2022a,b) later explore the 3-D structure of these modes
experimentally, though at a lower momentum thickness Reynolds number (Reθ ∼ 80).
They demonstrate the presence of coherent structures in the form of high- and low-speed
streak-like motions alternating in span and occurring at the low frequency, similar to
those observed in TBLs (Hack & Schmidt 2021). The streak-like motions are suggested to
develop as a result of spanwise undulations of the shear layer. High-momentum sweep-like
motions are carried downwards into the separation bubble whereas low-momentum
ejection-like motions are carried upwards into the shear layer. Likewise, Wilkins,
Hosseinali & Hall (2020) also demonstrate the presence of these streak-like motions at
the low frequency in their large eddy simulation of a BFS (Reh = 5100, based on the step
height h). The near-wall recirculating flow is observed to generate wall-normal vorticity as
it propagates towards the step and is forced to exhibit a spanwise motion. This generates
large counter-rotating wall-normal vortical motions that are accompanied by a spanwise
array of low- and high-speed streamwise momentum. This observation has the benefit of
offering a physical explanation for the formation of the large-scale streamwise motions.
The presence of spanwise-alternating regions of high and low streamwise momentum is
also observed in transonic BFS flows, such as in the experimental and numerical study
of Statnikov et al. (2016), where the Mach number is Ma = 0.8 and Reh = 180 000.
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They demonstrate the presence of streamwise streaky structures having a spanwise
wavelength of two step heights. Using DMD on their numerical simulation, they show
that these streaky structures appear as dominant modes associated with the same low
frequencies observed in their pressure spectra. They however distinguish between two
low-frequency modes, the first a ‘cross-pumping’ motion (excursion of the reattaching
surface, alternating in span) and the second a ‘cross-flapping’ motion (pure wavering of
the shear layer, alternating in span).

A.2. Forward-facing steps
The formation of large streak-like motions has also been observed in LSBs forming ahead
of and over FFSs. Using 3-D particle tracking velocimetry, Stüer, Gyr & Kinzelbach (1999)
demonstrate that hydrogen bubbles initially inside the separation bubble are released by
spiralling out over the step in longitudinal vortices spread out quasi-periodically along
the span by approximately three step heights. They hypothesize that the longitudinal
vortices arise due to a Görtler-type instability as a consequence of the convex curvature
of the dividing streamline. Wilhelm, Hrtel & Kleiser (2003) confirm the presence of
counter-rotating longitudinal vortices accompanied by streak-like motions in their DNS
of an FFS flow. They demonstrate further that this three-dimensionality is a result of
the high sensitivity of the flow to upstream disturbances. Through spatial and space–time
correlations between pressure and velocity fluctuations, Largeau & Moriniere (2007) and
Camussi et al. (2008) deduce the passage of large-scale motions over the separation bubble
at the low frequency.

Pearson et al. (2013) study a TSB forming ahead of an FFS experimentally. They observe
that the passage of large-scale low-velocity motions past the separation bubble (over the
step) results in an overall growth of the bubble. Conversely, periods of shrinkage of the
bubble coincide with a global increase in velocity. They propose that these upstream
large-scale motions are connected to the low-frequency unsteadiness. Fang & Tachie
(2019) further support this observation in their experimental work on TSBs forming over a
forward-backward-facing step. Like Pearson et al. (2013), they identify a strong correlation
between the oncoming low- and high-speed motions from the TBL and the low-frequency
unsteadiness. Furthermore, they show that the low-frequency motion of the TSB forming
behind the step possesses the same frequency with a phase delay from that forming above
the step, suggesting the underlying mechanism as resulting purely from the advection
of these large-scale motions. Fang & Tachie (2020) later study an FFS submerged in a
thick TBL experimentally. They observe again that the passage of low-velocity large-scale
motions correlate with low-frequency growth of the separation bubble. The low frequency
is observed to be lower than those reported by Pearson et al. (2013) and Graziani et al.
(2018), whose oncoming TBLs are markedly thinner. In other words, the low-velocity
large-scale motions are more developed in the TBL of Fang & Tachie (2020), and their
advection past the separation bubble thus occurs on a longer time scale.

A.3. Blunt plates
Like the BFS, for a rectangular blunt plate, the separation point is fixed by the geometry.
Low-frequency excursions of the reattaching surface are also observed for separation
bubbles forming over blunt plates. For example, like Eaton & Johnston (1982), Djilali
& Gartshore (1991) clearly observe the unsteadiness at reattachment from the near-wall
forward flow fraction. Velocity spectra from within the shear layer also show significant
energy contained in the low-frequency regime. Cherry, Hillier & Latour (1984) perform
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pressure and velocity measurements for a separation bubble forming over a blunt plate
with high free stream turbulence. They observe that the low-frequency unsteadiness is
most pronounced closer to separation in both pressure and velocity spectra, though it is
also largely observable throughout the separation bubble. As for the BFS flows described
in § A.1, they too observe the occasional shedding of larger-than-normal spanwise vortical
motions and link the time scale of the low-frequency unsteadiness to their advection.
They also demonstrate, however, the streamwise development of a spanwise phenomenon
beginning close to separation. Through spanwise cross-correlations of streamwise velocity
fluctuations, they observe a linear growth in spanwise length scale up to reattachment, the
streamwise development being rather self-similar. Although not shown, they remark that
smoke visualizations suggest a certain spanwise distortion (‘helical pairings’) of the shed
vortices.

Kiya & Sasaki (1983) study a TSB forming over a blunt plate experimentally and
further corroborate many of the findings of Cherry et al. (1984). Through spanwise
cross-correlations of wall pressure and spanwise velocity fluctuations, they demonstrate
that counter-rotating streamwise vortical motions are present at reattachment with similar
streamwise growth behaviour as the spanwise phenomenon observed by Cherry et al.
(1984). Kiya & Sasaki (1985) later propose that these streamwise vortical motions
form hairpin-like structures in combination with the shed vortices. They link these
structures with those previously observed in mixing layers and suspect the formation of
a pattern of streamwise-elongated streaks. Furthermore, they remark that the shedding of
larger-than-normal spanwise vortical motions is too rare an event to be responsible for
the low frequency. This raises the question as to whether the same structures observed
in the BFS flows of Troutt et al. (1984), Driver et al. (1987) and Lee & Sung (2001)
discussed in § A.1 are truly responsible for the low frequency as well. Instead, they
propose that the low frequency is related to the feedback of disturbances from reattachment
propagating upstream to separation. Dovgal, Kozlov & Michalke (1994) suggests a similar
mechanism for LSBs in general, where the mean flow is distorted by the amplification of
such disturbances at separation.

Tafti and Vanka instead investigate LSBs forming over a blunt plate through numerical
simulations in two (Tafti & Vanka 1991a) and three dimensions (Tafti & Vanka 1991b)
for the same flow configuration, with Re = 1000 (based on the plate thickness) and no
imposed free stream turbulence. Low-frequency unsteadiness is only observed in their
3-D simulations. Tafti & Vanka (1991b) demonstrate similar spanwise results in their LSB
as compared with the more turbulent results of Cherry et al. (1984) and Kiya & Sasaki
(1983, 1985). They also observe large streamwise-aligned vortical structures in the aft
portion of their bubble through spanwise pressure–velocity correlations. Furthermore, they
demonstrate that the maximum streamwise vorticity grows from nearly zero at separation
to a maximum before reattachment. They observe strong correlations of (−u′, +v′) and
(+u′, −v′) in the shear layer, respectively suggesting the presence of large ejection- and
sweep-like motions accompanying these streamwise vortices.

A.4. Airfoils
The presence of the low-frequency unsteadiness for separation bubbles forming over
airfoils is well documented by Zaman, McKinzie & Rumsey (1989) and Bragg, Heinrich
& Khodadoust (1993), particularly near stall conditions. The low frequency is clearly
observed from streamwise velocity spectra for different Reynolds numbers, angles of
attack, free stream turbulence intensities, as well as with or without external acoustic
excitation. As in the prior flow configurations, some studies have also attributed
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the low-frequency unsteadiness to large spanwise vortices shed from the shear layer
(Burgmann & Schröder 2008). Nevertheless, later studies demonstrate once again a strong
correlation between the low-frequency unsteadiness and large-scale streak-like motions in
the flow.

Kurelek, Lambert & Yarusevych (2016) examine experimentally the coherent structures
forming during the transition process of an LSB forming over an NACA 0018 airfoil. They
observe not only the classical Kelvin–Helmholtz rollers forming in the shear layer, but
also that they develop a spanwise undulation. This undulation may be a consequence of
an elliptical instability of the vortex filaments (Kerswell 2002; Marxen et al. 2013). As
they describe, the reorientation of spanwise vorticity to streamwise vorticity associated
with the undulation causes pairs of streamwise vortices to develop close to the wall.
These streamwise vortices entrain high-momentum fluid towards the wall and eject
low-momentum fluid away from the wall, forming high- and low-speed streamwise streaky
structures alternating in the spanwise direction. Yang & Abdalla (2005) observed a similar
phenomenon in the transition of a separated flow over a blunt plate without explicit free
stream turbulence.

More recently, Ma, Gibeau & Ghaemi (2020) investigate the separation of a TBL near
the trailing edge of an NACA 4418 airfoil experimentally. They demonstrate the presence
of forward- and backward-oriented stall cells at separation respectively accompanied
by high- and low-speed streaks from the upstream TBL. These stall cells resemble the
wall-normal vorticity structures observed in the case of a BFS by Wilkins et al. (2020). The
dominant proper orthogonal modes within a near-wall plane also show a streaky pattern
and are shown to be associated with motion and displacement of the separating surface.
Wang & Ghaemi (2022) later investigate a TSB forming near the trailing edge on the same
airfoil experimentally (Reθ = 2800). They demonstrate large zones present within the TSB
alternating between negative and positive streamwise velocity in time. These structures
are noted to be much larger than the streaks present in the upstream TBL and occur at the
frequency of the breathing motion which is lower than that of the boundary layer streaks.
At the breathing frequency, spectral proper orthogonal modes within a near-wall plane
reveal similar streak-like modes as those noted by Ma et al. (2020). These large zones of
fluctuating streamwise velocity are attributed to Görtler vortices formed as a result of the
streamline curvature. Wu et al. (2020) propose a similar mechanism in their numerical
study of a TSB forming over a flat plate (Reθ = 490).

REFERENCES

ABE, H. 2017 Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent
separation bubble. J. Fluid Mech. 833, 563–598.

ABE, H. 2019 Direct numerical simulation of a turbulent boundary layer with separation and reattachment over
a range of Reynolds numbers. Fluid Dyn. Res. 51 (1), 011409.

ADRIAN, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
ALAM, M. & SANDHAM, N.D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with

turbulent reattachment. J. Fluid Mech. 410, 1–28.
ALIZARD, F., CHERUBINI, S. & ROBINET, J.-C. 2009 Sensitivity and optimal forcing response in separated

boundary layer flows. Phys. Fluids 21 (6), 064108.
AVANCI, M.P., RODRÍGUEZ, D. & ALVES, S. DE B. 2019 A geometrical criterion for absolute instability in

separated boundary layers. Phys. Fluids 31 (1), 014103.
BRAGG, M.B., HEINRICH, D.C. & KHODADOUST, A. 1993 Low-frequency flow oscillation over airfoils near

stall. AIAA J. 31 (7), 1341–1343.
BRANDT, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur.

J. Mech. (B/Fluids) 47, 80–96.
BURGMANN, S. & SCHRÖDER, W. 2008 Investigation of the vortex induced unsteadiness of a separation

bubble via time-resolved and scanning PIV measurements. Exp. Fluids 45 (4), 675–691.

999 A99-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.962


F. Malmir and others

CAMUSSI, R., FELLI, M., PEREIRA, F., ALOISIO, G. & DI MARCO, A. 2008 Statistical properties of wall
pressure fluctuations over a forward-facing step. Phys. Fluids 20 (7), 075113.

CASTRO, I.P. & HAQUE, A. 1987 The structure of a turbulent shear layer bounding a separation region.
J. Fluid Mech. 179, 439–468.

CHERRY, N.J., HILLIER, R. & LATOUR, M.E.M.P. 1983 The unsteady structure of two-dimensional
separated-and-reattaching flows. J. Wind Engng Ind. Aerodyn. 11 (1–3), 95–105.

CHERRY, N.J., HILLIER, R. & LATOUR, M.E.M.P. 1984 Unsteady measurements in a separated and
reattaching flow. J. Fluid Mech. 144, 13–46.

CHERUBINI, S., ROBINET, J.-CH. & DE PALMA, P. 2010 The effects of non-normality and nonlinearity of the
Navier–Stokes operator on the dynamics of a large laminar separation bubble. Phys. Fluids 22 (1), 014102.

COSSU, C. & HWANG, Y. 2017 Self-sustaining processes at all scales in wall-bounded turbulent shear flows.
Phil. Trans. R. Soc. Lond. A 375, 20160088.

DJILALI, N. & GARTSHORE, I.S. 1991 Turbulent flow around a bluff rectangular plate. Part I: experimental
investigation. Trans. ASME J. Fluids Engng 113 (1), 51–59.

DOVGAL, A.V., KOZLOV, V.V. & MICHALKE, A. 1994 Laminar boundary layer separation: instability and
associated phenomena. Prog. Aerosp. Sci. 30 (1), 61–94.

DRIVER, D.M., SEEGMILLER, H.L. & MARVIN, J.G. 1987 Time-dependent behavior of a reattaching shear
layer. AIAA J. 25 (7), 914–919.

EATON, J.K. & JOHNSTON, J.P. 1982 Low frequency unsteadyness of a reattaching turbulent shear layer. In
Turbulent Shear Flows (ed. L.J.S. Bradbury, F. Durst, B.E. Launder, F.W. Schmidt & J.H. Whitelaw), vol.
3, pp. 162–170. Springer.

ELYASI, M. & GHAEMI, S. 2019 Experimental investigation of coherent structures of a three-dimensional
separated turbulent boundary layer. J. Fluid Mech. 859, 1–32.

EMBACHER, M. & FASEL, H.F. 2014 Direct numerical simulations of laminar separation bubbles:
investigation of absolute instability and active flow control of transition to turbulence. J. Fluid Mech.
747, 141–185.

FANG, X. & TACHIE, M.F. 2019 On the unsteady characteristics of turbulent separations over a
forward–backward-facing step. J. Fluid Mech. 863, 994–1030.

FANG, X. & TACHIE, M.F. 2020 Spatio-temporal dynamics of flow separation induced by a forward-facing
step submerged in a thick turbulent boundary layer. J. Fluid Mech. 892, A40.

GRAZIANI, A., KHERHERVÉ, F., MARTINUZZI, R.J. & KEIRSBULCK, L. 2018 Dynamics of the recirculating
areas of a forward-facing step. Exp. Fluids 59, 154.

HACK, M.J.P. & SCHMIDT, O.T. 2021 Extreme events in wall turbulence. J. Fluid Mech. 907, A9.
HAMMOND, D.A. & REDEKOPP, L.G. 1998 Local and global instability properties of separation bubbles.

Eur. J. Mech. (B/Fluids) 17 (2), 145–164.
HEMATI, M.S., WILLIAMS, M.O. & ROWLEY, C.W. 2014 Dynamic mode decomposition for large and

streaming datasets. Phys. Fluids 26 (11), 111701.
HOSSEINVERDI, S. & FASEL, H.F. 2019 Numerical investigation of laminar-turbulent transition in laminar

separation bubbles: the effect of free-stream turbulence. J. Fluid Mech. 858, 714–759.
HUDY, L.M., NAGUIB, A.M. & HUMPHREYS, W.M. 2003 Wall-pressure-array measurements beneath a

separating/reattaching flow region. Phys. Fluids 15 (3), 706–717.
HUERRE, P. & MONKEWITZ, P.A. 1990 Local and global instabilities in spatially developing flows. Annu.

Rev. Fluid Mech. 22 (1), 473–537.
HUTCHINS, N. & MARUSIC, I. 2007 Evidence of very long meandering features in the logarithmic region of

turbulent boundary layers. J. Fluid Mech. 579, 1–28.
JAROSLAWSKI, T., FORTE, M., VERMEERSCH, O., MOSCHETTA, J.-M. & GOWREE, E.R. 2023 Disturbance

growth in a laminar separation bubble subjected to free-stream turbulence. J. Fluid Mech. 956, A33.
JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
KERSWELL, R.R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83–113.
KIYA, M. & SASAKI, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83–113.
KIYA, M. & SASAKI, K. 1985 Structure of large-scale vortices and unsteady reverse flow in the reattaching

zone of a turbulent separation bubble. J. Fluid Mech. 154, 463–491.
KURELEK, J.W., LAMBERT, A.R. & YARUSEVYCH, S. 2016 Coherent structures in the transition process of

a laminar separation bubble. AIAA J. 54 (8), 2295–2309.
LAIZET, S. & LAMBALLAIS, E. 2009 High-order compact schemes for incompressible flows: a simple and

efficient method with quasi-spectral accuracy. J. Comput. Phys. 228 (16), 5989–6015.
LAIZET, S. & LI, N. 2011 Incompact3d: A powerful tool to tackle turbulence problems with up to O(105)

computational cores. Intl J. Numer. Meth. Fluids 67 (11), 1735–1757.

999 A99-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.962


Low-frequency unsteadiness in laminar separation bubbles

LAMBALLAIS, E., FORTUNÉ, V. & LAIZET, S. 2011 Straightforward high-order numerical dissipation via the
viscous term for direct and large eddy simulation. J. Comput. Phys. 230 (9), 3270–3275.

LARDEAU, S., LESCHZINER, M. & ZAKI, T. 2012 Large eddy simulation of transitional separated flow over
a flat plate and a compressor blade. Flow Turbul. Combust. 88 (1–2), 19–44.

LARGEAU, J.F. & MORINIERE, V. 2007 Wall pressure fluctuations and topology in separated flows over a
forward-facing step. Exp. Fluids 42 (1), 21–40.

LE FLOC’H, A. 2021 Experimental analysis in a family of turbulent separation bubbles. Doctoral dissertation,
École de technologie supérieure, Montréal, QC, Canada.

LE FLOC’H, A., DI LABBIO, G. & DUFRESNE, L. 2023 Reconstruction of large-scale coherent structures in
turbulent separation bubbles using phase-consistent DMD. AIAA Aviation 2023 Forum. AIAA.

LE FLOC’H, A., WEISS, J., MOHAMMED-TAIFOUR, A. & DUFRESNE, L. 2020 Measurements of pressure
and velocity fluctuations in a family of turbulent separation bubbles. J. Fluid Mech. 902, A13.

LEE, I. & SUNG, H.J. 2001 Characteristics of wall pressure fluctuations in separated and reattaching flows
over a backward-facing step: part I. Time-mean statistics and cross-spectral analyses. Exp. Fluids 30 (3),
262–272.

LOWERY, P.S. & REYNOLDS, W.C. 1986 Numerical simulation of a spatially-developing, forced, plane mixing
layer. Rep. No. TF-26. PhD thesis, Department of Mechanical Engineering.

LOZANO-DURÁN, A. & JIMÉNEZ, J. 2014 Time-resolved evolution of coherent structures in turbulent
channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471.

MA, A., GIBEAU, B. & GHAEMI, S. 2020 Time-resolved topology of turbulent boundary layer separation
over the trailing edge of an airfoil. J. Fluid Mech. 891, A1.

MA, X. & SCHRÖDER, A. 2017 Analysis of flapping motion of reattaching shear layer behind a
two-dimensional backward-facing step. Phys. Fluids 29 (11), 115104.

MA, X., TANG, Z. & JIANG, N. 2022a Experimental study of self-sustained spanwise streaks and turbulent
mixing in separated shear flow. Intl J. Heat Fluid Flow 96, 109012.

MA, X., TANG, Z. & JIANG, N. 2022b Investigation of spanwise coherent structures in turbulent
backward-facing step flow by time-resolved PIV. Exp. Therm. Fluid Sci. 132, 110569.

MARXEN, O. & HENNINGSON, D.S. 2011 The effect of small-amplitude convective disturbances on the size
and bursting of a laminar separation bubble. J. Fluid Mech. 671, 1–33.

MARXEN, O., LANG, M. & RIST, U. 2013 Vortex formation and vortex breakup in a laminar separation
bubble. J. Fluid Mech. 728, 58–90.

MARXEN, O. & RIST, U. 2010 Mean flow deformation in a laminar separation bubble: separation and stability
characteristics. J. Fluid Mech. 660, 37–54.

MCAULIFFE, B.R. & YARAS, M.I. 2010 Transition mechanisms in separation bubbles under low- and
elevated-freestream turbulence. Trans. ASME J. Turbomach. 132 (1), 011004.

MICHELIS, T., YARUSEVYCH, S. & KOTSONIS, M. 2017 Response of a laminar separation bubble to
impulsive forcing. J. Fluid Mech. 820, 633–666.

MICHELIS, T., YARUSEVYCH, S. & KOTSONIS, M. 2018 On the origin of spanwise vortex deformations in
laminar separation bubbles. J. Fluid Mech. 841, 81–108.

MIOZZI, M., CAPONE, A., COSTANTINI, M., FRATTO, L., KLEIN, C. & DI FELICE, F. 2019 Skin friction
and coherent structures within a laminar separation bubble. Exp. Fluids 60, 13.

MOHAMMED-TAIFOUR, A. & WEISS, J. 2016 Unsteadiness in a large turbulent separation bubble. J. Fluid
Mech. 799, 383–412.

NA, Y. & MOIN, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech.
374, 379–405.

PASSAGIA, P.-Y., LEWEKE, T. & EHRENSTEIN, U. 2012 Transverse instability and low-frequency flapping in
incompressible separated boundary layer flows: an experimental study. J. Fluid Mech. 703, 363–373.

PATRICK, W.P. 1987 Flowfield measurements in a separated andreattached flat plate turbulent boundary layer.
NASA Contractor Report 4052. United Technologies Research Center, East Hartford, CT.

PAULEY, L.L. 1994 Structure of local pressure-driven three-dimensional transient boundary-layer separation.
AIAA J. 32 (5), 997–1005.

PAULEY, L.L., MOIN, P. & REYNOLDS, W.C. 1988 A numerical study of unsteady laminar boundary layer
separation. Rep. No. TF-34. PhD thesis, Department of Mechanical Engineering.

PAULEY, L.L., MOIN, P. & REYNOLDS, W.C. 1990 The structure of two-dimensional separation. J. Fluid
Mech. 220, 397–411.

PEARSON, D.S., GOULART, P.J. & GANAPATHISUBRAMANI, B. 2013 Turbulent separation upstream of a
forward-facing step. J. Fluid Mech. 724, 284–304.

RICHARDSON, R., ZHANG, Y. & CATTAFESTA, L.N. 2023 Low frequency characteristics of a
pressure-gradient induced turbulent separation bubble. AIAA SciTech 2023 Forum. AIAA.

999 A99-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.962


F. Malmir and others

RIST, U. & MAUCHER, U. 2002 Investigations of time-growing instabilities in laminar separation bubbles.
Eur. J. Mech. (B/Fluids) 21, 495–509.

RODRÍGUEZ, D., GENNARO, E.M. & SOUZA, L.F. 2021 Self-excited primary and secondary instability of
laminar separation bubbles. J. Fluid Mech. 906, A13.

SANDHAM, N. 2011 Shock-wave/boundary-layer interactions. In NATO Research and Technology Organisation
(RTO) – Educational Notes Paper, RTO-EN-AVT-195, vol. 5, pp. 1–18.

SANMIGUEL VILA, C., ÖRLÜ, R., VINUESA, R., SCHLATTER, P., IANIRO, A. & DISCETTI, S. 2017
Adverse-pressure-gradient effects on turbulent boundary layers: statistics and flow-field organization. Flow
Turbul. Combust. 99 (3–4), 589–612.

SCHMID, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.
656, 5–28.

SIMONI, D., UBALDI, M. & ZUNINO, P. 2012 Loss production mechanisms in a laminar separation bubble.
Flow Turbul. Combust. 89 (4), 547–562.

SIMONI, D., UBALDI, M. & ZUNINO, P. 2014 Experimental investigation of flow instabilities in a laminar
separation bubble. J. Therm. Sci. 23 (3), 203–214.

SIMPSON, R.L., CHEW, Y.-T. & SHIVAPRASAD, B.G. 1981a The structure of a separating turbulent boundary
layer. Part 1. Mean flow and Reynolds stresses. J. Fluid Mech. 113, 23–51.

SIMPSON, R.L., CHEW, Y.-T. & SHIVAPRASAD, B.G. 1981b The structure of a separating turbulent boundary
layer. Part 2. Higher-order turbulence results. J. Fluid Mech. 113, 53–73.

SIROVICH, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths
45 (3), 561–571.

SPALART, P.R. & STRELETS, M.KH. 2000 Mechanisms of transition and heat transfer in a separation bubble.
J. Fluid Mech. 403, 329–349.

SPAZZINI, P.G., IUSO, G., ONORATO, M., ZURLO, N. & DI CICCA, G.M. 2001 Unsteady behavior of
back-facing step flow. Exp. Fluids 30 (5), 551–561.

STATNIKOV, V., BOLGAR, I., SCHARNOWSKI, S., MEINKE, M., KÄHLER, C.J. & SCHRÖDER, W. 2016
Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration. Eur.
J. Mech. (B/Fluids) 59, 124–134.

STÜER, H., GYR, A. & KINZELBACH, W. 1999 Laminar separation on a forward facing step. Eur. J. Mech.
(B/Fluids) 18 (4), 675–692.

TAFTI, D.K. & VANKA, S.P. 1991a A numerical study of flow separation and reattachment on a blunt plate.
Phys. Fluids 3 (7), 1749–1759.

TAFTI, D.K. & VANKA, S.P. 1991b A three-dimensional numerical study of flow separation and reattachment
on a blunt plate. Phys. Fluids 3 (12), 2887–2909.

THACKER, A., AUBRUN, S., LEROY, A. & DEVINANT, P. 2013 Experimental characterization of flow
unsteadiness in the centerline plane of an Ahmed body rear slant. Exp. Fluids 54 (3), 1479.

TOWNE, A., SCHMIDT, O.T. & COLONIUS, T. 2018 Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867.

TROUTT, T.R., SCHEELKE, B. & NORMAN, T.R. 1984 Organized structures in a reattaching separated flow
field. J. Fluid Mech. 143, 413–427.

TU, J.H., ROWLEY, C.W., LUCHTENBURG, D.M., BRUNTON, S.L. & KUTZ, J.N. 2014 On dynamic mode
decomposition: theory and applications. J. Comput. Dyn. 1 (2), 413–427.

WANG, S. & GHAEMI, S. 2022 Unsteady motions in the turbulent separation bubble of a two-dimensional
wing. J. Fluid Mech. 948, A3.

WEE, D., YI, T., ANNASWAMY, A. & GHONIEM, A.F. 2004 Self-sustained oscillations and vortex shedding
in backward-facing step flows: simulation and linear instability analysis. Phys. Fluids 16 (9), 3361–3373.

WEISS, J., LITTLE, J., THREADGILL, J. & GROSS, A. 2021 Low-frequency unsteadiness in pressure-induced
separation bubbles. AIAA SciTech 2021 Forum. AIAA.

WILHELM, D., HRTEL, C. & KLEISER, L. 2003 Computational analysis of the two-dimensional–three-
dimensional transition in forward-facing step flow. J. Fluid Mech. 489, 1–27.

WILKINS, S.J., HOSSEINALI, M. & HALL, J.W. 2020 Low-frequency dynamics of flow over a
forward–backward-facing step. AIAA J. 58 (9), 3735–3747.

WU, W., MENEVEAU, C. & MITTAL, R. 2020 Spatio-temporal dynamics of turbulent separation bubbles.
J. Fluid Mech. 883, A45.

YANG, Z. & ABDALLA, I.E. 2005 Effects of free-stream turbulence on large-scale coherent structures of
separated boundary layer transition. Intl J. Numer. Meth. Fluids 49 (3), 331–348.

ZAMAN, K.B.M.Q., MCKINZIE, D.J. & RUMSEY, C.J. 1989 A natural low-frequency oscillation of the flow
over an airfoil near stalling conditions. J. Fluid Mech. 202, 403–442.

999 A99-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.962

	1 Introduction
	1.1 Flat plates
	1.2 Scope and objectives

	2 Numerical simulations
	3 Results and discussion
	3.1 Mean flow behaviour
	3.2 Instantaneous flow behaviour
	3.3 Low-frequency unsteadiness
	3.4 Modal decomposition
	3.4.1 Proper orthogonal decomposition
	3.4.2 Dynamic mode decomposition


	4 Further discussion and conclusions
	Appendix A. Low-frequency unsteadiness in other flow configurations
	A.1 Backward-facing steps
	A.2 Forward-facing steps
	A.3 Blunt plates
	A.4 Airfoils

	References

