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Random Harmonic Functions in Growth
Spaces and Bloch-type Spaces

Kjersti Solberg Eikrem

Abstract. Let h3° (D) and h$°(B) be the spaces of harmonic functions in the unit disk and multi-
dimensional unit ball admitting a two-sided radial majorant v(r). We consider functions v that fulfill
a doubling condition. In the two-dimensional case let

u(reio,é) = Z

(uj(){jorj cos jO + ajlfjlrj sin j6),
—0

-

where { = {¢j;} is a sequence of random subnormal variables and aj; are real. In higher dimensions
we consider series of spherical harmonics. We will obtain conditions on the coefficients aj; that imply
that u is in h$°(B) almost surely. Our estimate improves previous results by Bennett, Stegenga, and
Timoney, and we prove that the estimate is sharp. The results for growth spaces can easily be applied
to Bloch-type spaces, and we obtain a similar characterization for these spaces that generalizes results
by Anderson, Clunie, and Pommerenke and by Guo and Liu.

1 Introduction
1.1 Spaces of Harmonic Functions

Let v be a positive increasing continuous function on [0, 1), assume that v(0) = 1
and lim,_,; v(r) = +o00. We study growth spaces of harmonic functions in the unit
disk D and also in the multidimensional unit ball B in R”. We let

hy°(D) = {u: D — R | Au =0, |u(x)| < Kv(|x|) for some K > 0},

and define h3°(B) similarly. The study of harmonic growth spaces on the disk and
the corresponding spaces of analytic functions AJ° was initiated by L. Rubel and A.
Shields in [11] and by A. Shields and D. Williams in [14, 15]. Recently multidimen-
sional analogs were considered in [1, 6]. Various results on the coefficients of func-
tions in growth spaces were obtained in [4]. Hadamard gap series in growth spaces
have been studied by a number of authors; see [5] and references therein.

Examples of functions in h)°(D) can be constructed by lacunary series; see [5].
Another way to construct examples is by using random series, and such functions
will be the main focus of this paper. We consider

(1.1) u(re”, &) = (ajoSjor! cos jO +an&jir sin j6),
j=0
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where § = {j;} is a sequence of independent random variables and
aj = (ajo, ajl) S R%.

We will also study random harmonic functions on B; such functions can be written
as

o0 Ly
(1.2) u(, ) = 32 amor Y (%)
m=0 [=0

where r = |x|, {L,,} depends on n and Y,,; are spherical harmonics of degree m nor-
malized to fulfill ||Y ;oo < 1. Our main results will be proven in several dimensions.
We always assume that the weights satisfy the doubling condition

(1.3) v(1 —d) < Dv(1 — 24d).

Typical examples are

v(r) = (%) “ and v(r) = max{ 1, ( log

1 ) a}
1—7r
for o > 0. For convenience we define a new function g: [1,00) — [1, 00) such that
g(x) = v(1 — 1). Then (1.3) is equivalent to

(1.4) g(2x) < Dg(x).

We will use v and g interchangeably.
The Bloch space is the space of analytic functions f on D satisfying

|F(0)] + sup(l — |z|2) lf'(z)] < occ.
z€D

The generalizations of this space where 1 — |z|? is replaced by another weight w(|z|)
that is decreasing and fulfills lim,_,;- w(r) = 0 are called Bloch-type spaces. A har-
monic function u is in the Bloch-type space B,, if

llulls, = [u(0)] + supw(|z|) |[Vu(z)| < oco.
z€D

Random Bloch functions have been studied by J. M. Anderson, J. Clunie, and
Ch. Pommerenke in [2] and by E Gao in [7].

1.2 Known Results

Leta; = (ajo,a;1) € R*and |aj| = (|ajo|® + |a;i|*)"/% Itis not difficult to show that
if

u(re’) =) (ajor’ cos jO +ajur sin j0) € h*(D),
j=0
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then

(1.5) > Jaj]? < Bg(n)

j=0

see for example [4]. On the other hand, the inequality

(1.6) > lajl < Bg(n)

j=0

is sufficient to imply that u € h$° (D), but it is not necessary. In the special case of the
Hadamard gap series, (1.6) is both necessary and sufficient; see [5], and this is also
the case when all the coefficients are positive [4]. But it is not possible in general to
characterize all functions in h$° (D) by the absolute value of their coefficients. We will
obtain conditions on the coefficients that imply that u defined by (1.1) is in h3°(D)
almost surely, and similarly in higher dimensions.

Let the partial sums of u(re'’) = Z;ﬁo(ﬂjoﬂ cos jO + ajlrj sin j#) be denoted as

n—1
(sﬂu)(reig) = Z(ajorj cos jO + ajlrj sin j6)

j=0

and denote the corresponding Cesaro means by

n n—1 .
) 1 ) . )
(u)(re?) = - E (sju)(re’e) = E (1 — %) (ajor’ cos jO + aj ' sin jO).
=1 =0

By [17, Theorem 3.4, p. 89], the maximum of the Cesaro means is less than or equal
to the maximum of the function

(1.7) max |u(rei9)| > max |(0nu)(rei9)\ for every n.
Although functions in h$° (D) cannot be characterized by the coefficients alone, they
can be characterized by their Cesaro means. The following is [4, Theorem 1.4].

Theorem A  Assume that v satisfies (1.3). If u is a harmonic function on the unit disk,
then u € h$°(D) if and only if ||onu||ee < Cg(n) for all n > 1 and some constant
C>0.

If we consider the partial sums instead, then u € h°(D) only implies that
lIsntt|lcc < Cg(n)logn,
and this result is sharp, see [4].

Random Taylor series is a fascinating subject in harmonic analysis; we refer the
reader to [9] for an excellent introduction to the subject and further references. One
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of the central results that we use goes back to R. Salem and A. Zygmund [13]; it
gives an estimate for the distribution function of a random polynomial. In [13]
trigonometric polynomials of the form Z?]:o &;ja;jcos j¢ are considered, where &;
is a Rademacher sequence (a sequence of independent random variables that take the
values 1 and —1 with equal probability) or a Steinhaus sequence (a sequence {e#/}
where (; are independent and have uniform distribution in [0, 27]). In [9] the cor-
responding result is generalized to other series and subnormal random sequences
(which include both Rademacher and Gaussian sequences and the real part of Stein-
haus sequences).

Conditions on the coefficients of random Taylor series of analytic functions in var-
ious functions spaces have been studied previously in [2] and [4]. In [2] Anderson,
Clunie, and Pommerenke showed that if ¢; > 0, {ei‘Pi} is a Steinhaus sequence and

n ) 1/2
(1.8) (]Z_;JZC?) :O(ﬂ@)’

then f(z,p) = Z;’io cje'?iz belongs to the Bloch space almost surely.

Gao characterized Bloch functions for the case where the random sequence is a
Rademacher sequence; the results give necessary and sufficient conditions for a func-
tion to be a Bloch function almost surely; see [7]. The conditions are given in terms
of non-decreasing rearrangements.

Let AS® denote the space of analytic functions that fulfill |u(z)] < Kv(|z|) for
some K. In [4] G. Bennett, D. A. Stegenga, and R. M. Timoney proved the following
theorem.

Theorem B If {c;}72, is a sequence satisfying

n

2 1/2 g(n)
(;u) <C—

and {e'%i 72, is a Steinhaus sequence, then Z;ﬁo cje'izl € AS° almost surely.

1.3 Contents and Organization of this Paper

In this paper we consider random functions given by (1.1) or more generally by (1.2)
with a random subnormal sequence &,,;. The reason for considering subnormal se-
quences is that they include both Rademacher and normalized Gaussian sequences,
and the proofs are based only on the fundamental inequality &(e'¢) < "'/ that is
used to define subnormal sequences.

The main result of the paper is a sufficient condition on the coefficients {a,,} un-
der which the random series (1.2) belongs to h;°(B) almost surely. As a consequence
of this result we obtain a generalization of Theorem B to harmonic functions of sev-
eral variables. In dimension 2 our main result is similar to Theorem B, but instead
of summing all coefficients from 0 to #n, we sum coefficients between ny_, and ny for
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some sequence 7 that depends on g. In this way we obtain results also in the case
when g grows more slowly than 4/log x.

Usually we start with a weight v and ask for conditions on the coefficients a,, that
guarantee that the function defined by (1.2) is in h$° almost surely. Another way to
look at the result is by starting with a sequence of coefficients {a,, } and asking for the
correct order of growth of typical functions given by (1.2) . We give some examples
and show that in some cases our main result gives a better (more slowly growing)
estimate than Theorem B.

In Section 2 we collect necessary definitions and preliminary results, and we also
formulate a statement that illustrates how adding randomness to the coefficients in-
fluences the growth of the function. The main result and some corollaries are given
in Section 3. In Section 4 we show that the main result is sharp (in some sense). We
also prove some necessary conditions on the coefficients of functions in #3°(D) in
Section 5. Our results can be applied to random functions in Bloch-type spaces and
analytic growth spaces, and we obtain similar results for such functions in Section 6.

2 Motivation and Preliminaries
2.1 Subnormal Variables

We will now consider random functions given by (1.1) and (1.2), where { = {§j;} is
a sequence of random variables. We will restrict ourselves to subnormal variables.

Definition 2.1 A real-valued random variable w is called subnormal if
&™) < N2 forall — oo <\ < 0.
A sequence of independent subnormal variables is called a subnormal sequence.

The random variable that takes the values 1 and —1 with equal probability is sub-
normal, since &(e™) = %(e’\ +e ) < 3. A Rademacher sequence is the sequence
of independent variables with such a probability distribution; thus it is a subnormal
sequence. Any real random variable w with €(w) = 0 and |w| < 1 a.s. is subnormal.
A Gaussian normal variable is subnormal if €(w) = 0 and Var(w) < 1; see [9, p. 67]
and [16, p. 292] for more on subnormal variables.

Unlike Rademacher and Steinhaus variables, subnormal variables are not neces-
sarily symmetric.

2.2 Deterministic and Random Series in Growth Spaces

The result below illustrates that the random sequence influences the growth of the
function. If the growth restriction on the coefficients is strong enough, we can get a
result that implies that the function is in h°(D). Another assumption implies that
the function is in hJ°(D) almost surely. The last point of the proposition concerns a
function with large (carefully chosen) coefficients for which the choice of signs still
makes the function belong to h;°(D). The coefficients are large in the sense that

> iz @; > Cg(n)* for some C, and this is as large as they can be according to (1.5).
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Let np = 1 and for some A > 1 define n; by induction as
(2.1) Nyl = min{l eEN|gl) > Ag(nk)}.

Choose A large enough to make n; > 2n,_1. This way of defining a sequence {n;}
will be used several times. In particular, if v(r) = (i @ or max{1, (log i)a}, we

K .
can choose 1, = 2F and ny = 27, respectively.

Proposition 2.2 Let

u(re”, &= Z(ajofjorj cos jO + ajlfjlrj sin j9)£jrj cos jf.

j=0

: () . i [e%s}

(i) If]aj] < gn—kkfor M1 < j < ny, then u(re, €) € h3°(D) for all sequences {&;;}
with Eji S {—1, 1}.

(i) Iflaj| < g for m—y < j < m and {&;;i} is a subnormal sequence, then

\/ 1k log nye

u(re’ &) € h2°(D) almost surely.
(iii) Ifa; = g\(/”nik) for me_y < j < my, then there exists a sequence {{;} with §; €
{—1,1} such that u(re” &) = Z;’io ajé;ri cos jO € h3°(D).

Proof (i) follows from (1.6), and (ii) will follow from Corollary 3.3. The function in
(iii) is constructed as in the proof of [4, Theorem 1.12(b)]; we will use this function
in the proof of Proposition 5.1. ]

In Proposition 4.2 we will see that (ii) is sharp.

2.3 Preliminaries on Higher-dimensional Functions

We consider real-valued functions of d + 1 real variables, d > 1. Let F, be the space
of restrictions of polynomials on R?*! of degree less than or equal to 7 to the unit
sphere $%. Then the Bernstein inequality

(2.2) IVPlloo < nl[Pllos

holds for all n and all P € F,, where the gradient is evaluated tangentially to the
sphere; see, for example, [10, Theorem V]. For trigonometric polynomials this is a
well-known inequality by Bernstein.

The next lemma will be used to prove our main result.

Lemma 2.3 Let P, € F,, M,, = maxg |P,| and « € (0,1). Then there exists a
spherical cap of measure C((1 — ) /n) in which |P,| > aM,,, and C depends on d.

Proof Let §(y, () be the geodesic distance between two points ¥ and ¢ on S%. Then
let B(y,#) = {¢ € | 6(y,¢) < ¢} be the spherical cap of radius ¢ with center in
y. It can be shown that for the d-dimensional surface measure of the cap

(2.3) |B(y, )| > C¢",
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where the constant depends on d.

Let yo be a point at which |P,| = M,,, and let y; be the closest point where |P,| =
aM,,; there is nothing to prove if such a point does not exist. Just as in the proof of
[13, Lemma 4.2.3], we have

M, (1 — &) = |Pu(y0)| — [Pu(y1)] < |Pu(y0) — Pu(y1)| < 6(y0, y1) max |VP,|,

and by (2.2), §(y0, y1) > (1 — a)/n. Therefore, by (2.3), there exists a spherical cap
of measure at least C((1 — o) /n)? in which |P,| > aM,,. [ |

The next result is [9, Theorem 1, p. 68], which we will need to prove our main
result.

Theorem C Let E be a measure space with a positive measure i, and j1(E) < oo.
Let F be a linear space of measurable bounded functions on E, closed under complex
conjugation, and suppose there exists p > 0 with the following property: if f € F and
f is real, there exists a measurable set I = I(f) C E such that u(I) > p(E)/p and
|f(t)] = 1| flloc for t € I. Let us consider a random finite sum

P=>"&f

where {; is a subnormal sequence and f; € F. Then, for all k > 2,

P(1Ploe 2 3( X 1l logzom)) ) < 2.

3 Main Results
3.1 Sufficient Conditions on the Coefficients

We consider harmonic functions defined by (1.2), where Y,,;; are spherical harmonics
of degree m on the sphere $¢, and we use the notation a,;, = (@, . .. s GmL,,)> SO
2> = 327", |ami|?. We are now ready to prove the following theorem.

Theorem 3.1 Let & = {&,} be a subnormal sequence. If there exists an increasing
sequence {ny} of positive integers such that for all k we have g(nj1) < C1g(ny) and

k .
; \/(Z:«Jm_lﬂ |am‘2> lognj < Cyg(m),

then u(x, &) = anozo ZLQO AmiEmit™Y (%) € hy°(B) almost surely.

In two dimensions |a,,|* is just |@uo| + @1 |%, so the same assumptions imply that
o0
u(re’e, &= Z(amogmorm cos mB + au Ep ™ sinmb) € h° (D)
m=0

almost surely.
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Proof Let S,(y,&) =>.) EZL;"O Ami&mYmi(y), where y € $¢ and denote M,,(¢) =
max,cgi [S,(y,§)|. Let j = j(N) be such that n;_; < N < n; and define Qn(y,§) =
Sn(y:€) = Su;_, (,6) and My (§) = max, ¢ |Qn(y, §)|. Since harmonic polynomi-
als on the sphere fulfill (2.2), by Lemma 2.3 there exists a spherical cap of measure
C(ﬁ)d in which |Qy| > %imN, where C depends on d. Then we can apply Theorem
Cto Qy with E = &4, 14 the surface measure on $4, F the set of functions of the form
ZZ:O Zleo ammYm(y), n < N, k = 2N?, and p a constant that depends on d.

Define
N
En = {f ‘ Ny (&) = Kl\/zmn1+1 |a,,|? log N },

where K] is a constant that is chosen large enough to make 3/log2px < K;/log N.
Then since >, P(En) = Y _n; 1/N* < 00, we have by the Borel-Cantelli lemma
(see for example [9, p. 7]) that for almost all £ thereisa ] = J(£) such that

N
My (&) < K, \/Z,M  lanf?logN

for N > nj. Fix Land let nx_; < L < n. Then for L > ny,

k—1
M(€) < My, () + Y My (&) + M (6)

=]

k
< B¢+ Ky Z \/ZV;_””H |am|?logn; < Be + K Cog(ny)
j=J

< Be + Csg(ng—1) < Be + Csg(L) fora.e. £.

Let B¢ be large enough to make the inequality M;(§) < B¢ + Csg(L) also hold for
0 < L < ny, and also let My(§) < B¢. Letr = |x| and y = x/|x|. By summation by
parts,

L

3 S nasarsal)

m=0 =0

n—1

PSu(,6) — (1= 1) Y Sy, O

k=0

n—1

< #(Caglm) + Bo) + (1 = 1) (B + > (Cag(h) + Bo)r*)
k=1

Then because of the doubling condition we get

oo Ly (%)
(3.1) ‘ Z Z amlgmlrmle(i:) ‘ <C3(1—r) Zg(k)rk + B¢ fora.e. £.

m=0 [=0 k=1
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Pick N suchthat 1 — = <r < 1— 5. Then
(3.2) (1- r)Zg(k)r < (1-r)g(N) Zr < g(N)
k=1
and
2N
(3.3) (1—7) Z gliyrt = (l—r)z ZNZg(ZJN-i-l)r
k=N+1

2N

<(l1-r) Zg(ZJ“N)r2 NZr

<5207 [(1-5)"]" <
=0

Here C4 depends only on D. Then by (3.1), (3.2), and (3.3), u € h3°(B) almost
surely. ]

Remark 3.2 1f we had applied Theorem C to S, instead of Q,,, we could have ob-

tained
N 2
r}1€a§(|Sn(y, ) <C Zrn:O |am|?logn + C¢ fora.e. .
Then if

n 5 1/2 g(n)
(3.4) (mz_:olamI) <C rogn

we would get by partial summation as above that u € h3°(B) almost surely, and this
generalizes Theorem B. But the approach in Theorem 3.1 is better for two reasons.
First of all it makes sense even if ¢ grows more slowly than \/logn. For some exam-
ples it also gives a better estimate, in the sense that when the coefficients are given
and we want to estimate the correct order of growth of a function, Theorem 3.1 may
give a more slowly growing estimate for g than we get by using (3.4). Let n; = 22 for
k=0,1,... and define ay = a; = a, = 0 and

aj=—— Ng—1 < j < #g.

1/2

For u(z,§) = Z?ZO ajfjrj cos j0, (3.4) gives g(x) = (logxloglogx)'/~, since

Mk—1
Za —ZT ~ N + 1 ~ loglogny,
k=0
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1/2

but Theorem 3.1 gives g(x) = (logx)"/#, since

N
Z\/(Zk a?) log ny ~ C+/log ny.
1 J=nk—1+1

We will see in Proposition 4.2 that g(x) = (logx)'/?

function.

is the optimal estimate for this

Corollary 3.3 Let{ = {&u} be a subnormal sequence and define {n;} asin (2.1). If

Ny

2 1/2 g(”k)
(3 fanP) <O

m=ny_1+1

then u(x,&) = >, ZzL:mo A&t Y i(2) € hy°(B) almost surely.

Proof By the doubling condition g(nx) < Dg(ny/2) < DAg(nr—_1), and since

k k

" 1

! 2 . —
-21 \/E w11 (Al log 11} < Crg(me) > i < Cag(m),
pu

j=1
the result follows from Theorem 3.1. |

Remark 3.4 Now it follows easily that Proposition 2.2(ii) is true. Functions with

coefficients
g(ny)

\/nklognk’

are in h°(D) almost surely by Corollary 3.3.

laj] < 1 < j < m,

Remark 3.5 It is not necessary to assume that {Y,,;} is a basis in the proof of The-
orem 3.1; we can use any combination of spherical harmonics. We will need this fact
when we apply our results to Bloch-type functions.

4 Sharpness of Results
4.1 Sharpness of Corollary 3.3

We will now prove that Corollary 3.3 is sharp by giving an example. We will first
prove it in the two-dimensional case and then indicate how it can be generalized to
any dimension. The example is similar to the one given in the proof of [4, Theorem
1.18(b)]. We will use that

n n
(4.1) Hchcos(N+4j)9H > cZ|cj|
j=1 > =1
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for any N and some absolute constant ¢ > 0. This can be shown by using Riesz
products. Let A be a constant such that

1
4.2 - < Z
(42) A—178
where c is the constant in (4.1). Let ny = 2, and for some A that fulfills (4.2) define
ng by induction as in (2.1). We choose A big enough to make n; > 4ni_;.

(o

Proposition 4.1 Let {v,} be any sequence of positive numbers increasing to infinity
and define {ny} as in (2.1). Then for the sequence {a;}, where

g(nk)
log 1

. Mk
, when j = ny_; + 4", 0§m§10g4?,

a; =

and aj = 0 otherwise, we have

"k 1/2 (1)
Z a < Cl/kgik,
(jﬂk1+l ]) V/1og
but u(z, &) = Z;}io ajéjricos jO ¢ h3°(D) for any choice of sequence {&;} where
£ ==+
Proof Inequality (4.2) implies

N—1

c
> uglm) < gvg(n).
k=1

Let 0, be the Cesaro mean; then by (4.1) we have for n = ny,

o )
n Ne—q + 4"
lowidloo = H§ : S0 N (1= B 6 costos + 470
m=0

nN

Llog, (nv/2)]

1 +4m
> iy S| TSR et Y ¢ costn + 47
og ny 0 nN -
N—1 |log, (nk/2)]
() e Bl
S (- B e costns 4|
— g k B— N )
> c—— ! (nn) — E : ()
1%
~ 4log4 YNEUIN K

1 c c
> @(f - g) vng(ny) = Cung(ny)

Hence by Theorem A we get that u(z, £) ¢ h°(D).

To prove the same in R¥"!, let Yjo(y) = R(y1 + iy2)! = cos jf, where y =
(#15- -+, y4+1) and 6 = arctan % Alsoletajo = aj, where a; is as above, and aj; = 0

otherwise. Then u(x,&) = 372, ajo€jor’Yjo(%) ¢ h3°(B).
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4.2 Sharpness of Proposition 2.2(ii)

The next example serves two purposes. One is to prove in another way that Corol-
lary 3.3 is sharp; the other is to show that the estimate in Proposition 2.2(ii) cannot
be improved.

To construct this example we need a result that is based on [13, Lemma 4.5.1].
This lemma is used in a similar way in [2, Theorem 3.7] to prove a result on the
coefficients of Bloch functions.

Lemma A Let§ = {& )2, be a Rademacher sequence. Let

n n n R2
Hy(0,8) =) bi&cosjO, Ry=> b1,  T,=>» bi< ¢t
j=0 j=0 j=0

Then
meax|Hn(9,§)| > C+/R,logn, (C>0)

except for (&, &1, ..., &) € E,, where P(E,) < B(c) n='/'°. The constant C is absolute
and B depends on c.

Then we have the following proposition.

Proposition 4.2 Let§ = {¢;}52, be a Rademacher sequence, let ng = 1 and for some
A large enough define {n;} by induction as in (2.1). Let {1} be any sequence of positive
numbers increasing to oo. Then for the sequence {a;} where ag = a, = a, = 0 and

g(m)

Vy—F——,
v/ g log n

a; = 1 < j < mg,

we have
= 1/2 ()
( Z a2) S ngia
i Vlogn
but almost surely u(z, &) = Z;’io a;éiri cos jO ¢ h°(D).
The main difference between the proof of [2, Theorem 3.7] and the proof of this
result lies in the fact that we need to make it hold for slow growing weights as well,

and we split the function u in two parts, which are estimated separately. Lemma A is
applied to only a part of the function.

Proof The constantsCj, j = 1,2, ... in this proof will be absolute constants. Define
the sequence {n;} by induction as stated, where we choose A > 2 and such that the
following condition is satisfied:

(4.3) ng > 21p_y.

One more condition on A will be specified later.
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Fix ry = 1 — 1/ny and split u into two parts

o AN—1 0o
u(rve”, &) =Y "ajgjrlcos j0 =Y aigiricos j0+ > a;éjr} cos jo
j=0 j=0 j=nn—_1+1

= bN(rN€i97 &+ dN(rNeiea £).

Then

(4.4) lu(rye?, €)| = ‘Zajfjﬂ{r cos 19‘ > |dn(rve?, €)| — |ba(rne?, €)).
0

We will estimate |dy(rye’?, €)| from below and |by(rye’?, €)| from above. Let

nnN .
0, = > (lfé)ajfjr{\,cosj&
j=nN_i+1

This is the Cesaro mean of the partial sum of d(rye”, &). By (1.7),

(4.5) max |d(rne?, &)| > max [ (6, )]-

We will apply Lemma A to hy. Using (4.3), we get

nN . 3ny /4

_ J\? 2 2j I
Ry= 3 (1_E> anl > ¢ 3 (1—a) @
j=ny—1+1 j=nn/2+1
>a™(3) TSN o v
4 \4/ nylogny log ny
Furthermore,
nN . 4 4 2
J\* 44j  (ny —ny_)vg(nn) R,
T, — (1 . 7) 4 < Gy,
e Z nN 4N = (ny log ny)? =N
J=nN—1+1
Then by Lemma A,
(4.6) m;lx|hN(975)| > Cy4/Ryy logny > Csung(ny)

except for £ € E,,. Since Y ;= P(E,) < Y oo, B(C3) ”;1/10, and this is finite by
(4.3), we have by the Borel-Cantelli lemma that for almost all £ there exists a Ny =
No(€) such that (4.6) holds for all N > Ny. Hence by (4.5), for almost all £ we have
for N > Ny(§) that

(4.7) max |d(rye”, §)| > Csug(n)-
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Let S,(6, &) = Y1y ek cos kf and M,,(€) = maxo<p<ar [S4(0,€)|. Let j = j(n)
besuch thatn; ; < n < njanddefine Q,(6,§) = S,(0,§)—S,,_,(0,£) and M, (§) =
maxo<g<ar |Qu(6,&)|. Just as in the proof of Theorem 3.1, it can be shown that for
almost all £ there is ] = J(£) such that

M, (&) < Kl\/<zl_njl+1 alz) logn; < Kyvg(nj)

forn > n;. Fix Landlet n_; < L < n. Then for a.e. £ and L > n;(§),

k—1 k
(48)  ML(&) S My, () + > My (&) +ML(E) < Be+ Ky Y vjgln;)
=J j=J

k—7J
1
< B{ + Klljkg(l’lk) Z E < B{ + 2K1ng(1’lk).
=0

Let B¢ be large enough to make the inequality M;(§) < B¢ + 2K;g(L) also hold for
0 < L < ny,and also let My(§) < Be.
We will now estimate by (rye’?, £). By summation by parts and (4.8),

NN—1

|bN(7Nei9,§)| = ‘ Z aéirky cos 10‘
1=0

HN71—1

S0~ () Y 50,60k

=0

N-2 njpp—1
< Moy, (€ + (1= ) (Be+ Y (Be+ 2Kivgg(n) > 1)
j:() l:n]-
N—2
1
< (2Kywn—1g(ny—1) + B¢) + Be + 2Kiun—18(nn—1) i
=0
Then
(4.9) max |bN(rNe"‘97 &)| < 2B¢ + 6Kyvy_18(nn_1) fora.e. £.

For almost every £ and N > J(&) we get, by letting A > 12K, /Cs and using (4.4),
(4.7), and (4.9), that

m;‘X|“(rN€iﬁ,§)| > Csung(ny) — 6Kivn_1g(nn—1) — 2B

6K,

> Csvng(nn) — "

vN—18(nn) — 2B

C C
2 TSI/Ng(I’lN) — ZBg = TSI/N‘V(TN) — 235

Then almost surely u(z, ) = Ejoio aj&jri cos jO ¢ h3°(D). [ ]
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5 Some Results for Deterministic Functions
5.1 Necessary Conditions on a General Function in 13°(D)

We will now prove some estimates for the growth of the coefficients of functions in
hy° (D). We know that [a;| < Cg(j) from, for example, (1.5). For Hadamard gap
series there exist examples of functions in hJ°(D) for which

lim sup M >0,
isoo 8(J)

for example u(z) = Y 2, g(np)r™ cos mi, where {n;} is defined by (2.1); see [5].
But all the coefficients cannot grow this fast if u € h)°(D):

Proposition 5.1 Let

u(re?) = Z(ajorj cos jO + ajlrj sin j#) € h;°(D)
=0

and define a sequence {ny} as before. Let k = k(j) be such that n_, < j < ny. Then

(5.1) fim inf 2V
j—oo g(j)

Moreover, there exists a function in h®(D) for which lim inf;_, o |a;|\/nk/g(j) > 0, so
the result is sharp.

A related result is given in [4, Theorem 1.16(a)]. There it is proven that if u(z) =
Z;’io bjz € A and |b,| increases with j, then |b;| = O(g(j)/v/7)-
When g grows like x it would be equivalent to replace #y in (5.1) by j, but for

slow-growing functions like logx, that would give a weaker statement, since #; in
that case grows very fast.

Proof In [4, Theorem 1.12(b)] it is proven that

(5.2) > [aj] < Cgn)v/n

=0
whenever u € h{°(D). Then since ny > 2n_y,

Mg

Nk .
— min J|aj| < aj| < Cg(m)y/n
2 ]‘E(ﬂk—l,?’lk]| J| j;+1| J| &Lk o

thus
min ] laj| < 2Cg(m)/v/nx < 2ADCg(j)// 1k,

JE€(ng—1,mk

where D and A are as in (1.4) and (2.1), respectively, and the result follows.
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The function used in [4] to prove that Theorem 1.12(b) is sharp can also be used
here. To construct this function, it is used that there exists a sequence {¢;} in {—1, 1}
such that the polynomials

Z]m:1 &7

vm
satisfy ||Pullcc < 5; see [12]. These are called Rudin—Shapiro polynomials. Now
define

Pm(Z) =

Mg —Mk—1

u(z) = %Zg(nk)z”k*‘Pnrnk | Z glm)r™ ! Z &irl cos(m—y + j)0.

—1 V= Mg—1
By (1.7) we have ||o,t]|co < ||sntt]| 00> S0 4 € h5°(D) by Theorem A, since ||s,u|/oc <
Cg(n). The coefficients have the desired growth, since ny > 2ny_;. [ |

The function constructed in the above proof also proves Proposition 2.2(iii).
The estimate |a;| < p;g(j)/+/], where {p;} is a sequence going to infinity, holds
for most of the coefficients. More precisely, we have the following proposition.

Proposition 5.2 Assume that u(re'’) = Z?io(ajorj cos jO + ajlrj sin jO) € hy°(D)
and let p; be an increasing sequence of positive numbers such that lim;_,., p; = oo.
Define N(n) as the number of a; satisfying j < n and |a;| < p;g(j)/\/j. Then

lim N(n)/n=1.
n— 00

A similar result was proved by E. G. Avhadiev and I. R. Kayumov in [3] for Bloch
functions using a different argument.

Proof LetIy = |{j | 2~! < j < 2% |a;| > p;g(j)/+/7}|. Since by (5.2) we have

2k
Lipyig2 N /V2E < D7 Jaj| < Cg(2MV2E,

j=2k—1+1
it follows that I < Dczk/pzk—l. If2" ! < n < 2™ then

N(n)anZIk:nfo(n). [ |

k=1

6 Application to Other Spaces
6.1 Bloch-type Spaces

We will now see that our results for growth spaces can easily be applied to Bloch-type
spaces B,,. We will consider these spaces in several dimensions, and they are defined
as the spaces of functions that fulfill

[ull, = |u(0)] + sugw(IZI)IVu(z)l < o0,
ze
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where w is as described in the introduction. We always assume that w fullfills a con-
dition equivalent to (1.3):

6.1) w(1f§) > Bw(l — d).

Examples are w(r) = (1 — r)® and (log - — ) “fora > 0.

The function u(x,&) = > ", Zz:o A& Y i(3) is in B, if and only if all
partial derivatives of u are in h2°(B) for v(r) = 1/w(r). We can write Y,,;(x) instead of
Y 1(%), and Y, (x) is a homogeneous harmonic polynomial. By [10, Theorem III]
we have |6%Ym1(x)| < m. Then

0o Ly oo Ly

%u(x, §= Z Z amlfml ml(x) Z Z mamlfml 0 sz(x)

m=1 =0 m=1 =0

By Remark 3.5 and since 8() Yul) 5 2 homogeneous harmonic polynomial bounded

by 1 on the sphere, we can apply Theorem 3.1 with w(r) = 1/v(r). Then the next re-
sult generalizes (1.8) to all weights that satisfy (6.1). It also generalizes [8, Theorem 1]
by Guo and Liu, which is proved for a-Bloch functions.

Corollary 6.1 Let u(x,§) = Y IL:"’() Ant&mit™Y (%), where & = {&m} is a
subnormal sequence. If there exists an increasing sequence {ny} of positive integers such
that for all k we have g(ny1) < C1g(ng) and

C
E \/ m2|am|2) logn; < ——=
— m=n;_,+1 w(l —1/my)

then u € B,, almost surely.

Similarly, Corollary 3.3 gives:

Corollary 6.2 Let & = {&,u} be a subnormal sequence, let A > 1, ny = 1 and define
ny by induction as gy = min{l € N | w(1 — 1/DA < w(1 — 1/m)}. If

g

3 2 1/2 C
(> maal) < U e

m=ny_+1

then u(x,&) = >, ZZL;‘O At Eut™Y i (’;‘) € B, almost surely.

The same results hold for analytic Bloch-type spaces as well; see the next section.
We will give examples of what the last corollary means for w(r) = (1 — r)® and
(log )~ “ for a > 0. The sequence n; can be chosen as n; = 2% and n;, = 22
respectlvely, and a sufficient condition to be in B,, almost surely when w(r) = (1—r)“
is
zk
1/2 pak
20, 12
m”|a, ) <C—,
(X wial) <c

m=2k=1+1
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and for w(r) = (log ﬁ)_“ it is

2

1/2
( Z m2|am\2) / SCzazhk/z_

m=22"141

In the same way as in Proposition 4.1 and 4.2 it can be shown that Corollary 6.2 is
sharp; just replace a; by ja; when defining the coefficients.
Proposition 5.1 and 5.2 can also be applied to Bloch-type functions in the disk:

Proposition 6.3 Let u(re'’) = Z})io(ajorj cos jO + ajlrj sin j#) € B, and define a
sequence {ny} as before. Let k = k(j) be such that ny_; < j < ng. Then
liminf|a;|jw(l — 1/j)y/n < oc.
j—o00

Moreover, there exists a function in B,, for which liminf;_, . |aj|\/nx/g(j) > 0, so the
result is sharp.

For w(r) = (1 — r)® this is lim infj_, |a;|j'~*V2kF < o0, and since 1y does not
grow very fast in this case, this is equivalent to

1. . f . .170( . .
im inf a,|j'~"\/j < o0

For the usual Bloch functions we have lim infj_, » |aj[y/j < oo.

Proposition 6.4 Assume that u(re?y = Z;)Zo(ajorj cos jO + ajlrj sin j) € B,, and
let p; be an increasing sequence of positive numbers such thatlim;_,, p; = oco. Define
N(n) as the number of a; satisfying j < nand |a;j| < m Then

lim N(n)/n=1.
n—oo

This generalizes [3, Corollary 2], which is proved for Bloch functions.

6.2 Analytic Growth Spaces and Bloch-type Spaces

Let AS® denote the space of analytic functions on D that fulfill |u(z)| < Kv(|z|) for
some K, as mentioned in the introduction. We can prove a result similar to Theo-
rem 3.1 in this case as well, and this generalizes Theorem B. The proof is similar to
the proof of Theorem 3.1; we apply Theorem C with F equal to the set of complex
trigonometric polynomials.

Theorem 6.5 Let{ = {&,} be a subnormal sequence. If there exists an increasing
sequence {ny} of positive integers such that for all k we have g(nyy,) < C1g(ng) and

k .
jz_; \/< Z::nf,lﬂ |”m|2) logn; < Cyg(my),

then u(z,&) = > 0 am&mz™ € AS° almost surely.

m=0
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A result similar to Corollary 3.3 follows easily. We can also apply Theorem 6.5 to
get results similar to Corollary 6.1 and Corollary 6.2 for analytic Bloch-type spaces.
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