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Random Harmonic Functions in Growth
Spaces and Bloch-type Spaces
Kjersti Solberg Eikrem

Abstract. Let h∞v (D) and h∞v (B) be the spaces of harmonic functions in the unit disk and multi-
dimensional unit ball admitting a two-sided radial majorant v(r). We consider functions v that fulfill
a doubling condition. In the two-dimensional case let

u(reiθ, ξ) =
∞∑
j=0

(a j0ξ j0r j cos jθ + a j1ξ j1r j sin jθ),

where ξ = {ξ ji} is a sequence of random subnormal variables and a ji are real. In higher dimensions
we consider series of spherical harmonics. We will obtain conditions on the coefficients a ji that imply
that u is in h∞v (B) almost surely. Our estimate improves previous results by Bennett, Stegenga, and
Timoney, and we prove that the estimate is sharp. The results for growth spaces can easily be applied
to Bloch-type spaces, and we obtain a similar characterization for these spaces that generalizes results
by Anderson, Clunie, and Pommerenke and by Guo and Liu.

1 Introduction

1.1 Spaces of Harmonic Functions

Let v be a positive increasing continuous function on [0, 1), assume that v(0) = 1
and limr→1 v(r) = +∞. We study growth spaces of harmonic functions in the unit
disk D and also in the multidimensional unit ball B in Rn. We let

h∞v (D) = {u : D→ R | ∆u = 0, |u(x)| ≤ Kv(|x|) for some K > 0},

and define h∞v (B) similarly. The study of harmonic growth spaces on the disk and
the corresponding spaces of analytic functions A∞v was initiated by L. Rubel and A.
Shields in [11] and by A. Shields and D. Williams in [14, 15]. Recently multidimen-
sional analogs were considered in [1, 6]. Various results on the coefficients of func-
tions in growth spaces were obtained in [4]. Hadamard gap series in growth spaces
have been studied by a number of authors; see [5] and references therein.

Examples of functions in h∞v (D) can be constructed by lacunary series; see [5].
Another way to construct examples is by using random series, and such functions
will be the main focus of this paper. We consider

(1.1) u(reiθ, ξ) =

∞∑
j=0

(a j0ξ j0r j cos jθ + a j1ξ j1r j sin jθ),
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where ξ = {ξ ji} is a sequence of independent random variables and

a j := (a j0, a j1) ∈ R2.

We will also study random harmonic functions on B; such functions can be written
as

(1.2) u(x, ξ) =

∞∑
m=0

Lm∑
l=0

amlξmlr
mYml

( x

r

)
,

where r = |x|, {Lm} depends on n and Yml are spherical harmonics of degree m nor-
malized to fulfill ‖Yml‖∞ ≤ 1. Our main results will be proven in several dimensions.

We always assume that the weights satisfy the doubling condition

(1.3) v(1− d) ≤ Dv(1− 2d).

Typical examples are

v(r) =
( 1

1− r

)α
and v(r) = max

{
1,
(

log
1

1− r

)α}
for α > 0. For convenience we define a new function g : [1,∞) → [1,∞) such that
g(x) = v(1− 1

x ). Then (1.3) is equivalent to

(1.4) g(2x) ≤ Dg(x).

We will use v and g interchangeably.
The Bloch space is the space of analytic functions f on D satisfying

| f (0)| + sup
z∈D

(
1− |z|2

)
| f ′(z)| <∞.

The generalizations of this space where 1 − |z|2 is replaced by another weight w(|z|)
that is decreasing and fulfills limr→1− w(r) = 0 are called Bloch-type spaces. A har-
monic function u is in the Bloch-type space Bw if

‖u‖Bw = |u(0)| + sup
z∈D

w
(
|z|
)
|∇u(z)| <∞.

Random Bloch functions have been studied by J. M. Anderson, J. Clunie, and
Ch. Pommerenke in [2] and by F. Gao in [7].

1.2 Known Results

Let a j = (a j0, a j1) ∈ R2 and |a j | = (|a j0|2 + |a j1|2)1/2. It is not difficult to show that
if

u(reiθ) =

∞∑
j=0

(a j0r j cos jθ + a j1r j sin jθ) ∈ h∞v (D),
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then

(1.5)
n∑

j=0

|a j |2 ≤ Bg(n)2;

see for example [4]. On the other hand, the inequality

(1.6)
n∑

j=0

|a j | ≤ Bg(n)

is sufficient to imply that u ∈ h∞v (D), but it is not necessary. In the special case of the
Hadamard gap series, (1.6) is both necessary and sufficient; see [5], and this is also
the case when all the coefficients are positive [4]. But it is not possible in general to
characterize all functions in h∞v (D) by the absolute value of their coefficients. We will
obtain conditions on the coefficients that imply that u defined by (1.1) is in h∞v (D)
almost surely, and similarly in higher dimensions.

Let the partial sums of u(reiθ) =
∑∞

j=0(a j0r j cos jθ + a j1r j sin jθ) be denoted as

(snu)(reiθ) =

n−1∑
j=0

(a j0r j cos jθ + a j1r j sin jθ)

and denote the corresponding Cesàro means by

(σnu)(reiθ) =
1

n

n∑
j=1

(s ju)(reiθ) =

n−1∑
j=0

(
1− j

n

)
(a j0r j cos jθ + a j1r j sin jθ).

By [17, Theorem 3.4, p. 89], the maximum of the Cesàro means is less than or equal
to the maximum of the function

(1.7) max
θ
|u(reiθ)| ≥ max

θ
|(σnu)(reiθ)| for every n.

Although functions in h∞v (D) cannot be characterized by the coefficients alone, they
can be characterized by their Cesàro means. The following is [4, Theorem 1.4].

Theorem A Assume that v satisfies (1.3). If u is a harmonic function on the unit disk,
then u ∈ h∞v (D) if and only if ‖σnu‖∞ ≤ Cg(n) for all n ≥ 1 and some constant
C ≥ 0.

If we consider the partial sums instead, then u ∈ h∞v (D) only implies that

‖snu‖∞ ≤ Cg(n) log n,

and this result is sharp, see [4].
Random Taylor series is a fascinating subject in harmonic analysis; we refer the

reader to [9] for an excellent introduction to the subject and further references. One
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of the central results that we use goes back to R. Salem and A. Zygmund [13]; it
gives an estimate for the distribution function of a random polynomial. In [13]
trigonometric polynomials of the form

∑N
j=0 ξ ja j cos jφ are considered, where ξ j

is a Rademacher sequence (a sequence of independent random variables that take the
values 1 and −1 with equal probability) or a Steinhaus sequence (a sequence {eiϕ j}
where ϕ j are independent and have uniform distribution in [0, 2π]). In [9] the cor-
responding result is generalized to other series and subnormal random sequences
(which include both Rademacher and Gaussian sequences and the real part of Stein-
haus sequences).

Conditions on the coefficients of random Taylor series of analytic functions in var-
ious functions spaces have been studied previously in [2] and [4]. In [2] Anderson,
Clunie, and Pommerenke showed that if c j ≥ 0, {eiϕ j} is a Steinhaus sequence and

(1.8)
( n∑

j=0

j2c2
j

) 1/2
= O

( n√
log n

)
,

then f (z, ϕ) =
∑∞

j=0 c jeiϕ j z j belongs to the Bloch space almost surely.
Gao characterized Bloch functions for the case where the random sequence is a

Rademacher sequence; the results give necessary and sufficient conditions for a func-
tion to be a Bloch function almost surely; see [7]. The conditions are given in terms
of non-decreasing rearrangements.

Let A∞v denote the space of analytic functions that fulfill |u(z)| ≤ Kv(|z|) for
some K. In [4] G. Bennett, D. A. Stegenga, and R. M. Timoney proved the following
theorem.

Theorem B If {c j}∞j=0 is a sequence satisfying

( n∑
j=0

|c j |2
) 1/2

≤ C
g(n)√
log n

and {eiϕ j}∞j=0 is a Steinhaus sequence, then
∑∞

j=0 c jeiϕ j z j ∈ A∞v almost surely.

1.3 Contents and Organization of this Paper

In this paper we consider random functions given by (1.1) or more generally by (1.2)
with a random subnormal sequence ξml. The reason for considering subnormal se-
quences is that they include both Rademacher and normalized Gaussian sequences,

and the proofs are based only on the fundamental inequality E(eλξ) ≤ eλ
2/2 that is

used to define subnormal sequences.
The main result of the paper is a sufficient condition on the coefficients {aml} un-

der which the random series (1.2) belongs to h∞v (B) almost surely. As a consequence
of this result we obtain a generalization of Theorem B to harmonic functions of sev-
eral variables. In dimension 2 our main result is similar to Theorem B, but instead
of summing all coefficients from 0 to n, we sum coefficients between nk−1 and nk for
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some sequence nk that depends on g. In this way we obtain results also in the case
when g grows more slowly than

√
log x.

Usually we start with a weight v and ask for conditions on the coefficients aml that
guarantee that the function defined by (1.2) is in h∞v almost surely. Another way to
look at the result is by starting with a sequence of coefficients {aml} and asking for the
correct order of growth of typical functions given by (1.2) . We give some examples
and show that in some cases our main result gives a better (more slowly growing)
estimate than Theorem B.

In Section 2 we collect necessary definitions and preliminary results, and we also
formulate a statement that illustrates how adding randomness to the coefficients in-
fluences the growth of the function. The main result and some corollaries are given
in Section 3. In Section 4 we show that the main result is sharp (in some sense). We
also prove some necessary conditions on the coefficients of functions in h∞v (D) in
Section 5. Our results can be applied to random functions in Bloch-type spaces and
analytic growth spaces, and we obtain similar results for such functions in Section 6.

2 Motivation and Preliminaries

2.1 Subnormal Variables

We will now consider random functions given by (1.1) and (1.2), where ξ = {ξ ji} is
a sequence of random variables. We will restrict ourselves to subnormal variables.

Definition 2.1 A real-valued random variable ω is called subnormal if

E(eλω) ≤ eλ
2/2 for all −∞ < λ <∞.

A sequence of independent subnormal variables is called a subnormal sequence.

The random variable that takes the values 1 and−1 with equal probability is sub-

normal, since E(eλω) = 1
2 (eλ + e−λ) ≤ e

1
2λ

2

. A Rademacher sequence is the sequence
of independent variables with such a probability distribution; thus it is a subnormal
sequence. Any real random variable ω with E(ω) = 0 and |ω| ≤ 1 a.s. is subnormal.
A Gaussian normal variable is subnormal if E(ω) = 0 and Var(ω) ≤ 1; see [9, p. 67]
and [16, p. 292] for more on subnormal variables.

Unlike Rademacher and Steinhaus variables, subnormal variables are not neces-
sarily symmetric.

2.2 Deterministic and Random Series in Growth Spaces

The result below illustrates that the random sequence influences the growth of the
function. If the growth restriction on the coefficients is strong enough, we can get a
result that implies that the function is in h∞v (D). Another assumption implies that
the function is in h∞v (D) almost surely. The last point of the proposition concerns a
function with large (carefully chosen) coefficients for which the choice of signs still
makes the function belong to h∞v (D). The coefficients are large in the sense that∑n

j=0 a2
j ≥ Cg(n)2 for some C , and this is as large as they can be according to (1.5).
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Let n0 = 1 and for some A > 1 define nk by induction as

(2.1) nk+1 = min
{

l ∈ N | g(l) ≥ Ag(nk)
}
.

Choose A large enough to make nk ≥ 2nk−1. This way of defining a sequence {nk}
will be used several times. In particular, if v(r) = ( 1

1−r )α or max{1, (log 1
1−r )α}, we

can choose nk = 2k and nk = 22k

, respectively.

Proposition 2.2 Let

u(reiθ, ξ) =

∞∑
j=0

(a j0ξ j0r j cos jθ + a j1ξ j1r j sin jθ)ξ jr
j cos jθ.

(i) If |a j | ≤ g(nk)
nk

for nk−1 < j ≤ nk, then u(reiθ, ξ) ∈ h∞v (D) for all sequences {ξ ji}
with ξ ji ∈ {−1, 1}.

(ii) If |a j | ≤ g(nk)√
nk log nk

for nk−1 < j ≤ nk and {ξ ji} is a subnormal sequence, then

u(reiθ, ξ) ∈ h∞v (D) almost surely.

(iii) If a j = g(nk)√
nk

for nk−1 < j ≤ nk, then there exists a sequence {ξ j} with ξ j ∈
{−1, 1} such that u(reiθ, ξ) =

∑∞
j=0 a jξ jr j cos jθ ∈ h∞v (D).

Proof (i) follows from (1.6), and (ii) will follow from Corollary 3.3. The function in
(iii) is constructed as in the proof of [4, Theorem 1.12(b)]; we will use this function
in the proof of Proposition 5.1.

In Proposition 4.2 we will see that (ii) is sharp.

2.3 Preliminaries on Higher-dimensional Functions

We consider real-valued functions of d + 1 real variables, d ≥ 1. Let Fn be the space
of restrictions of polynomials on Rd+1 of degree less than or equal to n to the unit
sphere Sd. Then the Bernstein inequality

(2.2) ‖∇P‖∞ ≤ n‖P‖∞

holds for all n and all P ∈ Fn, where the gradient is evaluated tangentially to the
sphere; see, for example, [10, Theorem V]. For trigonometric polynomials this is a
well-known inequality by Bernstein.

The next lemma will be used to prove our main result.

Lemma 2.3 Let Pn ∈ Fn, Mn = maxSd |Pn| and α ∈ (0, 1). Then there exists a
spherical cap of measure C((1− α)/n)d in which |Pn| ≥ αMn, and C depends on d.

Proof Let δ(y, ζ) be the geodesic distance between two points y and ζ on Sd. Then
let B(y, φ) = {ζ ∈ Sd | δ(y, ζ) < φ} be the spherical cap of radius φ with center in
y. It can be shown that for the d-dimensional surface measure of the cap

(2.3) |B(y, φ)| ≥ Cφd,
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where the constant depends on d.
Let y0 be a point at which |Pn| = Mn, and let y1 be the closest point where |Pn| =

αMn; there is nothing to prove if such a point does not exist. Just as in the proof of
[13, Lemma 4.2.3], we have

Mn(1− α) = |Pn(y0)| − |Pn(y1)| ≤ |Pn(y0)− Pn(y1)| ≤ δ(y0, y1) max |∇Pn|,

and by (2.2), δ(y0, y1) ≥ (1 − α)/n. Therefore, by (2.3), there exists a spherical cap
of measure at least C((1− α)/n)d in which |Pn| ≥ αMn.

The next result is [9, Theorem 1, p. 68], which we will need to prove our main
result.

Theorem C Let E be a measure space with a positive measure µ, and µ(E) < ∞.
Let F be a linear space of measurable bounded functions on E, closed under complex
conjugation, and suppose there exists ρ > 0 with the following property: if f ∈ F and
f is real, there exists a measurable set I = I( f ) ⊂ E such that µ(I) ≥ µ(E)/ρ and
| f (t)| ≥ 1

2‖ f ‖∞ for t ∈ I. Let us consider a random finite sum

P =
∑

ξ j f j

where ξ j is a subnormal sequence and f j ∈ F. Then, for all κ > 2,

P
(
‖P‖∞ ≥ 3

(∑
‖ f j‖2

∞ log(2ρκ)
) 1/2)

≤ 2

κ
.

3 Main Results

3.1 Sufficient Conditions on the Coefficients

We consider harmonic functions defined by (1.2), where Yml are spherical harmonics
of degree m on the sphere Sd, and we use the notation am = (am0, . . . , amLm ), so
|am|2 =

∑Lm

l=0 |aml|2. We are now ready to prove the following theorem.

Theorem 3.1 Let ξ = {ξml} be a subnormal sequence. If there exists an increasing
sequence {nk} of positive integers such that for all k we have g(nk+1) ≤ C1g(nk) and

k∑
j=1

√(∑n j

m=n j−1+1
|am|2

)
log n j ≤ C2g(nk),

then u(x, ξ) =
∑∞

m=0

∑Lm

l=0 amlξmlrmYml(
x
r ) ∈ h∞v (B) almost surely.

In two dimensions |am|2 is just |am0|2 + |am1|2, so the same assumptions imply that

u(reiθ, ξ) =

∞∑
m=0

(am0ξm0rm cos mθ + am1ξm1rm sin mθ) ∈ h∞v (D)

almost surely.
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Proof Let Sn(y, ξ) =
∑n

m=0

∑Lm

l=0 amlξmlYml(y), where y ∈ Sd and denote Mn(ξ) =
maxy∈Sd |Sn(y, ξ)|. Let j = j(N) be such that n j−1 < N ≤ n j and define QN (y, ξ) =
SN (y, ξ)− Sn j−1 (y, ξ) and MN (ξ) = maxy∈Sd |QN (y, ξ)|. Since harmonic polynomi-
als on the sphere fulfill (2.2), by Lemma 2.3 there exists a spherical cap of measure
C( 1

2N )d in which |QN | ≥ 1
2 MN , where C depends on d. Then we can apply Theorem

C to QN with E = Sd, µ the surface measure on Sd, F the set of functions of the form∑N
m=0

∑Lm

l=0 amlξmlYml(y), n ≤ N, κ = 2N2, and ρ a constant that depends on d.
Define

EN =

{
ξ
∣∣∣ MN (ξ) ≥ K1

√∑N

m=n j−1+1
|am|2 log N

}
,

where K1 is a constant that is chosen large enough to make 3
√

log 2ρκ ≤ K1

√
log N.

Then since
∑∞

N=1 P(EN ) =
∑∞

N=1 1/N2 <∞, we have by the Borel–Cantelli lemma
(see for example [9, p. 7]) that for almost all ξ there is a J = J(ξ) such that

MN (ξ) ≤ K1

√∑N

m=n j−1+1
|am|2 log N

for N ≥ n J . Fix L and let nk−1 < L ≤ nk. Then for L > n J ,

ML(ξ) ≤ Mn J−1 (ξ) +
k−1∑
j= J

Mn j (ξ) + ML(ξ)

≤ Bξ + K1

k∑
j= J

√∑n j

m=n j−1+1
|am|2 log n j ≤ Bξ + K1C2g(nk)

≤ Bξ + C3g(nk−1) ≤ Bξ + C3g(L) for a.e. ξ.

Let Bξ be large enough to make the inequality ML(ξ) ≤ Bξ + C3g(L) also hold for
0 < L ≤ n J , and also let M0(ξ) ≤ Bξ . Let r = |x| and y = x/|x|. By summation by
parts,

∣∣∣ n∑
m=0

Lm∑
l=0

amlξmlr
mYml

( x

r

)∣∣∣
=
∣∣∣ rnSn(y, ξ)− (1− r)

n−1∑
k=0

Sk(y, ξ)rk
∣∣∣

≤ rn(C3g(n) + Bξ) + (1− r)
(

Bξ +
n−1∑
k=1

(C3g(k) + Bξ)rk
)
.

Then because of the doubling condition we get

(3.1)
∣∣∣ ∞∑

m=0

Lm∑
l=0

amlξmlr
mYml

( x

r

)∣∣∣ ≤ C3(1− r)
∞∑

k=1

g(k)rk + Bξ for a.e. ξ.
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Pick N such that 1− 1
N−1 < r ≤ 1− 1

N . Then

(3.2) (1− r)
N∑

k=1

g(k)rk ≤ (1− r)g(N)
N∑

k=1

rk ≤ g(N)

and

(1− r)
∞∑

k=N+1

g(k)rk = (1− r)
∞∑
j=0

r2 j N
2 j N∑
i=1

g(2 jN + i)ri

≤ (1− r)
∞∑
j=0

g(2 j+1N)r2 j N
2 j N∑
i=1

ri

≤ g(N)
∞∑
j=0

D j+1
[(

1− 1

N

)N] 2 j

≤ C4g(N).

(3.3)

Here C4 depends only on D. Then by (3.1), (3.2), and (3.3), u ∈ h∞v (B) almost
surely.

Remark 3.2 If we had applied Theorem C to Sn instead of Qn, we could have ob-
tained

max
y∈S
|Sn(y, ξ)| ≤ C

√∑n

m=0
|am|2 log n + Cξ for a.e. ξ.

Then if

(3.4)
( n∑

m=0

|am|2
) 1/2

≤ C
g(n)√
log n

,

we would get by partial summation as above that u ∈ h∞v (B) almost surely, and this
generalizes Theorem B. But the approach in Theorem 3.1 is better for two reasons.
First of all it makes sense even if g grows more slowly than

√
log n. For some exam-

ples it also gives a better estimate, in the sense that when the coefficients are given
and we want to estimate the correct order of growth of a function, Theorem 3.1 may
give a more slowly growing estimate for g than we get by using (3.4). Let nk = 22k

for
k = 0, 1, . . . and define a0 = a1 = a2 = 0 and

a j =
1
√

nk
, nk−1 < j ≤ nk.

For u(z, ξ) =
∑∞

j=0 a jξ jr j cos jθ, (3.4) gives g(x) = (log x log log x)1/2, since

nN∑
j=0

a2
j =

N∑
k=0

nk − nk−1

nk
' N + 1 ' log log nN ,
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but Theorem 3.1 gives g(x) = (log x)1/2, since

N∑
k=1

√(∑nk

j=nk−1+1
a2

j

)
log nk ' C

√
log nN .

We will see in Proposition 4.2 that g(x) = (log x)1/2 is the optimal estimate for this
function.

Corollary 3.3 Let ξ = {ξml} be a subnormal sequence and define {nk} as in (2.1). If

( nk∑
m=nk−1+1

|am|2
) 1/2

≤ C
g(nk)√
log nk

,

then u(x, ξ) =
∑∞

m=0

∑Lm

l=0 amlξmlrmYml(
x
r ) ∈ h∞v (B) almost surely.

Proof By the doubling condition g(nk) ≤ Dg(nk/2) ≤ DAg(nk−1), and since

k∑
j=1

√∑n j

m=n j−1+1
|am|2 log n j ≤ C1g(nk)

k∑
j=1

1

Ak− j
≤ C2g(nk),

the result follows from Theorem 3.1.

Remark 3.4 Now it follows easily that Proposition 2.2(ii) is true. Functions with
coefficients

|a j | ≤
g(nk)√
nk log nk

, nk−1 < j ≤ nk,

are in h∞v (D) almost surely by Corollary 3.3.

Remark 3.5 It is not necessary to assume that {Yml} is a basis in the proof of The-
orem 3.1; we can use any combination of spherical harmonics. We will need this fact
when we apply our results to Bloch-type functions.

4 Sharpness of Results

4.1 Sharpness of Corollary 3.3

We will now prove that Corollary 3.3 is sharp by giving an example. We will first
prove it in the two-dimensional case and then indicate how it can be generalized to
any dimension. The example is similar to the one given in the proof of [4, Theorem
1.18(b)]. We will use that

(4.1)
∥∥∥ n∑

j=1

c j cos(N + 4 j)θ
∥∥∥
∞
≥ c

n∑
j=1

|c j |
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for any N and some absolute constant c > 0. This can be shown by using Riesz
products. Let A be a constant such that

(4.2)
1

A− 1
≤ c

8
,

where c is the constant in (4.1). Let n0 = 2, and for some A that fulfills (4.2) define
nk by induction as in (2.1). We choose A big enough to make nk ≥ 4nk−1.

Proposition 4.1 Let {νk} be any sequence of positive numbers increasing to infinity
and define {nk} as in (2.1). Then for the sequence {a j}, where

a j = νk
g(nk)

log nk
, when j = nk−1 + 4m, 0 ≤ m ≤ log4

nk

2
,

and a j = 0 otherwise, we have( nk∑
j=nk−1+1

a2
j

) 1/2
≤ Cνk

g(nk)√
log nk

,

but u(z, ξ) =
∑∞

j=0 a jξ jr j cos jθ /∈ h∞v (D) for any choice of sequence {ξ j} where
ξ j = ±1.

Proof Inequality (4.2) implies

N−1∑
k=1

νkg(nk) ≤ c

8
νN g(nN ).

Let σn be the Cesàro mean; then by (4.1) we have for n = nN ,

‖σnu‖∞ =
∥∥∥ N∑

k=1

νk
g(nk)

log nk

blog4(nk/2)c∑
m=0

(
1− nk−1 + 4m

nN

)
ξnk−1+4m cos(nk−1 + 4m)θ

∥∥∥
∞

≥ νN
g(nN )

log nN

∥∥∥ blog4(nN/2)c∑
m=0

(
1− nN−1 + 4m

nN

)
ξnN−1+4m cos(nN−1 + 4m)θ

∥∥∥
∞

−
∥∥∥N−1∑

k=1

νk
g(nk)

log nk

blog4(nk/2)c∑
m=0

(
1− nk−1 + 4m

nN

)
ξnk−1+4m cos(nk−1 + 4m)θ

∥∥∥
∞

≥ c
1

4 log 4
νN g(nN )− 1

log 4

N−1∑
k=1

νkg(nk)

≥ 1

log 4

( c

4
− c

8

)
νN g(nN ) = CνN g(nN )

Hence by Theorem A we get that u(z, ξ) /∈ h∞v (D).

To prove the same in Rd+1, let Y j0(y) = <(y1 + i y2) j = cos jθ, where y =
(y1, . . . , yd+1) and θ = arctan y2

y1
. Also let a j0 = a j , where a j is as above, and a ji = 0

otherwise. Then u(x, ξ) =
∑∞

j=0 a j0ξ j0r jY j0( x
r ) /∈ h∞v (B).
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4.2 Sharpness of Proposition 2.2(ii)

The next example serves two purposes. One is to prove in another way that Corol-
lary 3.3 is sharp; the other is to show that the estimate in Proposition 2.2(ii) cannot
be improved.

To construct this example we need a result that is based on [13, Lemma 4.5.1].
This lemma is used in a similar way in [2, Theorem 3.7] to prove a result on the
coefficients of Bloch functions.

Lemma A Let ξ = {ξk}∞k=0 be a Rademacher sequence. Let

Hn(θ, ξ) =

n∑
j=0

b jξ j cos jθ, Rn =

n∑
j=0

b2
j , Tn =

n∑
j=0

b4
j ≤ c

R2
n

n
.

Then
max
θ
|Hn(θ, ξ)| > C

√
Rn log nn (C > 0)

except for (ξ0, ξ1, . . . , ξn) ∈ En, where P(En) < B(c) n−1/10. The constant C is absolute
and B depends on c.

Then we have the following proposition.

Proposition 4.2 Let ξ = {ξ j}∞j=0 be a Rademacher sequence, let n0 = 1 and for some
A large enough define {nk} by induction as in (2.1). Let {νk} be any sequence of positive
numbers increasing to∞. Then for the sequence {a j} where a0 = a1 = a2 = 0 and

a j = νk
g(nk)√
nk log nk

, nk−1 < j ≤ nk,

we have ( nk∑
j=nk−1+1

a2
j

) 1/2
≤ νk

g(nk)√
log nk

,

but almost surely u(z, ξ) =
∑∞

j=0 a jξ jr j cos jθ /∈ h∞v (D).

The main difference between the proof of [2, Theorem 3.7] and the proof of this
result lies in the fact that we need to make it hold for slow growing weights as well,
and we split the function u in two parts, which are estimated separately. Lemma A is
applied to only a part of the function.

Proof The constants C j , j = 1, 2, . . . in this proof will be absolute constants. Define
the sequence {nk} by induction as stated, where we choose A ≥ 2 and such that the
following condition is satisfied:

(4.3) nk > 2nk−1.

One more condition on A will be specified later.
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Fix rN = 1− 1/nN and split u into two parts

u(rN eiθ, ξ) =

∞∑
j=0

a jξ jr
j
N cos jθ =

nN−1∑
j=0

a jξ jr
j
N cos jθ +

∞∑
j=nN−1+1

a jξ jr
j
N cos jθ

= bN (rN eiθ, ξ) + dN (rN eiθ, ξ).

Then

(4.4) |u(rN eiθ, ξ)| =
∣∣∣ ∞∑

j=0

a jξ jr
j
N cos jθ

∣∣∣ ≥ |dN (rN eiθ, ξ)| − |bN (rN eiθ, ξ)|.

We will estimate |dN (rN eiθ, ξ)| from below and |bN (rN eiθ, ξ)| from above. Let

hN (θ, ξ) =

nN∑
j=nN−1+1

(
1− j

nN

)
a jξ jr

j
N cos jθ.

This is the Cesàro mean of the partial sum of d(rN eiθ, ξ). By (1.7),

(4.5) max
θ
|d(rN eiθ, ξ)| ≥ max

θ
|hN (θ, ξ)|.

We will apply Lemma A to hN . Using (4.3), we get

RnN =

nN∑
j=nN−1+1

(
1− j

nN

) 2
a2

j r
2 j
N ≥ C1

3nN/4∑
j=nN/2+1

(
1− j

nN

) 2
a2

j

≥ C1
nN

4

( 1

4

) 2 ν2
N g(nN )2

nN log nN
≥ C2

ν2
N g(nN )2

log nN
.

Furthermore,

TnN =

nN∑
j=nN−1+1

(
1− j

nN

) 4
a4

j r
4 j
N ≤

(nN − nN−1)ν4
N g(nN )4

(nN log nN )2
≤ C3

R2
nN

nN
.

Then by Lemma A,

(4.6) max
θ
|hN (θ, ξ)| > C4

√
RnN log nN ≥ C5νN g(nN )

except for ξ ∈ EnN . Since
∑∞

k=1 P(Enk ) <
∑∞

k=1 B(C3) n−1/10
k , and this is finite by

(4.3), we have by the Borel–Cantelli lemma that for almost all ξ there exists a N0 =
N0(ξ) such that (4.6) holds for all N ≥ N0. Hence by (4.5), for almost all ξ we have
for N ≥ N0(ξ) that

(4.7) max
θ
|d(rN eiθ, ξ)| ≥ C5νN g(nN ).

https://doi.org/10.4153/CJM-2013-029-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-029-7


Random Harmonic Functions in Growth Spaces and Bloch-type Spaces 297

Let Sn(θ, ξ) =
∑n

k=0 akξk cos kθ and Mn(ξ) = max0≤θ≤2π |Sn(θ, ξ)|. Let j = j(n)
be such that n j−1 < n ≤ n j and define Qn(θ, ξ) = Sn(θ, ξ)−Sn j−1 (θ, ξ) and Mn(ξ) =
max0≤θ≤2π |Qn(θ, ξ)|. Just as in the proof of Theorem 3.1, it can be shown that for
almost all ξ there is J = J(ξ) such that

Mn(ξ) ≤ K1

√(∑n

l=n j−1+1
a2

l

)
log n j ≤ K1ν jg(n j)

for n ≥ n J . Fix L and let nk−1 < L ≤ nk. Then for a.e. ξ and L ≥ n J(ξ),

ML(ξ) ≤ Mn J−1 (ξ) +
k−1∑
j= J

Mn j (ξ) + ML(ξ) ≤ Bξ + K1

k∑
j= J

ν jg(n j)

≤ Bξ + K1νkg(nk)
k− J∑
l=0

1

Al
≤ Bξ + 2K1νkg(nk).

(4.8)

Let Bξ be large enough to make the inequality ML(ξ) ≤ Bξ + 2K1g(L) also hold for
0 < L ≤ n J , and also let M0(ξ) ≤ Bξ .

We will now estimate bN (rN eiθ, ξ). By summation by parts and (4.8),

∣∣bN (rN eiθ, ξ)
∣∣ =

∣∣∣ nN−1∑
l=0

alξlr
l
N cos lθ

∣∣∣
=
∣∣∣ rnN−1

N SnN−1 (θ, ξ)− (1− rN )

nN−1−1∑
l=0

Sl(θ, ξ)rl
N

∣∣∣
≤ rnN−1

N MnN−1 (ξ) + (1− rN )
(

Bξ +
N−2∑
j=0

(
Bξ + 2K1ν jg(n j)

) n j+1−1∑
l=n j

rl
N

)

≤
(

2K1νN−1g(nN−1) + Bξ
)

+ Bξ + 2K1νN−1g(nN−1)
N−2∑
j=0

1

A j

Then

(4.9) max
θ
|bN (rN eiθ, ξ)| ≤ 2Bξ + 6K1νN−1g(nN−1) for a.e. ξ.

For almost every ξ and N ≥ J(ξ) we get, by letting A ≥ 12K1/C5 and using (4.4),
(4.7), and (4.9), that

max
θ
|u(rN eiθ, ξ)| > C5νN g(nN )− 6K1νN−1g(nN−1)− 2Bξ

≥ C5νN g(nN )− 6K1

A
νN−1g(nN )− 2Bξ

≥ C5

2
νN g(nN )− 2Bξ =

C5

2
νN v(rN )− 2Bξ.

Then almost surely u(z, ξ) =
∑∞

j=0 a jξ jr j cos jθ /∈ h∞v (D).
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5 Some Results for Deterministic Functions

5.1 Necessary Conditions on a General Function in h∞v (D)

We will now prove some estimates for the growth of the coefficients of functions in
h∞v (D). We know that |a j | ≤ Cg( j) from, for example, (1.5). For Hadamard gap
series there exist examples of functions in h∞v (D) for which

lim sup
j→∞

|a j |
g( j)

> 0,

for example u(z) =
∑∞

k=0 g(nk)rnk cos nkθ, where {nk} is defined by (2.1); see [5].
But all the coefficients cannot grow this fast if u ∈ h∞v (D):

Proposition 5.1 Let

u(reiθ) =

∞∑
j=0

(a j0r j cos jθ + a j1r j sin jθ) ∈ h∞v (D)

and define a sequence {nk} as before. Let k = k( j) be such that nk−1 < j ≤ nk. Then

(5.1) lim inf
j→∞

|a j |
√

nk

g( j)
<∞.

Moreover, there exists a function in h∞v (D) for which lim inf j→∞ |a j |
√

nk/g( j) > 0, so
the result is sharp.

A related result is given in [4, Theorem 1.16(a)]. There it is proven that if u(z) =∑∞
j=0 b jz j ∈ A∞v and |bn| increases with j, then |b j | = O(g( j)/

√
j).

When g grows like xα it would be equivalent to replace nk in (5.1) by j, but for
slow-growing functions like log x, that would give a weaker statement, since nk in
that case grows very fast.

Proof In [4, Theorem 1.12(b)] it is proven that

(5.2)
n∑

j=0

|a j | ≤ Cg(n)
√

n

whenever u ∈ h∞v (D). Then since nk ≥ 2nk−1,

nk

2
min

j∈(nk−1,nk]
|a j | ≤

nk∑
j=nk−1+1

|a j | ≤ Cg(nk)
√

nk,

thus
min

j∈(nk−1,nk]
|a j | ≤ 2Cg(nk)/

√
nk ≤ 2ADCg( j)/

√
nk,

where D and A are as in (1.4) and (2.1), respectively, and the result follows.
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The function used in [4] to prove that Theorem 1.12(b) is sharp can also be used
here. To construct this function, it is used that there exists a sequence {ξ j} in {−1, 1}
such that the polynomials

Pm(z) =

∑m
j=1 ξ jz j

√
m

satisfy ‖Pm‖∞ ≤ 5; see [12]. These are called Rudin–Shapiro polynomials. Now
define

u(z) = <
∞∑

k=1

g(nk)znk−1 Pnk−nk−1 (z) =

∞∑
k=1

g(nk)rnk−1

√
nk − nk−1

nk−nk−1∑
j=1

ξ jr
j cos(nk−1 + j)θ.

By (1.7) we have ‖σnu‖∞ ≤ ‖snu‖∞, so u ∈ h∞v (D) by Theorem A, since ‖snu‖∞ ≤
Cg(n). The coefficients have the desired growth, since nk ≥ 2nk−1.

The function constructed in the above proof also proves Proposition 2.2(iii).
The estimate |a j | ≤ p jg( j)/

√
j, where {p j} is a sequence going to infinity, holds

for most of the coefficients. More precisely, we have the following proposition.

Proposition 5.2 Assume that u(reiθ) =
∑∞

j=0(a j0r j cos jθ + a j1r j sin jθ) ∈ h∞v (D)
and let p j be an increasing sequence of positive numbers such that lim j→∞ p j = ∞.
Define N(n) as the number of a j satisfying j ≤ n and |a j | ≤ p jg( j)/

√
j. Then

lim
n→∞

N(n)/n = 1.

A similar result was proved by F. G. Avhadiev and I. R. Kayumov in [3] for Bloch
functions using a different argument.

Proof Let Ik = |{ j | 2k−1 < j ≤ 2k, |a j | > p jg( j)/
√

j}|. Since by (5.2) we have

Ik p2k−1 g(2k−1)/
√

2k <

2k∑
j=2k−1+1

|a j | ≤ Cg(2k)
√

2k,

it follows that Ik < DC2k/p2k−1 . If 2m−1 < n ≤ 2m, then

N(n) ≥ n−
m∑

k=1

Ik = n− o(n).

6 Application to Other Spaces

6.1 Bloch-type Spaces

We will now see that our results for growth spaces can easily be applied to Bloch-type
spaces Bw. We will consider these spaces in several dimensions, and they are defined
as the spaces of functions that fulfill

‖u‖Bw = |u(0)| + sup
z∈B

w(|z|)|∇u(z)| <∞,

https://doi.org/10.4153/CJM-2013-029-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-029-7


300 K. S. Eikrem

where w is as described in the introduction. We always assume that w fullfills a con-
dition equivalent to (1.3):

(6.1) w
(

1− d

2

)
≥ Bw(1− d).

Examples are w(r) = (1− r)α and (log 1
1−r )−α for α > 0.

The function u(x, ξ) =
∑∞

m=0

∑Lm

l=0 amlξmlrmYml(
x
r ) is in Bw if and only if all

partial derivatives of u are in h∞v (B) for v(r) = 1/w(r). We can write Yml(x) instead of
rmYml(

x
r ), and Yml(x) is a homogeneous harmonic polynomial. By [10, Theorem III]

we have | ∂∂xi
Yml(x)| ≤ m. Then

∂

∂xi
u(x, ξ) =

∞∑
m=1

Lm∑
l=0

amlξml
∂

∂xi
Yml(x) =

∞∑
m=1

Lm∑
l=0

mamlξml
∂

∂xi

Yml(x)

m

By Remark 3.5 and since ∂
∂xi

Yml(x)
m is a homogeneous harmonic polynomial bounded

by 1 on the sphere, we can apply Theorem 3.1 with w(r) = 1/v(r). Then the next re-
sult generalizes (1.8) to all weights that satisfy (6.1). It also generalizes [8, Theorem 1]
by Guo and Liu, which is proved for α-Bloch functions.

Corollary 6.1 Let u(x, ξ) =
∑∞

m=0

∑Lm

l=0 amlξmlrmYml(
x
r ), where ξ = {ξml} is a

subnormal sequence. If there exists an increasing sequence {nk} of positive integers such
that for all k we have g(nk+1) ≤ C1g(nk) and

k∑
i=1

√(∑ni

m=ni−1+1
m2|am|2

)
log ni ≤

C2

w(1− 1/nk)
,

then u ∈ Bw almost surely.

Similarly, Corollary 3.3 gives:

Corollary 6.2 Let ξ = {ξml} be a subnormal sequence, let A > 1, n0 = 1 and define
nk by induction as nk+1 = min{l ∈ N | w(1− 1/l)A ≤ w(1− 1/nk)}. If

( nk∑
m=nk−1+1

m2|am|2
) 1/2

≤ C

w(1− 1/nk)
√

log nk

,

then u(x, ξ) =
∑∞

m=0

∑Lm

l=0 amlξmlrmYml

(
x
r

)
∈ Bw almost surely.

The same results hold for analytic Bloch-type spaces as well; see the next section.
We will give examples of what the last corollary means for w(r) = (1 − r)α and

(log 1
1−r )−α for α > 0. The sequence nk can be chosen as nk = 2k and nk = 22k

,
respectively, and a sufficient condition to be inBw almost surely when w(r) = (1−r)α

is ( 2k∑
m=2k−1+1

m2|am|2
) 1/2

≤ C
2αk

√
k
,
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and for w(r) = (log 1
1−r )−α it is

( 22k∑
m=22k−1 +1

m2|am|2
) 1/2

≤ C2α2k−k/2.

In the same way as in Proposition 4.1 and 4.2 it can be shown that Corollary 6.2 is
sharp; just replace a j by ja j when defining the coefficients.

Proposition 5.1 and 5.2 can also be applied to Bloch-type functions in the disk:

Proposition 6.3 Let u(reiθ) =
∑∞

j=0(a j0r j cos jθ + a j1r j sin jθ) ∈ Bw and define a
sequence {nk} as before. Let k = k( j) be such that nk−1 < j ≤ nk. Then

lim inf
j→∞

|a j | jw(1− 1/ j)
√

nk <∞.

Moreover, there exists a function in Bw for which lim inf j→∞ |a j |
√

nk/g( j) > 0, so the
result is sharp.

For w(r) = (1 − r)α this is lim inf j→∞ |a j | j1−α
√

2k < ∞, and since nk does not
grow very fast in this case, this is equivalent to

lim inf
j→∞

|a j | j1−α√ j <∞.

For the usual Bloch functions we have lim inf j→∞ |a j |
√

j <∞.

Proposition 6.4 Assume that u(reiθ) =
∑∞

j=0(a j0r j cos jθ + a j1r j sin jθ) ∈ Bw and
let p j be an increasing sequence of positive numbers such that lim j→∞ p j =∞. Define
N(n) as the number of a j satisfying j ≤ n and |a j | ≤ p j

jw(1−1/ j)
√

j
. Then

lim
n→∞

N(n)/n = 1.

This generalizes [3, Corollary 2], which is proved for Bloch functions.

6.2 Analytic Growth Spaces and Bloch-type Spaces

Let A∞v denote the space of analytic functions on D that fulfill |u(z)| ≤ Kv(|z|) for
some K, as mentioned in the introduction. We can prove a result similar to Theo-
rem 3.1 in this case as well, and this generalizes Theorem B. The proof is similar to
the proof of Theorem 3.1; we apply Theorem C with F equal to the set of complex
trigonometric polynomials.

Theorem 6.5 Let ξ = {ξm} be a subnormal sequence. If there exists an increasing
sequence {nk} of positive integers such that for all k we have g(nk+1) ≤ C1g(nk) and

k∑
j=1

√(∑n j

m=n j−1+1
|am|2

)
log n j ≤ C2g(nk),

then u(z, ξ) =
∑∞

m=0 amξmzm ∈ A∞v almost surely.
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A result similar to Corollary 3.3 follows easily. We can also apply Theorem 6.5 to
get results similar to Corollary 6.1 and Corollary 6.2 for analytic Bloch-type spaces.
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