ON SUBTOURNAMENTS OF A TOURNAMENT
J.W. Moon

(received September 27, 1965)

Beineke and Harary [1] recently showed that the maximum
number of strong tournaments with k nodes that can be contained
in a tournament with n nodes is

(\E\) - (n+1J /[-n]) - {inJ {% (n - 1)]\ ,

k-1 /

if 3<k<n. The object of this note is to obtain some additional
results of this type. We will use essentially the same terminology
as was used in [1], so we will not repeat the standard definitions
here.

L. Moser (see [5], p. 305) proved that a strong tournament
T with n nodes contains a cycle of length k, for k = 3,4,...,n.
n

(His argument is a refinement of the argument Camion [2] used to
prove that a strong tournament contains a complete cycle.) We
will need the following slightly stronger result which can be
proved in essentially the same way.

THEOREM 1. Each node of a strong tournament Tr is
contained in a cycle of length k, for k =3,4,...,n.

For any integers n and k such that 3 <k<n, let s(n,k)
denote the minimum number of strong tournaments Tk that can
be contained in a strong tournament T . (If the tournament T

n n

is not strong then it need not contain any strong tournaments T .)
X

THEOREM 2. s(n, k) =n-k +1.
Proof. We will first show that s(n, k) >n - k +1. This

inequality certainly holds when n =k, by Theorem 1. I
n>k > 3, then it follows from Theorem 1 that any strong
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tournament T contains a strong tournament T . Now T
n n

-1

contains at least s(n-1, k) strong subtournaments Tk , by

definition, and the node not in Tn 1 is contained in at least one

cycle of length k. The nodes of this cycle determine a strong

tournament Tk that is not contained in Tn 1 Consequently,
s(n, k) > s(n-1, k) +1.

The earlier inequality now follows by induction on n, for each
fixed value of k.
To show that s(n,k)< n- k +1, consider the tournament
T' in which p.—>pj if and only if i=j-1 or i>j+2, for
n i =
i, j=14,2,...,n and i # j. (The tournament TS' is shown in

Figure 1.) It is not difficult to see that this tournament contains
precisely n - k +1 strong subtournaments Tk , for

k =3,4,...,n. This completes the proof of the theorem.

COROLLARY 2.1. The minimum number of cycles of
length k a strong tournament Tn can containis n - k + 1.

This follows from Theorems 1 and 2 and the fact that each
strong subtournament Tk of Tl_'1 contains exactly one cycle of
length k. The case k = 3 of this corollary is given in [5, p. 306].

The problem of determinihg the maximum number of cycles
of length k a strong tournament Tn can contain seems very

difficult in general. The case k = 3 was settled by Kendall and
Smith [6] and Szele [7]; the case k = 4 was settled by Colombo
[3] and Beineke and Harary [1].

COROLLARY 2.2. The minimum number of cycles a

n-1
strong tournament T can contain is ( 2 ).
n

This follows from Corollary 2.1 upon summing from k =3

to k =n.
1 T 1!
EIE? T5 ég 5

Figure 1 Figure 2
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Let u(n, k) denote the maximum number of transitive
tournaments T, that can be contained in a strong tournament

k
T . (If Tn is not strong, then the problem is trivial.)
n
n n-2
THEOREM 3. If 3<k<n, then u(n, k) = (‘<) - (k 2).

Proof. When k = 3 the result follows from Corollary 2.1
since every subtournament T3 is either a cycle or it is
n-2
k-2
fixed value of k > 4. The inequality certainly holds when n = k.
If n>k>4, thenitfollows from Theorem 1 that any strong
tournament Tn contains a strong subtournament T If p is

transitive. We now show that u(n, k) < (2) - ( ) for any

n-1"

the node notin T then there are at most u(n -1, k - 1)

n-1’

transitive subtournaments Tk of Tn that contain p and at

most u(n - 1, k) that do not. Therefore,
u(n, k) <u(n-1, k-1) +uln- 1, k).

The required inequality now follows by induction on n and k.
n-2
k-2
the tournament T;}' in which p'l—)pn but otherwise pj-vpi if

To show that u(n, k) > (Z) - ( ), it suffices to consider

j>1i. (The tournament T'5' is shown in Figure 2.) This
n-
k-2

Tk, if 3<%k < n, for every subtournament Tk is transitive

unless it contains both Py and P - This completes the proof

n _
tournament has exactly (k) - ) transitive subtournaments

of the theorem.

If we count the trivial tournaments with only one or two
nodes as transitive then the following result holds.

COROLLARY 3.1. The maximum number of transitive

tournaments that can be contained in a strong tournament Tn is

n-2
3.2 , if n> 2.

Let t(n, k) denote the minimum number of transitive

tournaments Tk that can be contained in a tournament Tn

Erdds and Moser [4] showed that t(n, k)=0 if k>[2 1og2n] +1
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and conjectured that t(n, k) =0 if k> [log‘2 n] +1. They also

: k-1 .
showed that every tournament with 2 nodes contains at least
one transitive tournament Tk . This yields the inequality

n n -k k-1 n k
t(n, k) > /( - >=n /2% z———_) ,
(Zk-i) 2k-1 K (k) (k) (Zk 1

if n> Zk-1 . The following result gives a sharper bound in
general.

THEOREM 4. Let

(n-1) (n-3) (a-2""111) k-1
n. . . 1

> 2 .o

7(n, k) =

Then
t(n, k) > v(n, k).

Proof. When k =1 the result is certainly true if we
count the tournament 'I“1 as transitive., If k > 2, then clearly

n
t(n:k)?_ z t(S,, k'i) ’
i=1 1
where (si, SZ’ ey sn) denotes the score vector of the
tournament T . Let us suppose that t(si, k - 1) Z"'(Si' k - 1);
n

since T(n, k) is a convex function of n for fixed values of k we
may apply Jensen's inequality and conclude that

n
tn, k)2 T r(s,k-1)2n7(3 (n-1), k-1)=7(n, k).
i=14

The theorem now follows by induction on k.

We remark in closing that it can be shown that the
distribution of the number of transitive subtournaments T, in a

k
random tournament Tn is asymptotically normal with mean
k
p‘l - (n)k 2’(2 )’
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and variance
k

k r
2 -(1).2 n n-k 1 ()
- ! —
a2 )Tz (e
r=3
for each fixed value of k greater than two.
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