Chapter 1

Foundations of Data Science

This chapter first defines data science, its primary objectives, and several related
terms. It continues by describing the evolution of data science from the fields of
statistics, operations research, and computing. The chapter concludes with histor-
ical notes on the emergence of data science and related topics.

1.1 Definitions

Data science is the study of extracting value from data — value in the form of
insights or conclusions.

A data-derived insight could be:
o a hypothesis, testable with more data;
o an “aha!” that comes from a succinct statistic or an apt visual chart; or
° a plausible relationship among variables of interest, uncovered by examining
the data and the implications of different scenarios.

* A conclusion could be in an analyst’s head or in a computer program. To be
useful, a conclusion should lead us to make good decisions about how to act in the
world, with those actions taken either automatically by a program, or by a human
who consults with the program. A conclusion may be in the form of a:

o prediction of a consequence;

o recommendation of a useful action;

o clustering that groups similar elements;

o classification that labels elements in groupings;

o transformation that converts data to a more useful form; or
o optimization that moves a system to a better state.

Insights and conclusions often arise from models, which are abstractions of

the real world. A model can explain why or how something happens and can

be tested against previously unseen inputs. This is shown schematically in

Figure 1.1.
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8 Foundations of Data Science

Of course, scientists and lay people have used data and models for centuries.
Today’s data science builds on this usage. But it differs from classical data use due
to the scale it operates at and its use of new statistical and computational techniques.

There is still no consensus on the definition of data science. For example, the
Journal of Data Science in its initial issue says “By ‘Data Science’ we mean
almost everything that has something to do with data”; Mike Loukides, co-author
of Ethics and Data Science, says “Data science enables the creation of data
products” (Loukides, 2011); Cassie Kozyrkov, Google’s Chief Decision Scientist,
says “Data science is the discipline of making data useful” (Kozyrkov, 2018). We
believe our definition is consistent with other definitions and that it is usefully
prescriptive.

If a retailer tracks a billion customer transactions, analyzes the data, and learns
something that improves their sales, that’s a data science insight. If the retailer then
automatically recommends to customers what to buy next, that’s a data science
conclusion enabled by a model, perhaps one that uses machine learning.

Data science touches all of society. We will highlight many applications in
transportation, the Web and entertainment, medicine and public health, science,
financial services, and government. However, there are many others in the human-
ities, agriculture, energy systems, and virtually every field. In recognition of data
science’s cross-disciplinary nature, this book presents data science issues from
multiple points of view.

Yields Model
conclusion
' Represented by Corresponds to

Data in Results in World
the world conclusion

Figure 1.1 From data in the world, we build a model of some aspects of it, reason
about the model to draw conclusions, and check that these conclusions correspond
to what happens in the world. The better the model, the better the correspondence
between the model’s conclusions and the real world. Dashed arrows denote the
mapping between world and model, and solid arrows are within the world or
model.

1.1.1 Data Science — Insights

Data science offers insights by permitting the exploration of data. The data may
show a trend suggesting a hypothesis in the context of a model that leads to useful
conclusions — which themselves can be tested with more data. A trend might
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indicate that two (or more) things are correlated, meaning the variables are related
to each other, such as smoking and cancer. A potential correlation is an insight, and
a hypothesis that can be tested. The data may even suggest the possibility of an
underlying causal relationship, which occurs when one thing causes another —
smoking causes cancer, though cancer does not cause smoking. Or perhaps
a conclusion is not obvious, but can be explored with many what-if analyses that
also draw on more data.

Insights are facilitated by interactive tools that simplify this exploration and let
us benefit from vast amounts of data without bogging down and missing the forest
for the trees:

* Tools to help us gain insight start with data transformation, which converts units,
merges names (such as “Ohio” and “OH”), combines data sources, and removes
duplicates, errors, and outliers.

* Tools to automate experiments by providing integrated modeling capabilities that
simplify creation, execution, exploration, and record keeping.

* Tools that offer interactive capabilities that guide us to non-obvious conclusions.

Pioneering data scientist John Tukey said “The simple graph has brought more
information to the data analyst’s mind than any other device” (Tukey, 1962), but
modern visualization offers many other beautiful and useful ways to gain insight.
However, graphs must be scrutinized very carefully for meaning.

As an example of a graph that provides some insight but that also leads to many
questions, the scatter plot in Figure 1.2 shows the relationship between mortality
and COVID-19 vaccination rates during the US delta variant wave. It shows
four series of points representing different time periods ranging from delta’s
beginning mid-2021 to its late 2021 end. Each point represents the vaccination
rate and number of COVID-19 deaths in each of the 50 states and the District of
Columbia. We show regression lines for each of the four series of data — each line
represents the linear equation that best fits the data. Critical analysis would be
served with error bars for each data point, but this information was unavailable.

The 6-Sep-21 and 27-Sep-21 series data were from the peak of the wave, and
they tilt strongly down and to the right, meaning that higher state vaccination rates
were strongly correlated with lower death rates. The 11-Jul-21 and 16-Dec-21
regressions (beginning and ending of the wave) showed small negative slopes,
but reports of the CDC’s imprecision in vaccination reporting (Wingrove, 2021)
sufficiently concerned us to demonstrate a good visualization practice by providing
a prominent warning on the graph. Clearly, this data’s association of vaccination
rate on mortality declined after the delta wave crested. During the five-month
period, the chart also shows that vaccination rates increased by about 13%
(absolute).
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This data and our prior understanding of vaccine biochemistry lead us strongly to
believe there is an underlying causal relationship — that vaccinations reduce the risk
of deaths. (The US Centers for Disease Control and Prevention (CDC) COVID Data
Tracker provides even stronger evidence of a causal relationship (CDC, 2020).)
However, Figure 1.2 does not provide conclusive insight, as there could be other
explanations for some of the effects. States differ along many relevant variables other
than vaccination rate, such as population age, density, and prior disease exposure.
This is not a randomized controlled experiment where each state was randomly
assigned a vaccination rate. The reasons the curve flattened at the end of the wave
may not be because of reduced vaccine efficacy against the delta variant but rather
because of the impact of behavioral changes, changes in the locale of the wave as it
spread across different states, increase in immunity from prior exposure, waning
vaccine efficacy over time, and the very beginning of the follow-on omicron wave.

Daily Deaths/100k (7-day Trailing) vs Fully Vaccinated Percentage of Population
Series Representing Different Time Periods in COVID-19 Delta Wave
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Figure 1.2 Each point shows the seven-day trailing average daily COVID-19
mortality of 50 US states and the District of Columbia plotted against their
respective vaccination rates at the end of the time period. This data (though not
this visual) was copied from the New York Times “Coronavirus in the U.S.: Latest
Map and Case Count” during the period represented by this graph (New York
Times, 2020). The New York Times itself gathered this data from government
authorities, and this limited data was likely to be comparable across regions and
time periods. US CDC data (not shown) reported state totals that vary from
New York Times’ data, but the trend lines are very similar.
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A data scientist could gain further insight from the analysis of outliers. If
not an artifact of the data, the twin 1.6 per 100k points that came from
Florida, for example, may result from disease in the state’s large at-risk
elderly population. Data scientists could construct and evaluate many hypoth-
eses from this graph using additional data and visualization techniques. But
data scientists need to exercise caution about the quality of individual data
points.

The US omicron wave, which followed the delta wave, showed a different
regression line. While Figure 1.2 does not illustrate this, state per capita mortality
and vaccination rates became positively correlated for a brief period in mid-
January 2022, though just slightly so. There are many possible explanations for
this, such as the specifics of the omicron mutation and the earlier arrival of the
variant in vaccinated states. The reversal, and indeed this chart, reminds us to
scrutinize data and visualizations carefully and to exercise due caution, recogniz-
ing the limitations of the data and its presentation. Section 11.4 discusses this
topic further.

1.1.2 Data Science — Conclusions

Let’s look at some examples of our six types of conclusions from the beginning of
Section 1.1. Conclusions can be embedded in programs or serve to provide insight
to a data analyst.

* Prediction
° Predict how a protein will fold, based on its structure.
o Autocomplete user input, based on the characters typed so far.
* Recommendation
o Recommend a song, based on past listening.
o Suggest possible medical therapies, based on laboratory results.
o Show an ad to a user, based on their recent web searches.
* Classification
o Assign labels to photos (e.g., “cat” or “dog”).
o Identify a bird’s species, from its song.
o Determine if a client is satisfied or unsatisfied, via sentiment analysis.
o Label email as spam.
* Optimization
° Find the optimal location to build a new warehouse based on minimizing
supplier/consumer transportation costs.
° Schedule product manufacturing to maximize revenue based on predicted
future demand.
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* Transformation
° Translate a sentence from Chinese to English.
o Convert astronomical images to entities.
* Clustering
o Cluster together similar images of cancerous growths to help doctors better
understand the disease.
o Cluster email messages into folders.

Models that generate these conclusions may be clear box or opaque box. A clear
box model’s logic is available for inspection by others, while an opaque box
model’s logic is not. The “opaque box” term can also apply to a model whose
operation is not comprehensible, perhaps because it relies on machine learning.
Context usually clarifies whether opacity refers to unavailability, incomprehensi-
bility, or both.

This book is filled with many examples of using data to reach conclusions. For
example, Chapter 4 leads off by discussing data-driven spelling correction systems,
which may classify words into correct or mispelled variants (perhaps underlining
the latter), recommend correct spellings (“did you mean, misspell?”’), or automatic-
ally transform an error into a correct spelling. Returning to the mortality insight
discussion that concluded the previous section, we also discuss COVID-19 mortal-
ity prediction in greater detail, but we will see this is hard to do even when there is
much more data available.

1.1.3 Scale

Some data science success is due to new techniques for analysis, and new algo-
rithms for drawing conclusions. But much is due to the sheer scale of data we can
now collect and process (Halevy et al., 2009).

As examples of the size of data collections as of 2021: There are 500 billion web
pages (and growing) stored in the Internet Archive. The investment company Two
Sigma stores at least a petabyte of data per month. YouTube users upload 500 hours
of' video per minute (Hale, 2019). The SkyMapper Southern Sky Survey is 500 tera-
bytes of astronomical data; and the Legacy Survey of Space and Time is scheduled
to produce 200 petabytes in 2022 (Zhang & Zhao, 2015). See Table 1.1, which
describes the scale of data, with representative examples.

Data science grows rapidly because of a virtuous cycle whereby its impact leads to
more data production (often from increased usage), more research and development
and impact as the application improves, and then even more data. (While “virtuous
cycle” is a commonly used term to describe this feedback loop, not all effects are
beneficial, and we both recognize and discuss the cycle’s negative effects as well.)
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Table 1.1 Scale of data and representative examples.

Size Example

10° kB kilobyte A half page of text, or a 32 x 32 pixel icon

10° MB megabyte The text of two complete books, or a medium-resolution photo

10° GB gigabyte An hour-long HD video, 10 hours of music, or the Encyclopaedia Britannica text

102 TB terabyte One month of images from the Hubble Space Telescope or a university
library’s text

10" PB petabyte Five copies of the 170 million book Library of Congress print collection

10'"® EB exabyte Twenty copies of the 500 billion page Internet Archive, or two hours of data at
the planned rate of the Square Kilometer Array telescope in 2025

10*' ZB zettabyte World’s total digital content in 2012, or total internet traffic in 2016

The World Wide Web was developed in the mid-1990s. It resulted in a vast
collection of informative web pages, and enabled the agglomeration of data about
user interactions with these pages. The Web’s extremely broad data led to novel
consumer services and disrupted entire industries. Recommendation engines, as
used at Amazon and eBay, became feasible (Schafer et al., 2001), web search
continuously improved, and social networks emerged (boyd et al., 2007).

Big data refers to techniques for conceiving, designing, and developing vast
amounts of information and operating systems that can gather, store, and process it.
In 1994, the book Managing Gigabytes assumed that a gigabyte was big data. In
2021, a sub-$1000 laptop holds a terabyte of data, big data is measured in petabytes,
and annual worldwide hard disk sales are measured in zettabytes.

Data science focuses on big data, but many of its techniques are equally benefi-
cial for small data. Scatter plots and other visualization techniques often work
better for a hundred data points than for a trillion.

Small and big data are often combined for a richer understanding. For
example, a company with big data from website clicks might also recruit a few
subjects for an in-depth user-experience assessment. They are asked questions
such as: “What did you think of the user interface?” “How easy was it to
accomplish this task?” “When you were trying to find the cheapest product,
did you notice the ‘sort by price’ button?”

1.2 The Emergence of Data Science

Data science emerged from combining three fields. For the purposes of this book,
we define them as follows:

* Statistics is the mathematical field that interprets and presents numerical data,
making inferences and describing properties of the data.
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* Operations research (OR) is a scientific method for decision-making in the
management of organizations, focused on understanding systems and taking
optimal actions in the real world. It is heavily focused on the optimization of
an objective function — a precise statement of a goal, such as maximizing profit
or minimizing travel distance.

* Computing is the design, development, and deployment of software and hard-
ware to manage data and complete tasks. Software engineering gives us the
ability to implement the algorithms that make data science work, as well as the
tools to create and deploy those algorithms at scale. Hardware design gives us
ever-increasing processing speed, storage capacity, and throughput to handle
big data.

Some of data science’s most important techniques emerged from work across
disciplines. While we include machine learning within computing, its develop-
ment included contributions from statistics, pattern recognition, and neuropsych-
ology. Information visualization arose from statistics, but has benefited greatly
from computing’s contributions.

We will look at each of these topics in more detail, and then review the key
terminology from them in Table 1.1 to Table 1.5 at the end of this part.

1.2.1 Statistics

Some of the key ideas from the field of statistics date back over a thousand years to
Greek and Islamic mathematicians. The word statistics is derived from the Latin
word for state. Statistics originally studied data about the state’s tables of census
data listing who is alive, who died, and who to tax, such as The Statistical Account
of Scotland of 1794 by Sir John Sinclair (Sinclair, 1794). His inscription to the work
is telling. Taken from Cicero, it argued that “to counsel on national affairs, one
needs knowledge of the make-up of the state” (Cicero, n.d.). Even today, the
perspective provided by the old tables is valuable: Sinclair’s data, compared with
current US Centers for Disease Control and Prevention data, vividly illustrates
a 1000-fold decrease in childhood mortality over 250 years.

Soon after Sinclair published his accounts, statistics moved from just tabulating
data to making inferences. For example, statisticians could count how many houses
there are in a city, survey some to determine the average number of people per
house, and then use that to estimate the total population. This estimate is an inexact
inference, but much cheaper than an exact census of every household. Statistics, as
it was understood in Sinclair’s time, blossomed to become mathematical statistics,
now focused on the mathematical methods that infer from the particular (e.g.,
a small dataset) to the general.
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Work on inferencing began even earlier in physics and astronomy. For example,
in the 16th century, astronomer Tycho Brahe collected detailed data on planetary
positions. In 1621 Johannes Kepler analyzed that data, applied regression analysis
to counteract errors, and wrote down the laws of planetary motion. The laws
accurately predicted how the planets moved, but didn’t explain why. That was
left to Isaac Newton, who in 1687 showed that Kepler’s Laws derived from the
universal principle of gravitation.

In the early 1900s, statisticians such as R. A. Fisher developed methodologies for
experiment design that made it easier to analyze experiments and quantify errors in
fields such as sociology and psychology, where there is more uncertainty than in
orbital mechanics (Fisher, 1935).

Ina 2001 article, statistician Leo Breiman captured the (then) difference between
the mindset of most statisticians and the emerging field of data science (Breiman,
2001). He argued that most statisticians belonged to a data modeling culture that
assumes:

* There is a relatively simple, eternally true process in Nature (such as the orbits of
planets due to the universal law of gravitation).

 Data reflects this underlying process plus some random noise.

 The statistician’s job is to estimate a small number of parameter values leading to
a parsimonious model with the best fit to the data (for example, assuming the
model equation F'= Gmm,/r*, estimating G = 6.674 x 10" '"). The physicist, with
the support of the statistician, can then examine the model to gain insight and
make predictions.

Breiman contrasts this with the algorithmic modeling culture, which allows for
complex and not as easily understood models (e.g., neural networks, deep learning,
random forests), but which can make predictions for a broader range of processes.
Making predictions in complex domains with many variables is the core of modern
data science. While simple equations work exceedingly well in fields such as
mechanics, they do not in fields like sociology and behavioral psychology — people
are complicated. Breiman surmised that only about 2% of statisticians in 2001 had
adopted algorithmic modeling, thus illustrating the need to broaden statistics and
move towards what we now call data science.

Since the 2001 publication of Breiman’s article, statisticians are now increas-
ingly focusing on data science challenges, and the gap has diminished between
algorithms and models. In part, this is because the scale of data has changed — 50
years ago a typical statistical problem had 100 to 1000 data points, each consisting
of only a few attributes (e.g., gender, age, smoker/non-smoker, and sick/healthy).
Today, these numbers can reach into the millions or billions (e.g., an image dataset
with 10 million images, each with a million pixels).
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In summary, statistics’ and data science’s objectives have become well aligned,
and additional statistically inspired work will improve data science. Data science
will undoubtedly pull both mathematical and applied statistics in new directions,
some of which are discussed in the National Science Foundation (NSF) Report,
Statistics at a Crossroads (He et al., 2019).

1.2.2 Visualization

Graphing has been relevant to statistics since at least the 1700s because it offers
insight into data. William Playfair felt that charts communicated better than tables
of numbers, and he published excellent time-series plots on economic activity in
1786 (Playfair, 1786). John Snow, the father of epidemiology, used map-based
visuals to provide insight into the mid-1800s London cholera outbreaks (Boston
University School of Public Health, 2016). Florence Nightingale, recognized as the
founder of modern nursing, was also a visualization pioneer. In collaboration with
William Farr, she used pie charts and graphs of many forms to show that poor
sanitation, not battle wounds, caused more English soldiers to die in the Crimean
War. Her work led to a broader adoption of improved sanitary practices (Andrews,
2019; Rehmeyer, 2008).

New approaches to showing information graphically have grown rapidly in the
field of information visualization. Its goal is to “devise external aids that enhance
cognitive abilities,” according to Don Norman, one of the field’s founders (Norman,
1993). Stu Card, Jock Mackinlay, and Ben Shneiderman compatibly define the field
as “the use of computer-supported, interactive, visual representations of data to
amplify cognition” (Card et al., 1999). These scientists all believed interacting with
the right visualization greatly amplifies the power of the human mind. Even the
simple graph in Figure 1.2 brings meaning to 204 data points (which include data
from tens of millions of people) and clarifies the impact of vaccination on mortality.

Because of the enormous improvements in both computational capabilities and
display technology, we now have continually updated, high-resolution, multidimen-
sional graphs and an incredibly rich diversity of other visuals — perhaps even virtual
reality (Bryson, 1996). Today, visualization flourishes, with contributions from multi-
disciplinary teams with strong artistic capabilities (Steele & Iliinsky, 2010; Tufte, 2001).

The resulting visuals can integrate the display of great amounts of data with data
science’s conclusions, allowing individuals to undertake what-if analyses. They can
simultaneously see the sensitivity of conclusions to different inputs or models and
gain insight from their explorations.! Visualizations targeted at very specific

! The Baby Name Voyager visualization (Wild Sky Media, n.d.) (see www.datascienceincontext.com/babyname)
of the yearly popularity of US baby names convinced co-author Alfred that even a simple time-series plot,
instantly displayed in response to user input, is very much more useful than the underlying tabular data.
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problems in the many application domains addressed by data science can bring data
science to non-data science professionals and even the lay public.

The public media regularly use interactive visualizations to reinforce and clarify
their stories, for example, the vast number of COVID-19 charts and graphs pre-
sented during the pandemic. Computer scientists apply visualization in an almost
recursive way to illustrate complex data-science-related phenomena such as the
workings of neural networks. If successful, these visualizations will first improve
data science and then visualization itself.

In addition to focusing on visuals, the field of visualization must also catalyze ever-
improving tools for creating them. Some platforms are for non-programming users of
data science in disciplines such as financial analysis and epidemiology. Other
platforms are for programmers with sophisticated data science skills. In both cases,
we can use data science to guide users in interactive explorations: suggesting data
elements to join and trends to plot, and automatically executing predictive models.

A word of warning: Visuals are powerful, and so amplify the perception of
validity of what they show. A timeline showing an occurrence frequency trending
in one direction appears conclusive, even if the graph’s points were inconsistently
or erroneously measured. Pictures may evoke a notion of causality where there is
none. Visualization’s power is such that great care must be taken to generate insight,
not spurious conclusions. For more on this, see Section 11.4 on “Communicating
data science results.”

We wanted to conclude this section by showing some compelling visualizations,
but the best ones almost invariably use color and interactivity, both of which are
infeasible in this black-and-white volume. Instead, we refer the reader to the
visualizations on sites such as Our World in Data (Global Change Data Lab, n.d.)
and FlowingData (Yau, n.d.).

1.2.3 Operations Research

While statistics is about making inferences from data, the field of operations
research focuses on understanding systems and then creating and optimizing models
that will lead to better, perhaps optimal, actions in the world. Applications are
optimizing the operations of systems such as computer and transportation networks,
facilities planning, resource allocation, commerce, and war fighting. This emphasis
on optimization leading to action, as well as its problem-solving methodology,
strongly ties operations research to data science.

Operations research was named by UK military researchers Albert Rowe and
Robert Watson-Watt, who in 1937 and the lead-up to World War Il were optimizing
radar installations. Soon after, the principles and methods of the field were applied
to business and social services problems.
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In the 1800s, long before the field was named, Charles Babbage® advocated for
scientific analysis to optimize public services such as rail transportation and postal
delivery (Sodhi, 2007). Research by Babbage and by Rowland Hill led to the
invention of postage stamps. With continuing growth in the scale of centrally
managed societal systems and improvements in applied mathematics, operations
research grew greatly in the 20th century. In part, this was due to its applicability to
complex, large-scale warfare.

Operations research applies many models and mathematical techniques to a wide
variety of application domains. For example:

* The traveling salesperson problem (TSP) tries to find the shortest route that lets
a salesperson pass through each city that needs to be visited exactly once and then
to return home (Cook, 2012). Operations researchers model TSP with a network
(or graph) where cities are nodes and labeled edges represent the paths and
distances between cities. Solutions need to consider that there are an exponen-
tially large number of possible routes. Various techniques have been applied:
Dynamic programming is elegant, provides an optimal solution, but only works
well when there are a small number of nodes (Held & Karp, 1962). Hybrid
techniques, which typically combine /inear programming and heuristics, work
better for larger networks, though they may only provide the approximate
answers that many applications need (Concorde, n.d.).

A resource allocation problem tries to achieve a project’s goal at minimum cost
by optimizing resource use. Consider a baker with a fixed supply of ingredients,
a set of recipes that specify how much of each ingredient is needed to produce
a certain baked good, and known prices for ingredients and finished products.
What should the baker bake to maximize profit? Linear programming is often
used for resource allocation problems like this.

The newsvendor problem is similar to the resource allocation problem, but with
the added constraint that newspapers are published once or twice a day and lose
all value as soon as the next edition comes out (Petruzzi & Dada, 1999). The
newsvendor needs to stock its papers by estimating the “best” amount, sometimes
guessing from daily demand. “Best” here depends on the sales price, the unit cost
paid by the seller, and the unknown customer demand. Estimating demand from
data is tricky due to seasonal effects, the actual news of the day, and the simple
fact that we never know true demand when supplies sell out. Could we have sold
another 10, 20, or perhaps zero?

An additional complexity is the more copies a paper sells, the more it can charge

for advertising, so insufficient inventory also reduces advertising revenue. Thus,

(S}

Babbage is most well known for having first conceived of the stored program computer, although he failed to
build a working model.
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if the optimization were to be done by the newspaper, there is a primary metric
(direct profit on paper sales) as well as a secondary metric (total circulation). We
will see examples of similar optimization trade-offs in the examples of Part II.

Operations research has a theoretical side, with a stable of mathematical modeling
and optimization techniques, but it has always focused on practical applications. Its
methodology begins with creating a model of how a system works, and often
defining an objective function to define the goals. It continues with capturing the
relevant data to calibrate the model, and results in algorithms that generate the best
possible results. The field focuses on the rigorous analysis of results with respect to
a particular model, and has expertise in simulation that is often used to calibrate or
test optimization algorithms.

Traditionally, operations research operated in a batch mode, where there was
a one-time data collection process, after which models were built, calibrated, ana-
lyzed, and optimized. The resultant improvement blueprint was then put into practice.

Today, we can continually collect data from a real-time system, feed it into
amodel, and use the model’s outputs to continually optimize a system. This system
could be a transportation network, pricing within a supermarket, or a political
campaign. This online mode scenario (or continual optimization) became feas-
ible when computer networks and the Web made real-time information broadly
available (Spector, 2002).

Operations research techniques can be of great use to data scientists. As data
science applications grow in complexity and importance, it becomes important to
rigorously demonstrate the quality of their results. Furthermore, simulations may be
able to generate additional valuable data.

In summary, operations research approaches are already infused in data science.
Its objectives, models, algorithms, and focus on rigor are crucial to one of data
science’s most important goals: optimization. In return, data science’s techniques
and problems are driving new research areas in operations research, including
reinforcement learning and decision operations.

1.2.4 Computing

The breadth of the field of computing has contributed deeply to data science. In
particular, these five computing subfields have had major impact:

* Theoretical computer science provides the fundamental idea of an algorithm —
a clearly specified procedure that a computer can carry out to perform a certain
task — and lets us prove properties of algorithms.

* Software engineering makes reliable software systems that let an analyst be
effective without having to build everything from scratch.
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» Computer engineering supplies the raw computing power, data storage, and
high-speed communications networks needed to collect, transmit, and process
datasets with billions or trillions of data points.

* Machine learning (ML) makes it possible to automatically construct a program
that learns from data and generalizes to new data. Its deep learning subfield
allows these learned programs to transform input data into intermediate repre-
sentations through multiple (deep) levels, instead of mapping directly from input
to output.

* Artificial intelligence (AI) creates programs that take appropriate actions to
achieve tasks that are normally thought of as requiring human intelligence.
Robot actions are physical; other Al programs take digital actions. Most current
Al programs use machine learning, but it is also possible for programmers to
create Al programs using not what the program learns, but what the programmers
have learned.

We are frequently asked to compare the fields of artificial intelligence and data
science. One clear difference is that data science focuses on gaining value in the
form of insights and conclusions, whereas Al focuses on building systems that take
appropriate, seemingly intelligent actions in the world. With less focus on gaining
insight, Al doesn’t put as much emphasis on interacting with data or exploring
hypotheses. Consequently, it pays less attention to statistics, and more attention to
creating and running computer programs. Another key difference is that data
science, by definition, focuses on data and all the issues around it, such as privacy
and security and fairness. The kind of Al that focuses on data also deals with these
issues, but not all Al focuses on data.

However, a clear comparison of Al and data science is complex because Al has
come to have different meanings to different people: As one example, Al is often
used synonymously with machine learning. While we do not agree that those terms
should be equated, data science clearly has a broader focus than just machine
learning. As another example, Al is sometimes used to connote techniques aimed
at duplicating human intelligence, as in John McCarthy’s 1956 introductory defin-
ition at a Dartmouth Workshop: “Machines that can perform tasks that are charac-
teristic of human intelligence.” While we again do not agree with the narrowness of
this definition, data science has broader goals.

A major reason that computing has had such an impact on data science is that
empirical computing augmented computing’s traditional focus on analytical and
engineering techniques:

» Computer scientists and programmers initially put their efforts into developing
algorithms that produced provably correct results and engineering the systems to
make them feasible. For example, they took a clear set of the rules for keeping
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a ledger of deposits and withdrawals, and they deduced the algorithms for
computing a bank account’s balance. There is a definitive answer that, barring
a bug, can be computed every time.

* Empirical computing derives knowledge from data, just as natural sciences do.
Science is built on results derived from observation, experimentation, data
collection, and analysis. The empirical computing approach is inductive rather
than deductive, and its conclusions are contingent, not definitive — new data could
change them. Kissinger et al. frame a related discussion on Al (which, as
practiced today, is empirical) and notes it is “judged by the utility of its results,
not the process used to reach those results” (Kissinger et al., 2021). Below are
example areas where the application of empirical methods led to advances.

Information retrieval is the study and practice of organizing, retrieving, and
distributing textual information. It blossomed in the 1970s, as text was increasingly
stored in digital form. Gerard Salton developed data-driven approaches for promot-
ing information based on usage pattern feedback (Salton, 1971). For example, his
system learned when a user searches a medical library for [hip bone], that [inguinal]
and [ilium] are relevant terms. It also learned which results most users preferred,
and promoted those to other users. These techniques played a large role in the
development of today’s web search engines.

A/B experimentation became pervasive in computing with the rise of the World
Wide Web (Kohavi et al., 2020). Suppose a company detects that a page on their
website confuses their customers. They perform an experiment by creating
a version of the page with a different wording or layout and show it to, say, 1%
of their users. If the experiment shows that the modified version B page performs
better than the original version A page, they can replace the original page with
version B. Then they can make another experiment starting from a new version B,
and so on. Thus, whether done automatically or under human control, the website
can continually improve. Notably, improvements lead to more usage, more usage
generates more data, and more data allows for more site improvements. We will
return in Chapter 14 to the benefits and risks of this classic virtuous cycle.

Problems with inherent uncertainty, such as speech recognition, machine trans-
lation, image recognition, and automated navigation, saw markedly improved
performance as more empirical data was applied. Every day, billions of people
use these improved applications, which are regularly enhanced via the analysis of
data. Even systems programming — the software that controls operating systems,
storage, and networks — has benefited from machine learning algorithms that learn
patterns of usage and optimize performance.

The very usability of systems has been revolutionized by advances in human
computer interaction (HCI), which leverages experimental techniques to
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ascertain what user interfaces are both useful and natural. HCI’s hard-won gains
revolutionized computer use, moving computers from a specialized tool for experts
to nearly universal adoption. We discuss many examples of the applicability of data
science in Chapter 4 and Chapter 5.

Advances in computing hardware made the big data era possible. Transistor
density has doubled every two years or so, as predicted by Gordon Moore in his
eponymous Moore’s Law (Moore, 1965). The first commercially produced micro-
processor, the Intel 4004 from 1971, had 2000 transistors and a clock rate of
0.7 MHz. Modern microprocessors have 10 million times more transistors and
a clock speed that is 10,000 times faster. Overall, computers in 2021 are about
a trillion times better in performance per dollar than 1960 computers.’

Improvements in all computation-related aspects made systems cost less yet be
more usable for more applications by more people. Increases in performance let
more sophisticated algorithms run. More storage lets us store the Web’s vast
amount of data (particularly image and video), create powerful neural networks,
and implement other knowledge representation structures. When the first neural
networking experiments were done, they were limited by the amount of data and
computational power. By the 1990s, those limitations began to disappear; web-
scale data and Moore’s Law facilitated machine learning.

This steady stream of research results and demonstrable implementation suc-
cesses have propelled computing beyond its roots in theory and engineering to
empirical methods. The pace of discovery picked up as Moore’s Law provided
computational, communication, and storage capacity; the Web provided vast data;
and accelerated research in high-performance algorithms and machine learning
yielded impressive results. Engineers have adapted to this change in computational
style with new, fit-for-purpose processor and storage technologies. Key events in
computing, illustrated by the timeline in Table 1.2, helped pave the way to data
science.

Lest there be any remaining question on the importance of empirical computing,
college student demand for data science courses and programs is on the rise
worldwide. Berkeley’s introductory data science course (Data 8) enrolled fewer
than 100 students in the fall of 2014 when the course was first introduced. In spring
2019, enrollment had grown to over 1,600 students. At the same time, computer
science students are increasingly specializing in machine learning, a core data
science component. From co-author Alfred’s experience leading intern programs
at IBM, Google, and investment firm Two Sigma, machine learning internships
started becoming popular in 2001 and have become the most asked for

3 Consider that, if cancer treatment had kept pace with computation, the Earth would see much less than one cancer
death per year. A trillion-fold difference is larger than the ratio of the combined weight of all the people in the US
to a single pencil.
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Table 1.2 Key events in computing’s contribution to data science’.

Year Description Person or entity Paper or event
1950 The value of learning by Alan Turing Computing machinery and intelligence
a founder of the field of (Turing, 1950)
computing
1955 Successful application of ~ Arthur Samuels Some studies in machine learning using the
learning to checkers game of checkers (Samuel, 1959)
1965 The computational fuel: Gordon Moore Cramming more components onto inte-
Moore’s Law grated circuits (Moore, 1965)
1971 Early use of data in search Jerry Salton Relevance feedback and the optimization of
retrieval effectiveness (Salton, 1971)
1982 Growth of use of datain ~ ACM: Bill Curtis, Initiation of ACM CHI Conference (ACM
computer—human inter- Ben Shneiderman CIGCHI, n.d.; Nichols & Schneider,
action (CHI) 1982)
1986 Reignition of neural net-  David Rumelhart, Learning representations by back-
work machine learning Geoffrey Hinton propagating errors (Rumelhart et al.,
1986)
Early Birth of the World Tim Berners-Lee Information management: a proposal
1990s  Wide Web et al. (Berners-Lee, 1990)
1996 Powerful new data-driven Sergey Brinand Larry The anatomy of a large-scale hypertextual
technique for search Page web search engine (Brin & Page, 1998)
Mid- Emergence of social Various Geocities, SixDegrees, Classmates, . . .
1990s  networks
1998 Emergence of data in GoTo/Overture GoTo, renamed Overture and later acquired
search advertising by Yahoo, launched internet search
advertising
2007 Cloud computing: power- Amazon Announcing Amazon Elastic Compute
ing data science Cloud — beta (Amazon Web Services,
2006)
2010 Growth in GPU usage for ~ Various Large-scale deep unsupervised learning
neural network using graphics processors (Raina et al.,
processing 2009)
2011 Demonstration of power  IBM Jeopardy victory (Markoff, 2011)
of data on a gameshow
2012 Practical demonstration of Alex Krizhevsky, [lya ImageNet classification with deep convolu-
neural networks in Sutskever, tional neural networks (Krizhevsky et al.,
image recognition Geoffrey E. Hinton ~ 2012)
2012 Deployment of neural net-  Geoffrey Hinton et al. Deep neural networks for acoustic modeling
works in speech in speech recognition: the shared views of
recognition four research groups (Hinton et al., 2012)
2018 Demonstration of DeepMind: David A general reinforcement learning algorithm
reinforcement learning Silver et al. that masters chess, Shogi, and Go through
in games self-play (Silver et al., 2018)
2019 Large-scale, deep genera- ~ Various BERT (Devlin et al., 2019), GPT-3 (Brown

tive models

etal., 2020), Turing-NLG (Rosset, 2020),
and other models

* This timeline places the birth of key technical ideas, important use cases, and necessary
technological enablements. Note that the publication dates in the right-hand column may differ

from the year of impact in the left-hand column.
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specialization. At the major machine learning conference, NeurlPS, attendance
grew eight-fold from 2012 to 2019, when 13,000 attended.

1.2.5 Machine Learning

Machine learning, a subfield of computing, is the field with the most overlap with
data science. It can be broken down into three main approaches:

* Supervised learning trains on a set of (input, output) pairs, and builds a model
that can then predict the output for new inputs. For example, given a photo
collection with each photo annotated with a subject class (e.g., “dog,” “person,”
“tree”), a system can learn to classify new photos. This task is called
a classification; the task of predicting an output from a continuous range of
numbers is called regression.

* Unsupervised learning trains on data that has not been annotated with output
classes. For example, given a photo collection, a model can learn to cluster dog
pictures together in one class and people pictures in another, even if it does not
know the labels “dog” and “person.” Internally, the model may represent con-
cepts for subparts such as “torso” and “head.” Such a model may invent classes
that humans would not normally use. The task of grouping items into classes
(without labels for the classes) is called clustering.

* Reinforcement learning builds a model by observing a sequence of actions and
their resulting states, with occasional feedback indicating whether the model has
reached a positive or negative state. For example, a model learns to play checkers
not by being told whether each move is correct or not, but just by receiving
a reward (“you won!”) or punishment (“you lost!”) at the end of each training
game.

Another way to categorize machine learning models is to consider whether the
model is focused on learning the boundary between classes, or learning the classes
themselves:

* A discriminative model answers the question: “Given the input x, what is the
most likely output y?”” Sometimes this is explicitly modeled as finding the output
v that maximizes the probability P(y | x), but some models answer the question
without probabilities.

* A generative model answers the question: “What is the distribution of the
input?” Or sometimes: “What is the joint distribution of input and output?”
Sometimes this is an explicit model of P(x) or P(x, y), and sometimes the
model can sample from the distribution without explicitly assigning probabilities.
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For example, if the task is to label the language in a sentence as being either Danish or
Swedish, a discriminative classifier model could do very well simply by recognizing
that Swedish has the letters 4, 6, and x, while Danish uses 2, @, and ks. With a few
more tricks, the model could correctly classify most sentences, but it could not be said
to know very much about either language. In contrast, a generative classifier model
would learn much more about the two languages, enough to generate plausible
sentences in either language. Some generative models can answer other questions,
such as: “Is this sentence rare or common?” However, a discriminative model, being
simpler, can be easier to train and is often more robust.

As another example, if we trained models on images of birds labeled with their
species, a discriminative model could output the most probable species for a given
image. A generative model could do that, and could also enumerate other similar
birds; or, if parts of the bird were obscured in the image, could fill in the missing parts.

The most common methodology for machine learning follows these steps
(Amershi et al., 2019):

1. Collect, assess, clean, and label some data.

2. Split the data into three sets.

3. Use the first set, the training set, to train a candidate model.

4. Use the second set, the validation set (also known as the development set or
dev set) to evaluate how well the model performs. It is important that the dev set
is not part of the training; otherwise, it would be like seeing the answers to the
exam before taking it.

5. Repeat steps 3 and 4 with several candidate models, selecting different model
classes and tweaking hyperparameters, the variables that control the learning
process.

6. Evaluate the final model against the third set, the test set, to get an unbiased
evaluation of the model.

7. Deploy the model to customers.

8. Continuously monitor the system to verify that it still works well.

We will cover many applications of machine learning in Part II; here we introduce
three major areas of use:

» Computer vision (CV) processes images and videos and has applications in
search, autonomous vehicles, robotics, photograph processing, and more. Most
current CV models are deep convolutional neural networks trained on large,
labeled image and video datasets in a supervised fashion.

* Natural language processing (NLP) parses, manipulates, and generates text.
NLP is used for translation, spelling and grammar correction, speech recognition,
email filtering, question answering, and other applications. Most current NLP
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models are large transformer neural networks which are pre-trained on unlabeled
text corpora using unsupervised learning. Then, they are fine-tuned on a smaller
and narrower task, often with supervised learning. As of 2022, NLP models are in
a state of rapid improvement and are nearing parity with humans on many small
tasks. However, they suffer from inconsistency, an inability to know what they
don’t know, and tremendous computational complexity.

* Robotics makes intelligent decisions on the control of autonomous machines and
has applications in agriculture, manufacturing, logistics, and transportation. The
forefront of robotics research relies on reinforcement learning, in which robots
are trained by a combination of simulated and real-world rewards.

Machine learning has proven useful to all of these areas, but there are challenges,
such as adversarial attacks, potential bias, difficulty in generating explanations, and
more. These are discussed in Part III.

It is clear that machine learning and statistics have a large overlap with data
science in goals and methods. What are their differences?

* Statistics emphasizes data modeling. Designing a simple model that attempts to
demonstrate a relationship in the data and leads to understanding. It traditionally
focused on modest amounts of numerical data (though this has been changing),
and it is increasingly tackling other types of data.

* Machine learning emphasizes algorithmic modeling. Inventing algorithms that
handle a wide variety of data, and lead to high performance on a task. The models
may be difficult to interpret.

» Data science focuses on the data itself. Encouraging the use of whatever
techniques lead to a successful product (these techniques often include statistics
and machine learning). Data science operates at the union of statistics, machine
learning, and the data’s subject matter (e.g., medical data, financial data, and
astronomical data).

Machine learning also distinguishes itself from statistics by automatically creating
models, without a human analyst’s considered judgment. This is particularly true
for neural network models. In these, the inputs are combined in ways that lead to
predicting outputs with the smallest amount of error. The combinations are not
constrained by an analyst’s preconceptions.

The deep learning subfield uses several layers of neural networks, so that inputs
form low-level representations, which then combine to form higher-level represen-
tations, and eventually produce outputs. The system is free to invent its own
intermediate-level representations. For example, when trained on photos of people,
a deep learning system invents the concepts of lines and edges at a lower level, then
ears, mouths, and noses at a higher level, and then faces at a level above that.
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1.2.6 Additional History

The erudite mathematician and statistician John Tukey set forth many of data
science’s foundational ideas in his 1962 paper “The future of data analysis” and
1977 book Exploratory Data Analysis (Tukey, 1962, 1977). Tukey made a strong
case for understanding data and drawing useful conclusions, and for how this was
different from what much of statistics was doing at the time. He was two-thirds of
the way to data science, missing only the full scale of modern computing power.

In 2017, Stanford Professor of Statistics David Donoho, in a follow-on piece to
the aforementioned “The future of data analysis,” made the case that the then-recent
changes in computation and data availability meant statisticians should extend their
focus (Donoho, 2017). His sketch of a “greater data science curriculum” has many
places where statistics plays a large role, but others where computing and other
techniques are dominant. These thoughts were echoed by others in a Royal
Statistical Society Panel of 2015 (Royal Statistical Society, 2015). More recently,
data science curricula such as Berkeley’s effectively integrate these key topics
(Adhikari et al., 2021; Spector, 2021).

Tukey used the term data analysis in 1962 (Tukey, 1962). The term data science
became popular around 2010,* after an early use of the term by the statistician
William Cleveland in 2001, the launches of Data Science Journal in 2002 and The
Journal of Data Science in 2003, and a US National Science Board Report in 2005°
(National Science Board, 2005). The term big data dates back to the late 1990s
(Halevy et al., 2009; Lohr, 2013), perhaps first in a 1997 paper by Michael Cox and
David Ellsworth of the NASA Ames Research Center (Cox & Ellsworth, 1997).

Related terms go back much further. Automatic data was used for punch-card
processing in the 1890 US census (using mechanical sorting machines, not elec-
tronic computers). Data processing entered common parlance in the 1950s as
digital computers made data accumulation, storage, and processing far more
accessible.

While we associated A/B testing with the rise of the World Wide Web, its use is
far older. In 1923, Claude C. Hopkins, who with Albert Lasker founded the modern
advertising industry, wrote “Almost any question can be answered quickly and
finally by a test campaign.”

In 1950, Alan Turing laid out many key ideas of artificial intelligence and
machine learning in the article “Computing machinery and intelligence” (Turing,

* The Google Books Ngram Viewer (Google Books, 2010), which samples the frequency of terms (or Ngrams) in
the corpus of published books, shows a noticeable uptick circa 2010. See this: www.datascienceincontext.com
/ngram-ds.

> Peter Naur used the term data science in his 1974 book Concise Survey of Computer Methods (Naur, 1974), but
he was referring to issues of data representation. Later in his text, in a chapter entitled “Large data systems in
human society,” he referred to emerging political and ethical challenges.
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1950). However, the terms themselves arrived a bit later: artificial intelligence was
coined in 1956 for a workshop at Dartmouth College (Dartmouth, 2018) and
machine learning was popularized in 1959 by IBM Researcher Arthur Samuel
in an article describing a program which learned checkers by playing games against
itself (Samuel, 1959). Neural networks were first explored in the 1940s and 1950s
by Hebb (see Morris, 1999), McCulloch and Pitts (see McCulloch & Pitts, 1943),
and Rosenblatt (see Rosenblatt, 1958). Deep learning (in its current form, for
neural networks) was coined in 2006 (Hinton et al., 2006).
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