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Positive Ulrich sheaves
Christoph Hanselka and Mario Kummer
Abstract. We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain
bilinear form on its global sections. When working over the real numbers, we call it a positive
Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case,
our result provides a common theoretical framework for several results in real algebraic geometry
concerning the existence of algebraic certificates for certain geometric properties. For instance, it
implies Hilbert’s theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces,
and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.

1 Introduction

A widespread principle in real algebraic geometry is to find and use algebraic cer-
tificates for geometric statements. For example, a sum of squares representation of
a homogeneous polynomial p ∈ R[x1 , . . . , xn]2d of degree 2d is a finite sequence of
polynomials g1 , . . . , gr ∈ R[x1 , . . . , xn]d such that

p = g2
1 + ⋅ ⋅ ⋅ + g2

r

and serves as an algebraic certificate of the geometric property that p takes only
nonnegative values at real points: p(x) ≥ 0 for all x ∈ Rn . In an influential paper,
Hilbert [Hil88] showed that the converse is true if (and only if) 2d = 2, or n = 1, or
(2d , n) = (4, 3). While in the first two cases this can be seen quite easily via linear
algebra and the fundamental theorem of algebra, respectively, the proof for the case
(2d , n) = (4, 3) of ternary quartics is nontrivial. There have been several different new
proofs of this statement in the last 20 years: via the Jacobian of the plane curve defined
by p [PRSS04] relying on results of Coble [Cob82], using elementary techniques
[PS12], and as a special case of more general results on varieties of minimal degree
[BSV16].

Another instance, that has attracted a lot of attention recently, is the following. Let
h ∈ R[x0 , . . . , xn]d be a homogeneous polynomial for which there are real symmetric
(or complex Hermitian) matrices A0 , . . . , An and r ∈ Z>0 such that

hr = det(x0A0 + ⋅ ⋅ ⋅ + xn An)
and e0A0 + ⋅ ⋅ ⋅ + en An is positive definite for some e ∈ Rn+1. In this case, we say
that hr has a definite symmetric (or Hermitian) determinantal representation and it
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is a certificate that h is hyperbolic with respect to e in the sense that the univari-
ate polynomial h(te − v) ∈ R[t] has only real zeros for all v ∈ Rn+1. The minimal
polynomial of a Hermitian matrix has only real zeros. Lax [Lax58] conjectured
that for n = 2 and arbitrary d ∈ Z>0, the following strong converse is true: every
hyperbolic polynomial h ∈ R[x0 , x1 , x2]d has a definite symmetric determinantal
representation (up to multiplication with a nonzero scalar). This conjecture was solved
to the affirmative by Helton and Vinnikov [HV07]. Furthermore, every hyperbolic
h ∈ R[x0 , x1 , x2 , x3]3 has a definite Hermitian determinantal representation [BK07],
and for every quadratic hyperbolic polynomial h ∈ R[x0 , . . . , xn]2, there is an r ∈ Z>0
such that hr has definite symmetric (or Hermitian) determinantal representation
[NT12]. On the other hand, if d ≥ 4 and n ≥ 3 or if d ≥ 3 and n ≥ 5, there are hyperbolic
polynomials h ∈ R[x0 , . . . , xn]d such that no power hr has a definite symmetric
(or Hermitian) determinantal representation (see [Brä11, Kum16b]; resp. [BKS+ar,
Sau19]). The case (d , n) = (3, 4) is open.

The condition of h ∈ R[x0 , . . . , xn]d being hyperbolic with respect to e can be
phrased in geometric terms as follows: let X = V(h) ⊂ P

n be the hypersurface defined
by h. Then h is hyperbolic with respect to e if and only if the linear projection πe ∶X →
P

n−1 with center e is real fibered in the sense that π−1
e (Pn−1(R)) ⊂ X(R). This leads to

a natural generalization of hyperbolicity to arbitrary embedded varieties introduced
in [SV18] and further studied in [KS20]. A subvariety X ⊂ P

n of dimension k is
hyperbolic with respect to a linear subspace E ⊂ P

n of codimension k + 1 if X ∩ E = ∅
and the linear projection πE ∶X → P

k with center E is real fibered. Furthermore, a
polynomial p ∈ R[x1 , . . . , xn]2d is nonnegative if and only if the double cover X → P

n

ramified along the zero set of p is real fibered, where X is defined as the zero set of
y2 − p in a suitable weighted projective space. Thus, both abovementioned geometric
properties of polynomials, being nonnegative and being hyperbolic, can be seen as
special instances of real-fibered morphisms.

Let f ∶X → Y be a morphism of schemes. A coherent sheaf F on X is called f-Ulrich
if there is a natural number r > 0 such that f∗F ≅ Or

Y . If X ⊂ P
n is a closed subscheme,

then one defines a coherent sheafF on X to be an Ulrich sheaf per se if it is π-Ulrich for
any finite surjective linear projection π∶X → P

k . This is equivalent to H i(X ,F(− j)) =
0 for 1 ≤ j ≤ dim(X) and all i. See [Bea18] for an introduction to Ulrich sheaves. The
question of which subvarieties of Pn carry an Ulrich sheaf is of particular interest in
the context of Boij–Söderberg theory [ES11].

For real-fibered morphisms f ∶X → Y , positive f -Ulrich sheaves have been defined
in [KS20] and it was shown that a hypersurface in P

n carries a positive Ulrich sheaf if
and only if it is cut out by a polynomial with a definite determinantal representation.
For subvarieties X ⊂ P

n of higher codimension supporting a positive Ulrich sheaf is
equivalent to admitting some generalized type of determinantal representation, that
was introduced in [SV18] and motivated by operator theory. The existence of such
a determinantal representation for X implies that some power of the Chow form
of X has a definite determinantal representation. On the other hand, we will show
that a real-fibered double cover f ∶X → P

n , which is ramified along the zero set of a
homogeneous polynomial p, admits a positive f -Ulrich sheaf if and only if p is a sum
of squares. Therefore, the notion of positive Ulrich sheaves encapsulates both types of
algebraic certificates for the abovementioned geometric properties of homogeneous
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polynomials, namely being a sum of squares and having a definite determinantal
representation.

The main result of this article is a criterion for a coherent sheaf to be a positive
Ulrich sheaf, which implies all the abovementioned existence results on represen-
tations as sums of squares and determinantal representations, and more. It only
comprises a positivity criterion that can be checked locally as well as a condition
on the dimension of the space of global sections (but surprisingly not of the higher
cohomology groups) of the coherent sheaf at hand.

To this end, after some preparations in Section 3, we characterize Ulrich sheaves
in terms of a certain bilinear mapping and its behavior on the level of global sections
in Section 4 (see, in particular, Theorem 4.6). In this part, we work over an arbitrary
ground field and we believe that these results can be of independent interest.

After we review some facts on the codifferent sheaf in Section 5, that will be
important later on, we focus on varieties over R. In Section 6, we recall some facts
about real-fibered morphisms. We then define positive Ulrich sheaves in Section 7.
Theorem 7.2 is the abovementioned convenient criterion for checking whether a sheaf
is a positive Ulrich sheaf. In Section 8, we show that for a given polynomial having
a determinantal or sum of squares representation is equivalent to the existence of a
certain positive Ulrich sheaf. From this, the result on determinantal representations of
quadratic hyperbolic polynomials from [NT12] follows directly. In order to make our
general theory also applicable to other cases of interest, we specialize to Ulrich sheaves
of rank one on irreducible varieties in Section 9. Theorem 9.3 gives a convenient
criterion for a Weil divisor giving rise to a positive Ulrich sheaf. Namely, under some
mild assumptions, if f ∶X → Y is a real-fibered morphism and D a Weil divisor on
X such that 2D differs from the ramification divisor of f only by a principal divisor
defined by a nonnegative rational function, then the sheaf associated with D is a
positive f -Ulrich sheaf whenever its space of global sections has dimension deg( f ).
A particularly nice case is that of hyperbolic hypersurfaces: The existence of a definite
determinantal representation is guaranteed by the existence of a certain interlacer,
generalizing the construction for plane curves from [PV13] (see Corollary 9.9).

In Section 10, we apply our theory to the case of curves and show how it easily
implies the Helton–Vinnikov theorem on plane hyperbolic curves [HV07] as well as its
generalization to curves of higher codimension from [SV18] using the 2-divisibility of
the Jacobian. Finally, in Section 11, we consider the anticanonical map on real del Pezzo
surfaces in order to reprove Hilbert’s theorem on ternary quartics [Hil88] and the
existence of a Hermitian determinantal representation on cubic hyperbolic surfaces
[BK07]. We further prove a new result on quartic del Pezzo surfaces in P

4. Apart from
our general theory, the only ingredients for this part are basic properties of (real) del
Pezzo surfaces as well as the Riemann–Roch theorem.

2 Preliminaries and notation

For any scheme X and p ∈ X, we denote by κ(p) the residue class field of X at p. If X is
separated, reduced (but not necessarily irreducible), and of finite type over a field K,
we say that X is a variety over K. For any coherent sheafF on X, we denote by rankp(F)
the dimension of the fiber ofF at p considered as κ(p)-vector space. If X is irreducible
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with generic point ξ, we simply denote rank(F) = rankξ(F). If X is a scheme (over a
field K) and L a field (extension of K), then we denote by X(L) the set of all morphisms
Spec(L) → X of schemes (over K). For a field K, we let Pn

K = Proj(K[x0 , . . . , xn]), and
if the field is clear from the context, we omit the index and just write Pn . We say that
a scheme is Noetherian if it can be covered by a finite number of open affine subsets
that are spectra of Noetherian rings.

3 Bilinear mappings on coherent sheaves

Definition 3.1 Let X be a scheme, and let F1 ,F2, and G be coherent sheaves on X.
A G-valued pairing of F1 and F2 is a morphism of coherent sheaves φ∶F1 ⊗ F2 →
G. Let K be a field and α ∈ X(K), i.e., a morphism α∶ Spec(K) → X. Then we get
a bilinear map α∗φ on α∗F1 × α∗F2 with values in α∗G which are just finite-
dimensional K-vector spaces. We say that φ is nondegenerate at α ∈ X(K) if the map
α∗F1 → HomK(α∗F2 , α∗G) induced by α∗φ is an isomorphism.

For the rest of this section, unless stated otherwise, let X always be a geometrically
integral scheme with generic point ξ which is proper over a field K.

Lemma 3.1 Let F be a coherent sheaf on X which is generated by global sections. If
there is a K-basis of H0(X ,F) which is also a κ(ξ)-basis of Fξ , then F ≅ Or

X , where
r = dim H0(X ,F).

Proof Let K be the kernel of the map Or
X → F that sends the unit vectors to the K-

basis of H0(X ,F). Since F is generated by global sections, this map is surjective. We
thus obtain the short exact sequence

0 →K→ Or
X → F → 0.

Passing to the stalk at ξ gives Kξ = 0 by our assumption. Since K is torsion-free as a
subsheaf of Or

X , this implies that K = 0 and therefore Or
X ≅ F. ∎

Remark 3.2 Let φ∶F1 ⊗OX F2 → OX be a pairing of the coherent sheaves F1 and F2.
This induces a bilinear mapping

V1 × V2 → K ,

where Vi = H0(X ,Fi) since H0(X ,OX) = K.

Lemma 3.3 Let F1 and F2 be coherent sheaves on X, let Vi = H0(X ,Fi), and let
s1 , . . . , sr be a basis of V1. Let φ∶F1 ⊗OX F2 → OX be a pairing such that the induced
bilinear mapping V1 × V2 → K is nondegenerate. Then the images of s1 , . . . , sr in the
κ(ξ)-vector space (F1)ξ are linearly independent.

Proof Since the bilinear mapping V1 × V2 → K is nondegenerate, there is a basis
t1 , . . . , tr ∈ V2 that is dual to s1 , . . . , sr with respect to this bilinear mapping. Suppose
f1 , . . . , fr ∈ κ(ξ) such that

f1s1 + ⋅ ⋅ ⋅ + frsr = 0.

Tensoring with t j and applying φ yields f j ⋅ φ(s j ⊗ t j) = 0 and therefore f j = 0 since
φ(s j ⊗ t j) = 1 by assumption. ∎
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Proposition 3.4 Let F1 and F2 be coherent sheaves on X, let Vi = H0(X ,Fi), and let
F1 andF2 be generated by global sections. Let φ∶F1 ⊗OX F2 → OX be a pairing such that
the induced bilinear mapping V1 × V2 → K is nondegenerate. Then:
(a) Fi ≅ Or

X , where r = dim Vi .
(b) The morphism F1 → H omOX(F2 ,OX) corresponding to φ is an isomorphism.

Proof Let s1 , . . . , sr ∈ V1 be a basis of V1. By assumption, s1 , . . . , sr span the κ(ξ)-
vector space (F1)ξ and, by Lemma 3.3, they are linearly independent. Thus, by Lemma
3.1, we have F1 ≅ Or

X . The same argument applies to F2 and part (b) then follows
immediately from (a). ∎

Lemma 3.5 Let F1 and F2 be coherent torsion-free sheaves on X. Assume that the
image of Vi = H0(X ,Fi) spans the stalk (Fi)ξ as κ(ξ)-vector space. Furthermore, let
φ∶F1 ⊗OX F2 → OX be a pairing such that the induced bilinear mapping V1 × V2 → K is
nondegenerate. Then the corresponding morphism F1 → H omOX(F2 ,OX) is injective.

Proof Let s1 , . . . , sr ∈ V1 be a basis of V1, and let t1 , . . . , tr ∈ V2 be the dual basis with
respect to the bilinear mapping V1 × V2 → K. Let U ⊂ X be some open affine subset,
A = OX(U) and M i = Fi(U). For any 0 ≠ g ∈ M1, there is 0 ≠ a ∈ A such that a ⋅ g is
in the submodule of M1 that is spanned by the restrictions s i ∣U :

a ⋅ g = f1 ⋅ s1∣U + ⋅ ⋅ ⋅ + fr ⋅ sr ∣U
for some f j ∈ A that are not all zero. Let, for instance, f i ≠ 0, then

φ(a ⋅ g ⊗ t i ∣U) = a ⋅ f i ⋅ φ(s i ⊗ t i) ≠ 0.

This shows that the map M1 → HomA(M2 , A) induced by φ in injective. ∎

Lemma 3.6 Let F be a coherent sheaf on X and G a subsheaf with Gξ = Fξ . Then the
natural map H omOX(F,OX) → H omOX(G,OX) is injective.

Proof Let U ⊂ X be some open affine subset, A = OX(U), M = F(U), and
N = G(U). Consider a morphism φ∶M → A such that φ∣N = 0. For every g ∈ M,
there is a nonzero t ∈ A such that t ⋅ g ∈ N . Thus, φ(t ⋅ g) = t ⋅ φ(g) = 0, and therefore
φ(g) = 0. This shows that φ = 0. ∎

Theorem 3.7 Let F1 and F2 be coherent torsion-free sheaves on X, and let
Vi = H0(X ,Fi). Let φ∶F1 ⊗OX F2 → OX be a pairing such that the induced bilinear
mapping V1 × V2 → K is nondegenerate. If dim V1 ≥ rankF1, then F1 ≅ Or

X and r =
dim V1 = rankF1. Furthermore, F1 → H omOX(F2 ,OX) is an isomorphism.

Proof By Proposition 3.4(a), it suffices to show that Fi is generated by global
sections. Let Gi be the subsheaf of Fi generated by its global sections Vi . We get the
commutative diagram

G1 H omOX(G2 ,OX)

F1 H omOX(F2 ,OX)

.
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The homomorphism G1 → H omOX(G2 ,OX) is an isomorphism by Proposi-
tion 3.4(b). By Lemma 3.3 and the condition on the dimension it follows that the image
of Vi = H0(X ,Fi) spans the stalk (Fi)ξ as κ(ξ)-vector space and that (Gi)ξ = (Fi)ξ .
Thus, the bottom and right maps in the diagram are also injective by Lemmas 3.5
and 3.6, respectively. This implies that G1 = F2, and therefore F1 is generated by global
sections. ∎
Example 3.8 This example is to illustrate that the assumption in Theorem 3.7 of being
nondegenerate on global sections is crucial. Let X = P

1 and ξ the generic point of
P

1. Consider the coherent torsion-free sheaf F = OP1(1) ⊕OP1(−1) on P
1. We have

dim H0(P1 ,F) = 2 = rankξ F. On F, we define the pairing φ∶F ⊗OX F → OX that
sends (a, b) ⊗ (c, d) to ad + bc which is nondegenerate at ξ. But the induced bilinear
form on the global sections of F is identically zero and F /≅ O2

P1 .

4 Ulrich sheaves

Definition 4.1 Let f ∶X → Y be a morphism of schemes. A coherent sheaf F on X is
f-Ulrich if f∗F ≅ Or

Y for some natural number r.

Remark 4.1 Let f i ∶X i → Y be finitely many morphisms of schemes. Let X be the
disjoint union of the X i and f ∶X → Y the morphism induced by the f i . A coherent
sheaf F on X is f -Ulrich if and only if F∣X i is f i -Ulrich for all i. Thus, we can usually
restrict to the case when X is connected.

A case of particular interest is when X is an embedded projective variety.

Proposition 4.2 [ESW03, Proposition 2.1] Let X ⊂ P
n be a closed subscheme, and let

f ∶X → P
k be a finite surjective linear projection from a center that is disjoint from X.

Let F be a coherent sheaf whose support is all of X. Then the following are equivalent:
(i) F is f-Ulrich.

(ii) H i(X ,F(−i)) = 0 for i > 0 and H i(X ,F(−i − 1)) = 0 for i < k.
(iii) H i(X ,F( j)) = 0 for all 1 ≤ i ≤ k − 1, j ∈ Z; H0(X ,F( j)) = 0 for j < 0 and

Hk(X ,F( j)) = 0 for j ≥ −k.
(iv) The module M = ⊕i∈ZH0(X ,F(i)) of twisted global sections is a Cohen–Macaulay

module over the polynomial ring S = K[x0 , . . . , xn] of dimension k + 1 whose
minimal S-free resolution is linear.

If F as in Proposition 4.2 satisfies these equivalent conditions, then we say that F
is an Ulrich sheaf on X without specifying the finite surjective linear projection f as
conditions (ii)–(iv) do not depend on the choice of f. A major open question in this
context is the following.

Problem 4.3 [ESW03, p. 543] Is there an Ulrich sheaf on every closed subvariety
X ⊂ P

n?

We now want to apply the results from Section 3 to give a criterion for a sheaf to
be Ulrich. For this, we need a relative notion of nondegenerate bilinear mappings.
Let f ∶X → Y be a finite morphism of Noetherian schemes. For any quasi-coherent
sheaf G on Y, we consider the sheaf H omOY ( f∗OX ,G). Since this is a quasi-coherent
f∗OX-module, it corresponds to a quasi-coherent OX-module which we will denote
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by f !G. We recall the following basic lemma (cf. [Har77, Chapter III Section 6,
Exercise 6.10]).

Lemma 4.4 Let f ∶X → Y be a finite morphism of Noetherian schemes. Let F be a
coherent sheaf on X, and let G be a quasi-coherent sheaf on Y. There is a natural
isomorphism

f∗H omOX(F, f !G) → H omOY ( f∗F,G)

of quasi-coherent f∗OX-modules.

Let f ∶X → Y be a finite morphism of Noetherian schemes. Let F1 and F2
be coherent sheaves on X and consider an f !OY -valued pairing, i.e., a mor-
phism F1 ⊗ F2 → f !OY of coherent OX-modules. This corresponds to a morphism
F1 → H omOX(F2 , f !OY). Lemma 4.4 tells us that this gives us a morphism

f∗F1 → H omOY ( f∗F2 ,OY),

which corresponds to an OY -valued pairing on the pushforwards f∗F1 and f∗F2.

Remark 4.5 Let us explain here the affine case in more detail. To that end, let
X = Spec(B), Y = Spec(A), and f ∶X → Y be induced by the finite ring homo-
morphism f #∶A → B. Then f !OY is the sheaf on X associated with the B-module
HomA(B, A) whose B-module structure is given by (b ⋅ φ)(m) = φ(b ⋅ m) for all
b, m ∈ B. If F1 and F2 are the coherent sheaves associated with the B-modules M1
and M2, then a morphism F1 ⊗ F2 → f !OY of coherent OX-modules corresponds to
a homomorphism ψ∶M1 ⊗B M2 → HomA(B, A) of B-modules. This gives rise to the
following A-bilinear map on M1 × M2:

(m1 , m2) ↦ (ψ(m1 ⊗ m2))(1).

This gives the OY -valued pairing of the pushforwards f∗F1 and f∗F2.

Definition 4.2 Let f ∶X → Y be a finite morphism of Noetherian schemes. LetF1 and
F2 be coherent sheaves on X and consider an f !OY -valued pairing φ∶F1 ⊗ F2 → f !OY .
For a field K, we say that φ is nondegenerate at α ∈ Y(K) if the induced OY -valued
pairing of the pushforwards f∗F1 and f∗F2 is nondegenerate at α.

Now, let Y be a geometrically irreducible variety which is proper over a field K. Let
further f ∶X → Y be a finite surjective morphism and F1, F2 coherent sheaves on X
with a pairing F1 ⊗ F2 → f !OY . We have seen that this induces an OY -valued pairing
on the pushforwards which in turn induces a K-bilinear mapping

H0(X ,F1) × H0(X ,F2) → K .

Theorem 4.6 Let X be an equidimensional variety over a field K with irreducible
components X1 , . . . , Xs . Let F1 and F2 be coherent torsion-free sheaves on X, and let
Vi = H0(X ,Fi). Let Y be a geometrically irreducible variety which is proper over K and
f ∶X → Y a finite surjective morphism. Assume that there is an f !OY -valued pairing
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of F1 and F2 such that the induced K-bilinear mapping V1 × V2 → K is nondegenerate.
Then the following are equivalent:
(i) dim V1 ≥ ∑s

i=1 deg( f ∣X i ) ⋅ rank(F1∣X i ).
(ii) F1 is f-Ulrich.

Proof We will apply Theorem 3.7 to the coherent sheaves f∗F1 and f∗F2. First,
we need that the f∗Fi are torsion-free. This follows from the assumptions that f
is finite and surjective, X is equidimensional and Fi is torsion-free. Further, by
[Kol96, Chapter VI Section 2, Proposition 2.7], one has rank( f∗F1) = ∑s

i=1 deg( f ∣X i ) ⋅
rank(F1∣X i ). ∎
Remark 4.7 Let f ∶X → Y as in Theorem 4.6. Assume that F1 is an f -Ulrich sheaf on
X, and let F2 = H omOX(F, f !OY). Then we have a canonical map F1 ⊗ F2 → f !OY
which satisfies the assumptions of Theorem 4.6.

Example 4.8 Let X = P
1 and consider the natural morphism f ∶X × X → X(2), where

X(2) is the symmetric product. This corresponds to the inclusion Sσ ⊂ S, where S is
the bigraded ring K[x0 , x1 , y0 , y1] and Sσ is the ring of invariants under the action of
the automorphism σ ∶ S → S that interchanges x i and y i for i = 0, 1. For every f , g ∈ S,
we have that gσ( f ) − σ(g) f is divisible by x0 y1 − x1 y0. Thus,

B( f , g) = gσ( f ) − σ(g) f
x0 y1 − x1 y0

∈ Sσ .

Since the denominator has bidegree (1, 1), this defines a morphism

OX×X(1, 1) → H omOX(2) ( f∗OX×X ,OX(2))

of OX×X-modules that sends a section g to B( f , g). Thus, we get an f !OX(2)-valued
pairing of F1 = OX×X(1, 0) and F2 = OX×X(0, 1). The induced K-bilinear mapping is
given by the matrix

( 0 1
−1 0) ,

so, in particular, nondegenerate. Thus, we can apply Theorem 4.6 to deduce that F1
and F2 are f -Ulrich.

5 The codifferent sheaf

In this section, we recall some properties of f !OY and its relation to the codifferent
sheaf. Most of the results should be well known, but for a lack of adequate references,
we will include (at least partial) proofs here.

Lemma 5.1 Let f ∶X → Y be a finite morphism of Noetherian schemes.
(a) If f is flat and both X and Y are Gorenstein, then f !OY is a line bundle.
(b) If Y is a smooth variety over K and X is Gorenstein, then f !OY is a line bundle.

Proof We first note that (b) is a special case of part (a) because, in this situation, the
morphism f is automatically flat as Gorenstein implies Cohen–Macaulay. In order to
prove part (a), note that for every y ∈ Y , the canonical module of OY , y is OY , y itself
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by [HK71, Satz 5.9], and for every x ∈ X, the canonical module of OX ,x is ( f !OY)x by
[HK71, Satz 5.12]. Thus, again by [HK71, Satz 5.9], f !OY is a line bundle on X if X is
Gorenstein. ∎
Remark 5.2 The preceding lemma implies that the sheaf f !OY is a line bundle
whenever f ∶X → Y is a finite morphism of smooth varieties over a field K.

Definition 5.1 Let A be a Noetherian integral domain, and let A ⊂ B be a finite ring
extension such that for each minimal prime ideal p of B, we have p ∩ A = (0). Let K
be the quotient field of A, and let L be the total quotient ring of B. Then L is a finite-
dimensional K-vector space and we have the K-linear map trL/K ∶ L → K that associates
to every element x ∈ L the trace of the K-linear map L → L, a ↦ ax. The codifferent
of the ring extension A ⊂ B is the B-module

Δ(B/A) = {g ∈ L ∣ trL/K(g ⋅ B) ⊂ A}.

Clearly, the map

Δ(B/A) → HomA(B, A), g ↦ (b ↦ trL/K(g ⋅ b)
is a homomorphism of B-modules.

Now, let Y be an integral Noetherian scheme and f ∶X → Y a finite morphism such
the generic point of each irreducible component of X is mapped to the generic point of
Y. Let KX be the sheaf of total quotient rings of OX . By gluing the above, we define the
quasi-coherent subsheaf Δ(X/Y) of KX and we obtain a morphism of OX-modules
Δ(X/Y) → f !OY . We call Δ(X/Y) the codifferent sheaf of f.

Example 5.3 Let A be an integral domain and K = Quot(A). Let f ∈ A[t] be a monic
polynomial over A which has only simple zeros in the algebraic closure of K, and let
B = A[t]/( f ). Then the codifferent Δ(B/A) is the fractional ideal generated by 1

f ′ in
the total quotient ring of B. Here, f ′ denotes the formal derivative of f. This follows
from a lemma often attributed to Euler (see [Ser79, III, Section 6]).

Remark 5.4 In order to construct a pairing F1 ⊗ F2 → f !OY , it thus suffices by the
discussion in Definition 5.1 to construct a pairing F1 ⊗ F2 →KX whose image is
contained in Δ(X/Y).

Lemma 5.5 Let X and Y be varieties over a field of characteristic zero, X equidimen-
sional and Y irreducible. Then, for any finite surjective morphism f ∶X → Y, the map
Δ(X/Y) → f !OY is an isomorphism of OX-modules.

Proof We can reduce to the affine case: let A ⊂ B be a finite ring extension such that
A is an integral domain and p ∩ A = (0) for all minimal prime ideals p of B. Let E and F
be the total quotient rings of A and B, respectively. Since B ⊗A E is finite-dimensional
as an E-vector space and reduced, it is a ring of the form F1 × ⋅ ⋅ ⋅ × Fr for some finite
field extensions Fi of E. Since no element of A is a zero divisor in B, we actually have
that F = F1 × ⋅ ⋅ ⋅ × Fr . Thus, we have an injective map HomA(B, A) → HomE(F , E)
that is given by tensoring with E. By definition, the preimage of HomA(B, A) under
the map

ψ∶ F → HomE(F , E), a ↦ trF/E(a ⋅ −)

https://doi.org/10.4153/S0008414X23000263 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000263


890 C. Hanselka and M. Kummer

is exactly Δ(B/A). It thus suffices to show that ψ is an isomorphism because then the
restriction of ψ to Δ(B/A) is the desired isomorphism Δ(B/A) → HomA(B, A). The
map ψ is the direct sum of the maps

ψ i ∶ Fi → HomE(Fi , E), a ↦ trFi/E(a ⋅ −),

and thus it suffices to show that each ψ i is an isomorphism. We have that trFi/E(1) is the
dimension of Fi as an E-vector space. Since we work over a field of characteristic zero,
this shows that each ψ i is a nonzero map. But since HomE(Fi , E) is one-dimensional
considered as a vector space over Fi , this implies that ψ i is an isomorphism. ∎

Remark 5.6 Lemma 5.5 is no longer true over fields of positive characteristic because
the trace trL/K is identically zero for inseparable field extensions K ⊂ L. This is one
reason why we have not worked with the codifferent sheaf to begin with.

Proposition 5.7 Let f ∶X → Y be a finite surjective morphism of varieties over a field
of characteristic zero. Let X be equidimensional and Gorenstein. Let Y be smooth and
irreducible. Then Δ(X/Y) is an invertible subsheaf of KX and thus Δ(X/Y) = L(R)
for some Cartier divisor R on X. This Cartier divisor is effective and its support consists
exactly of those points where f is ramified.

Proof By Lemma 5.5, Δ(X/Y) is isomorphic to f !OY which is an invertible sheaf
by Lemma 5.1. Thus, Δ(X/Y) is an invertible subsheaf of KX , and we can write
Δ(X/Y) = L(R) for some Cartier divisor R on X. We first show that R is effective,
which is equivalent to the constant 1 being a global section of Δ(X/Y). This can be
checked locally. We thus consider a finite ring extension A ⊂ B, where A is an integral
domain. Furthermore, this ring extension is flat by the assumptions on X and Y. Thus,
without loss of generality, we can assume that B is free as A-module. Therefore, the
A-linear map B → B given by multiplication with an element b ∈ B can be represented
by a matrix having entries in A. Using the notation of Definition 5.1, this shows that
trL/K(1 ⋅ B) ⊂ A. Thus, the constant 1 is a global section of Δ(X/Y) and R is effective.
The image of 1 under the map H0(X , Δ(X/Y)) → H0(X , f !OY) is just the trace map
and the subscheme associated with R is the zero set of this section. This consists exactly
of the ramification points of f (see, for example, [Sta20, Tag 0BW9] or [Kum16a,
Remark 2.2.19]). ∎

Definition 5.2 In the situation of Proposition 5.7, we call the Cartier divisor R on
X that corresponds to the invertible subsheaf Δ(X/Y) of KX the ramification divisor
of f.

Lemma 5.8 Let f ∶X → Y be a finite surjective morphism of varieties. Let X be
equidimensional, and let Y be smooth and irreducible. Let Z ⊂ X be of codimension
at least two. Consider the open subset V = X/Z and its inclusion ι∶V → X to X. Then
ι∗(Δ∣V) = Δ, where Δ = Δ(X/Y).

Proof If we enlarge Z, then the statement becomes stronger, so we may assume that
Z = f −1(Z′) for some Z′ ⊂ Y of codimension at least two. We writeD = ι∗(Δ∣V). Then
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Δ is a subsheaf of D and we need to show equality. To that end, let U ⊂ Y be an affine
open subset and W = f −1(U). Then we have the following:
(1) OX(W) ⊂ OX(W/Z) and
(2) OY(U) = OY(U/Z′).
Letting L be the total quotient ring of X and K the function field of Y, we get

D(W) = Δ( f −1(U/Z′)) = {a ∈ L ∣ trL/K(aOX(W/Z)) ⊂ OY(U/Z′) }
and due to (1) and (2) the latter is contained in

{ a ∈ L ∣ trL/K(aOX(W)) ⊂ OY(U) } = Δ(W).

Thus, we have D(W) = Δ(W). Since f ∶X → Y is affine, the sets W = f −1(U) for
U ⊂ Y open and affine give an affine covering of X and thus D = Δ. ∎

6 Real-fibered morphisms

In this section, we recall the notion of real-fibered morphisms, basic examples and
some of their properties.

Definition 6.1 Let f ∶X → Y be a morphism of varieties over R. If f −1(Y(R)) =
X(R), then we say that f is real fibered.

Example 6.1 Let p ∈ R[x0 , . . . , xn]2d be a homogeneous polynomial of degree 2d.
Inside the weighted projective space P(d , 1, . . . , 1), we consider the hypersurface
X defined by y2 = p(x0 , . . . , xn) and the natural projection π∶X → P

n onto the x-
coordinates. This is a double cover ofPn ramified at the hypersurface defined by p = 0.
Clearly π is real fibered if and only if p is globally nonnegative, i.e., p(x) ≥ 0 for all
x ∈ Rn+1.

Hyperbolic polynomials yield another class of examples.

Definition 6.2 Let h ∈ R[x0 , . . . , xn]d be a homogeneous polynomial of degree
d, and let e ∈ Rn+1. We say that h is hyperbolic with respect to e if the univariate
polynomial h(te − v) ∈ R[t] has only real zeros for all v ∈ Rn+1. Note that this implies
h(e) ≠ 0. A hypersurface X ⊂ P

n is called hyperbolic with respect to [e] if its defining
polynomial is hyperbolic with respect to e.

Example 6.2 Let X ⊂ P
n be a hypersurface, and let e ∈ Pn be a point that does not lie

on X. Then the linear projection πe ∶X → P
n−1 with center e is real-fibered if and only

if X is hyperbolic with respect to e.

One can generalize this notion naturally to varieties of higher codimension.

Definition 6.3 Let X ⊂ P
n be a variety of pure dimension d, and let E ⊂ P

n be a linear
subspace of codimension d + 1 which does not intersect X. We say that X is hyperbolic
with respect to E if the linear projection πE ∶X → P

d with center E is real-fibered.

An important feature of real-fibered morphisms is the following.

Theorem 6.3 [KS20, Theorem 2.19] Let f ∶X → Y be a real-fibered morphism of
smooth varieties over R. Then the ramification divisor of f has no real point.
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Figure 1: A plane quartic curve that is hyperbolic with respect to any point in the inner oval

The following property of real-fibered morphisms will come in handy later when
we want to construct positive semidefinite bilinear forms.

Proposition 6.4 Let Y be an irreducible smooth variety, and let X be an equidimen-
sional variety over R. Let f ∶X → Y be a finite surjective real-fibered morphism. Let K
and L be the total quotient rings of Y and X and trL/K ∶ L → K the trace map. If g ∈ L is
nonnegative on X(R) (wherever it is defined), then trL/K(g) is nonnegative on Y(R)
(wherever it is defined).

Proof Assume that g ∈ L is nonnegative on X(R) (wherever it is defined). By generic
freeness [Gro65, Lemma 6.9.2], there is a nonempty open affine subset U ⊂ Y such
that B = OX( f −1(U)) is a free A-module, where A = OY(U) and such that g ∈ B. By a
version of the Artin–Lang theorem [Bec82, Lemma 1.5], the real points of U are dense
in Y(R) with respect to the euclidean topology because Y is smooth. Thus, it suffices
to show that trL/K(g) ∈ A is nonnegative on every real point p of U. Let m ⊂ A be the
corresponding maximal ideal. Then C = B/mB is finite-dimensional as vector space
over R = A/m and Spec(C) consists only of real points because f is real fibered. Thus,
letting g ∈ C be the residue class of g and because g is nonnegative on f −1(p), the
quadratic form

C × C → R, (a, b) ↦ trC/R(g ⋅ a ⋅ b)
is positive semidefinite by [PRS93, Theorem 2.1]. Thus, in particular, trC/R(g) ≥ 0.
Finally, by flatness, we have that trL/K(g) = trC/R(g) ≥ 0. ∎

7 Positive semidefinite bilinear forms

The criterion for a coherent sheaf being Ulrich that we have seen in Section 4 very
much relies on the induced bilinear form on global sections being nondegenerate.
Verifying this condition might be hard in general. However, in this section, we show
that when working over the real numbers, we have a more convenient criterion at
hand, namely, positivity.

We first have to define Hermitian bilinear forms on sheaves. To this end, let X be
a scheme, and let F1 ,F2, and G be coherent sheaves on X. A G-valued pairing φ∶F1 ⊗
F2 → G induces naturally the two morphisms φ1∶F1 → H omOX(F2 ,G) and φ2∶F2 →
H omOX(F1 ,G).
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Definition 7.1 Let X be a scheme, and let F and G be coherent sheaves on X. A G-
valued pairing φ∶F ⊗ F → G is symmetric if φ1 = φ2.

Definition 7.2 Let X be a scheme over R. Denote by XC = X ×Spec(R) Spec(C) the
base change to C and π∶XC → X the natural projection. Further, let τ∶XC → XC be
the automorphism induced by complex conjugation. Let G be a coherent sheaf on X,
and let F be a coherent sheaf on XC. A pairing φ∶F ⊗ τ∗F → π∗G is Hermitian if φ1
agrees with the pullback of φ2 via τ.

From now on, in this section, X will always be a variety over R.

Definition 7.3 Let F be a coherent sheaf on X. Consider a symmetric bilinear form
φ∶F ⊗OX F → OX . Let α ∈ X(R), i.e., a morphism α∶ Spec(R) → X. Then we get a
symmetric bilinear form α∗φ on the pullback α∗F which is just a finite-dimensional
R-vector space. We say that φ is positive semidefinite at α ∈ X(R) if α∗φ is positive
semidefinite. We say that φ is positive semidefinite if it is positive semidefinite at every
α ∈ X(R).

Analogously, let F be a coherent sheaf on XC and consider a Hermitian bilinear
form φ∶F ⊗OX F → OX . We can consider any α ∈ X(R) also as a point of XC that
is fixed by the involution. Like this, we obtain a Hermitian bilinear form α∗φ on
the pullback α∗F which is just a finite-dimensional C-vector space. We say that φ
is positive semidefinite at α ∈ X(R) if α∗φ is positive semidefinite. We say that φ is
positive semidefinite if it is positive semidefinite at every α ∈ X(R).

A symmetric or Hermitian bilinear form on a coherent sheaf induces a symmetric
or Hermitian bilinear form on the space of global sections. The next lemma shows
how this behaves with respect to positivity.

Lemma 7.1 Let X be irreducible and proper over R with generic point ξ. Let φ∶F ⊗OX

F → OX be a positive semidefinite symmetric bilinear form on the coherent sheaf F and
V = H0(X ,F).
(a) If X(R) ≠ ∅, then the induced bilinear form V × V → R is positive semidefinite.
(b) If X(R) is Zariski dense in X, φ is nondegenerate at ξ and F is torsion-free, then

the induced bilinear form V × V → R is positive definite and thus in particular
nondegenerate.

The corresponding statements for Hermitian bilinear forms hold true as well.

Proof For part (a), we observe that if φ(s, s) = −1 for some s ∈ V , then φ is not
positive semidefinite at any point from X(R).

In order to show part (b), we first observe that since X(R) is Zariski dense in X,
the field κ(ξ) has an ordering P. Consider a nonzero section s ∈ V . Since φ(s, s) ≥ 0
at all points in X(R), Tarski’s principle implies that φ(s, s) is also nonnegative with
respect to the ordering P when considered as an element of κ(ξ). Thus, the bilinear
form induced by φ on the κ(ξ)-vector subspace of Fξ spanned by V is also positive
semidefinite (with respect to P). But since φ is nondegenerate at ξ, it is even positive
definite (with respect to P). Finally, because F is torsion-free, the nonzero section s
is mapped to a nonzero element in the stalk Fξ and therefore by positive definiteness
φ(s, s) ≠ 0. This shows the claim. ∎

https://doi.org/10.4153/S0008414X23000263 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000263


894 C. Hanselka and M. Kummer

Thus, if we assume positive semidefiniteness, we only need to assure that our
bilinear form is nondegenerate at the generic point rather than on global sections.

Theorem 7.2 Let Y be a geometrically irreducible variety which is proper over R. Let
f ∶X → Y be a finite surjective morphism, where X is an equidimensional variety over R
with X(R) Zariski dense in X. Let X1 , . . . , Xs be the irreducible components of X. Let F
be a coherent torsion-free sheaf on X, and let V = H0(X ,F). Let φ∶F ⊗OX F → f !OY
be a symmetric bilinear map which is nondegenerate at the generic point of each X i . If
the induced OY -valued bilinear form on f∗F is positive semidefinite, then the following
are equivalent:
(i) dim V ≥ ∑s

i=1 deg( f ∣X i ) ⋅ rank(F∣X i ).
(ii) F is an f-Ulrich sheaf.

Proof Combining Lemma 7.1 and Theorem 3.7, it remains to show that the induced
symmetric OY -valued bilinear form on f∗F is nondegenerate at the generic point of
Y. But this follows from the assumption that φ is nondegenerate at the generic point
of each X i by Lemma 7.3 whose easy proof we leave as an exercise. ∎

Lemma 7.3 Let A = K1 × ⋅ ⋅ ⋅ × Kr be the direct product of fields K i each of which
is a finite extension of the field K. Let M be a finitely generated A-module. Then
M ≅ V1 × ⋅ ⋅ ⋅ × Vr , where each Vi is a finite-dimensional K i -vector space and the
right-hand side is considered as an A-module in the obvious way. A homomorphism
φ∶M → HomK(M , K) of A-modules such that all induced maps Vi → HomK(Vi , K)
are isomorphisms is an isomorphism itself. In particular, the induced K-bilinear form
M ⊗K M → K is nondegenerate.

In the same manner, we obtain the Hermitian version.

Theorem 7.4 Let Y be a geometrically irreducible variety which is proper over R. Let
f ∶X → Y be a finite surjective morphism, where X is an equidimensional variety over R
with X(R)Zariski dense in X. Let X1 , . . . , Xs be the irreducible components of XC. LetF
be a coherent torsion-free sheaf on XC, and let V = H0(X ,F). Let φ∶F ⊗OX F → f !OYC

be a Hermitian bilinear map which is nondegenerate at the generic point of each X i . If
the induced OYC

-valued Hermitian bilinear form on f∗F is positive semidefinite, then
the following are equivalent:
(i) dim V ≥ ∑s

i=1 deg( f ∣X i ) ⋅ rank(F∣X i ).
(ii) F is an f-Ulrich sheaf.

Definition 7.4 Let Y be a geometrically irreducible variety which is proper over R.
Let f ∶X → Y be a finite surjective morphism, where X is an equidimensional variety
over R with X(R) Zariski dense in X. Let X1 , . . . , Xs be the irreducible components
of XC.
(a) LetF be an f -Ulrich sheaf on X. If there exists a symmetric bilinear map φ∶F ⊗OX

F → f !OY which is nondegenerate at the generic point of each X i such that the
inducedOY -valued bilinear form on f∗F is positive semidefinite, then we say that
F is a positive symmetric f -Ulrich sheaf.

(b) Let F be an f -Ulrich sheaf on XC. If there exists a Hermitian bilinear map
φ∶F ⊗OX F → f !OYC

which is nondegenerate at the generic point of each X i such
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that the induced OYC
-valued bilinear form on f∗F is positive semidefinite, then

we say that F is a positive Hermitian f -Ulrich sheaf.

In order to check the positivity condition, the following lemma will be useful.

Lemma 7.5 Let Y be an irreducible smooth variety with Y(R) ≠ ∅, and let X be
an equidimensional variety over R. Let f ∶X → Y be a finite surjective real-fibered
morphism. Let s be a global section of KX which is nonnegative on X(R), and let D be
the subsheaf of KX given by s ⋅ Δ(X/Y). Let L be a subsheaf of KX such that L ⋅L ⊂D.
Then there is an f !OY -valued symmetric bilinear form on L such that the induced OY -
valued bilinear form on f∗L is positive semidefinite.

Proof By assumption, we can define the symmetric Δ(X/Y)-valued bilinear form
on L that maps a pair of sections (g , h) to g⋅h

s . Thus the induced OY -valued bilinear
form maps (g , g) to the trace of g2

s which is nonnegative by Proposition 6.4. ∎

Remark 7.6 Let ι∶X ↪ P
n be an embedding of a k-dimensional projective variety,

and let F be an Ulrich sheaf on X, i.e., F is π-Ulrich for some finite surjective linear
projection π∶X → P

k . One can show that

ι∗(H omOX(F, π!OPk)) ≅ Extn−k(ι∗F, ωPn)(k + 1).

Thus, our notion of symmetry coincides with the one introduced in [ESW03, Section
3.1]. In particular, the property of being symmetric does not depend on the choice of
the linear projection π but the positivity condition does, as the next example shows.

Example 7.7 Let Y = P
1 and X = V(x2

0 − x2
1 − x2

2) ⊂ P
2. We let f i ∶X → P

1 be the
linear projection with center e i , where e1 = [1∶0∶0] and e2 = [0∶ 1∶0]. Note that f1 is
real fibered but f2 is not. Let P = [1∶ 1∶0] ∈ X (Weil divisor on X) and L = L(P) the
corresponding invertible subsheaf of KX . A basis of the space of global sections V
of L(P) is given by the two rational functions g1 = 1 and g2 = x0+x1

x2
. The ramifica-

tion divisor R i of f i is given by R1 = Q0 + Q0 and R2 = Q1 + Q2 with Q0 = [0∶ 1∶ i],
Q1 = [1∶0∶ 1] and Q2 = [1∶0∶ −1]. Denoting by Δ i the codifferent sheaf associated with
f i , we thus get that

(a, b) ↦ a ⋅ b ⋅ x0 − x1

x0
(7.1)

defines a symmetric bilinear form L⊗L→ Δ1. Via the isomorphism Δ1 ≅ f !
1OP1 , this

induces an OP1 -valued bilinear form on ( f1)∗L. With respect to the above basis of V,
it is given by the matrix

(2 0
0 2) ,

which is positive definite. Thus,L is a positive symmetric f1-Ulrich sheaf. On the other
hand, via the isomorphism Δ1 → Δ2 that is given by multiplication with x0

x1
, we get

https://doi.org/10.4153/S0008414X23000263 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000263


896 C. Hanselka and M. Kummer

from (7.1) and Δ2 ≅ f !
2OP1 an OP1 -valued bilinear form on ( f2)∗L. With respect to the

above basis of V, it is given by the matrix

(−2 0
0 2) ,

which is not positive semidefinite. Thus, although f !
1 OP1 ≅ f !

2OP1 as abstract line
bundles, for checking the positivity condition, we need to specify the morphism.
Moreover, Proposition 9.2 will show that actually no nonzero symmetric f !

2OP1 -valued
bilinear form on L will induce a positive semidefinite bilinear form on ( f2)∗L since
f2 is not real-fibered.

Since, later on, we will focus on irreducible varieties, we close this section with
an example for the reducible case. A systematic study of positive Ulrich sheaves on
reducible hypersurfaces would be very interesting with regard to the so-called gener-
alized Lax conjecture (see [Vin12, Conjecture 3.3]). We think it would be particularly
beneficial to understand how the main result of [Kum17] fits into our context here.

Example 7.8 Let l = x0 − x1 and h = x2
0 − (x2

1 + x2
2 + x2

3). Let X = X1 ∪ X2, where
X1 = V(l) ⊂ P

3 and X2 = V(h) ⊂ P
3. The linear projection

f ∶X → P
2 , [x0∶ x1∶ x2∶ x3] → [x1∶ x2∶ x3]

with center e = [1∶0∶0∶0] is real-fibered, and we want to construct a positive symmet-
ric f -Ulrich sheaf on X. The function field ofP2 is K = R( x2

x1
, x3

x1
) and the total quotient

ring of X is L = L1 × L2, where L i is the function field of X i for i = 1, 2. We note that
OX can be identified with the following subsheaf of KX :

OX(U) = {(a, b) ∈ OX1(U ∩ X1) ×OX2(U ∩ X2) ∣ (a − b)∣X1∩X2∩U = 0}

for U ⊂ X. We further define the subsheaf P of KX via

P(U) = {(a, b) ∈ OX1(U ∩ X1) ×OX2(U ∩ X2) ∣ (a + b)∣X1∩X2∩U = 0}

for U ⊂ X. Note that P is a line bundle on X and P ⋅P = OX . Finally, let

E(U) = {(a, b) ∈ OX1(U ∩ X1) ×OX2(U ∩ X2) ∶

(a − x3

x2
b)∣X1∩X2∩U∩U2 = 0 and

(x2

x3
a − b)∣X1∩X2∩U∩U3 = 0}.

The coherent sheaf E is defined in such a way that E ⋅ E ⊂ P.
Now, let Vi ⊂ P

2 be the open affine set, where x i ≠ 0 and U i = f −1(Vi) for i = 1, 2, 3.
By Example 5.3, the codifferent sheaf Δ(X/P2) is the subsheaf of KX generated by

x2
i

De(l ⋅h) on U i for i = 1, 2, 3. As an element of L1 × L2, this is

(− x2
i

x2
2 + x2

3
,

x2
i

2 ⋅ (x2
1 + x2

2 + x2
3 − x0x1)

)
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on U i for i = 1, 2, 3. Let L be the subsheaf ofKX generated by ( x i
x1

, x i
x1
) on U i . Consider

s = (x2
2 + x2

3
x2

1
, 2 ⋅ (x2

1 + x2
2 + x2

3 − x0x1)
x2

1
)

which is nonnegative on X(R). We haveL ⋅L ⊂ s ⋅P ⋅ Δ(X/P2). Thus, we haveF ⋅ F ⊂
s ⋅ Δ(X/P2), where F = E ⋅L. This gives us an f !OP2 -valued symmetric bilinear form
on L such that the induced OP2 -valued bilinear form on f∗F is positive semidefinite
by Theorem 7.5. Here are linearly independent global sections of F:

(0, x0 − x1), (x2 ,−x3), (x3 , x2).

Thus, F is a positive symmetric f -Ulrich sheaf.

8 Ulrich sheaves, determinantal representations, and sums of
squares

The main reason why we are interested in Ulrich sheaves is because they correspond
to certain determinantal representations. For the applications we consider in this
article, we are interested in the following situation. Let S = R[y, x1 , . . . , xn] be the
polynomial ring with the grading determined by letting deg(y) = e and deg(x i) = 1
for i = 1, . . . , n, let h ∈ Sd e be an irreducible homogeneous element of degree d ⋅ e,
and let X = V(h) ⊂ P(e , 1, . . . , 1) be the hypersurface in the weighted projective space
corresponding to S. Assume h(1, 0, . . . , 0) = 1. The following proposition and the
subsequent remark are well known among experts. But since we are not aware of a
reference for the precise statement that we need, we include a proof for the sake of
completeness. The case e = 1 is treated, for example, in [Bea00, Theorem A] and the
proof for the general case works essentially in the same way.

Proposition 8.1 Let f ∶X → P
n−1 be the projection on the last coordinates, and let F

be an f-Ulrich sheaf on X with rank(F) = r. Then there is a square matrix A of size
d ⋅ r whose entries are homogeneous polynomials in the x i of degree e such that hr =
det(y ⋅ I − A). If F is a positive symmetric (resp. Hermitian) f-Ulrich sheaf, then A can
be chosen to be symmetric (resp. Hermitian).

Proof Let OX(1) be the pullback of OPn−1(1) via f, and let M = ⊕i∈ZH0(X ,F(i)) be
the module of twisted global sections. Since F is an f -Ulrich sheaf, we have that M
considered as a module over R = R[x1 , . . . , xn] ⊂ S is isomorphic to Rd ⋅r . Multiplica-
tion with y is an R-linear map, homogeneous of degree e, that can thus be represented
by a square matrix A of size d ⋅ r whose entries are real homogeneous polynomials
in the x i of degree e and whose minimal polynomial is h. Thus, hr = det(y ⋅ I − A).
Further, a symmetric positive semidefinite bilinear form as in Theorem 7.2 yields a
homomorphism of graded S-modules (of degree zero)

ψ∶M → HomR(M , R),

which has the property that the induced R-bilinear form

Rd ⋅r × Rd ⋅r → R
(a, b) ↦ (ψ(a))(b)
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is symmetric, i.e., (ψ(a))(b) = (ψ(b))(a). The degree zero part V of M ≅R Rd ⋅r is
the space of global sections of F and the restriction of this symmetric bilinear form
to V is thus positive definite by Lemma 7.1. We can therefore choose an orthonormal
basis of V with respect to this bilinear form. Note that this will also be a basis of the
R-module Rd ⋅r that is orthonormal with respect to ψ. Since ψ is a homomorphism of
S-modules, we have (ψ(a))(y ⋅ b) = (ψ(y ⋅ a))(b), so multiplication with y is self-
adjoint with respect to our above defined symmetric bilinear form. Thus, we can
choose the representing matrix A of the R-linear map given by multiplication with
y to be symmetric. The Hermitian case follows analogously. ∎

Remark 8.2 The converse of Proposition 8.1 is also true: if hr = det(y ⋅ I − A), then
the cokernel M of the map Sd ⋅r → Sd ⋅r given by y ⋅ I − A is supported on X and M
considered as R-module is just Rd ⋅r . If A is symmetric, then an isomorphism of M
with HomR(M , R) as S-modules is given by sending the standard basis of Rd ⋅r to its
dual basis. We argue analogously in the Hermitian case.

A refined statement is true for possibly reducible subvarieties X ⊂ P
n that are not

necessarily hypersurfaces (see [KS20, Theorem 5.7]). These correspond to so-called
determinantal representations of Livšic-type introduced in [SV18] which are closely
related to determinantal representations of the Chow form of X (see also [ESW03].
The main applications of this article, however, concern irreducible varieties only.

Example 8.3 The positive symmetric f -Ulrich sheaf on the reducible cubic hyper-
surface X = V((x0 − x1) ⋅ (x2

0 − (x2
1 + x2

2 + x2
3)) ⊂ P

3 from Example 7.8 gives the fol-
lowing symmetric definite determinantal representation:

⎛
⎜
⎝

x0 + x1 x3 −x2
x3 x0 − x1 0
−x2 0 x0 − x1

⎞
⎟
⎠

.

Now we consider again the situation of Example 6.1, when h is of the form
y2 − p(x), where p ∈ R[x1 , . . . , xn]2e is a globally nonnegative polynomial.

Lemma 8.4 Let p ∈ R[x1 , . . . , xn]2e be a globally nonnegative polynomial which is not
a square. Let h = y2 − p(x), where y has degree e. If hr = det(y ⋅ I − A) for some r ≥ 1
and a symmetric or Hermitian matrix A of size 2r whose entries are homogeneous of
degree e, then p is a sum of 2r squares in the symmetric case and a sum of 4r − 1 squares
in the Hermitian case.

Proof Since p is not a square, we find that h is irreducible. Thus, hr = det(y ⋅ I − A)
implies that h is the minimal polynomial of A, i.e., A2 = p ⋅ I. Letting a i be the ith
column of A, we then have p = at

i a i in the symmetric case and p = at
i a i in the

Hermitian case. Thus, p is a sum of 2r squares in the symmetric case and a sum of
4r − 1 squares in the Hermitian case. ∎

A converse of this last conclusion is given by the following lemma.

Lemma 8.5 Let P = G2
1 + ⋅ ⋅ ⋅ +G2

n , where the G i ∈ A are elements of some commuta-
tive ring A. There is a symmetric square matrix Q of some size m ∈ N whose entries are
Z-linear combinations of the Gi such that P ⋅ Im = Q2.
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Proof This follows from the basic properties of Clifford algebras. Recall that the
Clifford algebra Cl0,n(R) is generated by e1 , . . . , en satisfying e i ⋅ e j = −e j ⋅ e i if i ≠ j
and e2

i = −1. In particular, we have

x2
1 + ⋅ ⋅ ⋅ + x2

n = −(x1e1 + ⋅ ⋅ ⋅ + xn en) ⋅ (x1e1 + ⋅ ⋅ ⋅ + xn en)

for all xk ∈ R. For 1 ≤ i ≤ n, let A i be the representing matrix of the map

Cl0,n(R) → Cl0,n(R), a ↦ e i ⋅ a

with respect to the basis e i1 . . . e ir of Cl0,n(R) with 1 ≤ i1 < ⋅ ⋅ ⋅ < ir ≤ n and r ≥ 0.
Then one immediately verifies that A i is a matrix having only entries in {0,±1}
satisfying AT

i = −A i . It follows that

(x2
1 + ⋅ ⋅ ⋅ + x2

n) ⋅ IN = S ⋅ S t

for all xk ∈ R, where S = x1A1 + ⋅ ⋅ ⋅ + xn An and N is the dimension of Cl0,n(R). Now
we can choose

Q = ( 0 S
S t 0)

and we get (x2
1 + ⋅ ⋅ ⋅ + x2

n) ⋅ IN = Q2 for all xk ∈ R. Since the entries of the A i are
integers, the identity holds over every commutative ring. ∎

Putting all this together, we get the following connection of sums of squares to
Ulrich sheaves.

Theorem 8.6 Let p ∈ R[x1 , . . . , xn]2e be a homogeneous polynomial of degree 2e
which is not a square. Inside the weighted projective space P(e , 1, . . . , 1), we consider
the hypersurface X defined by y2 = p(x0 , . . . , xn) and the natural projection π∶X → P

n

onto the x-coordinates. Then p is a sum of squares of polynomials if and only if there is
a positive symmetric (or Hermitian) π-Ulrich sheaf F on X. In that case, if rank(F) = r
then p is a sum of 2r squares in the symmetric case and a sum of 4r − 1 squares in the
Hermitian case.

Proof First assume that p is a sum of squares. By Lemma 8.5, there is a symmetric
square matrix A of some size m ∈ N whose entries are homogeneous of degree e in the
variables x1 , . . . , xn such that p ⋅ Im = A2. Because p is not a square, the polynomial
h = y2 − p is irreducible. Thus, A2 − p ⋅ Im = 0 shows that h is the minimal polynomial
of A. This implies that hr = det(y ⋅ I − A) for some r > 0. Thus, there is a positive
symmetric π-Ulrich sheaf on X by Remark 8.2.

Now assume that there is a positive symmetric (or Hermitian) π-Ulrich sheaf F
on X. Then, by Proposition 8.1, there is a symmetric (resp. Hermitian) matrix A of
size 2 ⋅ r whose entries are homogeneous polynomials in the x i of degree e such that
hr = det(y ⋅ I − A). Now the claim follows from Lemma 8.4. ∎

As a special case, we get the following result by Netzer and Thom [NT12].

Corollary 8.7 Let h ∈ R[x0 , . . . , xn]2 be a quadratic hyperbolic polynomial. Then hr

has a definite symmetric determinantal representation for some r > 0.
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Proof If X = V(h) is hyperbolic with respect to e ∈ Pn , then the linear projection
πe ∶X → P

n−1 is a real-fibered double cover ramified along the zero set of a nonnegative
quadratic polynomial p. Since p is a sum of squares, there is a positive symmetric πe -
Ulrich sheaf on X by Theorem 8.6. Proposition 8.1 implies the claim. ∎
Remark 8.8 Positive Ulrich sheaves on reciprocal linear spaces, i.e., the closure of
the image of a linear space under coordinatewise inversion, were used in [KV19] to
prove that a certain polynomial associated with a hyperplane arrangement, called the
entropic discriminant, is a sum of squares. The relation of Ulrich sheaves and sums of
squares used in [KV19] is a generalization of one direction of Theorem 8.6. Namely,
let f ∶X → P

n be a finite surjective real-fibered morphism such that f∗OX is a sum of
line bundles. Then, if there is a positive f -Ulrich sheaf, then the polynomial defining
the branch locus of f is a sum of squares [KV19, Theorem 6.1].

9 Positive Ulrich sheaves of rank one on irreducible varieties

In this section, let f ∶X → Y always denote a finite surjective morphism of geometri-
cally irreducible varieties which are proper over R. We assume that Y is smooth and
has a real point. We further assume that the singular locus of X has codimension at
least two. This allows us to speak about Weil divisors on X. For a given Weil divisor D
on X, we denote by L(D) the subsheaf of KX consisting of all rational functions with
pole and zero orders prescribed by D. We further denote �(D) = dim(Γ(X ,L(D))).
Let Z ⊂ Y be a closed subset of codimension at least two such that f −1(Z) con-
tains Xsing. Letting V = Y/Z and U = f −1(V), the restriction f ∣U ∶U → V is a finite
surjective morphism of smooth irreducible varieties. Thus, Δ(U/V) is invertible
by Proposition 5.7 and thus corresponds to a Weil divisor R on U. Since X/U has
codimension at least two, we can also consider R as a Weil divisor on X which we
call the ramification divisor of f. Lemma 5.8 shows that the associated subsheaf L(R)
of KX is exactly Δ(X/Y). All this holds true for the complexification XC as well.
Complex conjugation gives an involution σ ∶XC → XC and for a Weil divisor D on
XC we denote σ(D) by D. We have L(D) = L(D) as subsheaves of KXC

.
Remark 9.1 If D1 and D2 are Weil divisors on X, then we have

L(D1) ⋅L(D2) ⊂ L(D1 + D2)
considered as subsheaves ofKX . But sinceL(D i) is not necessarily an invertible sheaf,
we do not have equality in general.

The relative notion of positive semidefiniteness introduced in Section 7 relates to
the notion of being real fibered in the following way.
Proposition 9.2 [KS20, Theorem 5.11] The following are equivalent:
(i) There is a coherent sheafF on X with Supp(F) = X and a symmetric nonzero f !OY -

valued bilinear form on F such that the induced bilinear form on f∗F is positive
semidefinite.

(ii) f is real fibered, i.e., f −1(Y(R)) = X(R).
In this situation, we get the following convenient criterion for a Weil divisor to give

rise to a positive Ulrich sheaf.
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Theorem 9.3 Let f ∶X → Y be a real-fibered finite surjective morphism of geometrically
irreducible varieties which are proper overR. Let Y be smooth and have a real point. Fur-
ther, let the singular locus of X have codimension at least two. Let R be the ramification
divisor of f, and let s be a rational function on X which is nonnegative on X(R).
(1) If D is a Weil divisor on X such that 2D + (s) = R and �(D) ≥ deg( f ), then the

sheaf L(D) on X is a positive symmetric f-Ulrich sheaf.
(2) If D is a Weil divisor on XC that satisfies D + D + (s) = R and �(D) ≥ deg( f ), then

the sheaf L(D) on XC is a positive Hermitian f-Ulrich sheaf.

Proof Let L = L(D) be the subsheaf of KX corresponding to D. By assumption, we
can define the symmetric (resp. Hermitian) Δ(X/Y)-valued bilinear form on L that
maps a pair of sections (g , h) to the product s ⋅ g ⋅ h. This is clearly nondegenerate at
the generic point of X and it is positive semidefinite by Proposition 6.4. Then the claim
follows from Theorems 7.2 and 7.4, respectively. ∎

Remark 9.4 Let D be a Weil divisor on X or XC such that 2D or D + D, respectively,
is linearly equivalent to R, i.e., they differ only by a principal divisor (g). The signs
that g takes on real points of X (up to global scaling) do only depend on the divisor
class of D. Indeed, if D′ = D + ( f ) for some rational function f, then 2D′ resp. D′ + D′
differs from R by g ⋅ f 2 or g ⋅ f f , respectively.

Example 9.5 Let L ⊂ P
n be a linear subspace of dimension d < n that is not contained

in any coordinate hyperplane. We denote by L−1 its reciprocal, i.e., the (Zariski
closure of the) image of L under the rational map P

n ⇢ P
n defined by coordinatewise

inversion. It was shown by Varchenko [Var95] that L−1 is hyperbolic with respect
to the orthogonal complement L⊥ of L. Further, it was shown in [KV19] that there
is a symmetric positive f -Ulrich sheaf of rank one on L−1, where f ∶X → P

d is the
linear projection from L⊥. We want to outline how this also follows from Theorem 9.3,
at least for generic L. To this end, let L be the row span of a matrix A = (a i j) of
size (d + 1) × (n + 1) and assume that every maximal minor of A is nonzero. Letting
l j = ∑d+1

i=1 a i jx i , for j = 1, . . . , n + 1, we can describe L−1 as the image of the rational
map

ψ∶Pd ⇢ P
n , x ↦ ( l1 ⋅ ⋅ ⋅ ln+1

l1
∶ ⋅ ⋅ ⋅ ∶ l1 ⋅ ⋅ ⋅ ln+1

ln+1
) .

Note that ψ is defined in all points where at most one of the l j vanishes. It follows from
the proof of [SSV13, Corollary 5] and [SSV13, Remark 31] that the ramification divisor
R of f on L−1 is the proper transform under ψ of the zero set Z ⊂ P

d of

P = ∑
I

det(AI)2 ∏
j∈I

l 2
j ,

where the sum is taken over all I ⊂ {1, . . . , n + 1} of size n − d and AI denotes the
submatrix of A obtained from erasing all columns indexed by I. Let H ⊂ P

d be a
generic hyperplane defined by a linear form G, and let D be the divisor on L−1 defined
as the proper transform of H under ψ. On P

d , we have 2(n − d)H = Z + ( P
G2(n−d) ) and

our genericity assumption on A implies that P does not vanish entirely on any of the
V(l i , l j) ⊂ P

d which comprise the locus where ψ is not regular. Therefore, we have
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Figure 2: A cubic hyperbolic plane curve (blue) interlaced by a plane hyperbolic conic (red).

2(n − d)D = R + ( P
G2(n−d) ) as divisors on L−1. Clearly, the rational function P

G2(n−d) is
nonnegative and �((n − d) ⋅ D) equals (n

d), the number of monomials of degree n − d
in d + 1 variables. Since this is also the degree of L−1 [PS06], Theorem 9.3(1) implies
that L((n − d) ⋅ D) is a positive symmetric f -Ulrich sheaf on L−1.

The previous example leads to the following question. Let X ⊂ P
n be an irreducible

variety not contained in any coordinate hyperplane which is hyperbolic with respect
to every linear subspace of codimension dim(X) + 1 all of whose Plücker coordinates
are positive. Then the image X−1 of X under coordinatewise inversion is hyperbolic
with respect to all these subspaces as well [KV19, Proposition 1.4].

Problem 9.6 Given a symmetric positive Ulrich bundle on a variety X ⊂ P
n as above.

Does there exist one on X−1 of the same rank as well?

Remark 9.7 Using [Kum13, Proposition 3.3.8] one can show that the answer to
Problem 9.6 is yes for hypersurfaces. It is also true for X a linear subspace by [KV19].

In the case of hypersurfaces, Theorem 9.3 has a geometric interpretation in terms
of so-called interlacers.

Definition 9.1 Let g , h ∈ R[x0 , . . . , xn] with d = deg(g) + 1 = deg(h) be hyperbolic
with respect to e. If, for all v ∈ Rn+1, we have that

a1 ≤ b1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ bd−1 ≤ ad ,

where the a i and b i are the zeros of h(te − v) and g(te − v), respectively, we say that
g interlaces h, or that g is an interlacer of h. This definition carries over to hyperbolic
hypersurfaces in the obvious way.

Example 9.8 If h ∈ R[x0 , . . . , xn] is hyperbolic with respect to e, then the directional
derivative De h of h in direction e is an interlacer of h. This follows from Rolle’s
theorem.

Corollary 9.9 Let h ∈ R[x0 , . . . , xn]d be hyperbolic with respect to e, and let X =
V(h) ⊂ P

n be the corresponding hypersurface. Assume that the singular locus of X has
dimension at most n − 3. Let g be an interlacer of h and denote by G the Weil divisor it
defines on X.
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(1) Assume that G = 2D for some Weil divisor D on X. If the vector space of all
p ∈ R[x0 , . . . , xn]d−1 that vanish on D has dimension at least d, then h has a definite
symmetric determinantal representation.

(2) Assume that G = D + D for some Weil divisor D on XC. If the vector space of all
p ∈ C[x0 , . . . , xn]d−1 that vanish on D has dimension at least d, then h has a definite
Hermitian determinantal representation.

Proof The ramification divisor of the linear projection with center e is the zero set of
the directional derivative De h on X. Since g is an interlacer, we have that the rational
function De h

g is nonnegative on X(R) by [KPV15, Lemma 2.4]. Then the claim follows
from Theorem 9.3 and Proposition 8.1 by our dimensional assumption. ∎

Remark 9.10 When n = 2, the case of plane curves, the dimensional condition in
Corollary 9.9 is automatically satisfied by Riemann–Roch. If g = De h, then G = D + D
by Theorem 6.3. In that case, this recovers the result from [PV13, Section 4]. Note that
the proof in [PV13] does not seem to generalize to higher dimensions as it uses Max
Noether’s AF+BG theorem. It would be interesting to know when we actually need
the dimensional condition in the case of higher-dimensional hypersurfaces.

Problem 9.11 Find hyperbolic hypersurfaces X ⊂ P
n for which there is an interlacer

whose zero divisor on X is of the form D + D with �(D) < deg(X).

Example 9.12 Let h ∈ R[x0 , . . . , xn]n be the elementary symmetric polynomial of
degree n in x0 , . . . , xn . It is hyperbolic with respect to every point in the positive
orthant and g = ∂

∂x0
h is an interlacer. The zero divisor of g on the hypersurface

X = V(h) ⊂ P
n is of the form 2D, where D = ∑1≤i< j≤n L i j . Here, L i j is the linear

subspace V(x i , x j) ⊂ X. Each monomial x1 ⋅ ⋅ ⋅ xn
x i

for 1 ≤ i ≤ n vanishes on D. Thus,
by Corollary 9.9, the polynomial h has a definite symmetric determinantal represen-
tation. This was known before and follows, e.g., from the more general result that the
bases generating polynomial of a regular matroid (in our case Un ,n+1) has a definite
symmetric determinantal representation (see [COSW04, Section 8.2]).

10 Smooth curves

In this section, let f ∶X → Y be a real-fibered morphism between smooth irreducible
curves that are projective over R with Y(R) Zariski dense in Y. Let R be the
ramification divisor of f. We want to apply Theorem 9.3.

Lemma 10.1 There is a divisor M on X and a nonnegative s in the function field of X
such that R + (s) = 2M.

Proof The proof is a projective version of the proof of [Han17, Corollary 4.2]. By
Theorem 6.3, we have that f is unramified at real points. Thus R, considered as a Weil
divisor, is a sum of nonreal points. Therefore, the Weil divisor R′ that we obtain on
the complexification XC = X ×R C of X is of the form R′ = Q + Q, where Q is some
effective divisor and Q its complex conjugate. Since the group Pic0(XC) is divisible,
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there is a g in the function field of XC and a divisor N on XC such that Q − nP =
2N + (g), where n = deg(Q) and P is any point on XC with P = P. Thus (Q − nP) +
(Q − nP) = 2(N + N) + (g ⋅ g) which implies

R′ = Q + Q = 2(N + N + nP) + (g ⋅ g).

Since N + N + nP is fixed by conjugation, it descends to a divisor M on X. The function
s = g ⋅ g is a sum of two squares and thus nonnegative. ∎

From this, we get the following theorem.

Theorem 10.2 Let X be a smooth irreducible curve that is projective over R. For every
real fibered f ∶X → P

1, there is a positive symmetric f-Ulrich line bundle.

Proof Let M be the divisor from Lemma 10.1. By Theorem 9.3, we have to show
that �(M) ≥ deg( f ). By Hurwitz’s Theorem, we have that 2g − 2 = deg(R) − 2 deg( f ),
where g is the genus of X. Thus deg(M) = deg( f ) + g − 1 and by Riemann–Roch

�(M) ≥ deg(M) − g + 1 = deg( f ). ∎

Corollary 10.3 [SV18, Theorem 7.2] The Chow form of every hyperbolic curve X ⊂ P
n

has a symmetric and definite determinantal representation.

Proof By [KS20, Theorem 5.7] and [KS20, Remark 4.4], it suffices to show that there
is a positive Ulrich bundle of rank one on X. But this follows from the preceding
theorem applied to the linear projection from an n − 2-space of hyperbolicity if X is
smooth. Otherwise we can pass to the normalization of X. ∎

Corollary 10.4 (Helton–Vinnikov Theorem [HV07]) Every hyperbolic polynomial in
three variables has a definite determinantal representation.

Example 10.5 If the target is not P1 as in Theorem 10.2, then there is, in general, no
(positive symmetric) f -Ulrich sheaf on X. This fails already in the next easiest case,
namely, when X and Y both have genus one. Indeed, let f ∶X → Y be an unramified
and real-fibered double cover of an elliptic curve Y. Such maps exist, see, for example,
[KS22, Lemma 6.5], and by Riemann–Hurwitz X is an elliptic curve as well. We claim
that in this case there is actually no f -Ulrich sheaf at all. Indeed, there is a line bundle
L on Y which is nontrivial and 2-torsion such that f∗OX = OY ⊕L. Then we have
f ∗L = OX and the projection formula implies that f∗F = L⊗ f∗F for all coherent
sheaves F on X. This excludes f∗F = Or

Y .

11 del Pezzo surfaces

Recall that a del Pezzo surface is a smooth projective and geometrically irreducible
surface whose anticanonical class is ample. We are interested in morphisms f ∶X → P

2,
where X is a del Pezzo surface and the pullback f ∗OP2(1) is the anticanonical line
bundle. It was shown in [Bea18, Proposition 4.1] that for such f there exist f -Ulrich line
bundles. We will show that if f is real fibered, then there are even positive Hermitian
f -Ulrich line bundles. An introduction to the classical theory of del Pezzo surfaces
can be found, for example, in [Dol12, Chapter 8] or [KSC04, Section 3.5]. This section
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further relies on the classification of real del Pezzo surfaces due to Comessatti [Com12,
Com28] (see also [Rus02] for a survey in English).

Definition 11.1 The degree of a del Pezzo surface X is the self-intersection number
KX .KX of its canonical class KX . A line on X is an irreducible curve L ⊂ X such that
L.L = L.KX = −1.

Remark 11.1 Note that if the anticanonical class −KX of a del Pezzo surface X is very
ample, then a line L on X is mapped by the associated embedding to an actual line,
i.e., a linear subspace of dimension one because L.KX = −1.

Example 11.2 These are examples of del Pezzo surfaces [KSC04, Theorem 3.36(7)]:
(1) A smooth hypersurface of degree four in the weighted projective spaceP(2, 1, 1, 1)

is a del Pezzo surface of degree two.
(2) A smooth cubic hypersurface in P

3 is a del Pezzo surface of degree three.
(3) A smooth complete intersection of two quadrics in P

4 is a del Pezzo surface of
degree four.

Furthermore, in case (1), the (complete) anticanonical linear system corresponds to
the projection P(2, 1, 1, 1) ⇢ P

2 restricted to our surface. Moreover, in the cases (2)
and (3), the embeddings of the surfaces to P

3 and P
4, respectively, correspond to the

(complete) anticanonical linear system. These statements are, for example, shown in
the course of the proof of [KSC04, Theorem 3.36].

Remark 11.3 If X is a del Pezzo surface over an algebraically closed field, then X is
isomorphic to either P1 × P

1 or a blowup of P2 in n ≤ 8 points (see [KSC04, Exercise
3.56] or [Dol12, Corollary 8.1.17 and Proposition 8.1.25]. A straightforward calculation
shows that the degree of X is eight in the former and 9 − n in the latter case.

Lemma 11.4 Let X ⊂ P
4 be a smooth complete intersection of two quadrics in P

4 such
that X(R) is homeomorphic to the disjoint union of two spheres. Then:
(1) X is contained in exactly five real singular quadrics.
(2) One of these five quadrics has signature (2, 2), and the other four have signature

(3, 1).
(3) For exactly two of these singular quadrics, the linear projection from its vertex

realizes X as a real-fibered double cover of a hyperbolic quadratic hypersurface
Q ⊂ P

3.

Proof The complex pencil λq0 + μq1 contains five singular quadrics as the q i can
be represented by symmetric 5 × 5 matrices. We will show that all of them are real.
To this end, recall that by Remark 11.3, the complexification XC of X is isomorphic
to the blowup of P2 at five points p0 , . . . , p4. The 16 lines on XC correspond to the
exceptional divisors E0 , . . . , E4, the lines l i j through p i and p j for 0 ≤ i < j ≤ 4 and
the conic C through all five points p0 , . . . , p4 (see, for example, [Man86, Theorem
26.2]). After relabeling, if necessary, the complex conjugation on XC interchanges E0
with C, E i with l0i for 1 ≤ i ≤ 4 and l i j with lkl for {i , j, k, l} = {1, 2, 3, 4} and i < j,
k < l (see [Rus02, Example 2, case n = 3]). We write

A1 = E0 + C , A2 = l12 + l34 , A3 = l13 + l24 , A4 = l14 + l23
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(divisors on X) and note that all A i belong to the same linear system. Similarly, the
divisors B i = E i + l0i for 1 ≤ i ≤ 4 on X are also linearly equivalent to each other. Note
that we did write A i = L i + L i and B i = L′i + L′i for suitable lines L i and L′i on XC. Each
of the two linear systems realize X as a conic bundle, i.e., define a morphism X → P

1

all of whose fibers are isomorphic to a plane conic curve [Rus02, Example 2]. The
four singular fibers of each bundle are exactly the A i and B i , respectively. Therefore,
for each connected component S of X(R), there are exactly two values for i and j
such that L i ∩ L i resp. L′j ∩ L′j is a point on S. Our two conic bundle structures on X
induce a map X → P

1 × P
1 which is a double cover since A i ⋅ B j = 2. Since A i + B j is an

anticanonical divisor, this double cover is a linear projection of X toP
3 whose image is

a hypersurface isomorphic to P
1 × P

1, i.e., defined by a quadric with signature (2, 2).
The cone over this quadric in P

4 is one of our singular quadrics. The four divisors

D j = L1 + L′j = E0 + l0 j

on XC for 1 ≤ j ≤ 4 also realize XC as a conic bundle XC → P
1
C

and, for each j,
we consider the map XC → P

1
C
× P

1
C

associated with D j in the first coordinate and
D j on the second. This corresponds to a morphism f j ∶X → Q, where Q ⊂ P

3 is a
hypersurface defined by a quadric of signature (3, 1). Since D j ⋅ D j = 2, this is a double
cover, and since D j + D j is anticanonical, the maps f j correspond to linear projections
of X. This shows (2) and (3). We have

D j ⋅ D j = L1 ⋅ L1 + L′j ⋅ L′j .

Thus, in order to determine whether f i ∶X → Q is real-fibered or not, we have to check
whether the two intersection points L1 ∩ L1 and L′i ∩ L′i lie on the same (not real
fibered) or different connected components (real fibered) of X(R). As noted above,
both cases occur for exactly two values of j. ∎

With this preparation, we are able to determine for which del Pezzo surfaces
X there is a real-fibered morphism X → P

2 whose corresponding linear system is
anticanonical.

Proposition 11.5 Let X be a real del Pezzo surface, and let K be a canonical divisor on
X. There is a real-fibered morphism f ∶X → P

2 such that the pullback of a line is linearly
equivalent to −K on X if and only if we have one of the following:
(1) X is a quartic surface in P

4 such that X(R) is homeomorphic to a disjoint union of
two spheres.

(2) X is a cubic hypersurface in P
3 such that X(R) is homeomorphic to a disjoint union

of a sphere and a real projective plane.
(3) X is a double cover of P2 branched along a smooth plane quartic curve C with

C(R) = ∅ so that X(R) is homeomorphic to a disjoint union of two real projective
planes.

In particular, in each case, X(R) has two connected components.

Proof Let d = K .K. For d = 2, the anticanonical map is a double cover of P
2

branched along a plane quartic curve C (see Example 11.2). This is real fibered if
and only if C(R) = ∅ and X(R) is homeomorphic to a disjoint union of two real
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projective planes. In general, if there exists such a morphism f, then X(R) must be
homeomorphic to the disjoint union of s spheres and r real projective planes such
that d = 2s + r by [KS20, Corollary 2.20]. Going through the classification of real del
Pezzo surfaces in [Rus02], we see that for d ≠ 2 this is only possible for a complete
intersection of two quadrics inP

4 such that X(R) is homeomorphic to a disjoint union
of two spheres (d = 4) or a cubic hypersurface in P

3 such that X(R) is homeomorphic
to a disjoint union of a sphere and a real projective plane (d = 3). This shows the
“only if part.” It thus remains to show that the embedded surfaces in (1) and (2)
are hyperbolic as these embeddings correspond to the anticanonical linear system
(see Example 11.2). The case d = 3 is covered by [Vin12, Proposition 2.2]. For the case
d = 4, we can compose a real-fibered linear projection X → Q from Lemma 11.4 to a
hyperbolic hypersurface Q ⊂ P

3 with the linear projection Q → P
2 from a point with

respect to which Q is hyperbolic. ∎

Lemma 11.6 Let X be a del Pezzo surface, and let K be a canonical divisor on X. Let
f ∶X → P

2 be a real-fibered morphism of degree d such that the pullback of a line is
linearly equivalent to −K as constructed in the previous proposition.
(a) The ramification divisor R is linearly equivalent to −2K.
(b) Let g be a rational function on X whose principal divisor is R + 2K. Then g has

constant sign on each of the two connected components of X(R) and these signs are
not the same.

Proof The ramification divisor is linearly equivalent to the canonical divisor on X
minus the pullback of the canonical divisor on P

2. As the latter is OP2(−3) its pullback
is 3K. This shows (a).

For d = 2, part (b) follows from the fact X is a double cover of P2 of the form
y2 = p(x), where p ∈ R[x0 , x1 , x2]4 is a globally positive quartic curve. The ramifi-
cation divisor is given as the zero locus of y, whereas −K is the zero set of a linear
form l ∈ R[x0 , x1 , x2]. Clearly, y

l 2 has the desired properties.
In the case d = 3, our surface X is the zero set of a hyperbolic polynomial h and

our morphism f is the linear projection from a point e ∈ P3 of hyperbolicity. Its
ramification divisor is thus cut out by the interlacer De h. Again −K is the zero set
of a linear form l ∈ R[x0 , x1 , x2] and De h

l 2 has different sign on the two connected
components of X(R).

In the case d = 4, we first note that by Lemma 11.4, we can assume (after a linear
change of coordinates) that X is cut out by q1 = x2

0 − (x2
1 + x2

2 + x2
3) and q2 = x2

4 − p
for some quadratic form p ∈ R[x0 , x1 , x2 , x3]2 that is nonnegative on Q = V(q1) ⊂ P

3.
Our real-fibered morphism f ∶X → P

2 is then the composition of the two linear
projections X → Q with center [0∶0∶0∶0∶ 1] and Q → P

2 with center [1∶0∶0∶0]. Thus
the ramification locus of f is cut out by x0 ⋅ x4. Again −K is the zero set of a linear
form l ∈ R[x0 , x1 , x2] and x0 ⋅x4

l 2 has different sign on the two connected components
of X(R). ∎

Let X4 be a complete intersection of two quadrics in P
4 such that X(R) is

homeomorphic to a disjoint union of two spheres. We fix a sequence of morphisms

X2 → X3 → X4 ,(11.1)
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where each map f i ∶X i → X i+1 is the blowup of X i at a real point on a connected
component of X i(R) that is homeomorphic to a sphere. Further, let E i be the
exceptional divisor of f i . By the classification of real del Pezzo surfaces, we have that
X3 is a cubic hypersurface in P

3 such that X(R) is homeomorphic to a disjoint union
of a sphere and a real projective plane and X2 is a double cover of P2 branched along
a smooth plane quartic curve C with C(R) = ∅ so that X(R) is homeomorphic to
a disjoint union of two real projective planes. Conversely, every such real del Pezzo
surface fits in such a sequence of blowups.

Lemma 11.7 Consider the cubic hypersurface X3 ⊂ P
3.

(a) In addition to E3, there are two more real lines L and L′ on X3. These three lines lie
on a common plane.

(b) There are two different hyperplanes that contain L and are tangential to a real point
on the connected component of X3(R) that is homeomorphic to the sphere.

(c) The divisors H1 and H2 on X3 that are defined as the intersections with the
hyperplanes from part (b) are of the form H i = L + L i + L i for some nonreal lines
L i on (X3)C.

(d) The lines L i and L i are disjoint from E3. Furthermore, L1 and L2 are disjoint.
(e) Let f be a rational function on X3 whose principal divisor is L2 + L2 − L1 − L1. Then

f has constant sign on each of the two connected components of X(R) and these signs
are not the same.

Proof The number of real lines on X3 can be found, for example, in [Rus02, p. 302].
As they all must lie in the component of X(R) that is homeomorphic toRP

2, each two
of them intersect in a point. Thus they all lie in a common plane H0 which proves (a).

In the affine chart R3 = (P3/H0)(R), the connected component of X3(R) that is
homeomorphic to a sphere is the boundary of a compact convex set K ⊂ R

3, namely, K
is an affine slice of the hyperbolicity cone of the cubic that defines X3. The hyperplanes
containing L correspond to a family of parallel affine hyperplanes in R

3. Thus exactly
two of them are tangent to K. This shows (b).

The zero divisors of these hyperplanes H i contain besides L a plane conic which
has an isolated real point, namely, the point of tangency. Thus the conic is a complex
conjugate pair of lines L i and L i which shows part (c).

In order to show (d), assume for the sake of a contradiction that L i intersects
E3. Since L i ⊂ H i and E3 ⊂ H0, this intersection point must lie on E3 ∩ H0 ∩ H i =
E3 ∩ L which implies that it is real. But the only real point of L i lies on the spherical
component of X3(R). An analogous argument shows that L1 and L2 are disjoint.

Finally, let l i be the linear form that cuts out H i . Then, by construction, p = l1 l2
is an interlacer of the polynomial defining X3. Thus the rational function f = p

l 2
1

has
constant sign on each of the two connected components of X(R) and these signs are
not the same. Clearly the principal divisor corresponding to f is L2 + L2 − L1 − L1.
Therefore, we have shown part (d). ∎

Theorem 11.8 Let X be a del Pezzo surface, and let f ∶X → P
2 be a real-fibered

morphism of degree d such that the pullback of a line is the anticanonical divisor class
−K. Then there is a positive Hermitian f-Ulrich line bundle.
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Figure 3: A cubic hyperbolic hypersurface with two planes that contain a line on the pseudo-
plane (red) and are tangent to the spherical component (yellow).

Proof We put X into a sequence of blowups as in (11.1). Since the lines L i and L i
on (X3)C from Lemma 11.7 are disjoint from E3, they can be identified with some
lines on (X4)C which we, by abuse of notation, also denote by L i and L i . The same
we do for the proper transforms of L i and L i in (X2)C. We want to apply part (b)
of Theorem 9.3 to the divisor M = L2 − L1 − K, where K is a canonical divisor on X.
Since X is birational to X3, the rational function f from part (e) of Lemma 11.7 is also
a rational function on X and we have M + M = ( f ) − 2K. By Lemma 11.6, there is a
rational function g on X such that (g) = R + 2K, where R is the ramification divisor.
Furthermore, we can choose g to have the same sign on each connected component
of X(R) as f. Thus M + M = ( f

g ) + R and f
g is nonnegative. It thus remains to show

that the dimension �(M) of the space of global sections of L(M) is at least d. To this
end, we invoke the theorem of Riemann–Roch for surfaces [Har77, Theorem 1.6]:

�(M) + �(K − M) = 1
2

M .(M − K) + 1 + pa + s(M) ≥ 1
2

M .(M − K) + 1 = d .

Now, since the intersection product of (K − M) with the ample divisor −K equals
−2d < 0, it cannot be effective. Thus �(K − M) = 0 and the claim follows. ∎

We now apply Theorem 11.8 to the three cases from Proposition 11.5. The following
consequence is originally due to Buckley and Koşir [BK07].

Corollary 11.9 Every hyperbolic polynomial h ∈ R[x0 , x1 , x2 , x3] of degree three has a
definite Hermitian determinantal representation.

Proof First assume that the zero set of h is smooth. Then we are in case (2) of
Proposition 11.5 and the claim follows from Theorem 11.8 and Proposition 8.1. For
the singular case, note that by [Nui68], the set of all hyperbolic polynomials is the
closure of the smooth ones. Furthermore, by [PV13, Lemma 3.4], the set of hyperbolic
polynomials with a definite Hermitian determinantal representation is closed. ∎

The following consequence is originally due to Hilbert [Hil88].
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Corollary 11.10 Every nonnegative ternary quartic is a sum of three squares.

Proof First consider a nonnegative ternary quartic p with smooth zero set. The
hypersurface defined by y2 − p in P(2, 1, 1, 1) is an instance of Proposition 11.5(3).
Thus, the claim follows from Theorems 8.6 and 11.8. The general case now follows
from a limit argument as the set of sums of squares is closed in R[x0 , x1 , x2]4. ∎

Remark 11.11 A recent generalization of Hilbert’s result on nonnegative ternary
quartics was established in [BSV16]. Among others, they show that every quadratic
polynomial p ∈ R[x0 , . . . , xn] which is nonnegative on the real part of an irreducible
variety X ⊂ P

n with deg(X) = codim(X) + 1 and Zariski dense real part is a sum of
squares modulo the ideal I of X. Analogously to Theorem 8.6, one can show that this is
equivalent to the existence of a certain positive Ulrich sheaf. Namely, let Y be the zero
set in P

n+1 of the ideal generated by I and the polynomial y2 − p. Let f ∶Y → X the
natural projection. Analogously to Theorem 8.6, the polynomial p is a sum of squares
modulo I if and only if there is a positive f -Ulrich sheaf. It would be interesting to
construct these sheaves directly.

Corollary 11.12 The Chow form of a smooth hyperbolic surface in P
4 of degree four,

which is a complete intersection of two quadrics, has a definite Hermitian determinantal
representation.

Proof Here, we are in case (1) of Proposition 11.5. The claim follows from Theorem
11.8 together with a straightforward adaption of the proof of [KS20, Theorem 5.7] to
the Hermitian case and [KS20, Remark 4.4]. ∎

Remark 11.13 We have seen that every nonnegative polynomial p ∈ R[x0 , x1 , x2]4 is
a sum of squares and every hyperbolic polynomial h ∈ R[x0 , x1 , x2 , x3]3 has a definite
Hermitian determinantal representation, i.e., the associated real-fibered morphisms
admit a positive Ulrich sheaf. This is no longer true if we increase the degrees: not
every nonnegative polynomial p ∈ R[x0 , x1 , x2]6 is a sum of squares [Hil88] and
there are hyperbolic polynomials h ∈ R[x0 , x1 , x2 , x3]4 such that no power hr has a
definite determinantal representation, take, for example, the polynomial considered
in [Kum16b]. Double covers of P2 ramified along plane sextic curves and quartic
hypersurfaces in P

3 both belong to the class of K3 surfaces. So it would be very
interesting to understand which real-fibered morphisms X → P

2 from a K3 surface
X admit a positive Ulrich bundle. Note that (not necessarily positive) Ulrich sheaves
of rank two on K3 surfaces have been constructed in [AFO17]. Similarly, we cannot
increase the dimensions: not every nonnegative polynomial p ∈ R[x0 , x1 , x2 , x3]4 is a
sum of squares [Hil88] and it is not known whether there are hyperbolic polynomials
h ∈ R[x0 , x1 , x2 , x3 , x4]3 such that no power hr has a definite determinantal represen-
tation (see [Sau19, Section 5] for cubic hyperbolic hypersurfaces). Double covers of P3

ramified along quartic surfaces and cubic hypersurfaces in P
4 both belong to the class

of Fano threefolds of index two. In [Bea18, Section 6], Ulrich sheaves of rank two on
such threefolds have been constructed.

Problem 11.14 Understand which finite surjective and real-fibered morphisms X → P
n

admit a positive Ulrich sheaf for X a K3 surface or a Fano threefold of index two. If such
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exist, what are their ranks? Are there hyperbolic cubic hypersurfaces in P
4 that do not

carry a positive Ulrich sheaf?

We conclude this section with some examples.

Example 11.15 Let h = x3
0 − x0(2x2

1 + 2x2
2 + x2

3) + x3
1 + x1x2

2 . The hypersurface
X = V(h) ⊂ P

3 is hyperbolic with respect to e = [1∶0∶0∶0] and contains the real line
L = V(x0 , x1). The hyperplanes H1 = V(x0) and H2 = V(x0 − x1) contain L and are
tangent to the hyperbolicity cone of h. The quadratic polynomial p = x0(x0 − x1) is
an interlacer of h and its zero divisor on X is

D = 2L + L1 + L1 + L2 + L2 ,

where L1 = V(x0 , x1 + ix2) and L2 = V(x0 − x1 , x2 + ix3). Thus, we have D = M + M
with M = L + L1 + L2. The space of all quadrics vanishing on L, L1, and L2 is spanned
by

x0(x0 − x1), x0(x2 + ix3), (x0 − x1)(x1 + ix2).

The minimal free resolution over S = R[x0 , x1 , x2 , x3] of the ideal in S/(h) generated
by these quadrics has length one and is given by the matrix

⎛
⎜
⎝

x0 + x1 −x2 − ix3 −x1 − ix2
−x2 + ix3 x0 − x1 0
−x1 + ix2 0 x0

⎞
⎟
⎠

.

This matrix is Hermitian and positive definite at e. Its determinant is indeed h.

Example 11.16 Consider the following nonnegative ternary quartic

p = x4
0 + 2x2

0 x2
1 + 2x0x3

1 + x4
1 + x2

0 x2
2 − 2x0x1x2

2 − x2
1 x2

2 + x4
2 ,

and let X ⊂ P(2, 1, 1, 1) be the corresponding double cover defined by y2 = p. On X,
we have the two lines

L1 = V(y + (1 − i)x2
1 − x2

2 , x0 + ix1) and L2 = V(y + ix1x2 − x2
1 + x2

2 , x0 + ix2).

The principal divisor associated with the rational function

f = x2
0 + x2

2
y − x0x1 − x2

1 + x2
2

is L2 − L1 + L2 − L1. As L1 and L2 are both nonreal lines, this implies that f has constant
sign on each of the two connected components of X(R). Evaluating f at points from
the two different components, for example, at

[y∶ x0∶ x1∶ x2] = [±1∶ 1∶0∶0],

shows that f changes sign. Letting K be a canonical divisor on X, we have for M =
L2 − L1 − K that M + M = ( f ) − 2K as in the proof of Theorem 11.8. We can realize
the divisor class of M by the ideal in R[y, x0 , x1 , x2]/(y2 − p) that is generated by
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y − x0x1 − x2
1 + x2

2 and (x0 + ix1)(x0 + ix2). The minimal free resolution over the ring
R[y, x0 , x1 , x2] has length one and is given by the matrix

( y − x0x1 − x2
1 + x2

2 x2
0 − x1x2 + i(x0x1 + x0x2)

x2
0 − x1x2 − i(x0x1 + x0x2) y + x0x1 + x2

1 − x2
2

) .

Indeed, we have that A2 = p ⋅ I. Therefore,

p = (x0x1 + x2
1 − x2

2)2 + (x2
0 − x1x2)2 + (x0x1 + x0x2)2 .

The key ingredient for this construction was the rational function f. One way to find
it is to blow down a real line of X and then proceed as in Lemma 11.7.

Example 11.17 The del Pezzo surface

X = V(x2
0 + x2

1 + x2
2 − x2

3 , x2
0 + 4x2

1 + 9x2
2 − x2

4) ⊂ P
4

of degree four is hyperbolic with respect to the line E spanned by [0∶0∶0∶ 1∶0]
and [0∶0∶0∶0∶ 1]. The rational function (x3−x0)(x4−x0)

x2
0

has different signs on the two
connected components of X(R). Its corresponding divisor is of the form M + M + 2K
for a suitable divisor M on XC with �(M) = 4. Thus, L(M) is a positive Hermitian
Ulrich line bundle by Theorem 9.3. As in [ESW03, Theorem 0.3], we obtain from
that the following determinantal representation of the Chow form of X, written in
the Plücker coordinates:
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

2x03 − 2x04 + 2x34 4x01 − 6ix02 + 4x13 − 6ix23 −2x01 + 2ix02 − 2x14 + 2ix24 −2ix12

4x01 + 6ix02 + 4x13 + 6ix23 −2x03 − 2x04 + 2x34 10ix12 2x01 − 2ix02 − 2x14 + 2ix24

−2x01 − 2ix02 − 2x14 − 2ix24 −10ix12 2x03 + 2x04 + 2x34 −4x01 + 6ix02 + 4x13 − 6ix23

2ix12 2x01 + 2ix02 − 2x14 − 2ix24 −4x01 − 6ix02 + 4x13 + 6ix23 −2x03 + 2x04 + 2x34

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

We observe that it is Hermitian and positive definite at E.
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