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In [7] Sands raised the following questions:

(1) Must a hereditary radical which is right strong be left strong?

(2) Must a right hereditary radical be left hereditary?

(3) (Example 6) Does there exist a right strong radical containing the prime radical
B which is not left strong or hereditary?

Negative answers to questions (1) and (2) were given by Beidar [1].

In this paper we present different examples to answer (1) and (2), and we answer (3).
We prove that the strongly prime radical defined in [4, 5] is right but not left strong. In the
proof we use an example given by Parmenter, Passman and Stewart [6]. The same
example and the strongly prime radical are used to answer (2) and (3).

All rings considered are associative, but do not necessarily have a unity. As usual,
I<JA (I <;A,1<,A) means that [ is an ideal (left ideal, right ideal) of the ring A. The
right (left) annihilator of a subset F of a ring R will be denoted by rzF (IzF).

The fundamental definitions and properties of radicals may be found in [2].

Let us recall that a radical S is said to be left (right) strong [3] if every S-semisimple
ring contains no non-zero left (right) S-ideals. A radical S is said to be hereditary (left
hereditary, right hereditary) if the class § is closed under taking ideals (left ideals, right
ideals).

A ring A is said to be (right) strongly prime if every non-zero ideal I of A contains a
finite subset F such that rgF = 0.

The (right) strongly prime radical U is defined as the upper radical determined by the
class of all strongly prime rings, i.e. for any ring R,

U(R)=M{I <R |R/Iis strongly prime}.

It is known that the radical U is special; so, in particular, U is hereditary and contains
the prime radical B.

ProposiTioN 1. If 0#J <, R and the ring R is strongly prime then so is the ring J/(J).

Proof. We prove first that B(J) =/,J. Clearly, [,/ c f(J). Conversely, B(J)J = B(J);
so B(J)J € B. Since B(J)J <,R and R is prime, (J)J =0.

Now suppose that 0# [/8(J) <\J/B(J). Since R is prime, RIJ#0. Thus 0# RIJ <R;so
there exists a finite subset F = {x,,...,x,} = RIJ such that rp,F =0. Let x, = X ryirijus,
where ryeR, iyel, juelJ, and F,={iyj,|k,! run over all relevant subscripts}.
Obviously F, c 1. Now if, for some jeJ\B(J), F;j c f(J) then FjJ =0. In consequence
FjJ =0. Now jJ#0 as j€8(J) and B(J) =[J. Hence rgkF#0, a contradiction.

Theorem 9 of [3] and Proposition 1 imply the following result.
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CoroLLARY 1. The radical U is right strong.
Now we shall show that the radical U is not left strong.

ExampLE 1. Let G be a free group on countably many generators and K a field on
which G acts faithfully. In [6] Parmenter, Passman and Stewart proved that the skew
group ring D = K * G is simple and the ring R of all infinite matrices over D containing
only finitely many non-zero rows is U-semisimple. Let L be the set of all infinite matrices
over D which have only finitely many non-zero entries. It is clear that L <; R. Moreover
L e U as L is simple and, for every finite subset F = L, r, F#0. This shows that the radical
U is not left strong.

To construct an example of a right but not left hereditary radical we need the following
proposition.

ProrosiTion 2. If 0£J <, R, 0= 1/B(J)<V/B(J) and the ring R is simple then J*> c I.

Proof. The result is clear when R?2=0. Thus let R be prime. Then 0 # RIJ<IR; so
RIJ=R and JRIJ=JR. On the other hand JRI cJIJ =I. Hence JR< ! and, in
particular, J2c I.

ExampLE 2. Let R and L be those of Example 1 and let
M = {J | there exists a chain J =J, <, /), <,...<,J,<,R}.

It is clear that the class M is right hereditary; so the lower radical /,, determined by M is
right hereditary. We shall show that /y, is not left hereditary. Certainly L <,R el,,. We
claim that Lél,,. If not, then since the ring L is simple, there exists Je M and a
homomorphism f:J— L mapping J onto L. If J=J,<,... <, J,<,Rthen J;---J, <,
R, J"chty... d,cJ. Also f(JJy...J)=L as L=L"=f{Jy' =fU")cfs...J,) <
f(J)=L. Thus we can assume that J <, R. Now since (L) =0, B(J) < Ker f. Moreover
Proposition 2 implies that if S(J)#Ker f then J? < Ker f. This is impossible as J/Ker f = L
and L?= L. Thus B(J) = Ker f. Now Proposition 1 implies that the ring J/B(J) is strongly

prime. This is impossible as J/f(J)=J/Kerf=L and Le U.
Now we answer question (3).

ExampLE 3. Let K, L and R be those of Example 1 and let F be a field with
card F > card R. We claim that the lower right strong radical § determined by U and the
polynomial ring F[x] is not left strong or hereditary. To prove that S is not hereditary it
suffices to check that / =xF[x]€S. But if / €S then [3, Lemma 3] there exists a chain
0#1,<,...<,I,=1such that I, e U or [, is a homomorphic image of F|x]. The former is
impossible because /,, being a domain, is strongly prime and the latter because I,
contains no non-zero idempotents.

Now we shall prove that R£S which together with the fact that L € S implies that § is
not left strong. For this it is enough to show that if A is a non-zero strongly prime S-ring
then card A > card R. It is known [3, Theorem 2] that § = M,,, where

M,=UU{T| T is a homomorphic image of F[x]}
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and, for o =2,

M, = {T | every non-zero homomorphic image of T contains a nonzero right ideal in M,
for some o' < a}.

If A € M, then, since A is strongly prime, A is a homomorphic image of F[x]. Thus in this
case card A =card F >card R. If A e M, for some « =2 then A contains a non-zero right
ideal / € M,. for some &' <. By Proposition 1, I/B(f) is strongly prime. Since M,. is
homomorphically closed, 1/8(1) € M,.. Thus card I = card I/§(l) > card R. This ends the
proof.

The following remark is motivated by the comments to Example 7 of [7].

ReEMARK. Let S be the lower radical determined by M = {Z, Z"}, where Z is the ring
of integers and Z° is the zero-ring on the additive group of Z. It is clear that § = S. Since
the ring 2Z of even integers is S-semisimple and Z € S, the radical S is not hereditary.

Now let M,(Z) be the ring of 2 X 2-matrices over Z. Then I, = [g g] <; M,(Z) and

zZ Z
L= [0 0] <,M,(Z). Tt is easy to check that I;,, €S and S(M,Z))=0. Hence S is

neither left nor right strong.
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