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Abstract

For each complex reductive dual pair introduced by R. Howe, this paper presents a formula for the central
elements of the universal enveloping algebras given by I. M. Gelfand. This formula provides an explicit
description of the correspondence between the 'centers' of the two universal enveloping algebras.
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Introduction

For each complex reductive dual pair introduced in [5], the images of the 'centers' of
the two universal enveloping algebras coincide. In this paper we explicitly describe
this correspondence between the universal enveloping algebras in terms of the central
elements due to I. M. Gelfand.

Throughout this paper we will work over the complex number field C. Let (G, G')
be a reductive dual pair in the complex symplectic group Spu = 5p#(C). Namely
G and G' are reductive Wbgroups of SpN such that each is the centralizer of the
other in SpN. Then, under the oscillator representation co of spN, the images of the
invariants with respect to the adjoint actions of G and G' on the universal enveloping
algebra U(spN) are generated by the images of the Lie algebras g' = Lie(G') and
g = Lie(G), respectively ([5]). In particular, we have the following equality between
the two universal enveloping algebras:

The author is partially supported by JSPS Research Fellowships for Young Scientists.
© 2003 Australian Mathematical Society 1446-7887/03 $A2.00 + 0.00

263

https://doi.org/10.1017/S1446788700003761 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003761


264 Minoru Itoh [2]

Here we denote by £/(g)G the algebra of invariants in the universal enveloping algebra
U(Q) with respect to the adjoint action of G. We have a similar equality cr(£/(g)G) =
°r(£/(9')c') also for a reductive dual pair (G, G') in the complex orthogonal group
ON and the spin representation a. These correspondences between the two universal
enveloping algebras have been investigated mainly in terms of eigenvalues of the
central elements (see for example [9] or [6]). The aim of this paper is to describe these
correspondences explicitly in terms of the bases of the Lie algebras. The main results
are simple formulas for the generators of the algebras U(g)G and £/(g')G known by
name of the 'Gelfand invariants.'

These generators given by I. M. Gelfand are defined for the classical groups as
follows. First we consider the case of the general linear group GLN. Let E,, be the
standard basis of the Lie algebra QIN, and form the matrix E = Eglrl = (Ey)i <,-,;<#•
We consider the trace of the power of this matrix:

tr(Er) = £ E l l h E k h - - - E l r l l .

This element of the universal enveloping algebra is known to be invariant under the
adjoint action of GLN. Moreover the set [tr(Er) \0 < r < N] generates the algebra
U(slN)GLfl. We call these tr(Er) 's the 'Gelfand invariants' for GLN ([3], see also
[13, 23]).

Similar central elements of the universal enveloping algebra can be introduced
for the Lie groups G = ON, SpN. Let 4> be the symmetric or alternating matrix
associated with the bilinear form defining G. The Lie algebra g = Lie(G) is spanned
by the elements Fy =£,-,• — 4>~' £},-4>. From these generators, we arrange the matrix
F = Fg = (Fij)\<ij<N. Then the trace of the power, tr(Fr) is again invariant under
the adjoint action of G. Moreover, the set {tr(F2r) | 0 < 2r < N] generates the
algebra U(g)G. We also call these tr(Fr) 's the 'Gelfand invariants' for G ([3, 23]).

REMARK. The algebra £/(g)G is obviously included in the center of U(g). This
inclusion is actually an equality in the cases of G = GLN, SpN, and 6>2*+i- Only in
the case of G = O2k, the algebra f/(g)G is a proper subset of the center.

Let us state the main theorems. Every reductive dual pair in the complex symplectic
groups is written as a direct product of irreducible ones, which are classified into the
two series (G, G') = (GLm, GLn) and {Om, Spn) ([4, 14, 20]). For each of these two
types of irreducible dual pair, we can describe the correspondence between U(Q)G

and f/(g')G under the oscillator representation co as follows:

THEOREM A. For the dual pair (GLm, GLn) in Sptmn, the following equality holds:

co (tr ( ( £ - (n/2)/m) (E - (n/2 + m) lm)r))

' - (m/2)ln) (£' - (m/2 + „) /n)r)).
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[3] Correspondences of the Gelfand invariants in reductive dual pairs 265

Here we put E = Egim and E' = F,gin.

THEOREM B. For the dual pair (Om, Spn) in Spmn, the following equality holds:

co (tr ((F - (n/2)lm) (F - (n/2 + m - 1/2) lm)r))

= a> (tr ({F' - (m/2)ln) (F' - (m/2 + n + 1/2) / n) r )) .

Here we put F = FOm and F' = FePn.

REMARK. AS is seen from these theorems, the images of the Gelfand invariants
for G are written as linear sums of the images of the Gelfand invariants for G'. This
fact was first found by Klink, Leung, and Ton-That. However they did not describe
this correspondence explicitly except for the Gelfand invariants of low degree. See
[10] for the case of (GLm, GLn), and [12, 11] for the case of (Om, Spn).

Also for the reductive dual pairs in the complex orthogonal groups, we can similarly
describe the correspondence between U(g)G and U(g')G' under the spin representa-
tion a. The irreducible reductive dual pairs in the complex orthogonal groups are
classified into the three series ([14, 20]): (GLm, GLn), (Om, On), and (Spm, Spn).

THEOREM C. For the dual pair (GLm, GLn) in O2mn, the following equality holds:

a (tr ((E + (n/2)Im) (E + (n/2 - m) lm)r))

= (-Ycf (tr ((£' + (m/2)/n) (E' + (m/2 - n) /„)')).

Here we put E = Egim and E' = Et[n.

THEOREM D. For the dual pair (Om, On) in Omn, the following equality holds:

a (tr((F + (n/2)/m) (F + (n/2 - m + 1/2) lm)r))

= (-Ya (\x\{F' + (m/2)In) (F' + (m/2 -n + 1/2) / „ / ) ) .

Here we put F = FOm and F' = Fo,.

THEOREM E. For the dual pair (Spm, Spn) in Omn, the following equality holds:

a (tr ((F + (n/2)Im) (F + (n/2 -m- 1/2) lm)r))

= (-)ra (tr ( ( F ' + (m/2)In) ( F ' + (m/2 - n - 1/2) / „ ) ' ) ) .

Here we put F = FsPm and F' = Fsfn.
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266 Minoru Itoh [4]

We will verify these theorems by direct and consistent calculations under the
realizations of the dual pairs in the Weyl algebra or the Clifford algebra.

For each of the dual pairs above, the decomposition of the oscillator representation
or the spin representation into a direct sum of irreducible G x g'-modules has been
investigated in detail ([9, 6]). Since the eigenvalues of the Gelfand invariants on the
irreducible representations are given in [18] and [19] (see also [23]), some relation is
expected between these results and our theorems. However it seems not so easy to
deduce our theorems in fact from these irreducible decompositions.

We also comment on the relation with the Capelli type identities. The Capelli
identity is a formula for the actions of the central elements of U(gln) named the
'Capelli elements', and gives another description of the correspondence between the
centers of the universal enveloping algebras for the dual pair (GLm, GLn) in Spimn
([1, 2, 21]). The relation between the Capelli elements and the Gelfand invariants is
given as an analogue of Newton's formula for the symmetric functions ([17, 8, 22]).
In particular, our Theorem A is also proved by combining the Capelli identity and this
Newton type formula, while this proof cannot be applied to the other dual pairs.

Also in the case of the dual pair (Om, Spn) in Spmn, a description of this correspon-
dence is given as an analogue of the Capelli identity in terms of eigenvalues in [16].
This is a consequence of the decomposition of the oscillator representation of Spmn

into a direct sum of irreducible Om x spn-modules due to [9]. Connecting this result
with the studies of the Sklyanin determinant in [15], we have an explicit description
of the correspondence between U(om)0m and U(spn)

Sp- in terms of the bases of the
Lie algebras. However, compared with our Theorem B, this description is somewhat
complicated.

The author would like to express his sincere gratitude to Professor Toru Umeda for
the fruitful discussions and advice.

1. The oscillator representation and the spin representation

We first recall the realizations of the oscillator representation of the symplectic
Lie algebras and the spin representation of the orthogonal Lie algebras. These two
representations can be constructed in terms of the Weyl algebra and the Clifford
algebra respectively in parallel ([5] and Appendix 2 of [6]).

1.1. The Weyl algebra and the oscillator representation. Let W be a finite-
dimensional complex vector space with a symplectic form, that is, a non-degenerate
alternating bilinear form {•,•). We define the Weyl algebra W{ W) associated with W
by the quotient W(W) = T(W)/Jf, where J is the two-sided ideal of the tensor
algebra T( W) generated by the tensors wi®w2—w2®W\ — (w\, u>2)l withu^,
This W{ W) is known to be a simple associative algebra.
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[5] Correspondences of the Gelfand invariants in reductive dual pairs 267

Let V be a maximal isotropic subspace of W. Then the symmetric tensor algebra
S(V) has a structure of irreducible module of W(W). To see this, take another
maximal isotropic subspace V+ such that W = V® Vt. This V1 is identified with the
linear dual V* of V via the symplectic form of W. For a vector v e V and a covector
v* € V* ~ V\ we define the endomorphisms Ms(v) and Ds(v*) on 5( V) by

Ms(v) : vt • • • vt i-*- v • v\ • • • Vk,

k

Ds{v*) : vi • • • vk •->• ^ ( v * . u,) • u, • • • t), • • • u*,

and call these the multiplication by v and the derivation by v* respectively. Here v,-'s
are elements of V, and the symbol u] means that u, is omitted. Then the correspondence
W B v+v* i-»- Ms(v) + Ds{v*) defines an isomorphism from W{ W) into End(S(VO).
In particular, the Weyl algebra W{W) is isomorphic to the subalgebra End°(5(V))
of End(5( V)) generated by the multiplications and the derivations on S( V). Note that
this End0 (S( V)) is equal to the algebra of polynomial-coefficient differential operators
under the natural identification of S( V) with the space of polynomial functions on V*.

The natural action of Sp(W) on W extends to an action on W(W) by automor-
phisms. This action is infinitesimally inner in the following sense. Let W2{ W) be the
subspace of W{ W) spanned by the anti-commutators of elements in W:

+ W2WU IUJ, W2 € W.

Then, with the commutator product, this W2 (MO is a Lie algebra isomorphic to sp (W).
Moreover, the action of W2(W) on W(W) defined by commutator is equal to the
infinitesimal version of the natural action of Sp(W) on W{W). In particular, the
natural action of 5p( W) on W2{ W) can be identified with the adjoint action on sp(W).
We call this JP2(W) the 'oscillator representation' of sp(W).

1.2. The Clifford algebra and the spin representation. Let W be a finite-
dimensional complex vector space with a non-degenerate symmetric bilinear form
(•, •). We define the CliWd algebra ^(W) associated with W by the quotient
<%{W) = T(W)/,/, where J is the two-sided ideal of the tensor algebra T(W)
generated by the tensors wx ® w2 + w2 <S> u>i - (v)\, w2) 1 with wuw2 € W.

As in the case of the Weyl algebra, the Lie algebra o(W) is naturally embedded
into the Clifford algebra #(W). Let ^ 2 ( WO be the subspace of <«f (W) spanned by the
commutators of elements in W:

w\w2 — if2ifi, W\,w2 e W.

Then the commutator product makes this ^(W) into a Lie algebra isomorphic
to o(W), and the action of ^2(W) on "€{W) defined by commutator is identified
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with the infinitesimal version of the natural action of O(W) on if ( W). In particular,
the natural action of O{ W) on If 2( W) coincides with the adjoint action on o( W). We
call this i?2(W0 the 'spin representation' of o( W).

This if 2( HO exponentiates to a two-fold cover of SO (W), which is called the 'spin
group.' The natural action of SO (W) on if (HO is realized as the action of this spin
group by conjugation.

When the dimension of W is even, the Clifford algebra if ( W) is a simple algebra,
and its irreducible module is realized as the exterior algebra of a maximal isotropic
subspace of W. Let V and Vf be isotropic subspaces of W such that W — V © V+.
Via the bilinear form of W, we identify the space Vf with the linear dual V* of V.
For a vector v e V and a covector v* e V* — V1, we define the multiplication MA(v)
and the derivation DA(v*) on A( V) by

M A ( u ) : vi • • • vk *-*• v • Vi • • • vk,

k

DA(v*) : u, • • • vk H-> £ ( - ) ' - V , w,-> • vx • • • t,• • • • wt

with vu • • • , vk e V. Then the correspondence W a v + v* t-> MA(V) + DA(v*)
defines an isomorphism from if (HO to the algebra End°(A(V0) generated by the
multiplications and the derivations on A(V). This End°(A(V)) is actually equal to
End(A(V0).

REMARK. When the dimension of W is odd, the Clifford algebra if (HO is equivalent
to the direct sum of two matrix algebras of dimension dim if (HO/2.

2. The pair (GLm, GLn) in SPlmn

The irreducible reductive dual pairs in the symplectic groups fall into the two
classes, type I and type II, namely the pair (Om, Spn) in Spmn and the pair (GLm, GLn)
in Spzmn ([4, 14, 20]). First in this section, we study the latter pair.

For two finite-dimensional vector spaces VI and V2, the groups GL(Vi)and GL(V2)
constitute a dual pair as the subgroups of GL (VI <g> V2). This pair can also be regarded
as a dual pair in a larger symplectic group as follows. Put V = Vi <8> V2, and let V* be
its linear dual. We define a symplectic form (•, •) on V © V* by

(u + u*,v + v*) = u*(v)-v*(u), u,veV, u\ v* e V*,

so that V and V* are maximal isotropic subspaces. The group GL( V) acts on this
space V ffi V* isometrically by g • (M, U*) = (gu, 'g~xu*) with g € GL(V) and
(M, «*) 6 V ffi V*. By this action we regard GL(V) as the subgroup of Sp(V ffi V*).
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[7] Correspondences of the Gelfand invariants in reductive dual pairs 269

The subgroups GL(Vi) and GL(V2) of GL(V) still constitute a dual pair as the
subgroups of Sp( V © V*).

For the oscillator representation co of sp(V © V*), the following remarkable
fact is known: the invariants under the natural actions of GL(V\) and GL(V2)
on co(U(sp(V® V*))) are generated by co(gl(V2)) and w(gl(Vi)) respectively ([5]).
In particular, we see that the images of U(gl(Vi))CUVi) and U(gl(V2))

GL(Vi) under co
coincide.

The first theorem of this paper is the following relation, which explicitly describes
this correspondence with the Gelfand invariants. Let Ey and EL be the standard bases
of g[(Vj) and gl(V2) respectively, and consider the matrices E = (£y)i<ij<m and
E' = (E(y)i<ij<ii- Here we put m = dim Vi and n = dim V2.

THEOREM 2.1. The following equality holds:

co (tr ((E - (n/2)Im) (E - (n/2 + m) lm)r))

= co (tr ( (£ ' - (TTI/2)/,,) (E' - {mil + n) / ,) ' )) .

In the remainder of this section, we prove Theorem 2.1. First we describe the
actions of g[( Vj) and gl( V2) in terms of the Weyl algebra. Let v^ be the standard basis
of V = Vi ® V2 and v*j its dual basis. Then the multiplications xy — Ms(vy) and
the derivations JC(* = Ds(v*) on S(V) satisfy the following relations (the canonical
commutation relations):

(2.1) [xtj, xu] = [x*, x*u] = 0, [x*, xkl] = SikSj,.

Here the brackets are used to denote commutator: [a, b] = ab — ba. As seen in
Section 1, these xu 's and JCJ-'S generate the Weyl algebra W( V © V*) ~ End°(5( V)).
With this notation the actions of the two Lie algebras gl( Vj) and g[( V2) are given as
follows ([6]):

s=l L s=\

These are simply written as co(E) = X'X*+(n/2)Imemdco(E') = 'XX*+(m/2)Inby
introducing two mx n matrices X = (xy) and X* = (**). In particular, Theorem 2.1
is rewritten as

(2.2) tr(X 'X*(X 'X* - mlm)r) = tri'XX'CXX* - nln)
r).

Let us deduce this equality using the canonical commutation relations (2.1). To do
this systematically, we employ the following three lemmas:
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270 Minoru Itoh [8]

LEMMA 2.2. The following equalities hold:

'X*X - mln = X'XX*), X* 'X - nlm = \X 'X*).

LEMMA 2.3. The entries ofX 'X* and 'XX* mutually commute:

[(X'X*)ijA'XX*)kl] = 0.

LEMMA 2.4. The following equality holds: (X '('XX*)),y = J ^ , xsj (X 'X*)is.

The proofs of these lemmas are all easy. In fact Lemma 2.2 is immediate from
the relation [JC*| , JC«] = Sik8ji in (2.1). Lemma 2.3 is a direct consequence of the fact
that the actions of the two Lie algebras fll(Vi) and gl( V2) are mutually commutative.
Lemma 2.4 can be also checked by noting that the entries of X commute with each
other.

Our task is now to prove

(2.3) tr(X X'XX*Y • 'X*) = tr('X '(X 'X*)rX*),

because Lemma 2.2 implies the equalities

x 'x*(x 'x* - mimy = x('x*x - miny • 'x* = x X'xxy • 'x*,
'xx*{'xx* -niny = 'x{x*'x-nimyx* = 'xxx'xyx*.

Here the notation 'Zr indicates the rth power of the transpose of a matrix Z. To verify
this (2.3), we claim the following relation:

PROPOSITION 2.5. ForanyZ e Matm n(>^(V© V*)), the following equality holds:

tr(x X'xxy • 'z) = tr(x '('xxy-1 • xxx 'xyz)).

PROOF. By a straightforward calculation and Lemma 2.4, we have

tr(x X'xxy • 'z) = tr(x x'xx*) X'xxy-1 • rz)

ij.k

•x*){X'xxy-l)k{
l

sj(x •x*)is{X'xxy-l)jk{
lz)ki.

'J.k.s

Since (X 'X*)is and C('XXy-1)jk are commutative by Lemma 2.3, this is equal to

Moreover this is equal to the right-hand side of our assertion. •
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[9] Correspondences of the Gelfand invariants in reductive dual pairs 271

Since the matrix Z is arbitrary, we can use the relation in Proposition 2.5 repeatedly.
Thus we arrive at the following identity:

COROLLARY 2.6. For any Z e Matmn(>^( V © V")), the following equality holds:

tr(X X'XX*y • 'Z) = tr(X • ' ( ' (* 'X*)rZ)) = tr('X '(X lX*)rZ).

Now Theorem 2.1 is almost proved. Indeed our goal (2.3) is obtained by replacing
Z by X* in the equality of Corollary 2.6.

3. The pair (Om,Spn) in Spmn

In this section, we study the dual pairs of type I in the symplectic groups, namely
the pair (Om, Spn) in Spmn.

To introduce this pair, we start with two finite-dimensional vector spaces W\ and W2

equipped with non-degenerate bilinear forms. We assume that the bilinear form (•, -)i
of W\ is symmetric, and the bilinear form (•, -)2 of VV2 is alternating. From these
bilinear forms, we define a symplectic form (•, •) on the tensor product W = W^ ® W2

by («i <g> M2, V\ ® Vi) = («ii V])i • (M2, U2)2, and consider the isometry group Sp( W).
Then the isometry groups O( W\) and Sp(W2) constitute a dual pair as the subgroups
of Sp(W). Thus we have the dual pair (Om, Spn) in Spmn with /w = dim Wj and
n = dim W2.

For this dual pair and the oscillator representation co of spmn, the following fact
is known: the invariants under the actions Om and Spn on co(U(spmn)) are gener-
ated by co(spn) and co(om) respectively ([5]). In particular, we have the equality
co(U(om)°~) = a>(U(spn)

s>>").

As a description of this correspondence between the universal enveloping algebras,
we have the following relation. We put F — FOm and F' = Fs P n.

THEOREM 3.1. The following equality holds:

a> (tr ( (F - («/2)/m) (F - (n/2 + m - 1/2) Im)r))

= co (tr ((F' - (m/2)/ .) ( F ' - (/n/2 + « + 1/2) / „ ) ' ) ) .

To prove Theorem 3.1, we first describe the actions of the Lie algebras om and spn

under the oscillator representation co in terms of the Weyl algebra W(W). Denote by
<J> = (<&/,•) and * = (^y) the matrices associated with the bilinear forms (•, -)i and
(•, )2, so that we have (pij,Pki) = ^ik^ji for the canonical basis ptj of W = Wi® W2.
In particular, these p , / s satisfy the commutation relation [ptj,pu\ = (Pij>Pu) =
<t>ikWji as the elements of the Weyl algebra W{ W). Form the m x TJ matrices P =
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272 Minorultoh [10]

and P* = (p*j) = ^ " ' P ' * " 1 , so that the commutation relation [p*j,pkl] = SikSj,
holds. Then the actions of om and spn are given as follows ([6]):

co(F) = / > * " ' 'P «*-' + (n/2)Im =P'P* + (n/2)/m,

co(F') = ' 1

Thus, for Theorem 3.1, it suffices to prove the relation

(3.1) ti(P'P*(P'P* - (m - l /2) / m ) r ) = tr('PP*('PP* -

We deduce this equality using the following three lemmas in* a way similar to the proof
of Theorem 2.1:

LEMMA 3.2. The following equalities hold:

'P*P-mIn = %'PP*), P*'P -nlm = '(P'P*).

LEMMA 3.3. The entries of P'P* and 'PP* mutually commute:

LEMMA 3.4. The following equality holds:

(P'CPP*

The proofs of these lemmas are almost the same as those of Lemmas 2.2-2.4.
Indeed Lemma 3.2 is a consequence of the commutation relation [p*j, pkl\ = SikSji,
and Lemma 3.3 is immediate from the fact that the two actions of Om and Spn are
commutative each other. Lemma 3.4 is a bit more complicated than Lemma 2.4, but
is also seen by a direct calculation from the commutation relations of p.y 's.

By using Lemma 3.2, our goal (3.1) is now rewritten as

(3.2) tr (Pt('PP* + \ln)
r- 'P*)= tr ('P'(P'P* - \lm)r P*).

To show this, we claim the following proposition. This is seen from Lemma 3.3 and
Lemma 3.4 in a way similar to the proof of Proposition 2.5.

PROPOSITION 3.5. For any Z e Matmtn(W(W)), the following equality holds:

tr (P'('PP* + \ln)
r • lZ) = tr ( P ' ( ' P P * + \ln)

r-1 • '('(P'P* - i/B) Z)) .
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Repeating this relation r times, we arrive at the following corollary. Our goal (3.2)
is obtained by replacing Z by P* in this equality.

COROLLARY 3.6. For any Z € Malmn(W(W)), the following equality holds:

+ i / n ) r • <Z) = tr(/> • '('(P'P* - \lm)" Z))

= tr ('P'(P'P* -\lm)rZ).

4. The pair (GLm, GLn) in Olmn

As in the case of the symplectic group, the irreducible reductive dual pairs in the
orthogonal groups fall into the two classes, type I and type II ([14, 20]). In this
section, we study the dual pairs of type II in the orthogonal groups, namely the pair
(GLm, GLn) in C W

The dual pair (GL (V,), GL (V2)) in GL (Vj <8> V2), which we considered in Section 2,
can be also regarded as a dual pair in a larger orthogonal group. Put V = V\ <8> V2,
and denote its linear dual by V*. We define a symmetric bilinear form on V ffi V* by

(u + u*,v + v*) = u*(v) + v*(u), u, v e V, «*, v* e V*.

The group GL (V) acts on this space Vffi V* isometrically by g-(u, «*) = (gu, 'g~lu*)
with g g GL( V) and (M, U*) g V ffi V*. By this action we regard GL( V) as the
subgroup of O( V ffi V*). The pair (GL( Vi), GL{ V2)) still constitutes a dual pair as
the subgroups of O{ V ffi V*).

Let us consider the spin representation a of o( V ffi V*) on A( V). As in the case of
the dual pairs in the symplectic group, it is known that the invariants of GL( Vj) and
GL{ V2) on cr(U(o( V ffi V*))) are generated by <r(g[( V2)) and a(gl( V,)) respectively
([5]). In particular, we see that the images of I/(g[( V , ) ) 0 ^ and £/(gI( V2))

CL(Vj)

under CT coincide. \
As an explicit description of this correspondence, we have the following relation

similar to Theorem 2.1. Let Etj and E\j be the standard bases of g[( V]) and fll( V̂ )
respectively, and consider the matrices E = (£y)i<ij<m and E' = (Ey)i<ij<n. Here
we put m = dim Vj and n = dim V2.

THEOREM 4.1. The fallowing equality holds:

a (tr((E + (n/2)/m) (E + («/2 - m) /m)r))

= (-)ra (tr ((£' + (m/2)/,) (£' + (m/2 - n) /„)')) .
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To prove Theorem 4.1, let us write down the actions of gl( Vj) and gl( V2) in terms
of the Clifford algebra. Let v,y be the standard basis of V = V\ <g> V2, and v* its dual
basis. Then the multiplication ytj = MA(vtj) and derivation y,* = DA(v*) on A( V)
satisfy the following relations (the canonical anti-commutation relations):

(vy, yu) = {y*, y*kl} = 0, [y*, yu) = SlkSj,.

Here the braces are used to denote anti-commutator: {a, b} = ab + ba. As seen in
Section 1, these yi} and y* generate the Clifford algebra <€( V 8 V*) ~ End°(A( V)).
With this notation the actions of gl( Vj) and gl( V2) are expressed as follows ([6]):

We introduce the two m x n matrices Y = (>>y) and Y* = (y*j), so that we have
a{E) = Y'Y* - (n/2)Im and a(E') = 'YY* - (m/2)/n. Then Theorem 4.1 is
rewritten as

tr(Y'Y*(Y'Y* -mlmy) = (-)r tr('YY*('YY* - nln)
r).

The proof of this equality is essentially the same as that of (2.3). Therefore we only
state the counterparts of Lemmas 2.2-2.4, Proposition 2.5, and Corollary 2.6, and
omit the details.

LEMMA 4.2. The following equalities hold:

'Y*Y~ mln = - X'YY*), r 'Y - nlm = - '(Y'Y*).

LEMMA 4.3. The entries of Y'Y* and 'YY* mutually commute:

[(Y'Y*)ij,CYY*)kl] = 0.

LEMMA 4.4. The following equality holds: (Y'i'YY*))^ = - ^ = 1 ysj'(Y'Y*),,.

PROPOSITION 4.5. For any Z e Matm,n('^'( V © V*)), the following equality holds:

tT(Y'('YY*y • 'Z) = - t r t n ' J T y - 1 • '('(Y'Y*)Z)).

COROLLARY 4.6. For any Z e Matm,nC^( V © V*)), the following equality holds:

t r (J"( ' JT) r • 'Z) = (-)rtr(K • '('(Y'Y*)rZ)) = (-)r tr('Y'(Y'Y*)rZ).
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5. The pairs (Om, On) and (Spm, Spa) in Omn

Finally we study the dual pairs of type I in the orthogonal groups, namely the two
pairs (Om, On) and (Spm, Spn) in Omn.

As in Section 3, we start with two finite-dimensional vector spaces W\ and W2

equipped with non-degenerate bilinear forms (•, )i and (•, -)2. We assume that both
bilinear forms are simultaneously symmetric or alternating, that is, there exists a fixed
e = ±1 such that {«!, i>i)i = s(vi, «i)i and (u2, v2)2 = e{v2, u2)2. We define a
symmetric bilinear form (•, •> on W = W\ ® W2 by

( M i <g> M 2 , V i ® V2) = ( M i , U , ) , • ( U 2 , V 2 ) 2 ,

and consider the isometry group O{ W). Let G and G' be the isometry groups of W\
and W2 respectively. These G and G' constitute a dual pair as the subgroups of O( W).
Thus, according to £ = ± 1 , we have two types of dual pairs (Om, On) and (Spm, Spn)
in Omn. Here we put m — dim W\ and n = dim W2.

For the spin representation a of omn, it is known that the invariants under the actions
of G and G' on a (C/(omn)) are generated by the images of the Lie algebras 9' = Lie( G')
and g = Lie(G) respectively ([5]). In particular, we have the equality 0(U(g)c) =
a ( f / (g ' ) c) . As a description of this correspondence between the universal enveloping
algebras, we have the following theorem. We put F = Fg and F' = FB-.

THEOREM 5.1. The following equality holds:

a ( t r ((F + (n/2)/m) ( F + (n/2 -m + e/2) lm)r))

= ( - ) V (tr ( ( F ' + (m/2)/B) ( F ' + (m/2 - n + e/2) In)
r)).

Preparatory to proving Theorem 5.1, we describe the actions of the Lie algebras g
and g' in terms of the Clifford algebra &(W). We denote by d> = (O y ) and * = (vl/,y)
the matrices associated with the bilinear forms (•, )i and (•, -)2, so that we have
(QijyQu) — ^tk^ji for the canonical basis q^ of W — W\ ® W2. In particular,
these <7y's satisfy the comrriutation relation {qij,qu} = (qij,qu) = * i** ; / a s t n e

elements of the Clifford algebra ^(W). Consider the m x n matrices Q = (qtj) and
Q* = (q*) = <t>~' Q^i>~\ so that the commutation relation {q*jt qkl) = SikSji holds.
Then the actions of Q and g' are given as follows ([6]):

a(F) = QV'1 •Q'®-1 - (n/2)Im = Q'Q* - (n/2)Im,

a(F') = 'Q<t>-lQ'V-1 - (m/2)In = 'QQ* - (m/2)In.

In particular, Theorem 5.1 is rewritten as

HQ'Q*(Q'Q* - (m-s/2)lmy) = (-YtiCQQ*CQQ* - (n-e/2)ln)
r).
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This equality can be deduced in a way similar to the proof of Theorem 3.1 by combining
the following fundamental relations:

LEMMA 5.2. The following equalities hold:

'Q*Q- mln = - K'QQ*), Q* 'Q -nlm = - XQ'Q*)-

LEMMA 5.3. The entries of Q'Q* and 'QQ* mutually commute:

[(Q'Q*)uA'QQ*)k,] = 0.

LEMMA 5.4. The following equality holds:

m

(QX'QQ* - (£/2)/n))0 = -J^qsjiQ'Q* - (s/2)Im)is.
J = l

PROPOSITION 5.5. For any Z e Matm,n(^( WO), the following equality holds:

tr(Q'('QQ*-(£/2)Iny-'Z)

lny-x • XXQ'Q* -

COROLLARY 5.6. For any Z € Matmn(V( W)), the following equality holds:

tr(QK'QQ* - (s/2)Iny • 'Z) = (-) ' tr(e • XXQ'Q* ~ (£/2)/m)'Z))

= (-YtrCQXQ'Q* - (e/2)Im)rZ).
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