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Implosion for hyperkähler manifolds

Andrew Dancer, Frances Kirwan and Andrew Swann

Abstract

We introduce an analogue in hyperkähler geometry of the symplectic implosion, in the
case of SU(n) actions. Our space is a stratified hyperkähler space which can be defined
in terms of quiver diagrams. It also has a description as a non-reductive geometric
invariant theory quotient.

Introduction

Guillemin et al. [GJS02] introduced the idea of symplectic implosion of a symplectic manifold
M with a Hamiltonian action of a compact group K. The implosion Mimpl carries an action of a
maximal torus T of K, such that the symplectic reductions of M by K agree with the symplectic
reductions of the implosion by T . In this sense the implosion is an abelianisation of the original
Hamiltonian action; the price to be paid for this is that the implosion is usually quite singular,
although it has a stratified symplectic structure.

The construction of symplectic implosions can be reduced to the problem of imploding
the cotangent bundle T ∗K, which thus acts as a universal implosion. The imploded space
(T ∗K)impl carries a torus action such that the symplectic reductions are the coadjoint orbits
of K. The universal symplectic implosion (T ∗K)impl also has an algebro-geometric description
as the canonical affine completion of the quotient KC/N of the complexified group KC by a
maximal unipotent subgroup N .

Our aim here is to explore a hyperkähler analogue of the universal implosion. In this paper
we concentrate on the case of SU(n) actions, where there is a construction involving quiver
diagrams, leaving the case of other compact groups K to a future paper. We produce a stratified
hyperkähler space Q whose strata correspond to quiver diagrams of suitable types. These strata
are hyperkähler manifolds which can be described in terms of open sets in complex symplectic
quotients of the cotangent bundle of KC = SL(n, C) by subgroups containing commutators of
parabolic subgroups. There is a maximal torus action, and hyperkähler quotients by this action
give the Kostant varieties, which are the closures in sl(n, C)∗ of coadjoint orbits ofKC = SL(n, C).
We recall that by the work of Kronheimer [Kro90a, Kro90b], Biquard [Biq96] and Kovalev [Kov96]
all coadjoint orbits of complex reductive groups admit hyperkähler structures.

We are led to our construction by algebro-geometric considerations, namely, the wish to
produce a variety that is an affine completion of a complex symplectic quotient of the cotangent
bundle T ∗KC by the maximal unipotent subgroup N of KC. The upshot is that torus quotients
yield not single complex coadjoint orbits but rather their canonical affine completions which
are Kostant varieties. In particular, the torus reduction at a triple (0, τ2, τ3), where τ2 + iτ3 is
regular, will give Kronheimer’s hyperkähler structure on the coadjoint orbit of τ2 + iτ3 [Kro90b].
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Implosion for hyperkähler manifolds

However, torus reduction at the origin yields not a point (as in the symplectic case) but rather
the nilpotent variety.

Given a hyperkähler manifold M with a hyperkähler Hamiltonian SU(n) action, we can
construct its hyperkähler implosion as the hyperkähler quotient (M ×Q)///SU(n), by analogy
with symplectic implosion. However, the connection between non-abelian and abelian quotients
is more involved than in the symplectic case. While the torus quotient of the hyperkähler
implosion at a triple (0, τ2, τ3) with τ2 + iτ3 regular coincides with Kronheimer’s definition of
the hyperkähler reduction of M by SU(n) at this level [Kro90b], reducing at level zero will give
the hyperkähler quotient of the product of M and the nilpotent variety. To recover the usual
hyperkähler quotient we must take just the closed stratum in this space, corresponding to the
semisimple stratum (i.e. the point zero) in the nilpotent variety.

We now describe the plan of the paper. In § 1 we briefly review the theory of symplectic
implosion. In § 2 we recall some relevant points from hyperkähler geometry, and introduce various
complex-symplectic spaces which will arise as ingredients for building the hyperkähler implosion.
In § 3 we recall the theory of Kostant varieties and the Grothendieck–Springer resolution.
Section 4 shows that we may use symplectic quivers associated to actions of products of special
linear groups to give a new model of the symplectic implosion when K = SU(n). In § 5, motivated
by this construction, we consider hyperkähler quiver varieties and in § 6 we stratify them in terms
of quiver diagrams. This gives an approach to hyperkähler implosion in the case of SU(n). We
analyse the structure of these strata in terms of parabolic subgroups, and identify the implosion
with a non-reductive quotient, in § 7. Finally in § 8 we work out various examples and show how
Kostant varieties arise as torus quotients.

1. Symplectic implosion

We first review the theory of symplectic implosion, due to Guillemin et al. [GJS02]. Given a
symplectic manifold M with a Hamiltonian symplectic action of a compact Lie group K with
maximal torus T , the imploded space Mimpl is a stratified symplectic space with a Hamiltonian
action of the maximal torus T of K. For convenience we fix an invariant inner product on the
Lie algebra k of K, which allows us to identify k with its dual k∗, and we fix a positive Weyl
chamber in the Cartan algebra t of T . Then we have an identification of reduced spaces

M//sλK =Mimpl//
s
λT (1.1)

for all λ in the closure of the fixed positive Weyl chamber in t∗, where //sλ denotes symplectic
reduction at level λ. Note that λ need not be central for K; we recall that for general λ the
symplectic reduction M//sλK is the space (M × O−λ)//s0K, where Oλ is the coadjoint orbit of
K through λ with its canonical symplectic structure. This reduction may be identified with
µ−1(λ)/StabK(λ) where µ : M → k∗ is the moment map for the K-action on M and StabK(λ) is
the stabiliser in K of λ ∈ k∗ under the coadjoint action of K.

A particularly important example of implosion is when we take M to be the cotangent bundle
T ∗K (which may be identified with KC). Now T ∗K//sλK is just the coadjoint orbit Oλ so the
imploded space must satisfy

(T ∗K)impl//
s
λT = Oλ

for λ in the closed positive Weyl chamber t∗+. Explicitly, (T ∗K)impl is obtained from K × t∗+, by
identifying (k1, ξ) with (k2, ξ) if k1, k2 are related by the translation action of an element of the
commutator subgroup of StabK(ξ). So if ξ is in the interior of the chamber, its stabiliser is a
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torus and we do not perform any identifications. In particular, an open dense subset of (T ∗K)impl

is just the product of K with the interior of the Weyl chamber.
In fact this example gives us a universal imploded space. As T ∗K has a Hamiltonian K ×K-

action its implosion inherits a Hamiltonian K × T -action. Now for a general symplectic manifold
M with a Hamiltonian K-action we obtain the imploded space Mimpl as the symplectic reduction
(M × (T ∗K)impl)//s0K, which has an induced Hamiltonian T -action as required.

Implosion also has an interpretation as an algebro-geometric quotient. More precisely, the
space (T ∗K)impl can be identified with an affine variety which is the quotient

KC//N = Spec(O(KC)N ),

in the sense of geometric invariant theory (GIT), of the complex reductive group KC (which is
the complexification of K) by its maximal unipotent subgroup N [DK07, MFK94]. This variety
has a stratification by quotients of KC by commutators of parabolic subgroups; the open stratum
is just KC/N and KC//N is the canonical affine completion of the quasi-affine variety KC/N .

2. Towards hyperkähler implosion

We now discuss some issues in constructing a hyperkähler analogue of the symplectic implosion.

2.1 In the symplectic case the key example for implosion was the cotangent bundle T ∗K of a
compact Lie group. It was shown by Kronheimer [Kro86] that the cotangent bundle T ∗KC of the
complexification of K admits a hyperkähler structure. (For further aspects of the geometry of
this space, especially the moment geometry, see [DS96].) In fact Kronheimer showed that T ∗KC
may be identified with the moduli space M(K) of solutions to the Nahm equations

dTi
dt

+ [T0, Ti] = [Tj , Tk], (ijk) cyclic permutation of (123),

(that is, the anti-self-dual-Yang–Mills equations with R3 translation invariance imposed) where
Ti (for i= 0, 1, 2, 3) takes values in k and is smooth on the interval [0, 1]. Two solutions are
identified if they are equivalent under the gauge action

T0 7→ gT0g
−1 − ġg−1, Ti 7→ gTig

−1 (i= 1, 2, 3),

where g : [0, 1] 7→K with g(0) = g(1) = 1 ∈K. The Nahm equations may be viewed as the
vanishing condition for a hyperkähler moment map for the action of this group of gauge
transformations on an infinite-dimensional flat quaternionic space of k-valued functions on [0, 1].
In this way M(K) acquires a hyperkähler structure. The complex-symplectic structure defined
by the hyperkähler structure on M(K) is just the standard complex-symplectic form on T ∗KC.

We have an action of K ×K on M(K)
∼= T ∗KC, defined by taking gauge transformations

which are no longer constrained to be the identity at t= 0, 1. This action preserves the
hyperkähler structure, and complexifies to a holomorphic action of KC ×KC. Viewing T ∗KC
as KC × k∗C, the left and right actions are given by

(g, ξ) 7→ (hLgh−1
R , Ad(hR)∗ξ). (2.1)

There is also an action of SO(3), given for (aij) ∈ SO(3) by

Ti 7→
3∑
j=1

aijTj ,
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which is isometric but rotates the two-sphere of complex structures associated to the hyperkähler
structure, so that all the complex structures are equivalent. In terms of the above procedure for
identifying the moduli space with T ∗KC, the choice of complex structures corresponds to the
choice in the splitting of the Nahm equations into a real and a complex equation. For the
standard choice of complex structures (I, J, K) with corresponding symplectic forms (ωI, ωJ, ωK)
the complex-symplectic form is ωJ + iωK.

2.2 We have already recalled that the symplectic implosion of T ∗K ∼=KC can be identified with
the non-reductive GIT quotient KC//N and has a stratification into strata KC/[P, P ] where P
ranges over the standard parabolic subgroups of KC. The open stratum, for which P is the
Borel subgroup B of KC associated to the choice of positive Weyl chamber t+, is KC/N where
N = [B, B] is a maximal unipotent subgroup of KC.

In the hyperkähler setting, it is natural therefore to consider complex-symplectic quotients
of T ∗KC by N and more generally by commutators of parabolic subgroups P ⊇B, acting on the
right.

The complex-symplectic moment map for the right action of KC on T ∗KC is just the
I-holomorphic moment map

(g, ξ) 7→ ξ,

which of course is equivariant for the right action and invariant for the left action as described
in (2.1). So the complex-symplectic quotient by the maximal unipotent group N at level 0 is
KC ×N n◦, where the annihilator n◦ in k∗C of the Lie algebra n of N may be identified with
the Borel subalgebra b of kC. Here we use a fixed invariant inner product on k to identify k

with k∗ and to identify kC with k∗C; when K = SU(n) this identification is given by the pairing
(A, B) 7→ tr(AB) on the Lie algebra of SL(n, C).

The complex-symplectic form ωJ + iωK on T ∗KC descends to the complex-symplectic quotient
KC ×N n◦. We can also perform complex-symplectic quotients by commutators [P, P ] of general
parabolics P . We obtain quotients KC ×[P,P ] [p, p]◦, which may be identified with the cotangent
bundles T ∗(KC/[P, P ]) of the strata of the symplectic implosion.

Of course, these quotients carry a complex-symplectic action of KC induced from the left
action on T ∗KC. As the maximal torus TC normalises N (and [P, P ]) we also have a surviving
right action of TC. So these quotients have a complex-symplectic action of KC × TC.

2.3 On the other hand the symplectic implosion is given by the non-reductive GIT quotient
KC//N which contains KC/N as an open subset. So when searching for a candidate for the
universal hyperkähler implosion we might look for a quotient in the sense of GIT of KC × n◦ by
the action of N . However, classical GIT [MFK94] only deals with actions of reductive groups,
and the unipotent group N is not reductive. There is no difficulty in constructing a non-reductive
GIT quotient KC//N of KC by N , since the algebra O(KC)N of N -invariant regular functions on
KC is finitely generated and so we can define KC//N to be the associated affine variety

KC//N = Spec(O(KC)N ).

This means that if X is any complex affine variety on which KC acts then the algebra of invariants

O(X)N ∼= (O(X)⊗O(KC)N )KC

is finitely generated and we have a non-reductive GIT quotient

X//N = Spec(O(X)N )∼= (X × (KC//N))//KC.
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Unfortunately the N action

(g, ξ) 7→ (gn−1, nξn−1)

on KC × n◦ does not extend to a KC action, so constructing a non-reductive quotient
(KC × n◦)//N is not so straightforward (but see [DK07]). However, we will prove in this paper
that when K = SU(n) the algebra O(KC × n◦)N is finitely generated, and that

(KC × n◦)//N = Spec(O(KC × n◦)N )

can be identified with a hyperkähler quotient of a flat space Hm by a compact group action using
quiver diagrams. This hyperkähler quotient is a stratified hyperkähler space with a hyperkähler
torus action, and is a complex affine variety for any choice of complex structure. It also includes
the quotients KC ×[P,P ] [p, p]◦ discussed above, in particular KC ×N n◦. It is also the canonical
affine completion of KC ×N n◦.

3. Kostant varieties

Let us now discuss some links with geometric representation theory (cf. [CG97] for background).
We have already observed that we expect the universal hyperkähler implosion to be a non-

reductive GIT quotient

(KC × n◦)//N = Spec(O(KC × n◦)N )

with the actions of the maximal torus T of K and its complexification TC =B/N induced from
the action of the Borel subgroup B on KC × n◦. We also will be concerned with the geometric
quotient KC ×N n◦. In this section we shall study quotients and complex-symplectic reductions
of these spaces by tori.

First consider the space k̃C =KC ×B n◦ =KC ×B b, where B is the Borel subgroup with Lie
algebra b. Now k̃C may be identified via (Q, X) 7→ (QXQ−1, QB/B) with the correspondence
space

{(X, b) ∈ kC ×B :X ∈ b},
where B =KC/B is the variety of Borel subalgebras in kC. Projection onto the second factor
realises k̃C as a vector bundle over B. Projection onto the first factor, on the other hand, gives a
map

µ : k̃C =KC ×B b→ kC,

µ : (Q, X) 7→QXQ−1,

called the Grothendieck simultaneous resolution. This map is a closed and proper surjection
(since B is compact). Over regular elements of kC it is finite-to-one, of degree |W |, where W is
the Weyl group.

We also have a map

ρ : kC→ Cr ' tC /W,

where r = rank kC. This map is defined by choosing generators p1, . . . , pr for the ring of invariant
polynomials on kC and setting

ρ(X) = (p1(X), . . . , pr(X)).

Now let us fix X0 ∈ tC and consider the subset of k̃C given by

k̃C(X0) =KC ×B (X0 + n).
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This has the structure of an affine bundle over B =KC/B (when X0 = 0 it is the cotangent
bundle T ∗B).

Lemma 3.1. We have a surjection

µ :
⋃
w∈W

k̃C(w.X0)→ ρ−1(χ),

where χ= ρ(X0).

Proof. This follows from the commutative diagram [CG97, (3.1.41)] below.

k̃C

ν
$$JJJJJJJJJJJ

µ
zzttttttttttt

kC tC

tC/W = Cr
%%

ρ

JJJJJJJJJJ yy

π
tttttttttt

Here ν is the map that sends X to its component X0 in the Cartan algebra, and π is just the
quotient by the Weyl action.

Explicitly, we can argue as follows. If pi is an invariant polynomial as above, then, letting
X =X0 + Y where Y ∈ n, we have

pi ◦ µ(Q, X) = pi(QXQ−1) = pi(X) = pi(X0)

where the last equality comes from [CG97, Corollary 3.1.43]. So µ(k̃C(X0)) is contained in the
fibre ρ−1(χ) of ρ, where χ= ρ(X0). This argument shows µ(k̃C(w.X0)) is also contained in ρ−1(χ),
where w is an element of the Weyl group W .

Conversely, if ρ(X) = χ, write X = µ(Q, X ′) =QX ′Q−1 for some (Q, X ′) ∈KC × b. Write
X ′ =Xss + Y , where Xss ∈ tC and Y ∈ n. As above ρ(Xss) = ρ(X ′) = ρ(X) = χ= ρ(X0), so
Xss, X0 ∈ tC are equivalent under the Weyl group action. 2

We recall some facts, due to Kostant [Kos63], concerning the Kostant varieties Vχ = ρ−1(χ)
(see [CG97, § 6.7]).

(i) Each Kostant variety Vχ is an irreducible normal affine variety of complex dimension
dimC kC −r = dimC kC − dim tC.

(ii) Each Kostant variety Vχ is a union of finitely many orbits for the adjoint action of KC.

(iii) There is a unique open dense orbit V reg
χ , and this consists of the regular (in the Lie algebra

sense) elements in Vχ.

(iv) The complement of the open dense orbit V reg
χ is of complex codimension at least 2 in

Vχ [Kos63, Theorem 0.8], and hence O(V reg
χ ) is finitely generated and Vχ is the canonical

affine completion Spec(O(V reg
χ )) of the quasi-affine variety V reg

χ .

(v) There is a unique closed orbit; this consists of the semisimple elements in Vχ and has
minimal dimension among the orbits in Vχ.

(vi) A Kostant variety Vχ consists of a single orbit if and only if it contains a regular semisimple
element.

Note also that dimC k̃C(X0) = 2 dimC n = dimC kC −r = dim Vχ.
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We know µ maps k̃C(X0) into Vχ. However, the above discussion of Lemma 3.1 shows its
image is not contained in a proper subvariety of Vχ. Therefore, the image contains a Zariski-
open and hence dense set in Vχ. However, µ is closed on k̃C and hence on the closed subset
k̃C(X0), so the image is all of Vχ. This map is in fact injective over regular elements (the fibre
for µ : k̃C→ kC over regulars is finite-to-one with the fibres coming from the Weyl group). So we
have the following lemma.

Lemma 3.2. We have a surjection

µ : k̃C(X0)→ Vχ

onto the Kostant variety, which is injective over regular elements.

By analogy with symplectic implosion we expect that hyperkähler quotients of the universal
hyperkähler implosion by the maximal torus T in K should be closely related to coadjoint
orbits of the complexified group KC. Reduction at (0, ζ2, ζ3) should correspond to the complex-
symplectic quotient by TC at level X0 = ζ2 + iζ3. So let us consider the quotients k̃C(X0) =
KC ×B (X0 + n) and also the GIT quotient

(KC × (X0 + n))//B. (3.3)

From above, µ̂ : (Q, X) 7→QXQ−1 gives a B-invariant map from KC × (X0 + n) onto Vχ
where χ= ρ(X0). This descends to the map µ : k̃C(X0) =KC ×B (X0 + n)→ Vχ.

If X0 is regular semisimple, then, from (v) above, Vχ is just the orbit through X0. Moreover
in this case we have an isomorphism

µ : KC ×B (X0 + n)→ Vχ,

hence the fibres of µ̂ are exactly the B-orbits. So (3.3) is a geometric quotient and our hyperkähler
quotient is just Vχ =KC/TC.

If X0 is not regular semisimple, then Vχ will contain more than one orbit. As mentioned
above in (iii), the regular elements will form an open dense set, but the smaller strata in its
closure will consist of non-regular elements.

Now µ̂ : (Q, X) 7→QXQ−1 still defines a B-invariant map from KC × (X0 + n) onto Vχ,
inducing µ : k̃C(X0)→ Vχ. This time µ is no longer an isomorphism, but it is injective over
the set V reg

χ of regular elements, hence injective over the complement of a set of codimension
greater than or equal to 2 in Vχ.

Clearly a polynomial f on Vχ induces a B-invariant polynomial f̃ on KC × (X0 + n) via
f̃(Q, X) = f(QXQ−1). Conversely, a B-invariant polynomial on KC × (X0 + n) will induce a
polynomial on k̃C(X0) =KC ×B (X0 + n) and hence a polynomial on V reg

χ . This will extend over
the locus of non-regular points (which has codimension at least 2) to give a polynomial on Vχ.

Hence Vχ is the GIT quotient (KC × (X0 + n))//B. Thus if, as we expect, the universal
hyperkähler implosion can be identified with a non-reductive GIT quotient (KC × b)//N , then
its complex-symplectic GIT reduction by the torus TC at level X0 is Vχ.

The space k̃C(X0) =KC ×B (X0 + n), on the other hand, is an affine bundle over B and is a
desingularisation of the Kostant variety Vχ.

Example 3.4. In the particular case X0 = 0, then k̃C(X0) is just KC ×B n, which is the cotangent
bundle T ∗B = T ∗(KC/B). Now the restriction of µ to k̃C(0) is the Springer resolution

µ : T ∗B →N ,
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where N = V0 = ρ−1(0) is the nilpotent variety in kC. Both these spaces appear as hyperkähler
spaces in the work of Nakajima [Nak94].

If K = SU(2) then T ∗B is T ∗P1, the resolution of the nilpotent cone which is the GIT quotient
at level zero (see Example 8.5 below).

Remark 3.5. If our candidate for the universal hyperkähler implosion were the geometric quotient
KC ×N n◦ =KC ×N b instead of the non-reductive GIT quotient (KC × b)//N , then a naive
complex-symplectic reduction at level X0 (taking a geometric rather than GIT quotient) would
give the Springer resolution KC ×B (X0 + n) = k̃C(X0) rather than the Kostant variety Vχ.

4. Symplectic quivers

In this section we shall present a new model for the universal symplectic implosion for K = SU(n),
in terms of symplectic quiver representations. This will also introduce some ideas which will be
useful in the next section, when we introduce a quiver description of the universal hyperkähler
implosion for SU(n).

A symplectic quiver representation is a diagram of vector spaces and linear maps

0 = V0
α0−−−−→ V1

α1−−−−→ V2
α2−−−−→ · · · αr−2−−−−→ Vr−1

αr−1−−−−→ Vr = Cn. (4.1)

We say that the vector spaces Vi have dimension vector n = (n1, . . . , nr) if ni = dim Vi. Let

R(n) =
r⊕
i=1

Hom(Vi−1, Vi)

be the space of all such diagrams with Vi = Cni for 16 i6 r. We will say that the representation
is ordered if 06 n1 6 n2 6 · · ·6 nr = n and strictly ordered if 0< n1 < n2 < · · ·< nr = n.

We shall be interested in the GIT quotient of R(n) by an action of

SL :=
r−1∏
i=1

SL(Vi).

This is a subgroup of GL :=
∏r−1
i=1 GL(Vi) and for both groups g = (g1, . . . , gr−1) acts by

αi 7→ gi+1αig
−1
i (i= 1, . . . , r − 2),

αr−1 7→ αr−1g
−1
r−1.

There is also, of course, a commuting action of GL(n, C) = GL(Vr) by left multiplication of αr−1.
We shall particularly consider the case of full flag representations n = (1, 2, . . . , n− 1, n), but

their analysis will require the study of the more general quiver representations (4.1) for general
ordered n.

The points in the GIT quotient R(n)// SL = Spec(O(R(n)SL)) correspond to the closed orbits
for the SL action on the affine variety R(n). The term polystable is often used to describe points
of R(n) which lie in closed SL-orbits. If in addition the stabiliser is finite, the point is called
stable.

We first look at length 2 quivers.

Lemma 4.2. A length two diagram

V
α−−→ Cn

gives a closed SL(V ) orbit if and only if α is either 0 or injective.
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Proof. Write V = ker α⊕ U for some U .
Then

α=
(
0 a2

)
: ker α⊕ U → Cn

which transforms as (
0 a2

)
7→
(
0 a2g

−1
2

)
under the action of g = diag(g1, g2) ∈ SL(V ). If ker α 6= 0 and U 6= 0, then diag(λ−k, λ`) ∈ SL(V )
where `= dim ker α and k = dim U , and the corresponding one-parameter group has 0 as its
limit. Thus, if the orbit is closed, either ker α= 0 and α is injective or α= 0.

If α= 0 then the orbit is clearly closed. If α is injective, consider the action of any one-
parameter group of SL(V ) (in the sense of GIT, i.e. the image of a homomorphism C∗→ SL(V )).
Write V =

⊕r
i=1 E(µi) as a direct sum of weight spaces. As the one-parameter group is in SL(V )

we have
∑

i µi dim E(µi) = 0. Now α=
⊕r

i=1 ai with each ai non-zero and under the action
of the one-parameter group we have ai 7→ λµiai. This has a limit as λ→∞ only if µi 6 0 for
each i. However, the special linear condition then gives µi = 0 for each i. Thus by the Mumford
numerical criterion [MFK94] α is stable and hence polystable. 2

To deal with the general case, we consider the following length 2 situation for a double quiver.
Spaces of such double quivers will also give hyperkähler varieties, and will be studied further in
the next section.

Lemma 4.3. A configuration

V
α−−−→←−−−
β

W (4.4)

of vector spaces V, W and linear maps α, β gives a closed orbit under the SL(V )-action

α 7→ αg−1, β 7→ gβ

if and only if:

(i) α is injective; or

(ii) β is surjective; or

(iii) V = ker α⊕ im β.

Proof. Suppose (α, β) is SL-polystable. Choose a direct sum decomposition V = U1 ⊕ U2 ⊕ U3 ⊕
U4 such that

ker α ∩ im β = U1, ker α= U1 ⊕ U2 and im β = U1 ⊕ U3.

Then we may write

α=
(
0 0 a3 a4

)
, β =


b1
0
b3
0

 .

A block-diagonal element diag(g1, . . . , g4) ∈ SL(V ) acts as

α 7→
(
0 0 a3g

−1
3 a4g

−1
4

)
, β 7→


g1b1

0
g3b3

0

 .
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If U2 is non-zero, then we may choose g1 ∈GL(U1) and g4 ∈GL(U4) freely and take g2 = λ, g3 = 1,
where λk det g1 det g4 = 1, and k = dim U2. In particular, we may choose a one-parameter group
of this form such that g1→ 0 and g−1

4 → 0. Closure of the orbit implies that b1 = 0 and a4 = 0.
However, b1 is onto and a4 is injective, so U1 = 0 = U4 and V = ker α⊕ im β.

If U2 = 0 and U1, U4 are both non-zero, then we may consider g = diag(g1, . . . , g4) ∈ SL(V )
with g3 = 1. Now if g1→ 0, we have g−1

4 → 0 too and closure of the orbit implies b1 = 0 = a4,
contradicting the assumption that U1, U4 are non-zero.

So we see that U2 = 0 implies either U1 = U2 = 0, giving α injective, or U2 = U4 = 0, giving β
surjective.

We note that the proof of Lemma 4.2 shows that the case when α is injective gives a stable
configuration. For the case when β is surjective, note that stability of (4.4) is equivalent to
stability of the dual diagram

V ∗
β∗−−−→←−−−
α∗

W ∗

and that β surjective is equivalent to β∗ injective.
Finally, for stability of the mixed case when V = ker α⊕ im β, we may assume ker α is non-

trivial and β is not surjective. Consider the endomorphism X = αβ of W . This is invariant under
the action of SL(V ) and we have rankX = rank α= rank β.

Suppose gt ∈ SL(V ) is a one-parameter group and that gt(α, β)→ (α′, β′). We have
rank α′ 6 rank α and rank β′ 6 rank β. However, α′β′ =X, so rankX 6min{rank α′, rank β′}
giving rank α′ = rank α and rank β′ = rank β. Also observe that ker β′ = ker β = kerX, by our
direct sum decomposition. It now follows that β′ = gβ for some g ∈GL(V ). Since β is not
surjective, we may in fact choose g ∈ SL(V ). Now X = αβ = α′β′ = α′gβ implies α= α′g on
im β. However, α and α′ have the same rank as β, and α is injective on im β, so ker(α′g) is a
complementary subspace to im β. Choosing h ∈ SL(V ) extending the identity on im β and with
h ker α= ker(α′g), we get that α′ = α(gh)−1, β′ = ghβ and so (α′, β′) lies in the SL(V )-orbit
of (α, β). 2

Theorem 4.5. The symplectic quiver representation α ∈R(n) (4.1) is SL-polystable only if at
each stage i= 1, . . . , r − 1 we have either:

(i) αi is injective; or

(ii) Vi = im αi−1 ⊕ ker αi; or

(iii) αi−1 is surjective.

Note that if n is strictly ordered, then the final possibility cannot occur.

Proof. The necessity follows from Lemma 4.3 applied to V = Vi, W = Vi+1 ⊕ Vi−1 and the maps
α= (αi, 0), α(x) := (αi(x), 0) and β = (0, αi−1), β(x, y) := αi−1(y). 2

We shall now consider full flag quivers, that is, those where Vi = Ci for i= 1, . . . , n. To
describe the GIT quotient by SL =

∏n−1
i=2 SL(i, C) we need to analyse the quotient by SL of the

set of such quivers satisfying the conditions given by Theorem 4.5; in the course of the analysis
we shall see that the condition of Theorem 4.5 is sufficient as well as necessary for polystability.

First, observe that we may decompose each vector space Ci as

Ci = ker αi ⊕ Cmi , (4.6)

where Cmi = Ci if αi is injective and we take Cmi = im αi−1 otherwise. We put mn = n. Note
that rank αi =mi for 16 i6 n− 1. Further, observe that this actually gives a decomposition of
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our quiver into two subquivers, namely

Cm1 ᾱ1−−−−→ Cm2 ᾱ2−−−−→ · · · ᾱn−2−−−−→ Cmn−1
ᾱn−1−−−−→ Cn, (4.7)

where ᾱi denotes the restriction of αi to Cmi , and the quiver with trivial maps

ker α1
0−−→ ker α2

0−−→ · · · 0−−→ ker αn−1
0−−→ 0.

Note that we may use the SL action to standardise the decomposition (4.6), and we have
a residual action of

∏n−1
i=1 S(GL(mi, C)×GL(i−mi, C)) preserving the decomposition. The

GL(i−mi, C) action on the quiver with zero maps is trivial.
If αi is not injective, then, since Ci = ker αi ⊕ im αi−1 we see that rank αi = rank αi−1. We

deduce that

mi = i, if αi is injective, (4.8)
mi =mi−1, if αi is not injective. (4.9)

Now all the information is contained in the quiver (4.7) with SL(mi, C) acting for mi = i and
GL(mi, C) acting for mi < i. All the restricted maps ᾱi are injective, so mi−1 6mi for each i.
When mi =mi−1, this gives mi 6 i− 1< i, so we have a GL(mi, C) action on Cmi . We may use
up this action by standardising ᾱi to be the identity. We may therefore remove this edge of the
quiver, a process we call contraction.

After performing all such contractions, we arrive at a length r quiver where m1 <m2 <
· · ·<mr−1 <mr = n and all maps ᾱi are injective. The residual action is

∏r−1
i=1 SL(mi, C).

For each j, we have ᾱr−1ᾱr−2 . . . ᾱjg
−1
j = (ᾱr−1g

−1
r−1)

∏j
i=r−2 gi+1ᾱig

−1
i , so if this quiver tends

to a limit under the action of a one-parameter subgroup (gi(t))r−1
i=1 , then the injective map

ᾱr−1ᾱr−2 . . . ᾱjg
−1
j (t) must tend to a limit also. Now the argument of the last section of

Lemma 4.2 shows that gj(t) is trivial. So there are no destabilising one-parameter subgroups
and we have that the quiver is polystable.

Alternatively, we may use the action of SL(n, C)×
∏r−1
i=1 SL(mi, C) to put the maps ᾱi into

a form where the only non-zero entries are the (j, j) terms for j = 1, . . . , mi. Moreover the (j, j)
terms may be chosen to be arbitrary non-zero scalars. It is now straightforward to check that these
scalars may be chosen so that the real moment map for the action of

∏r−1
i=1 SU(mi) vanishes, i.e.

so that the trace-free part of αi−1α
∗
i−1 − α∗iαi is zero for i= 1, . . . , r − 1, where (and henceforth)

α∗ denotes αT . Thus there exists some h ∈ SL(n, C) such that the
∏r−1
i=1 SL(mi, C) orbit through

the image of the quiver under the action of h is closed, and it follows that the orbit through the
original quiver is closed too. So the condition of Theorem 4.5 is sufficient for polystability.

Our discussion now shows that we have a stratification of the GIT quotient by
∏n−1
i=2 SL(i, C)

of the space of full flag quivers. There are 2n−1 strata, corresponding to the strictly increasing
sequences of positive integers ending with n, or equivalently to the ordered partitions of n. We
may also, of course, view the strata as being indexed by the standard parabolic subgroups of
SL(n, C).

We next analyse these strata.

Lemma 4.10. If 0< n1 < n2 < · · ·< nr = n then the space of quivers

0−−−−→ V1
ᾱ1−−−−→ V2

ᾱ2−−−−→ · · · ᾱr−2−−−−→ Vr−1
ᾱr−1−−−−→ Vr = Cn

with dim Vj = nj and all ᾱi injective, modulo the action of SL =
∏r−1
i=1 SL(Vi), is

SL(n, C)/[P, P ],

where P is the parabolic associated to the flag (V1, . . . , Vr).
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This statement also holds for quivers

0←−−−− V1
β1←−−−− V2

β2←−−−− · · · βr−2←−−−− Vr−1
βr−1←−−−− Vr = Cn,

where the maps βi : Vi+1→ Vi are surjective.

Proof. We prove this for the case of βi surjective, and the case of αi injective follows by dualising.
We may choose bases for the Vi so that

βi = (0ni×ki | Ini×ni),

where ni = dim Vi and ki = ni+1 − ni is the dimension of the kernel of βi. Explicitly, once we
have chosen such a basis e1, . . . , eni for Vi, we can choose a basis e′j , 16 j 6 ni+1, for Vi+1 so
that the first ni+1 − ni elements are a basis for ker βi and for the remaining ni elements we
have βi : e′j 7→ ej . We may view this as using the action of SL× SL(n, C) =

∏r
i=1 SL(ni, C) to

standardise the βi.
How much freedom do we have in choosing such bases? Since βi transforms by βi 7→ giβig

−1
i+1,

if βi is in the above standard form, then βi = giβig
−1
i+1 if and only if

gi+1 =
(
∗ ∗
0 gi

)
,

where the top left block is ki × ki and the bottom right is ni × ni. Moreover g1 is an arbitrary
element of SL(n1, C). We see inductively that the freedom in SL(n, C) is the commutator of the
parabolic group P associated to the flag of dimensions (n1, n2, . . . , nr = n) in Cn. 2

We conclude that the GIT quotient of the space of full flag quivers by SL gives us a description
of the symplectic implosion for SL(n, C).

Theorem 4.11. The GIT quotient of the space of full flag quivers by SL =
∏n−1
i=2 SL(i, C) is the

symplectic implosion for SU(n). The stratification by quiver diagrams as above corresponds to
the stratification of the implosion as the disjoint union over the standard parabolic subgroups P
of SL(n, C) of the varieties SL(n, C)/[P, P ].

Proof. We have already identified the strata of the GIT quotient of the space of full flag
quivers with the strata of the implosion. Now observe that the complement of the open stratum
SL(n, C)/N (where N is the maximal unipotent, i.e. the commutator of the Borel subgroup) is of
complex codimension strictly greater than one. The universal symplectic implosion and the GIT
quotient of the space of full flag quivers therefore have the same coordinate ring O(SL(n, C))N ,
and as they are both affine varieties they are now isomorphic. 2

We recall the embedding [GJS02] of the symplectic implosion

KC//N ⊂ E,

where E is the direct sum of K-modules E =⊕V$, and V$ is the K-module with highest weight
$. We take the sum over a minimal generating set for the monoid of dominant weights. In our
case K = SU(n) so these are just the exterior powers of the standard representation Cn. We
denote a highest weight vector of V$ by v$.

Now we can define a map from the space of quivers to the space E =
⊕n−1

j=1 ∧jCn by sending
α to the element of E with jth component

∧j (αn−1 · · · αj+1αj) volj ∈ ∧jCn, (4.12)

where volj denotes the standard generator of ∧jCj .

1603

https://doi.org/10.1112/S0010437X13007203 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007203


A. Dancer, F. Kirwan and A. Swann

Note that under the action of SL =
∏r−1
i=1 SL(i, C), the composition αn−1 · · · αj+1αj gets

postmultiplied by g−1
j ; but gj ∈ SL(j, C), so the jth exterior power is invariant. Hence our map

descends to the GIT quotient by SL, and thus gives an explicit isomorphism of the GIT quotient
to its image KC//N in E.

As Cj = ker αj ⊕ Cmj , and the restriction of αj to Cmj is injective, we see that the map
∧j(αn−1 · · · αj+1αj) is zero if and only if mj < j; i.e. αj is not injective. Now, from (4.8) to
(4.9), we see that knowing for which indices this occurs determines the full sequence of mj ,
and hence which stratum we are in. So the 2n−1 strata correspond to the possibilities for which
components of (4.12) are zero.

Recall also that the symplectic implosion may be realised as the closure KCv, where v =
∑
v$

is the sum of the highest weight vectors. Using the Iwasawa decomposition KC =KAN and
recalling that N fixes v, we see that KCv =K(TCv), the sweep under the compact group K of
a toric variety TCv. In terms of the quiver model, recall from above we may use the action
of SL(n, C)×

∏r−1
i=1 SL(mi, C) to put the maps ᾱi into a form where the only non-zero entries

are the (j, j) terms for j = 1, . . . , mi, and that these terms may be set to be arbitrary non-zero
scalars. Taking all these scalars to be 1, we arrive at the stratification in Lemma 4.10. If instead
we take all the scalars for ᾱi to be equal to a non-zero scalar σi, then the freedom in putting
ᾱi into this form is the parabolic P rather than its commutator. This gives a description of
the strata as (C∗)r−1-bundles over the compact flag variety SL(n, C)/P . This is, of course, just
reflecting the fact that P = [P, P ].T r−1

C . Fixing basepoints in the flag varieties and taking all the
strata together gives the toric variety TCv.

5. Hyperkähler quiver diagrams

We now turn our attention to hyperkähler quiver diagrams. For K = SU(n) actions this gives us a
finite-dimensional approach to constructing the universal hyperkähler implosion. This uses work
on quiver varieties due to Nakajima [Nak94] and Kobak and Swann [KS96] (see also Bielawski
[Bie98a, Bie98b]). We want to produce a hyperkähler stratified space with a torus action whose
hyperkähler reductions by this action give Kostant varieties.

Choose integers 06 n1 6 n2 6 · · ·6 nr = n and consider the flat hyperkähler space

M =M(n) =
r−1⊕
i=1

Hnini+1 =
r−1⊕
i=1

Hom(Cni , Cni+1)⊕Hom(Cni+1 , Cni) (5.1)

with the hyperkähler action of U(n1)× · · · ×U(nr)

αi 7→ gi+1αig
−1
i , βi 7→ giβig

−1
i+1 (i= 1, . . . , r − 1),

with gi ∈U(ni) for i= 1, . . . , r. Here αi and βi denote elements of Hom(Cni , Cni+1) and
Hom(Cni+1 , Cni) respectively, and right quaternion multiplication is given by

(αi, βi)j = (−β∗i , α∗i ). (5.2)

We may write (α, β) ∈M(n) as a quiver diagram:

0
α0−−−−→←−−−−
β0

Cn1
α1−−−−→←−−−−
β1

Cn2
α2−−−−→←−−−−
β2

· · ·
αr−2−−−−→←−−−−
βr−2

Cnr−1

αr−1−−−−→←−−−−
βr−1

Cnr = Cn,

where α0 = β0 = 0. For brevity, we will often call such a diagram a quiver. If each βi is zero we
recover a symplectic quiver diagram.
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Let H̃ be the subgroup, isomorphic to
∏r−1
i=1 U(ni), given by setting gr = 1 and let

µ̃ : M → Lie(H̃)⊗ R3 =
(r−1⊕
i=1

u(ni)
)
⊗ (R + C)

µ̃(α, β) = ((αiα∗i − β∗i βi + βi+1β
∗
i+1 − α∗i+1αi+1)i, αiβi − βi+1αi+1)r−1

i=1

be the hyperkähler moment map. Hyperkähler quotients µ̃−1(c)/H̃ of M by H̃ (with
c ∈ Lie(Z(H̃))⊗ R3 where Z(H̃)∼= T r−1 is the centre of H̃) will admit a residual hyperkähler
action of U(nr) = U(n), although in fact only SU(n) acts (almost) effectively as the diagonal
central U(1) acts trivially. Also the general theory [DS97] (inspired by the symplectic results
of [SL91]) tell us that the quotients will be unions of locally open hyperkähler manifolds.

It is proved in [KS96] (see also [KP81]) that when we have a full flag (that is, when r = n
and nj = j for each j, so that the centre of H̃ can be identified with the maximal torus T of
K = SU(n)) then the hyperkähler quotient µ̃−1(0)/H̃ of M by H̃ can be identified with the
nilpotent cone in kC. Of course the nilpotent cone in kC is the closure of a generic nilpotent
coadjoint orbit. On the other hand it is proved in [Nak94] that cotangent bundles of generalised
flag varieties (which are diffeomorphic to semisimple orbits of sl(n, C)) may be obtained as
hyperkähler quotients µ̃−1(c)/H̃ of M by H̃ for generic non-zero c.

Now we may instead reduce in stages by first reducing with respect to the group
H =

∏r−1
i=1 SU(ni) to obtain a hyperkähler space Q=M///H, which has a residual action of the

torus T r−1 as well as an action of SU(nr) = SU(n), with the hyperkähler quotients of Q by
T r−1 coinciding with the hyperkähler quotients of M by H̃. This makes the following definition
reasonable.

Definition 5.3. The universal hyperkähler implosion for SU(n) will be the hyperkähler quotient
Q=M///H, where M , H are as above with nj = j, for j = 1, . . . , n (i.e. the case of a full flag
quiver).

Note that as Q is a hyperkähler reduction by H at level 0, it inherits an SU(2) action that
rotates the two-sphere of complex structures: this action is induced from multiplication by unit
quaternions on M = H

∑r−1
i=1 nini+1 on the other side from that on which H acts and includes the

transformation (5.2). We denote these group actions on M , Q, etc., by

SU(2)rotate. (5.4)

Let us take a more detailed look at the structure of Q, in the general case where the flag is
not necessarily full.

The components of the complex moment map µC for the H action on M are the trace-free
parts of αiβi − βi+1αi+1 for 06 i6 r − 2, because we are performing a reduction by special
unitary rather than unitary groups. Hence, the complex moment map equation µC = 0 can be
expressed as the requirement that

αi−1βi−1 − βiαi = λC
i I (i= 1, . . . , r − 1), (5.5)

for some complex scalars λC
1 , . . . , λ

C
r−1. Similarly the real moment map equation µR = 0 can be

expressed as

αi−1α
∗
i−1 − β∗i−1βi−1 + βiβ

∗
i − α∗iαi = λR

i I (i= 1, . . . , r − 1), (5.6)

where λR
i are real scalars.

The hyperkähler quotient Q=M///H = (µ−1
R (0) ∩ µ−1

C (0))/H is the symplectic quotient of
the affine variety µ−1

C (0)⊂M by the compact group H. The work of Kempf and Ness [KN79]
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(cf. [Kir85, Tho06]) shows that Q can be canonically identified with the GIT quotient µ−1
C (0)//HC

of µ−1
C (0) by the complexification

HC =
r−1∏
i=1

SL(ni, C)

of H. This identification proceeds via the H-invariant composition

µ−1
R (0) ∩ µ−1

C (0)→ µ−1
C (0)→ µ−1

C (0)//HC

of the inclusion of µ−1
R (0) ∩ µ−1

C (0) in µ−1
C (0) with the natural map µ−1

C (0)→ µ−1
C (0)//HC. The

action of HC is given by

αi 7→ gi+1αig
−1
i , βi 7→ giβig

−1
i+1 (i= 1, . . . r − 2),

αr−1 7→ αr−1g
−1
r−1, βr−1 7→ gr−1βr−1,

where gi ∈ SL(ni, C). Alternatively, one may first perform the hyperkähler quotient by taking
the Kähler or GIT quotient µ−1

R (0)/H =M//HC, and considering the level set cut out by the
image of µ−1

C (0).
In this GIT picture, we have a residual action of SL(n, C) = SL(nr, C) on the quotient Q

given by

αr−1 7→ grαr−1, βr−1 7→ βr−1g
−1
r .

Explicitly, we see that the action of the gi (for 16 i6 r − 1) just conjugates the left-hand side
of (5.5), so preserves the equations. This action commutes with the residual action of H̃C/HC
which we can identify with (C∗)r−1 (and with the maximal torus TC of KC in the case of a full
flag, via the basis of t given by the simple roots). Again, we note that if all βi are zero then the
complex moment map equations hold trivially and we recover the symplectic quiver situation of
§ 4.

For each quiver diagram (α, β) ∈M(n), we define

X = αr−1βr−1 ∈Hom(Cn, Cn).

This element is invariant under the action of H̃C and transforms by conjugation under the residual
GL(n, C) = GL(nr, C) action. In fact, it is the complex-symplectic moment map for the action
of GL(n, C) on M(n). We get an (C∗)r−1-invariant and SL(n, C)-equivariant map Q→ sl(n, C)
induced by

(α, β) 7→ (X)0 =X − 1
n

tr(X)In (5.7)

where In is the n× n-identity matrix, which is the complex-symplectic moment map for the
action of SL(n, C) on M(n).

We start by obtaining information on the eigenvalues of X and other endomorphisms derived
from final segments of the quiver. Define

Xk = αr−1αr−2 . . . αr−kβr−k . . . βr−2βr−1 (16 k 6 r − 1) (5.8)

so that X =X1.

Lemma 5.9. For (α, β) ∈ µ−1
C (0), satisfying (5.5), we have

XkX =Xk+1 − (λC
r−1 + · · ·+ λC

r−k)Xk. (5.10)
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Proof. This is a straightforward consequence of (5.5). We have

XkX = αr−1 · · · αr−kβr−k . . . βr−2βr−1αr−1βr−1

= αr−1 . . . αr−kβr−k · · · βr−2(αr−2βr−2 − λC
r−1)βr−1

= αr−1 · · · αr−kβr−k · · · βr−2αr−2βr−2βr−1 − λC
r−1Xk.

We repeat this process, using the equations successively to shuffle the α term from X forward
until it meets the other α terms. Each such shuffle means we pick up a −λC

jXk term. After k
such operations, we have the desired result. 2

Putting νi =
∑r−1

j=i λ
C
j , so that Xk(X + νr−k) =Xk+1, we find inductively

X(X + νr−1) · · · (X + ν1) = 0. (5.11)

We thus have an annihilating polynomial for X in terms of the λC
i ; in particular, if all λC

i are
zero, then X is nilpotent (cf. [KS96]).

To gain more information, we decompose Cn as the direct sum
⊕`

j=1 ker(X − τjI)mj , where

(x− τ1)m1 . . . (x− τ`)m` ,

is the characteristic polynomial of X and the τj are distinct. More generally, for each i, we
decompose

Cni =
`i⊕
j=1

ker(αi−1βi−1 − τi,jI)mij (5.12)

where the τi,j for 16 j 6 `i are the eigenvalues of αi−1βi−1, with associated generalised
eigenspaces given by the summands on the right-hand side of (5.12).

Since (α, β) ∈ µ−1
C (0), equation (5.5) shows that βi(αiβi − τI) = (βiαi − τI)βi = (αi−1βi−1 −

(λC
i + τ)I)βi, for any scalar τ . Thus

βi(αiβi − τI)m = (αi−1βi−1 − (λC
i + τ)I)mβi,

for each m, and βi restricts to a map

βi : ker(αiβi − τI)m→ ker(αi−1βi−1 − (λC
i + τ)I)m. (5.13)

A similar calculation shows that αi restricts to a map

αi : ker(αi−1βi−1 − (λC
i + τ)I)m→ ker(αiβi − τI)m. (5.14)

We obtain an endomorphism αiβi of ker(αiβi − τI)m, which is an isomorphism unless τ = 0.
Similarly the composition βiαi is an isomorphism of ker(αi−1βi−1 − (λC

i + τ)I)m = ker(βiαi −
τI)m onto itself unless τ = 0. Therefore the maps (5.13) and (5.14) are bijective unless τ = 0.

We deduce that τ 6= 0 is an eigenvalue of αiβi if and only if τ + λC
i 6= λC

i is an eigenvalue
of αi−1βi−1. Moreover αi and βi define isomorphisms between the associated generalised
eigenspaces. In addition, if the dimension vector (n1, . . . , nr) is strictly ordered, 0< n1 < n2 <
· · ·< nr = n, then αiβi ∈ End(Vi+1) has zero as an eigenvalue, and αi, βi restrict to maps between
the associated generalised 0-eigenspace and the generalised eigenspace for αi−1βi−1 associated
to λC

i (this latter space may, of course, be zero).
This gives us the following lemma.

Lemma 5.15. Suppose the dimension vector n is strictly ordered. Then for (α, β)⊂M(n)
satisfying (5.5), the trace-free endomorphism (X)0 = (αr−1βr−1)0, defined at (5.7), has
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eigenvalues κ1, . . . , κr, where

κj =
1
n

(
n1λ

C
1 + n2λ

C
2 + · · ·+ nj−1λ

C
j−1

− (n− nj)λC
j − (n− nj+1)λC

j+1 − · · · − (n− nr−1)λC
r−1

)
.

The eigenvalue κj occurs with algebraic multiplicity at least nj − nj−1. If κ1, . . . , κr are all
distinct, the multiplicity of κj is exactly nj − nj−1.

Moreover, if i6 j then

κj+1 − κi = λC
i + λC

i+1 + · · ·+ λC
j .

It follows from the argument above that we can use generalised eigenspaces to decompose
our quiver as a direct sum of quivers with maps αi,j , βi,j ,

V j
i

αi,j−−−→←−−−
βi,j

V j
i+1,

satisfying αi,jβi,j − βi+1,jαi+1,j = λC
i+1 and such that αi,jβi,j has only one eigenvalue τi+1,j .

Suppose for some j we have that αk,j and βk,j are isomorphisms for i < k < s but not for
k = i or k = s. Then τi+1,j = 0, τs+1,j = 0 and Lemma 5.15 implies that

∑s
k=i+1 λ

C
k = 0.

On the other hand, if τi+1,j is non-zero, then αi,j and βi,j are isomorphisms.

Remark 5.16. Whenever αi,j is an isomorphism and i < r − 1, then (5.5) implies that βi,j =
(αi,j)−1(λC

i+1 + βi+1,jαi+1,j). We may now perform a contraction of the subquiver analogous to
that in the symplectic case, by replacing

V j
i−1

αi−1,j−−−−−→←−−−−−
βi−1,j

V j
i

αi,j−−−−−→←−−−−−
βi,j

V j
i+1

αi+1,j−−−−−→←−−−−−
βi+1,j

V j
i+2

with

V j
i−1

αi−1,j−−−−−−−−→←−−−−−−−−
βi−1,j

V j
i

αi+1,jαi,j−−−−−−−−→←−−−−−−−−
(αi,j)−1βi+1,j

V j
i+2.

The complex moment map equations for the contracted quiver are now satisfied with

αi−1,jβi−1,j − (αi,j)−1βi+1,jαi+1,jαi,j = λC
i + λC

i+1.

Conversely, given αi,j and λC
i+1 we may recover βi,j from the contracted quiver and reverse the

process.
Observe that in the situation described above where αk,j and βk,j are isomorphisms for

i < k < s but not for k = i or k = s, then iterating the above procedure and using the relation∑s
k=i+1 λ

C
k = 0 implies (suppressing the j index) that αiβiβi+1 . . . βs−1 = βi+1 . . . βsαs.

Note that given an identification of V j
i+1 with V j

i , we may apply the action of SL(Vi,j) to set
αi,j to be a non-zero scalar multiple aI of the identity. If we have a GL(Vi,j) action available we
may set a= 1.

Example 5.17. Suppose a quiver

0� Cm� Cm� · · ·� Cm� 0,

where there are p copies of Cm, satisfies the complex moment map equations for
∏p
k=1 SL(m, C),

with
∑p

k=1 λ
C
k = 0 but

∑p
k=i λ

C
k 6= 0 for i > 1, and contracts to the zero quiver

0� Cm� 0.
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Then it lies in the
∏p
k=1 SL(m, C)-orbit of a quiver of the form

0 −−−−→←−−−− Cm
a1−−−−→←−−−−
b1

Cm −−−−→←−−−− · · · −−−−→←−−−− Cm
ap−1−−−−→←−−−−
bp−1

Cm −−−−→←−−−− 0

where the maps Cm� Cm are multiplication by scalars aj and bj satisfying ajbj =
∑p

k=j+1 λ
C
k .

Remark 5.18. Suppose αr−1,j is an isomorphism. Then we may use the complex moment map
equation to write βr−1,j = (αr−2,jβr−2,j − λC

r−1)α−1
r−1,j . We may contract the right-hand end of

the subquiver to get

· · · −−−−−−−−−−−−→←−−−−−−−−−−−− Vr−3,j

αr−3,j−−−−−−−−−−−−→←−−−−−−−−−−−−
βr−3,j

Vr−2,j

αr−1,jαr−2,j−−−−−−−−−−−−→←−−−−−−−−−−−−
βr−2,j(αr−1,j)−1

Vr,j

satisfying the complex moment map equations at (λC
1 , . . . , λ

C
r−2).

If we are primarily interested in quivers with strictly ordered dimension vector so that
Lemma 5.15 applies, then Remarks 5.16 and 5.18 imply that for many purposes it is enough to
consider the case when τi+1,j = 0 for all i; that is, when X = αr−1βr−1 is nilpotent and all λC

i

are zero, so that the quiver satisfies the complex moment map equations µ̃C = 0, then

αiβi = βi+1αi+1, (5.19)

for H̃C =
∏r−1
i=1 GL(ni, C). In this situation we have the following result from [KS96].

Proposition 5.20. For any dimension vector n, the orbit under the action of H̃C =∏r−1
i=1 GL(ni, C) of a quiver

0 = V0

α0−−−−→←−−−−
β0

V1

α1−−−−→←−−−−
β1

V2

α2−−−−→←−−−−
β2

· · ·
αr−2−−−−→←−−−−
βr−2

Vr−1

αr−1−−−−→←−−−−
βr−1

Vr = Cn,

with dim Vj = nj , which satisfies the complex moment map equations (5.19) for H̃C, is closed if
and only if it is the direct sum of a quiver

0 = V
(∗)

0

α
(∗)
0−−−−→←−−−−
β

(∗)
0

V
(∗)

1

α
(∗)
1−−−−→←−−−−
β

(∗)
1

V
(∗)

2

α
(∗)
2−−−−→←−−−−
β

(∗)
2

· · ·
α

(∗)
r−2−−−−→←−−−−
β

(∗)
r−2

V
(∗)
r−1

α
(∗)
r−1−−−−→←−−−−
β

(∗)
r−1

V (∗)
r = Cn,

where α
(∗)
j is injective and β

(∗)
j is surjective for 16 j < r (so for some k, V

(∗)
j = 0 for 06 j 6 k)

and a quiver

0 = V
(0)

0 � V
(0)

1 � V
(0)

2 � · · ·� V
(0)
r−1� V (0)

r = 0
in which all maps are 0.

Proof. The arguments of [KS96, Theorem 2.1] show that for (α, β) ∈ µ̃−1
C (0) the closed

H̃C-orbit condition corresponds to having direct sums Vi = ker αi ⊕ im βi. The complex moment
map equations (5.19) imply that this is a direct sum decomposition into subquivers, so the maps
are zero on the subquiver with V (0)

i = ker αi, and have the desired injectivity/surjectivity on the
subquiver with V

(∗)
i = im βi. 2

Remark 5.21. Let us now decompose a strictly ordered quiver representation into a sum of
subquivers determined by the generalised eigenspaces of the compositions αiβi. These subquivers
may be contracted as in Remarks 5.16 and 5.18 to shorter quivers with each λC

i = 0. The
contracted subquivers thus satisfy the complex moment map equations (5.19) for the groups∏
i GL(Vi,j) which correspond in their situations to H̃C. They lie in closed orbits for these

groups which play the role of H̃C provided that each subquiver lies in a closed orbit for the
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action of
∏
i GL(Vi,j). If this is the case, we may now apply Proposition 5.20 to the contracted

subquivers and deduce, with the help of Example 5.17, that the original quiver is the direct sum
of a quiver in which every αi is injective and every βi is surjective and quivers of the form

0 −−−−→←−−−− Cm
a1−−−−→←−−−−
b1

Cm
a1−−−−→←−−−−
b2

· · ·
ap−2−−−−→←−−−−
bp−2

Cm
ap−1−−−−→←−−−−
bp−1

Cm −−−−→←−−−− 0, (5.22)

where the maps are multiplication by non-zero scalars aj and bj satisfying

ajbj =
p∑

k=j+1

λC
k . (5.23)

Unfortunately, if the original quiver lies in a closed HC-orbit but not a closed H̃C-orbit, we cannot
deduce directly that the subquivers lie in closed orbits for the action of

∏
i GL(Vi,j). However, we

will see that we can get around this difficulty by making suitable choices of complex structures.

Remark 5.24. Note that for a quiver of the form (5.22) we may use the GL(m, C)p action to set
the ai = 1, so the bi are now determined by the equations. Such a quiver will be left invariant
by any g ∈GL(m, C)p with g1 = · · ·= gp ∈GL(m, C), and hence for each such summand we will
pick up a residual circle action on the injective/surjective quiver.

We introduce some notation that will also be useful later for describing an augmentation
process for quivers.

Definition 5.25. Let S be a relation on {1, . . . , r − 1}. This is the same as a subset of
{1, . . . , r − 1} × {1, . . . , r − 1}.

Such an S is a subrelation of another relation S′ if (i, j) ∈ S implies (i, j) ∈ S′ for all
i, j ∈ {1, . . . , r − 1}.

Note that any S defines a subrelation 6S of 6 by

6S = {(i, j) ∈ S : i6 j}.

This is the maximal subrelation of 6 contained in S.

Definition 5.26. To any relation S on {1, . . . , r − 1} we associate the subtorus TS of T̃ =
T r−1 = Rr−1/Zr−1 whose Lie algebra is tS = Span{eij =

∑j
k=i ek : i6S j}. We have an exact

sequence

1−→H −→ H̃
ϕ−−→ T̃ −→ 1,

where the ith component of ϕ is the determinant map U(ni)→ S1. We define HS to be the
pre-image

HS =HS(n) = ϕ−1(TS).

In particular, H∅ =H and H6 = H̃.

Given any λ= (λ1, . . . , λr−1) ∈ (R3)r−1, we define a relation 6λ on {1, . . . , r − 1} by

i6λ j ⇐⇒
(
i6 j and

j∑
k=i

λk = 0 in R3

)
.

Proposition 5.27. Suppose (α, β) ∈M(n) satisfies the hyperkähler moment map equations
(5.5)–(5.6) for H. Assume that n is strictly ordered. Then the group SU(2)rotate of (5.4) contains
an element that moves (α, β) to a quiver that is a direct sum of subquivers: one, (α̃, β̃), with
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all the α̃ injective and all the β̃ surjective; and the others of the scalar form (5.22), with ai, bi
non-zero satisfying (5.23).

Proof. Let λj = (λR
j , λ

C
j ) ∈ R× C = R3 be the values from the hyperkähler moment map

equations. Then

(λ1, . . . , λr−1) ∈ (R3)r−1 ∼= tr−1 ⊗R3

can be identified with the value of the hyperkähler moment map for the action of the centre
T r−1 = Z(H̃) of H̃.

The group SU(2)rotate acts on λk as an SO(3)-rotation. Applying a generic element we may
therefore ensure that

i6λ j ⇐⇒
(
i6 j and

j∑
k=i

λC
k = 0

)
. (5.28)

This implies that the rotated quiver (α, β) satisfies the full hyperkähler moment map equations
(at level 0) for the subgroup H6λ of H̃. Its orbit under the action of the complexification (H6λ)C is
thus closed. Decomposing with respect to generalised eigenspaces and arguing as in Remark 5.21,
we see that each contracted subquiver is closed under the action of

∏
i GL(Vi,j). By Remark 5.21,

these subquivers have the claimed form. 2

Now we have seen that injective/surjective quivers are relevant, we make the following
observation about stabilisers.

Lemma 5.29. If a quiver (α, β) ∈M(n) has the property that for all i, either αi is injective or
βi is surjective, then the stabiliser for the H̃C action is trivial.

Proof. If g ∈
∏r−1
i=1 GL(ni, C) stabilises the quiver, then we have

gi+1αi = αigi, giβi = βigi+1,

for i= 1, . . . , r − 2, with αr−1 = αr−1gr−1 and gr−1βr−1 = βr−1. Our injectivity/surjectivity
assumption now means we can work inductively down from the top of the quiver to deduce
each gi is the identity element. 2

Lemma 5.30. Let S be any relation on {1, . . . , r − 1}. Suppose that a quiver (α, β) ∈M(n) has
each αi injective and each βi surjective. Then it is stable in the sense of GIT for the action of
the complexification (HS)C of HS .

In the case HS =H, this is true under the weaker assumption that all αi are injective or all
βi surjective.

Proof. Note that, by the argument of Lemma 5.29, the stabiliser in H̃C =
∏r−1
i=1 GL(ni, C) is

trivial. Moreover for 16 k < r the maps

∧nk(αr−1αr−2 . . . αk) : ∧nk Cnk →∧nkCn

and

∧nk(βk . . . βr−2βr−1) : ∧nk Cn→∧nkCnk

are both non-zero, and under the action of (HS)C one of them is multiplied by a character, while
the other is multiplied by its inverse. This means that these maps are non-zero for every quiver
in the closure of the (HS)C-orbit, and hence that every quiver in the closure of the (HS)C-orbit
also has each αi injective and each βi surjective, and hence has trivial stabiliser. So the orbit is
closed of maximal dimension, as required.
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If HS =H, this argument works under the weaker assumption as the exterior power maps
are all invariant under the HC action. 2

Returning to the endomorphism X = αr−1βr−1 associated to a quiver (α, β), we now note
that (5.11) is actually the minimum polynomial of X if we impose appropriate non-degeneracy
conditions on the quiver diagram.

Proposition 5.31. Suppose n ∈ Zr>0 is strictly ordered and (α, β) ∈M(n) satisfies the complex
moment map equations (5.5) for HC. If each αi is injective and each βi surjective, then no
polynomial of degree less than r annihilates X, and hence

x(x+ νr−1) . . . (x+ ν1)

is the minimum polynomial of X.

Proof. It follows from (5.10) that if p(x) is a degree k monic polynomial, then p(X) is a linear
combination of Xk, Xk−1, . . . , X1 =X and I, with the coefficient of Xk being 1. We write
p(X) =Xk + ck−1Xk−1 + · · ·+ c1X + c0I.

We may choose vectors wi in Vr for i= 2, . . . , r such that, for each i, the vector wi is killed
by βi−1βi . . . βr−1 but not by βi . . . βr−1. To see this, let xi be a non-zero element of ker βi−1

and then, using surjectivity of the βj , let wi satisfy βi . . . βr−1wi = xi.
If the αi are injective, then, recalling the definition (5.8) of Xk, we see that Xj kills wi if and

only if j > r − i+ 1.
Now if k 6 r − 1 and

p(X) =Xk + ck−1Xk−1 + · · ·+ c1X + c0 = 0,

then successively applying this equation to wr, wr−1, . . . , w2 yields that each of c0, c1, . . . , ck−1

is zero. Hence Xk is zero, which is impossible since (using injectivity of αi and surjectivity of βi)
we have that the rank of Xk equals nr−k = dim Vr−k. 2

Actually we can get all the coadjoint orbits by considering quivers of this type.

Proposition 5.32. Every element of sl(n, C) may be obtained from a quiver

0
α0−−−−→←−−−−
β0

Cn1
α1−−−−→←−−−−
β1

Cn2
α2−−−−→←−−−−
β2

· · ·
αr−2−−−−→←−−−−
βr−2

Cnr−1
αr−1−−−−→←−−−−
βr−1

Cnr = Cn

with 0< n1 < n2 < · · ·< nr = n, all αi injective, all βi surjective and satisfying the complex
moment map equations (5.5) for HC.

Proof. Observe first of all that every element in sl(n, C) may be realised as the trace-free part
(X)0 of some X in gl(n, C) with a zero eigenvalue: if λ is an eigenvalue of Y ∈ sl(n, C) then
we can take X = Y − λI. It is enough therefore to show that each X ∈ gl(n, C) with a zero
eigenvalue may be obtained from a quiver of the desired form. We prove this by induction on n.

Let X be such an element of gl(n, C); then put m= rankX and choose an isomorphism
φ : imX → Cm. Then, taking β = φ ◦X : Cn→ Cm and α= φ−1 : Cm→ imX ↪→ Cn, we obtain
X = αβ with α injective and β surjective.

Let Y = βα ∈ gl(m, C) and pick an eigenvalue µ of Y . By the inductive hypothesis there is
a quiver diagram in some M(0< n1 < · · ·< nr−1 =m) with all αi injective, all βi surjective,
satisfying the complex moment map equations for

∏r−2
i=1 SL(ni, C) and such that αr−2βr−2 =

Y − µI. This equation gives αr−2βr−2 − βα=−µI, and so, putting αr−1 = α, βr−1 = β, we
obtain a quiver of the required form. 2
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6. Stratification for quiver diagrams

Let n = (0 = n0 6 n1 6 n2 6 · · ·6 nr = n) and consider the space M =M(n), defined at (5.1),
of hyperkähler quiver diagrams

0
α0−−−−→←−−−−
β0

Cn1
α1−−−−→←−−−−
β1

Cn2
α2−−−−→←−−−−
β2

· · ·
αr−2−−−−→←−−−−
βr−2

Cnr−1
αr−1−−−−→←−−−−
βr−1

Cnr = Cn. (6.1)

Given a relation S on {1, . . . , r − 1}, we wish to describe the structure of QS =M///HS , where
HS = ϕ−1(TS) is the subgroup of H̃ =

∏r−1
i=1 U(ni) specified in Definition 5.26.

Definition 6.2. A quiver diagram (α, β) ∈M will be called hyperkähler stable if, after applying
some element of the group SU(2)rotate defined in (5.4), each αi is injective and each βi is surjective.

The hyperkähler stable quivers form an open subset Mhks of M , and, by Lemma 5.29, HS

acts freely on the intersection of Mhks with the solution space of the hyperkähler moment map
equations (since HS is contained in its complexification with respect to any complex structure,
and the definition of hyperkähler stable means that for each quiver in Mhks we may choose
a complex structure to which Lemma 5.29 applies). It follows that the hyperkähler quotient
Mhks///HS is an open subset Qhks

S of QS =M///HS .

Lemma 6.3. The space Qhks
S is a hyperkähler manifold.

Proof. Since Qhks
S is an open subset of a hyperkähler quotient by HS it is enough to check that

it is non-singular. This follows from the freeness of the HS action on Mhks. 2

Remark 6.4. The non-singularity result in Lemma 6.3 also follows from Lemmas 5.29 and 5.30
since (by the work of Kempf and Ness [KN79, Tho06]) for any choice of complex structures we
can identify Qhks

S locally with the GIT quotient by (HS)C of the affine subvariety of the affine
space M defined by the complex moment map equations. Moreover the (HS)C action is free on
the neighbourhood where the identification takes place, and the subvariety is non-singular at
any point whose stabiliser in (HS)C is trivial (or even finite).

Lemma 6.5. Suppose that, after applying some element of the group SU(2)rotate, a quiver has
the form (6.1) with each αi injective. Then it is hyperkähler stable.

Proof. If a quiver (α, β) has all αi injective, then the same is true for a real Zariski open set of
such quivers in its orbit under the action of SU(2)rotate. Now, the SU(2)rotate-action includes the
right-multiplication by j given in (5.2). We conclude that there is an open dense subset of
the SU(2)rotate-orbit where β∗ is injective, which is the same as saying that β is surjective.
Thus the quiver is hyperkähler stable. 2

For the stratification results, we will describe an augmentation process for quiver diagrams.

Note that M(1, 1) = H with a+ jb corresponding to the quiver C
a−−→←−−
b

C, whose maps are

multiplication by a and b, respectively. Given any integer d > 0 and indices 16 i6 j < r, we
have the element eij =

∑j
k=i ek ∈ Zr ⊂ Rr, as in Definition 5.26, and may use the multiple d eij

as a dimension vector. For p= j − i− 1, we define a hyperkähler embedding

φi,j;d : Hp −→M(d eij)

φi,j;d(a+ jb) =
(

0
0−−→←−−
0
· · ·

0−−→←−−
0

0
0−−→←−−
0

Cd
a1−−→←−−
b1

Cd
a2−−→←−−
b2
· · ·

ap−−→←−−
bp

Cd
0−−→←−−
0

0 · · ·
0−−→←−−
0

0
)

with each map in the quiver being multiplication by the indicated scalar (the sets on both sides
are empty if p=−1). This map is an isomorphism for d= 1, and in all cases is equivariant with
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respect to the SU(2)rotate-action. Our construction will involve stacking the above embeddings
on top of a quiver in M(n).

Definition 6.6. A relation S on {1, . . . , r − 1} is said to be injective if S is the graph of an
injective function, also denoted by S, from dom S = {i | ∃j : (i, j) ∈ S} to {1, . . . , r − 1}.

We note that any subrelation of an injective relation is again injective.

Definition 6.7. Let S be an injective subrelation of 6 on {1, . . . , r − 1}. Suppose m, n ∈ Zr>0

are two ordered dimension vectors and there is a function δ : dom S→ Z>0 such that

n = m + d,

for d =
∑

(i,j)∈S δ(i)eij . Put R=<S = {(i, j) ∈ S : i < j} and `=
∑

(i,j)∈R j − i− 1.
The augmentation map is the SU(2)rotate-equivariant hyperkähler embedding

φS,δ : M(m)⊕H`→M(n)

obtained by writing H` =
⊕

(i,j)∈RM(eij) and mapping

((α, β), (a(i) + jb(i))i∈domR) to (α, β)⊕ 0⊕
⊕

φi,S(i);δ(i)(a
(i) + jb(i)),

where 0 ∈M(
∑

(i,i)∈S d(i)ei).

Recall now that the hyperkähler modification [DS06] of a hyperkähler manifold Y with a
tri-Hamiltonian circle action is Ymod = (Y ×H)///S1, where S1 acts diagonally on Y ×H with
respect to the given action on Y and the inverse of the standard action on H. This construction
adjusts to other choices of weight for the circle action on H. More generally if a torus T ` acts on
Y with a hyperkähler moment map then we have a hyperkähler modification

Ŷ = (Y ×H`)///T `.

This is a hyperkähler space of the same dimension as Y that contains a copy of the hyperkähler
quotient Y///T `.

In the situation of Definition 6.7 above, suppose S ⊂ S1, where S1 is also an injective
subrelation of 6. Associated to S1 we have the subgroup HS1 =HS1(m) of H̃(m) =

∏r−1
j=1 U(mj)

from Definition 5.26. Put Q1 =M(m)///HS1 . Then there is an action of H̃(m) on M(m) and an
induced action of T̃ = H̃(m)/H(m) on Q1 since HS1 contains H(m) as a normal subgroup.

Embed T ` = R`/Z` into T̃ via e(i,j);k 7→ ei+k,j for (i, j) ∈ S with j > i and k = 1, . . . , j − i.
We may now use the induced action of T ` on Q1 to construct a hyperkähler modification

Q̂1 = (Q1 ×H`)///T `

and consider the open subset

Q̂hks
1 = (Qhks

1 × (H\{0})`)///T `. (6.8)

Proposition 6.9. Suppose S1 is an injective subrelation of 6 on {1, . . . , r − 1} with S1 =
S
∐
S2, a disjoint union. Let m, n, δ, R=<S and ` be as in Definition 6.7, with the additional

assumption that mr = n= nr, and write φS,δ for the resulting augmentation map.

Put Q1 =M(m)///HS1 and Q2 =M(n)///HS2 , and let Q̂hks
1 be the open subset of the

hyperkähler modification Q̂1 as in (6.8). Then the augmentation map φS,δ induces an
augmentation map

ΦS,δ : Q̂1→Q2
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of hyperkähler quotients which is SU(2)rotate-equivariant and an embedding of the smooth
manifold Q̂hks

1 .

Proof. A point of Q̂1 is represented by q = ((α, β), (a(i) + jb(i))i∈domR) satisfying:

(i) the HS1-hyperkähler moment map equations

αi−1βi−1 − βiαi = λC
i I,

αi−1α
∗
i−1 − β∗i−1βi−1 + βiβ

∗
i − α∗iαi = λR

i I,
(6.10)

for i= 1, . . . , r − 1, and for some (λR, λC) satisfying
∑j

k=i λ
C
k = 0 =

∑j
k=i λ

R
k , for all (i, j)

∈ S1;

(ii) the T `-hyperkähler moment map equations

a
(i)
k−ib

(i)
k−i = λC

k + λC
k+1 + · · ·+ λC

j ,

|a(i)
k−i|

2 − |b(i)k−i|
2 = λR

k + λR
k+1 + · · ·+ λR

j .

for (i, j) ∈R and i < k 6 j.

The quiver (α′, β′) = φS,δ(q) satisfies the analogue of (6.10) with the same (λR, λC). In particular,
since S2 ⊂ S1, (α′, β′) satisfies the HS2-hyperkähler moment map equations. Furthermore
HS1 × T ` acts on (α′, β′) as a subgroup of HS2 . We thus have a well-defined, and SU(2)rotate-
equivariant, map ΦS,δ, as claimed.

For Q̂hks
1 , we can move our quiver via the SU(2)rotate action so each αi is injective, each βi

is surjective and all a(i)
k−i and b

(i)
k−i are non-zero. In this case, we can recover a point in Q̂hks

1

from the HS2-orbit of the quiver (α′, β′) = φS,δ(q) ∈M(n) by restricting maps in (α′, β′) to the
images of compositions of other maps in (α′, β′), since the ambiguity in this process is exactly
the action of HS1 × T `, cf. Remark 5.24. Thus ΦS,δ is injective on Q̂hks

1 . 2

Remark 6.11. We note that Q̂hks
1 determines Qhks

1 as a hyperkähler manifold. Both spaces are
the base of torus fibrations from a common total space contained in M(m)×H`. The projection
to Q̂hks

1 is a Riemannian submersion, whereas that to Qhks
1 is just projection on to the M(m)

components. The pull-backs of the two metrics differ by scalings along the quaternionic directions
of the torus actions. A description of this in terms of the twist construction will appear in future
work by the third author.

Remark 6.12. The image ΦS,δ(Q̂1)⊂Q2 determines the original data m, S and d as follows.
Choose a point in the image represented by a quiver (α′, β′) of largest possible rank. Then

mi = rank β′iβ
′
i+1 . . . β

′
r−1 and the corresponding quiver (α, β) obtained by restriction has αi

injective and βi surjective.
As S is injective, the function δ is determined by its values on the range of S. We determine

S and δ recursively. Suppose we have found S′ ⊂ S and the corresponding values of δ. Put
m′ = m +

∑
(i,j)∈S′ δ(i)eij . The largest element of the range of S\S′ is the largest j for which

m′j < nj , and the corresponding value of δ is nj −m′j . Now j = S(i), where i− 1< j is the largest
index such that rank β′i−1β

′
i . . . β

′
j−1 is strictly less than (nj −m′j) + rank βi−1βi . . . βj−1.

Theorem 6.13. Let n = (n1 < · · ·< nr = n) be strictly ordered and let M(n) be the space of
hyperkähler quiver diagrams (5.1).

Suppose S is an injective subrelation of 6 on {1, . . . , r − 1}. Let δ : dom S→ Z>0

be a function such that m = n− d, d =
∑

(i,j)∈S δ(i)eij , is an ordered dimension vector.
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Put QS =M(m)///HS . Then

Q(S,δ) = ΦS,δ(Q̂hks
S )

is a smooth hyperkähler manifold that is a locally closed subset of Q=M(n)///H.

Furthermore,

Q=
∐
S,δ

Q(S,δ)

is the disjoint union over all such choices of S and δ.

Proof. By Proposition 6.9, Q(S,δ) is a smooth hyperkähler manifold. It is open in its closure,
which is just ΦS,δ(Q̂S). Remark 6.12 implies that Q(S,δ) ∩Q(S′,δ′) = ∅ if (S, δ) 6= (S′, δ′). Finally
it follows, from Proposition 5.27, that every quiver satisfying the hyperkähler moment map
equations for H lies in some Q(S,δ). 2

Remark 6.14. When S is empty, so that δ is empty, we have Q(S,δ) =Qhks.
Let us now consider the full flag case when r = n and ni = i for i6 n, so that Q=M///H is

the universal hyperkähler implosion for SU(n). We specify (S, δ), by listing the elements of S,
ordered by the first component, followed by the corresponding values of δ.

When n= 2 there are two strata, Q(∅,∅) =Qhks and Q({(1,1)},1) which consists of the zero
quiver constructed as the direct sum of 0� 0� C2 and 0� C� 0.

When n= 3 the possible injective subrelations S of 6 on {1, 2} are ∅, the singletons {(1, 1)},
{(2, 2)}, {(1, 2)}, and the subset {(1, 1), (2, 2)}. The strata are as follows:

(i) Q(∅,∅) =Qhks;

(ii) Q({(1,1)},1) with elements given by the direct sum of a hyperkähler stable quiver 0� 0�
C2� C3 and the zero quiver 0� C� 0� 0;

(iii) Q({(2,2)},1) with elements given by the direct sum of a hyperkähler stable quiver 0� C�
C� C3 and the zero quiver 0� 0� C� 0;

(iv) Q({(1,2)},1) with elements given by the direct sum of a hyperkähler stable quiver 0� 0�
C� C3 and a quiver of the form 0� C� C� 0 where the maps C� C are isomorphisms;

(v) Q({(1,1),(2,2)},(1,1)) with elements given by the direct sum of a hyperkähler stable quiver
0� 0� C� C3 and the zero quivers 0� C� 0� 0 and 0� 0� C� 0;

(vi) Q({(1,1),(2,2)},(1,2)) which consists of the zero quiver constructed as the direct sum of
0� 0� 0� C3 and the zero quivers 0� C� 0� 0 and 0� 0� C2� 0.

Corollary 6.15. Qhks is a dense open subset of Q with complement of complex codimension
at least 2.

Proof. We observe using the complex equations that rank(αi−1βi−1 − λC
i I) = rank(βiαi)<

min(rank αi, rank βi), so if αi or βi has rank less than i then λC
i is an eigenvalue of αi−1βi−1.

Now, as the map (α, β) 7→ βα is a surjection from Hom(Cj , Cj+1)⊕Hom(Cj+1, Cj) onto
Hom(Cj , Cj) for all j we may vary the λC

i arbitrarily at each stage (without changing αj , βj for
j < i), and still stay within µ−1

C (0). In particular, the HC-invariant function Φi := det(αi−1βi−1 −
λC
i I) cannot vanish identically on a non-empty open set in µC = 0. The complement of Φ−1

i (0)
is now open and dense in the locus where µC = 0 for each i.

This implies that Qhks is dense in Q; the complement is a union of strata of even complex
dimension, and hence the codimension statement follows. 2
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7. The structure of the strata

We shall now take a closer look at the structure of the strata Q(S,δ) appearing in the stratification
of the quiver space Q=M///H with dimension vector (n1, . . . , nr = n) given by Theorem 6.13.
Recall that Q(S,δ) is an open subset of a hyperkähler modification of a quotient of the form

Mhks///HS = (Mhks///H)///TS =Qhks///TS

for a different dimension vector (m1, . . . , mr) and a subtorus TS of T̃ = T r−1. Thus we shall first
study the open stratum Qhks =Q(∅,∅) =Mhks///H consisting of the hyperkähler stable quivers.

We first look at quivers

0
α0−−−−→←−−−−
β0

Cn1
α1−−−−→←−−−−
β1

Cn2
α2−−−−→←−−−−
β2

· · ·
αr−2−−−−→←−−−−
βr−2

Cnr−1
αr−1−−−−→←−−−−
βr−1

Cnr = Cn

satisfying the complex moment map equations

αi−1βi−1 = βiαi + λC
i Ini

for H where 0 = n0 6 n1 6 · · ·6 nr = n and all the βi are surjective. Lemma 5.30 shows that the
HC-orbits of all such quivers are closed and hence represent points in Qhks by Lemma 6.5.

As in the proof of Lemma 4.10 we may choose bases for the vector spaces Vi = Cni so that

βi = (0ni×ki | Ini×ni)

where ki = ni+1 − ni is the dimension of the kernel of βi. This amounts to using the action
of H̃C × SL(n, C) =

∏r
i=1 GL(ni, C) to standardise the βi, and we can replace GL(ni, C) with

SL(ni, C) for each i such that ni−1 < ni, so that if the dimension vector is strictly ordered then
it amounts to using the action of HC × SL(n, C) =

∏r
i=1 SL(ni, C).

Let us now assume we are in the strictly ordered case. As we saw in Lemma 4.10, when the
dimension vector is strictly ordered the remaining freedom in the group action is the commutator
of the parabolic group P in SL(n, C) associated to the flag of dimensions (n1, n2, . . . , nr = n) in
Cn. In the particular case when ni = i for all i (that is, all ki equal 1), this freedom is exactly
the maximal unipotent group N , that is, the commutator subgroup of the Borel group B.

Now let us investigate what X = αr−1βr−1 tells us when the dimension vector is strictly
ordered once the βi have been standardised as above. With respect to bases chosen as above,
the matrix of αiβi is (

0ki×ki Dki×ni
0ni×ki −λC

i Ini + αi−1βi−1

)
(7.1)

for some D.
Inductively it is now easy to show that αiβi has scalar blocks of size kj × kj (j = i,

i− 1, . . . , 0) down the diagonal, where the scalars (from top left going down) are 0,−λC
i ,

−(λC
i + λC

i−1), . . . ,−(λC
i + · · ·+ λC

1 ).
In particular, X = αr−1βr−1 lies in the annihilator of the Lie algebra of the commutator

[P, P ] of the parabolic determined by the integers kj . Again, in the case ni = i we have that X
lies in the Borel subalgebra b = n◦. Notice also that the diagonal entries of X are 0 (kr−1 times),
−λC

r−1 (kr−2 times), . . . ,−(λC
r−1 + · · ·+ λC

1 ) (k0 = n1 times).
Moreover any such X comes from a solution to our equations, because we have that X kills

ker βr−1, and λC
i + βiαi kills ker βi−1 for i < r − 1.

Observe that for each i, knowledge of αiβi determines αi (since βi is surjective and
standardised), hence determines βiαi (since βi is standardised), and hence, together with
knowledge of λC

i , determines αi−1βi−1 by the equations.
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As we can read off the λC
i by looking at the diagonal entries of X, we see that knowledge of

X determines all the αi and hence the whole diagram.
In addition X is determined by its trace-free part, as its leading entry X11 = 0. So, in

summary, we have shown, in the strictly ordered case, that if the βi are surjective, they may be
standardised (modulo HC) by an element of SL(n, C), unique up to an element of the commutator
of the parabolic subgroup, and now the whole diagram is determined by X (or its trace-free part)
in the annihilator of the Lie algebra of this commutator. Moreover any such X arises from such
a diagram. We summarise our results as follows.

Proposition 7.2. Consider a quiver diagram with strictly ordered dimension vector (n1, . . . ,
nr = n). Then the set of solutions to the complex moment map equations for H with βi surjective,
modulo the action of HC =

∏r−1
i=1 SL(ni, C), may be identified with

SL(n, C)×[P,P ] [p, p]◦

where P is the parabolic subgroup associated to the flag (n1, . . . , nr = n), and [p, p]◦ is the
annihilator of the Lie algebra of the commutator subgroup of P .

In the special (full flag) case where ni = i for all i, we obtain the space

SL(n, C)×N b

where N is a maximal unipotent subgroup of SL(n, C) and b = n◦ is a Borel subalgebra.

Remark 7.3. The space SL(n, C)×N b has also occurred in the work of Bielawski [Bie98a,
Bie98b]. Proposition 7.2 and Lemma 5.30 show that SL(n, C)×N b naturally injects into the
implosion Q.

We also have the following proposition.

Proposition 7.4. Consider a quiver diagram with strictly ordered dimension vector (n1, . . . ,
nr = n). Then the set of solutions to the complex moment map equations for H with αi injective
and βi surjective, modulo the action of HC =

∏r−1
i=1 SL(ni, C), may be identified with

SL(n, C)×[P,P ] [p, p]◦∗
where P is the parabolic subgroup associated to the flag (n1, . . . , nr = n), and [p, p]◦∗ is an open
dense subset of [p, p]◦. Moreover [p, p]◦∗ is contained in the complement of the union over all
parabolic subgroups P ′ strictly containing P of the annihilator [p′, p′]◦ of the Lie algebra of the
commutator subgroup of P ′.

In the full flag case where ni = i for all i, we obtain a space

SL(n, C)×N b∗

where N is a maximal unipotent subgroup of SL(n, C) and b = n◦ is a Borel subalgebra.

Proof. The statement that X has to lie in the complement of [p′, p′]◦ follows by an induction,
using (7.1) and the given form of βi. 2

How does the argument which gave us Propositions 7.2 and 7.4 need to be modified if the
dimension vector (n1, . . . , nr = n) is ordered but not strictly ordered? We may still choose bases
for the vector spaces Vi = Cni so that

βi = (0ni×ki | Ini×ni)

where ki = ni+1 − ni is the dimension of the kernel of βi, but to do this we may need to use
the action of a larger group than HC × SL(n, C) =

∏r
i=1 SL(ni, C). It suffices to use the action
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of H̃C × SL(n, C) = (
∏r−1
i=1 GL(ni, C))× SL(nr, C), and then the remaining freedom is P itself,

embedded in H̃C × SL(n, C) so that the projection of g ∈ P in GL(ni, C) is the bottom right-hand
ni × ni block of g. Let

T̃C = H̃C/HC =
r−1∏
i=1

GL(ni, C)/ SL(ni, C) = (C∗)r−1.

Once we have quotiented by the action of HC we are using the residual action of T̃C × SL(n, C)
to put the maps βi into standard form, and the remaining freedom is the action of P embedded
in T̃C × SL(n, C) via the inclusion in SL(n, C) and the homomorphism

χ= (χ1, . . . , χr−1) : P → T̃C = (C∗)r−1, (7.5)

where χi : P → C∗ is the character given by the determinant of the bottom right-hand block of
size ni × ni. Note that the kernel of χ is the commutator subgroup [P, P ] of P , but that χ is not
surjective if ki = 0 (i.e. if ni+1 = ni) for some i.

The complex moment map equations

αi−1βi−1 = βiαi + λC
i Ini

tell us that

αi =

(
α

(1)
i

α
(2)
i

)
,

where α(1)
i is ki × ni and α

(2)
i is ni × ni and

α
(2)
i+1 =

(
−λC

i+1Iki×ki α
(1)
i

0ni×ki α
(2)
i − λC

i+1Ini×ni

)
.

Inductively it follows that α(2)
i has scalar blocks of size kj × kj (for j = r − 1, . . . , 0) down the

diagonal, where the scalars (from top left going down) are

−λC
i ,−(λC

i + λC
i−1), . . . ,−(λC

i + · · ·+ λC
1 ).

Furthermore the quiver is determined by knowledge of λC
1 , . . . , λ

C
r−1 together with

X = αr−1βr−1 =

(
0kr−1×kr−1 α

(1)
r−1

0nr−1×kr−1 α
(2)
r−1

)
which is block triangular with scalar blocks of size kj × kj (j = r − 1, . . . , 0) down the diagonal,
where the scalars are 0,−λC

r−1,−(λC
r−1 + λC

r−2), . . . ,−(λC
r−1 + · · ·+ λC

1 ). Note that we can only
recover from X those λC

r−1 + · · ·+ λC
i for which ki−1 > 0; however from λC

1 , . . . , λ
C
r−1 (which we

can regard as determining an element of the dual of the Lie algebra of T̃C) and the off-diagonal
blocks of X (that is, the projection of X to p◦) we can recover the quiver with βi in standardised
form.

Remark 7.6. Now let S be an injective subrelation of 6 on {1, . . . , r − 1}. Let TS be the subtorus
of T̃ = T r−1 as in Definition 5.26 and let HS = φ−1(TS) be the corresponding subgroup of H̃
containing H. Then the complex moment map equations for HS are given by the complex
moment map equations

αi−1βi−1 = βiαi + λC
i Ini
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for H together with the equations

λC
i + λC

i+1 + · · ·+ λC
j = 0 for (i, j) ∈ S,

which say that (λC
1 , . . . , λ

C
r−1) ∈ Lie(T̃C)∗ lies in the annihilator of Lie(TS)C. Furthermore the

residual action of (HS)C/HC = (TS)C is given by its embedding as a subgroup of T̃C and thus is
a subgroup of T̃C × SL(n, C).

Putting all this together gives us the following extension of Proposition 7.4. It is a
generalisation, since when the dimension vector is strictly ordered then the homomorphism
χ : P → T̃C defined at (7.5) above is surjective with kernel [P, P ], so that

(T̃C × SL(n, C))/P ∼= SL(n, C)/[P, P ].

Proposition 7.7. Consider a quiver diagram with ordered dimension vector (n1, . . . , nr = n).
Then the set of solutions to the complex moment map equations for H with αi injective and βi
surjective, modulo the action of HC =

∏r−1
i=1 SL(ni, C), may be identified with an open subset of

the cotangent bundle to

(T̃C × SL(n, C))/P,

or equivalently with

(T̃C × SL(n, C))×P (Lie(T̃C)∗ ⊕ p◦)∗

where P is the parabolic subgroup associated to the flag (n1, . . . , nr = n). Here

T̃C = H̃C/HC = (C∗)r−1

with P acting on SL(n, C) by left multiplication and on T̃C via the characters given by the
determinants of the bottom right-hand blocks of size ni × ni, and (Lie(T̃C)∗ ⊕ p◦)∗ is an open
dense subset of Lie(T̃C)∗ ⊕ p◦. Moreover the set of solutions to the complex moment map
equations for HS = φ−1(TS) (defined as in Definition 5.26) with αi injective and βi surjective,
modulo the action of (HS)C, may be identified with an open subset of the cotangent bundle to

T̃C × SL(n, C)/(TS)C × P

where (TS)C = (HS)C/HC is a subgroup of T̃C and (TS)C × P is embedded as a subgroup of
T̃C × SL(n, C) via

(t, g) 7→ (tχ(g), g)

with χ : P → T̃C as defined at (7.5).

Remark 7.8. An alternative argument notes that since the αi are injective and the βi are
surjective then αi and βi are isomorphisms whenever ni = ni+1 and so we can contract the
quiver as in Proposition 5.27 until we obtain a quiver of the same form but with strictly ordered
dimension vector. For each such contraction the information lost is λC

i ∈ C and the difference
between the actions of GL(Vi+1) and SL(Vi+1) is GL(Vi+1)/SL(Vi+1)∼= C∗, so we can use this
point of view to deduce Proposition 7.7 from Proposition 7.4.

Remark 7.9. In fact for certain values of λC we get restrictions on which parabolics can occur
with a non-empty solution set in Proposition 7.7. More precisely, we observe that if λC

i+1 = 0,
then the complex moment map equations imply αi+1 maps ker βi into ker βi+1. If all βj are
surjective and αj are injective, this means that ki 6 ki+1. In particular, if all λC

i are zero, then
the ki form a non-decreasing partition of n. This is to be expected, as such partitions count the
number of unordered partitions, that is, the strata of the nilpotent variety.
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Remark 7.10. Now suppose that we are in the situation of Theorem 6.13. Recall that then
the stratum Q(S,δ) is the image of the hyperkähler embedding into Q=M///H defined in
Proposition 6.9 with S1 = S and S2 = ∅ of the hyperkähler modification Q̂hks

1 of Qhks
1 as in (6.8).

Observe that Q̂hks
1 = M̂(m)hks///HS , where

M̂(m)hks = (M(m)hks × (H\{0})`)///T `. (7.11)

Let h= hM − h` be the hyperkähler moment map used in (7.11); this takes values in R` ⊕ C`.
We have that M̂(m)hks = (hC)−1(0)//T `C. Put M0 = (hC

M )−1((C\{0})`). Now the ith component
of hC

` is just a(i) + jb(i) 7→ a(i)b(i), so for m ∈M0, hC
M (m) = hC

` ((a(i) + jb(i))) implies that each
a(i) and b(i) is non-zero, and hence the T `C orbit through the point is closed. In particular, the
holomorphic map m 7→ (m, hC

M (m)− j1), 1 = (1, . . . , 1) ∈ R`, realises M0 as an open subset of
h−1

C (0)//T `C = M̂(m)hks. This map is equivariant for both HC
S and SL(n, C), and so descends to

a holomorphic map on an open dense set of Q1 to Q̂hks
1 . Exploiting the action of SU(2)rotate, we

can cover Q̂hks
1 by such open sets.

Now note that if mj+1 =mj for some j, then, since nj+1 > nj there exists some i6 j such
that (i, j) ∈ S. This implies that the homomorphism

(TS)C × P → T̃C

given by (t, g) 7→ tχ(g) is surjective, and its kernel is isomorphic to the subgroup

PS = {g ∈ P : χ(g) ∈ (TS)C}

of P containing [P, P ]. Thus

T̃C × SL(n, C)/(TS)C × P
can be identified with SL(n, C)/PS , and its cotangent bundle can be identified with

SL(n, C)×PS p◦S

where p◦ is the annihilator in the dual of the Lie algebra of SL(n, C) of the Lie algebra pS of PS .

Thus we have the following theorem.

Theorem 7.12. In the situation of Theorem 6.13 each stratum Q(S,δ) of Q is a union of open
subsets, one for each element of SU(2)rotate, each of which can be identified with

SL(n, C)×PS (pS)◦∗.

Here (pS)◦∗ is an open subset of the annihilator (pS)◦ in Lie(SL(n, C))∗ of the Lie algebra pS
of a subgroup PS of the standard parabolic subgroup P of SL(n, C) associated to the flag
Cm1 6 · · ·6 Cmr = Cn where

mk = k − dk,
dk being the kth component of d =

∑
(i,j)∈S δ(i)eij . More precisely, PS = {g ∈ P : χ(g) ∈ (TS)C}

where (TS)C = (HS)C/HC is the subgroup of T̃C = H̃C/HC defined as in Definition 5.26 and
χ : P → T̃C is defined at (7.5).

Corollary 7.13. In the case of a full flag, when r = n and nj = j for j = 0, . . . , n, this
description applies to each stratum Q(S,δ) of the stratification described in Theorem 6.13 of
the universal hyperkähler implosion Q=M///H for K = SU(n).

Remark 7.14. The space SL(n, C)×PS p◦S can be regarded as the complex-symplectic quotient of
T ∗KC =KC × kC by PS , where K = SU(n) and [P, P ]6 PS 6 P . We may compare this, as in § 2,
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with symplectic implosion, where the universal implosion (T ∗K)impl =KC//N is stratified by the
ordinary quotients of KC by commutators of parabolics.

Remark 7.15. We have noted that for general compact K, the space KC ×[P,P ] [p, p]◦ may be
viewed as the cotangent bundle of KC/[P, P ]. Now, from [GJS02] the latter quotient is just a
Kähler stratum of the symplectic implosion KC//N (cf. Remark 7.14). A theorem of Feix [Fei01],
now shows that there is a hyperkähler metric on some open neighbourhood of the zero section in
the cotangent bundle KC ×[P,P ] [p, p]◦. Proposition 7.2 gives us a hyperkähler structure on the
full set KC ×[P,P ] [p, p]◦ for K = SU(n).

Remark 7.16. Note that in the full flag case the homomorphism χ : B→ T̃C defined at (7.5) is
surjective with kernel N = [B, B] and thus allows us to identify T̃C naturally with the maximal
torus TC of KC.

We would also like to relate the quiver space Q=M///H in the full flag case to the non-
reductive GIT quotient (SL(n, C)× b)//N , which as discussed in § 2 could be interpreted as
a complex-symplectic quotient in the GIT sense of the cotangent bundle T ∗ SL(n, C) by the
maximal unipotent N .

Lemma 7.17. When r = n and nj = j for j = 0, . . . , n the complement in the variety defined by
the complex moment map equations µC = 0 of the locus of full flag quivers with all αi injective
and βi surjective has complex codimension at least 2.

Proof. As in the proof of Corollary 6.15, we observe that if some αi or βi is of less than maximal
rank, then the HC-invariant function Φi given by det(αi−1βi−1 − λC

i I) is zero; moreover we
may vary the λC

i arbitrarily at each stage (without changing αj , βj for j < i), and still stay
within µ−1

C (0) since the map (α, β) 7→ βα is a surjection from Hom(Cj , Cj+1)⊕Hom(Cj+1, Cj)
onto Hom(Cj , Cj) for all j. In particular, the zero locus of Φi is a variety of codimension one.
Furthermore, if this occurs for two indices i and j, we can see in the same way that both Φi and
Φj vanish, and this is a codimension two condition because Φj does not vanish identically on a
non-empty open set in the zero locus of Φi.

Similarly, if for some i the rank of αi or βi is less than i− 1, we deduce that Φi vanishes to
order at least two, so we are in codimension two or higher.

So we just have to consider the situation where there is only one index i where αi or βi are
of less than full rank, and for this index (rank αi, rank βi) = (i, i− 1), (i− 1, i) or (i− 1, i− 1).

If βi is of maximal rank, we can put it in the standard form of Proposition 7.2, and now
αi is a (i+ 1)× i matrix such that the bottom i× i block is αi−1βi−1 − λC

i Ii×i. The vanishing
of Φi just says that the associated minor determinant is zero. The condition that αi is of rank
i− 1 means also that the other i× i minors must vanish, so we get a subvariety of codimension
at least two in µ−1

C (0). The case (i− 1, i) follows by dualising, and the third case (i− 1, i− 1)
proceeds by a similar calculation choosing a standard form for the rank i− 1 map βi. 2

Theorem 7.18. The algebra of invariants O(SL(n, C)× b)N is finitely generated, and the
hyperkähler quotient Q=M///H of the space M of full flag quivers by H can be identified
with the non-reductive GIT quotient

(SL(n, C)× b)//N.

Proof. The set µ−1
C (0)surj of full flag quivers satisfying the complex equations and with all βi

surjective is, by Lemma 7.17, an open set in µ−1
C (0) whose complement is of complex codimension
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at least two. Moreover, the proof of Proposition 7.2 shows that µ−1
C (0)surj may be identified with

(SL(n, C)×HC)×N b.
Therefore the coordinate algebra O(µ−1

C (0))HC is isomorphic to

O((SL(n, C)×HC)×N b)HC ,

and hence to O(SL(n, C)× b)N . As µ−1
C (0) is an affine variety and HC is reductive, this algebra

is finitely generated. Moreover

Q= µ−1
C (0)//HC = SpecO(µ−1

C (0))HC = SpecO(SL(n, C)× b)N ,

and the last space is by definition the non-reductive quotient (SL(n, C)× b)//N (cf. the discussion
in § 2), so the result follows. 2

Together with the results of § 3, this means that the complex-symplectic quotients of the
implosion will give the Kostant varieties Vχ.

Remark 7.19. The symplectic implosion (T ∗K)impl has an action of R∗ induced from
multiplication in the fibres of T ∗K. Similarly, we have a C∗ action on T ∗KC given by (g, ξ) 7→
(g, τξ). This action commutes with the right KC action (2.1), and hence, for each PS , preserves
the property of being in the zero level set for the complex-symplectic action of PS and induces
an action on the subsets KC ×PS p◦S . Identifying these with the cotangent bundles of KC/PS ,
this is just scaling in the fibre.

In fact, this extends to an action on the full implosion space Q, given by just scaling the βi.
Notice that this will also scale X = αn−1βn−1, so will induce the scaling in the fibre of the
cotangent bundles above. We can also view it as the action on (SL(n, C)× b)//N induced by
scaling the b factor.

Theorem 7.20. The fixed points of the C∗ action on the universal hyperkähler implosion Q
given by scaling the βi are represented by the quivers with βi = 0 for each i. The fixed point set
may therefore be identified, by the discussion in § 4, with the universal symplectic implosion for
K = SU(n).

Proof. If (α, β) is fixed by the action, then for all τ ∈ C∗ there exists gτ ∈ SL with gτ .(α, β) =
(α, τβ). Letting τ → 0, we see that (α, 0) is in the closure of the SL-orbit of (α, β), and hence
in the same orbit by our polystability condition. It now follows that β = 0. 2

Proposition 7.21. If the universal hyperkähler implosion Q for SU(n) is smooth, then so is
the universal symplectic implosion for SU(n), and hence n6 2.

Proof. We consider the action of the maximal compact subgroup S1 of C∗. If the hyperkähler
implosion were smooth, then the fixed point set of this circle action would also be smooth.
By general properties of reductive group actions, this set is also the fixed point set of the C∗
action, which from above is just the universal symplectic implosion. The result now follows from
[GJS02, § 6], which tells us that the universal symplectic implosion for K is smooth if and only
if the commutator [K, K] is a product of copies of SU(2). 2

Remark 7.22. We shall see in Example 8.5 that the universal hyperkähler implosion is smooth
if K = SU(2).
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8. Geometry of the strata and torus reductions

Let us now further investigate the geometry of the strata described in Theorems 6.13 and 7.12 and
consider some examples. We particularly focus on the stratification of the universal hyperkähler
implosion Q of K = SU(n), where the original quiver is a full flag, that is, r = n and nj = j for
each j. Of course, the strata will involve quivers that are not necessarily of full flag type.

For the purposes of considering torus reductions of the implosion, we need to focus on the
T̃C-polystable locus, that is, the locus where the action of H̃C =

∏r−1
i=1 GL(ni, C) on the quivers is

polystable. (Recall from Remark 7.16 that in the full flag case we have a canonical identification
of T̃C with the maximal torus TC of KC.) Using the results of §§ 5 and 7 we can relate these loci
to open subsets of the cotangent bundles SL(n, C)×PS p◦S of SL(n, C)/PS where [P, P ]6 PS 6 P
for suitable parabolics P .

In particular, we shall first take the parabolic P to be the Borel subgroup B with PS =
[B, B] =N , and look at the subset SL(n, C)×N b in the implosion, which as we have seen
corresponds to full flag quivers with all βi surjective.

In order to analyse the N action, let us write

kC = tC ⊕
⊕
α∈∆+

kα ⊕
⊕
α∈∆+

k−α,

where kα are the root spaces and ∆+ the set of positive roots. So [kα, kβ]⊂ kα+β, taking k0 to
be tC and kγ to be zero if γ is not a root. Recall also that kα and kβ are Killing-orthogonal if
α+ β 6= 0. We are using the pairing (A, B) 7→ tr(AB) to identify k and kC with their duals.

We can take

n =
⊕
α∈∆+

kα

and

n◦ = b = tC ⊕
⊕
α∈∆+

kα.

Let X(α) denote the component of X in kα. So, if n ∈ n and X ∈ n◦ = b, then [n, X](α) is
[n(α), X(0)] plus terms [n(β), X(γ)] where β + γ = α and β, γ > 0. Moreover [n(α), X(0)] is just
−α(X(0))n(α).

The adjoint action of exp(n) ∈N on X ∈ kα is

X 7→X + [n, X] + terms in higher iterated brackets.

So

(exp(n)X)(0) =X(0)

and

(exp(n)X)(α) =X(α) − α(X(0))n(α) + · · ·
where · · · denotes terms in n(β), X(γ) with β (respectively γ) ranging over positive roots less
than α (respectively 0 or positive roots less than α).

This means that, provided α does not vanish on the Cartan component of X, we may
work up inductively through the root spaces, starting with the lowest, finding n(α) such that
(exp(n)X)(α) = 0. Moreover these n(α) are uniquely determined.

So if X(0) lies in the complement of the union of the zero loci of the roots then the N -orbit
through X contains a unique element in the chosen Cartan algebra tC. (See Example 8.7 for a
concrete example in the SU(3) case.)
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We see that if the eigenvalues of X ∈ b are all distinct, then the corresponding part of
SL(n, C)×N b may be identified with SL(n, C)× t

reg
C , where t

reg
C is the complement of the union

of the zero loci for the roots in tC, that is, the set of diagonal matrices in sl(n, C) with distinct
entries. Note that in the setup of Proposition 7.2, this amounts to standardising the αi so that
the only non-zero entries are in position (j + 1, j) for j = 1, . . . , i. The fact that the eigenvalues
of X are distinct now implies that all αi are injective.

Proposition 8.1. The implosion Q contains SL(n, C)× t
reg
C as an open dense subset.

Remark 8.2. Notice that (for K = SU(n)) KC × t
reg
C is in this sense a complex-symplectic

analogue of the product of K with the interior of the Weyl chamber, which is the open stratum
in the symplectic implosion of T ∗K. However, in our case SL(n, C)× t

reg
C is a proper subset of

SL(n, C)×N b∗, and hence of the open hyperkähler stratum, because configurations with equal
eigenvalues may occur in Qhks.

Let us now look at strata corresponding to more general parabolics. Our discussion of the
diagonal entries of X in Proposition 7.2 shows that the eigenvalue κi of the trace-free part of
X occurs at least ki−1 times (i= 1, . . . , r with the convention that κr = 0). We say ‘at least’
because if λC

i + λC
i+1 + · · · λC

j is zero for i6 j, then κi and κj+1 will be equal.
Hence, given a collection of eigenvalues κj for X, the maximum value of ki−1 compatible with

this collection is the multiplicity of the corresponding κi.

Example 8.3. In particular, if the eigenvalues of X are all distinct, then the ki are all 1 and we
are in the full flag case where ni = i for all i. This means we are in SL(n, C)× t

reg
C , which is open

and dense in SL(n, C)×N b.
Performing hyperkähler reduction by the maximal torus T is equivalent to fixing the

tC-component of b, i.e. fixing X(0), and quotienting by TC. If we reduce at a level in t
reg
C , then

the above discussion shows the resulting space is the semisimple orbit SL(n, C)/TC.

Now let us consider reduction at a level X(0) where a root vanishes. If α(X(0)) 6= 0, then as
above we can set (exp(n)X)(α) to zero. That is, we can use the N action to move X into the
subalgebra tC ⊕ n1, where

n1 =
⊕
α∈∆+

α(X(0))=0

kα.

We have left a residual action of N1, the unipotent group with Lie algebra n1.

Example 8.4. In particular, suppose X has distinct eigenvalues σ1, . . . , σs with multiplicities
m1, . . . , ms and let us take the maximum possible ki compatible with this: that is, we take
r = s and ki =mi+1, i= 0, . . . , r − 1. Let P denote the associated parabolic, whose commutator
contains the maximal unipotent N . As we are concerned with the quotients of the strata by the
full torus T̃C we shall assume in the following discussion that PS = [P, P ]; this will not result
in any loss of generality as regards the quotient, as PS is an extension of [P, P ] by a subtorus
of T̃C.

We can now use part of the N action to kill the entries of X in positions (i, j) where Xii 6=Xjj .
However, our choice of ki means the other non-diagonal elements of X are zero, as X has to be in
the annihilator [p, p]◦. The remaining part of [P, P ] that we have not used is just

∏r−1
i=1 SL(ki, C).

So we obtain SL(n, C)× t
(σ,m)
C /

∏r−1
i=1 SL(ki, C), where t

(σ,m)
C denotes the subset of tC

satisfying the above equalities of eigenvalues. Hyperkähler reduction now fixes the diagonal
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entries and quotients by TC, and hence we obtain the general semisimple orbit

SL(n, C)
/

S
(r−1∏
i=1

GL(ki, C)
)
.

Thus we obtain the semisimple orbits (the closed stratum of the Kostant variety) by choosing
the stratum where the ki are the maximum possible given the eigenvalues. The case of distinct
eigenvalues, where all ki must be 1, gives the regular semisimple orbit as in the preceding example.

In general we have that each eigenvalue multiplicity mi, i= 1, . . . , s, is a sum of kj , say
ki1 + · · ·+ kip . We can use part of the [P, P ] action to reduce X to block-diagonal form where
we have one block for each distinct eigenvalue σi. Moreover each block is upper triangular with
diagonal entries all equal to the eigenvalue σi.

The remaining freedom in [P, P ] is now also block-diagonal: each block is the commutator of
a parabolic Pσi in GL(mi, C). Let us write Pσi as UσiLσi where Uσi is the unipotent radical
of Pσi and Lσi is the corresponding Levi subgroup.

The condition that X lies in [p, p]◦ means that, for each block, transposing and dualising, the
non-scalar part of that block of X actually lies in uσi . The scalar part of the block is, of course,
just σiImi×mi

.
The previous example is the case when r = s and ki =mi+1, so we have one ki for each

distinct eigenvalue. Now Pσi = GL(mi, C) so the unipotent Uσi is scalar and hence X is scalar on
each block. Moreover the remaining freedom in [P, P ] is just the product of the Levi subgroups
Lσi = SL(ki−1, C), in agreement with the results of that example.

For some concrete low-dimensional examples consider the following.

Example 8.5. Let us take K = SU(2).
(i) The quivers we have to consider are now of the form

C
α−−→←−−
β

C2

so we have M = H2 = Hom(C, C2)⊕Hom(C2, C). In the terminology of § 5, the group H̃ is U(1)
but its commutator H and the associated complex group SL are the trivial groups SU(1) and
SL(1, C). There is therefore no moment map equation and no stability condition for these groups,
and the implosion Q is just H2. We have a hyperkähler action of the torus T = U(1).

We can decompose the implosion into four subsets. The smallest one Sbottom is when α, β
are both zero, so C = ker α⊕ im β. At the other extreme, we let S0 be the set of quivers
when α is injective and β surjective, so again this direct sum condition holds. This subset is
(C2\{0})× (C2\{0}). We also have a subset S1 with β surjective but α not injective (so zero),
and a subset S2 with α injective and β not surjective (so zero). Both these subsets are isomorphic
to C2\{0}.

We observe that S0 and Sbottom are sets of the form described in Proposition 7.4,
corresponding to choosing the parabolic P to be the Borel B and the full group SL(2, C),
respectively. To see this, we can take the unipotent subgroup N of KC to be the group of
upper triangular matrices

N =
{(

1 t
0 1

)
: t ∈ C

}
.
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We must consider SL(2, C)× n◦, where

n◦ = b =
{(

a b
0 −a

)
: a, b ∈ C

}
.

Writing an element of SL(2, C) as (q11 q12q21 q22), the N action is

q12 7→ q12 − tq11

q22 7→ q22 − tq21

b 7→ b− 2at

while q11, q21, a are invariant. Also q11q22 − q12q21 = 1.
According to the discussion in § 7, S0 will be just the open dense set SL(2, C)×N b∗ in

SL(2, C)×N b, where X ∈ b is non-zero (that is, a, b are not both zero).
If a is non-zero then taking the N quotient is equivalent to setting b= 0. We obtain a set

SL(2, C)× (C\{0}), which may be identified with (C2\{0})× C× (C\{0}) (viewing the C2\{0}
factor as the first column of the matrix in SL(2, C)).

If a is zero then the N action on the b factor is trivial, and we obtain (SL(2, C)/N)× {X ∈
b : a= 0, b 6= 0}, which is just (C2\{0})× (C\{0}). Identification of (SL(2, C))/N with C2\{0}
follows, for example, from the Iwasawa decomposition; this space is, of course, the open stratum
of the symplectic implosion for SU(2).

The whole of S0, then, may be viewed as (C2\{0})× (C2\{0}) in accordance with the quiver
picture. On the other hand Sbottom has X = 0 so is just SL(2, C)/SL(2, C), that is, a point, again
agreeing with the quiver description above.

Note that if instead we took the whole of SL(2, C)×N b, rather than requiring X 6= 0, then
we would obtain (C2\{0})× C2. This, of course, corresponds to the union of the two sets S0 and
S1, that is, quivers with β surjective, in accordance with Proposition 7.2.

In terms of the hyperkähler stratification in § 6, the open stratum is the union H2\{0} of
S0, S1 and S2, which can also be viewed as the SU(2)rotate sweep of S0. The closed stratum is
just Sbottom, which is the origin. In the language of Proposition 6.9, the open stratum corresponds
to taking S empty, so there is no δ, while the closed stratum corresponds to taking S = {(1, 1)}
with p= h= k = d1 = 1 and 0 =m0 =m1 <m2 = 2.

From the point of view of reductions by the torus U(1) the relevant sets are Sbottom and
S0 because these give the closed orbits for the complexified action on H2, in agreement with
Proposition 5.20. The union of these strata can be viewed as the set of pairs (z, w) in C2 × C2

such that z, w are both zero or both non-zero.
The hyperkähler quotient by U(1) gives us the hyperkähler structure on Kostant varieties of

SL(2, C) (i.e. the Eguchi–Hanson manifold or the nilpotent variety) as explained below.
(ii) It is also instructive, in the light of Theorem 7.18, to consider the GIT quotient

(SL(2, C)× b)//N . Using the variables above, the invariant polynomials are generated by
q11, q21, a and y1 = 2q22a− q21b, y2 = 2q12a− q11b. We have the relation

q11y1 − q21y2 = 2a, (8.6)

so (SL(2, C)× b)//N is the affine hypersurface in C5 with equation given by (8.6). Now projection
onto (q11, q21, y1, y2) gives an isomorphism with C4 = H2.

The C∗-action of Remark 7.19 is just scaling of a, b, and hence of a, y1, y2. Its fixed-point
set on C4 = H2 is just given by y = 0 and hence is a copy of C2, the symplectic implosion of
T ∗ SU(2).
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The TC action is qi1 7→ s−1qi1, qi2 7→ sqi2, b 7→ s2b while a is invariant. So yi 7→ syi, and (8.6)
is preserved.

Under the above identification with C4, the coordinates q11, q21 scale by s−1 and y1, y2 by s.
Note that the non-closed orbits for the TC action are therefore those lying in q11 = q12 = 0 and
y1 = y2 = 0, apart from the origin which is a closed point orbit.

Now, it is well-known that the hyperkähler reduction of flat H2 by U(1) at the generic level
gives the Eguchi–Hanson metric on the semisimple orbit of SL(2, C). In terms of our variables,
making the reduction is equivalent to fixing the value of a (i.e. the value of the complex-symplectic
moment map for TC), and then quotienting by TC. Taking as invariant polynomials on C4 the
expressions W = q11y1, Y = q11y2, Z = q21y1 and q21y2 (which equals W − 2a), we obtain the
affine surface W (W − 2a) = Y Z, which is one of the complex structures for the Eguchi–Hanson
structure. If we reduce H2 by U(1) at level 0, of course, we get the nilpotent variety W 2 = Y Z
of SL(2, C) with singularity at the origin.

Example 8.7. Let us take K = SU(3). From the quiver picture, we see the implosion is a
hyperkähler quotient of H8 by SU(2); in fact it may be realised as the Swann bundle (with
origin adjoined) of the quaternionic Kähler manifold G̃r4(R8) of oriented 4-planes in R8. Note
that this space is not smooth but has a conical singularity at the origin.

The N action on b = n◦ is1 r s
0 1 t
0 0 1

 :

a b c
0 d e
0 0 f

 7−→
a b+ r(d− a)

(
c+rt(a−d)−tb
+re+s(f−a)

)
0 d e+ t(f − d)
0 0 f


where a+ d+ f = 0, of course.

Let us first take a, d, f distinct, so we must be in the open stratum. As we are on the
complement of the union of zero loci of the roots a− d, d− f, f − a, taking the quotient by N
is equivalent to setting b= c= e= 0. So we obtain, as in Proposition 8.1, a set which can be
identified with SL(3, C)× t

reg
C .

The hyperkähler reduction at such a level by the action of the maximal torus T will be just
the complex-symplectic quotient by the complex torus TC. This will be obtained by fixing the
value of (a, d, f) and then factoring out by TC, so we get SL(3, C)/TC which is a semisimple orbit
for SL(3, C).

Now consider the case of eigenvalues (a, a,−2a) with a 6= 0, i.e. when a= d 6= f . We can
obtain this configuration by reducing at level (λC

1 , λ
C
2 ) = (3a, 0) in the stratum Q({2,2},1), which

has k0 = 1, k1 = 0, k2 = 2, i.e. n1 = n2 = 1, n3 = 3. So the parabolic P consists of matrices of the
form ∗ ∗ ∗∗ ∗ ∗

0 0 ∗

.
As above, we see that each N -orbit contains an element X ∈ sl(3, C) with c= e= 0. Moreover

b= 0 because X must lie in [p, p]◦ (after suitable dual identifications), so again we get diagonal
X. The remaining [P, P ] action is that of SL(2, C)× {1}, and the hyperkähler reduction is, as
in Example 8.4, the non-regular semisimple orbit SL(3, C)/S(GL(2, C)×GL(1, C)): the closed
stratum of the Kostant variety for (a, a− 2a).

The level (a, a,−2a) is also compatible with the stratum with k0 = k1 = k2 = 1, and hence
n1 = 1, n2 = 2, n3 = 3: this is the open stratum. Now we can make c= e= 0 but b may be non-
zero, and the residual freedom in N consists of block-diagonal matrices in N of block size 2
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and 1. This will be the open stratum of the Kostant variety for (a, a,−2a), and, of course, is not
semi-simple.

Finally, let us consider the level (0, 0, 0). This is compatible (using Remark 7.9) with three
strata:

(i) the open stratum with k0 = k1 = k2 = 1;
(ii) the stratum with k0 = 0, k1 = 1, k2 = 2;

(iii) the closed stratum with k0 = k1 = 0, k2 = 3 corresponding to the point quiver.

On torus reduction, we will obtain the corresponding strata of the nilpotent variety:
respectively, these are the regular stratum (minimum polynomial x3), the subregular stratum
(minimum polynomial x2), and the zero element, i.e. the semisimple stratum.
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