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The impact of a chemical reaction, A + B → C, on the stability of a miscible radial
displacement in a porous medium is established. Our study involves a comprehensive
analysis employing both linear stability analysis and nonlinear simulations. Through linear
stability analysis, the onset of instability for monotonic as well as non-monotonic viscosity
profiles corresponding to the same end-point viscosity are discussed and compared. We
establish a (Rb,Rc) phase plane for a wide range of Damköhler number (Da) and Péclet
number (Pe) into stable and unstable regions. Here, Rb = ln(μB/μA) and Rc = ln(μC/μA)
and μi is the viscosity of fluid i ∈ {A, B, C}. The stable zone in the (Rb,Rc) phase
plane contracts with increased Da and Pe but never vanishes. It exists even for Da → ∞.
Interestingly, we obtain a Da independent stable region in the neighbourhood of Rc = Rb
where no transition occurs in stability despite changes in reaction rate. The study allows us
to acquire knowledge about the transition of the stability for varying Da,Pe and different
reactions classified using Rb,Rc.
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1. Introduction

The viscous fingering (VF) instability is a fundamental transport phenomenon manifested
by a high mobile fluid penetration in a porous medium saturated with less mobile fluid,
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and this unfavourable viscosity contrast results in the emergence of complex fingering
patterns at the fluid–fluid interface. While, for favourable viscosity contrast, the flow
remains stable. The VF instability has immense applications ranging from hydrology
(Dentz et al. 2011), oil recovery (Muggeridge et al. 2014; Jiménez-Martínez et al. 2016),
diagnosis of cancer (Streitberger et al. 2020), chromatography separation (Catchpoole
et al. 2006; Shalliker et al. 2007; Rana et al. 2019), CO2 sequestration (Huppert & Neufeld
2014; Chen et al. 2017; Babaei & Islam 2018; Fakhari et al. 2018), biology (Mainster
1990; Matsushita & Fujikawa 1990; Dong et al. 2020; Delannoy et al. 2022), polymer
flooding (Corredor, Maini & Husein 2018) and lubrication in microfluidics (Cubaud &
Mason 2012).

In past decades, several experiments have been conducted to understand the instability.
These experiments are performed in the Hele-Shaw cell by injecting less viscous fluid
while the cell is filled with a higher viscosity fluid. The Hele-Shaw cell consists of
two transparent glass plates separated by a minuscule gap. The flow through it is
mathematically analogous to a porous medium (Paterson 1985; Chen 1987). To mimic
this instability numerically, we model the miscible flow in porous media by utilizing mass
conservation and momentum conservation through the convection–diffusion equation
and Darcy’s law, respectively. In such flows, the velocity profile plays a pivotal role
in determining the stability of the system. Depending on the velocity profile, mainly
two types of displacements are studied in the literature: radial and rectilinear in porous
media flows. In the rectilinear flow, the interface between fluids remains flat, and fluids
displace each other with uniform velocity. In the case of radial flow, the interfacial area
increases, and velocity decreases with the radial distance from the source. On account of
the spatially dependent velocity profile, the perturbation at the fluid–fluid interface evolves
algebraically with time (Tan & Homsy 1987). The algebraic growth of perturbations is
significantly slower than the exponential growth of perturbations that takes place in the
case of rectilinear flow. It attributes a minimum viscosity ratio between fluids to trigger
the instability of radial flow. The transition in the stability of flow has been demonstrated
numerically and empirically by Sharma et al. (2020). They determine a phase plane
between Péclet number and viscosity ratio classified into stable and unstable zones and
present the initial radius of the circular region as a control parameter. For decreasing initial
radius, the stable region in the phase plane between Péclet number and viscosity ratio is
contracted but never vanishes. It persists even when the point source is considered (Tan &
Homsy 1987; Bischofberger, Ramachandran & Nagel 2014; Videbæk & Nagel 2019).

A chemical reaction can induce an unfavourable disparity in viscosity, leading to the
destabilization of flows within porous media by altering the viscosity distribution and
impacting flow stability (Sharma et al. 2019). For instance, it is observed that the chemical
reaction A + B → C can always destabilize the flow more by generating a product having
viscosity contrast with the reactants while the viscosity profile depends on reactants and
product concentration exponentially (Hejazi et al. 2010; De Wit 2020). Such reactive
displacements are modelled in several transport phenomena to optimize the efficiency
of the process, such as alkaline flooding in enhanced oil recovery processes (Mayer
et al. 1983), contamination degradation (Richardson & Nicklow 2002), CO2 sequestration
(Liu et al. 2011) to cite a few. Depending on the application, chemical reactions in
porous media flow may be beneficial. It reduces the interfacial tension and enhances the
miscibility that leads to improved mixing and more recovery in transport processes such
as chemical flooding in enhanced oil recovery (Mayer et al. 1983; Pei et al. 2012), frontal
polymerization (Pojman 2010) and chemical treatment of oil-bearing formations (De Wit
& Homsy 1999). In recent studies, it has been observed that the oil recovery by calcium
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hydroxide (Ca(OH)2) flooding is more than that of water flooding for heterogeneous
porous media (Mahardika et al. 2021). Moreover, the chemical reaction can generate
bubbles (Wang et al. 2021) that prevent the mixing in porous media (Wang et al. 2021).
The VF produced by chemical reactions can be employed to improve mixing in a variety of
fields at all scales, from macroscales to microscales, and the nonlinear interaction between
a chemical reaction and VF instability leads to enhanced mixing between fluids. It has
been analysed by several researchers in both ways, experimentally (Nagatsu & Ueda 2001,
2003; Nagatsu et al. 2007, 2009; Riolfo et al. 2012) and numerically (Gérard & De Wit
2009; Hejazi et al. 2010; Sharma et al. 2019).

For radial flow, there exists a minimum viscosity contrast to trigger the instability in
non-reactive displacements where both the flows are non-reactive in nature (Tan & Homsy
1987; Sharma et al. 2020), the same holds for the reactive displacement (Sharma et al.
2019). It is reported that when reactants are isoviscous, instability is induced when the
product and reactants have sufficient viscosity contrast. This has been observed both
through numerical investigations through nonlinear simulations (NLS) (Sharma et al.
2019; Verma, Sharma & Mishra 2022) and linear stability analysis (LSA) (Sharma,
Chen & Mishra 2023). However, they do not consider the reactive displacements with
viscosity mismatched reactants. The critical viscosity contrast reduces when we increase
the reaction rate. Further, Kim et al. (2021) have performed a LSA for radial flow utilizing
spectral analysis restricted to the asymptotic limit of Dat → ∞, Pe → ∞. Here Da, Pe and
t represent the reaction rate, Péclet number and time, respectively. They obtained critical
viscosity ratios that trigger instability and establish a power law trend between Pe and the
critical viscosity ratios. Further, they show that the LSA results are supported by NLS. To
the best of our knowledge, no theoretical analysis of the radial reactive displacement, when
reactants have some viscosity contrast for a finite range of Pe and Da, has been documented
in the literature. However, the prevalent focus in most experimental studies is exploring
reactive VF caused by reactants with mismatched viscosities (Nagatsu & Ueda 2001;
Nagatsu et al. 2007, 2009; Riolfo et al. 2012). In addition, instabilities often occur even in
the absence of a reaction, leading to an analysis of how chemical reactions impact viscous
fingering (Hejazi et al. 2010; De Wit 2020; Verma, Sharma & Mishra 2023). Moreover, it
is observed that when the reactants have an unfavourable viscosity contrast, the reaction
can promote or stabilize viscous fingering for rectilinear flow, indicating that the chemical
control of local fingering dynamics can be precisely tuned by selecting the appropriate
chemical species with a particular difference in concentrations (Hejazi et al. 2010; De
Wit 2020). However, for radial flow, the literature lacks the numerical investigation of
reactive displacement with viscosity mismatched reactants. Thus, it would be intriguing to
investigate how the reaction rate influences the transition in stability for radial flow when
the reactants have viscosity contrast.

In this study, we fill the above-mentioned literature gap and present a thorough
examination that considers the effects of viscosity mismatch between the reactants
and product for a range of Da and Pe by performing NLS and LSA. In this work,
we introduce an LSA to understand the dynamics of the reactive displacements
in transient time. However, we encounter an unsteady base state as a solution
of advection–diffusion–reaction equations (Brau, Schuszter & De Wit 2017). The
time-dependent nature of this base state renders the stability matrix non-orthogonal.
However, it has been observed that if the stability matrix is not orthogonal, the early-time
dynamics may not be captured (Trefethen et al. 1993; Schmid 2007). Thus, modal analysis
is not applied and we opt for non-modal analysis. For optimal initial conditions, we give
initial perturbation around the interface instead of the entire r domain, as it is known
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as the fastest-growing perturbation (Ben, Demekhin & Chang 2002; Hota, Pramanik &
Mishra 2015b). Later, we validate all LSA predictions through NLS. Both LSA and NLS
predict the critical parameters for instability decay with Péclet number and reaction rate.
Our research is novel in the sense that we explore the stability of reactive displacement
based on the viscosity profile for radial flow. We determine whether the modifications
resulting from a chemical reaction impact the flow stability compared with the equivalent
non-reactive situation. We determine a phase plane between the viscosity ratios between
the reactants and product, divided by critical viscosity ratios for instability and find that
the reactions can affect system stability up to a certain extent. For instance, there exists
a stable region in the phase plane for even Da → ∞. Moreover, we report the type of
reactive displacement where the stability of the flow is unaffected by Da. For such types
of reactions, the product viscosity is the same as the viscosity of the displacing reactant,
and it is represented as a Da-independent region in the (Rb,Rc) phase plane.

The organization of the paper is as follows. In § 2 we give the mathematical formulation.
We present the base state equations and solve them numerically. Further, we derive the
linearized perturbed equations and perform LSA in § 3. Lastly, we perform NLS and
compare LSA results with NLS results in § 4 and address the applications of the work
in § 5.

2. Mathematical formulation

A miscible displacement is considered in a homogeneous and isotropic porous medium
where one fluid, A, is injected from the source with flow rate Q per unit depth, displacing
the other fluid, B, radially. Both fluids are Newtonian, neutrally buoyant and reactive.
A second-order irreversible chemical reaction

A + B → C, (2.1)

occurs in the system whenever both fluids come into contact (figure 1). The system
of flow equations consists of the continuity equation and Darcy’s law, describing mass
conservation and momentum conservation. Further, we couple the flow equations with
reaction–convection–diffusion equations that interpret the transport of fluid species. In
experiments, the dye concentration is added in displacing fluid initially. The dye is
non-reactive in nature with the other fluids and has no impact on the viscosity profile.
Further, we consider a convection–diffusion equation describing the transport of dye
concentration, z. The equations can be represented in non-dimensionalized form as follows
(Hejazi et al. 2010; Sharma et al. 2019):

∇ · u = 0, (2.2a)

∇p = −μu, (2.2b)

∂a
∂t

+ u · ∇a = 1
Pe

∇2a − Da ab, (2.2c)

∂b
∂t

+ u · ∇b = 1
Pe

∇2b − Da ab, (2.2d)

∂c
∂t

+ u · ∇c = 1
Pe

∇2c + Da ab, (2.2e)

∂z
∂t

+ u · ∇z = 1
Pe

∇2z. (2.2f )

We employ tf and
√

Qtf as the characteristic scales to non-dimensionalize time and
length, respectively, where tf is the time up to which we inject fluid A. Further, we
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Reaction zone
B

A

C

y

x
Q

Figure 1. Schematic of the A + B → C chemical reaction in a radial source flow. The green-coloured shaded
region, bounded by dashed lines, is where both the reactants come into contact and product C is generated.
We denote this region as a reaction zone. The outside and inside regions of the reaction zone are occupied by
reactants B and A, respectively.

non-dimensionalize Darcy velocity u, viscosity μ, pressure p and fluid concentrations
(a, b, c) by

√
Q/tf , μA, QμA/κ and a0, respectively. Here, the concentration and viscosity

of reactant A are represented by a0 and μA, respectively, while the porous medium’s
permeability is represented by κ . It is important to note that tf represents the duration up to
which we want to conduct the study. We discuss the limitations of other choices of length
scale in Appendix A. The viscosity profile depends on product and reactant concentrations
exponentially as follows (Hejazi et al. 2010):

μ = exp(Rbb + Rcc), Rb = ln(μB/μA), Rc = ln(μC/μA). (2.3)

We categorize the reactions based on the viscosity of the reactants and product. Every
(Rb,Rc) value characterizes the viscosity contrast between B and A; and C and A,
respectively. Thus, on changing (Rb,Rc), we change the reactants and product and hence
explore a new reaction. The initial conditions associated with (2.2) are

(a, b, c, z)(x, t = 0) =
{
(1, 0, 0, 1), 0 < |x| < r0,

(0, 1, 0, 0), otherwise,
(2.4a)

u(x, t = 0) = x
2π|x|2 , (2.4b)

where x = (x, y) and r0 is the initial radius of the circular region filled with fluid A. Here
we encounter four non-dimensionalized parameters Rb, Rc, Damköhler number Da and
Péclet number Pe. All the fluids are assumed to have the same diffusion coefficient, D, and
Pe = Q/D, which shows a comparison of fluid transport due to convection and diffusion,
while Da is obtained as a ratio of convective time scale and reactive time scale, i.e. Da =
tf /(1/ka0). Here k is the reaction rate constant.

3. Linear stability analysis

3.1. Linearized perturbed equations
In order to carry out a stability analysis, we need to formulate linearized perturbed
equations for perturbed fluid concentrations and perturbed velocity around base state flow.
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Figure 2. Base state profile of (a) reactant A, (b) reactant B, (c) product C and (d) dye concentrations for
Da = 100, Pe = 3000 at final time t = 1.

We define (A0,B0,C0, Z0), base state concentrations of A, B, C and dye as the solution
of (2.2c)–(2.2f ) in the absence of any viscosity contrast, i.e. Rb = Rc = 0 (Sharma et al.
2023). The base state solution is axisymmetric, and it is just a function of radius, r only.
However, the solutions cannot be attained analytically (Brau et al. 2017). Even, for (2.2f ),
provided the initial condition in (2.4), an analytical solution is unattainable (Sharma et al.
2020). Thus, we compute the base state concentrations numerically using the method of
lines discussed in § 3.2. The density plots of the obtained base state concentrations for
Da = 100, Pe = 3000 are shown in figure 2. For stable displacement, the initial velocity
provided by the source does not get perturbed and remains the same as in (2.4b). It is
considered as the base state velocity, u0. Further, we notice that the base state velocity
profile is characterized by a singularity at the origin. To address this singularity, we
introduce a Gaussian source of core, σ as proposed by Chen et al. (2008) and Sharma
et al. (2019), resulting in the velocity profile as follows:

ub =
(

x
1 − e−(x2+y2)/σ 2

2π(x2 + y2)
, y

1 − e−(x2+y2)/σ 2

2π(x2 + y2)

)
, σ ≤ r0. (3.1)

Introducing a Gaussian source term can better mimic physical phenomena that smooth
out velocity profiles in real-world flows. However, if we were to consider r0 → 0, we would
be unable to utilize this modification due to the constraint σ ≤ r0. Therefore, we confine
our analysis to cases where r0 > 0 and refrain from investigating how the parameter r0
influences the stability of the reactive flow. Nonetheless, the impact of r0 on stability has
previously been examined in the context of non-reactive flow by Sharma et al. (2020). The
decrease in r0 results in reducing the critical viscosity contrast for instability and this r0
works as a control parameter for instability, which holds for reactive fluids.

After having the base state solution, we perturb the base state profile as follows:

(a, b, c, z,u) = (A0,B0,C0, Z0,u0)+ (a′, b′, c′, z′,u′). (3.2)

For the ease of the calculations, we redefine the governing equation in stream
function–vorticity formulations. We define the stream function as ψ = ψ0 + ψ ′, ψ0 is
base state stream function and ψ ′ is the perturbed component of stream function that is
defined as u′ = (−∂ψ ′/∂y, ∂ψ ′/∂x). Thus, the linearized perturbed system of equations
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can be written in stream function–vorticity formulation as in Sharma et al. (2023):

∇2ψ ′ = −ω, (3.3a)

ω = Rc(u0 × ∇c′ + u′ × ∇C0) · k̂ + Rb(u0 × ∇b′ + u′ × ∇B0) · k̂, (3.3b)

∂a′

∂t
+ u0 · ∇a′ + u′ · ∇A0 = 1

Pe
∇2a′ − Da(B0a′ + A0b′), (3.3c)

∂b′

∂t
+ u0 · ∇b′ + u′ · ∇B0 = 1

Pe
∇2b′ − Da(B0a′ + A0b′), (3.3d)

∂c′

∂t
+ u0 · ∇c′ + u′ · ∇C0 = 1

Pe
∇2c′ + Da(B0a′ + A0b′), (3.3e)

∂z′

∂t
+ u0 · ∇z′ + u′ · ∇Z0 = 1

Pe
∇2z′. (3.3f )

Here ω is the k̂ component of vorticity. At the boundary, we apply a far-field boundary
condition, i.e. ψ ′ = 0, and

∂

∂x
(a′, b′, c′, z′) = 0 at x = ±L/2,

∂

∂y
(a′, b′, c′, z′) = 0 at y = ±L/2.

⎫⎪⎪⎬
⎪⎪⎭ (3.3g)

Here Ω = [−L/2, L/2] × [−L/2, L/2] is our computational domain that is discretized
into nx × ny grid points.

3.2. Initial value calculations
The time-dependent base state results in a non-orthogonal stability matrix, thus modal
analysis may not capture the early-time dynamics appropriately. Therefore, we have
employed non-modal analysis, solving initial value problems for numerical LSA to study
the transient behaviour of the reactive displacements. This LSA serves as an efficient
method to explore time-dependent linear systems in miscible VF (Tan & Homsy 1986;
Matar & Troian 1999; Daniel, Tilton & Riaz 2013; Tilton, Daniel & Riaz 2013; Hota
et al. 2015b; Pramanik, Hota & Mishra 2015). We solve the system of equations with the
method of lines. We use the third-order Runge–Kutta method to solve the initial value
problem for both base state and linearized perturbed equations (3.3c)–(3.3f ), resulting
from the discretization of spatial derivatives. Further, a highly efficient pseudospectral
method hybridized by the compact finite difference method of sixth order is used to solve
the Poisson equation (3.3a). In our study, we do not incorporate wavelength selection,
while our LSA method does allow for wavelength selection (Hota et al. 2015b). Further,
we perturb the base state around the interface where fastest growing perturbations are
known to be localized (Ben et al. 2002; Hota et al. 2015b). We perturb the base state using
a consistent set of random initial conditions around the interface as follows:

(a′, b′, c′, z′)(x, t = 0) = 10−3

{
(sin(2πm1), sin(2πm2), 0, sin(2πm1)), |x| = r0,

(0, 0, 0, 0), otherwise.
(3.4)

Here, m1 and m2 are random functions generating numbers between 0 and 1 which are kept
consistent across all simulations. The remaining parameters used in LSA are mentioned
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Parameters dt nx = ny L r0 Pe

Value 10−4 1025 1.5 0.075 3000

Table 1. Table showing the parameters used in the LSA.

in table 1. The numerical method is explained in detail in Sharma et al. (2023) and the
references therein.

Since the base state is unsteady, we seek to analyse the temporal evolution of
perturbations in the comparison of the base state (Shen 1961; Hota, Pramanik & Mishra
2015a). To do the same, we utilize the energy method approach and determine the
normalized energy function with respect to the base state profile for both the perturbed
concentration, α′ and u′:

R(t) =

∫
Ω

α′2 + u′2 dΩ∫
Ω

α2
0 + u2

b dΩ
, (3.5)

where α′ is the dummy variable for perturbed concentrations and α′ ∈ {a′, b′, c′, z′}.
Further, we compute energy amplification, E(t) by normalizing energy R(t) with R(t =

0) (Matar & Troian 1999) as

E(t) = R(t)
R(t = 0)

. (3.6)

Since we perturb the concentrations of the reactants initially, we use either a′ or b′
in the energy calculation in (3.5). In addition, it is reported that the temporal evolution
of ln(E(t)) is similar; hence, it makes no difference whether we choose a′ or b′ for the
analysis (Sharma et al. 2023). We use a′ and A0 for the further computation of energy
amplification. For unstable displacement, when perturbations amplify with time, ln(E(t))
increases with time, while a monotonically decreasing profile of ln(E(t)) is obtained for
stable displacements. The transition in stability from stable to unstable displacement is
depicted by a minimum in the ln(E(t)) curve. We denote that time as the onset time when
perturbations start to grow (Hota et al. 2015a).

It is noteworthy that the time domain is confined to t = 1, representing the duration
over which our investigation is conducted. Hence, we analyse the stability of reactive
displacement in transient time regimes only, not for asymptotic times. It has been observed
that there exists a diffusive regime at later times for radial flows (Chui, De Anna & Juanes
2015; Verma et al. 2023). For non-reactive fluids, experimental observations indicate that
the interface growth decelerates, scaling as ∼ t1/2 at later times, showing the existence of
a diffusive regime as anticipated in stable displacements (Chui et al. 2015). It indicates
the shutdown of overall flow instability. This phenomenon is reported as frozen fingers.
Moreover, Verma et al. (2023) has reported the existence of frozen fingers for reactive
fluids. Hence, the asymptotic analysis for reactive VF for radial flow is not required.

3.3. Transient energy growth
The system of (2.2) describes the reactive and non-reactive displacement both depending
on the value of Da. For Da = 0, the system represents a non-reactive displacement where
all the fluids are non-reactive in nature and follows the convection–diffusion equation.
The viscosity profile is monotonic and is given by μ = exp(Rbb) due to no product
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Figure 3. (a) Viscosity profile for Da = 100, Pe = 3000, Rb = 0.5 and various Rc. (b) Log energy
amplification with time for Da = 100, Rb = 0.5 and various Rc showing unstable displacement. Inset: ln(E(t))
of Rb = 0.5, 0.3, Da = 0.

formation, i.e. c = 0. Further, the monotonic viscosity profile may be modified in the
presence of a chemical reaction when Da /= 0. The viscosity profile for various Rc is shown
in figure 3(a).

In the present study, we aim to compare the reactive and non-reactive displacement
when the viscosity contrast, Rb, between displacing fluid A and displaced fluid B is the
same. Further, for non-reactive fluids, it is reported that there exists a critical viscosity
contrast for instability for radial flow (Sharma et al. 2020). Hence, we divide the reactive
displacement into two categories depending on whether the corresponding non-reactive
displacement is stable or unstable. First, we consider the reactive displacement when
the corresponding non-reactive situation, that is, Da = 0, is stable and examine if the
chemical reaction affects the flow stability. In the second category, we consider those
types of reactions for which reactants already have an unfavourable viscosity contrast for
instability. We examine how stability behaviour, such as the growth rate of perturbations
and onset of instability, is affected by product formation. In order to evaluate the variation
between reactive and non-reactive displacement, we must first review the stability of the
non-reactive system before analysing the reactive displacement. We observe that Rb = 0.5
represents unstable displacement, while Rb = 0.3 corresponds to a stable displacement as
explained below.

It can be verified that the flow is unstable for Rb = 0.5,Da = 0 as the ln(E(t)) increases
with time after obtaining a minimum as shown in the inset of figure 3(b). In the case
of unstable displacement, the initial decrements in energy show the initial diffusion in
the system, and instability takes some time to manifest. The minimum denotes the onset
time of instability when instability appears. From the onset time, the convection starts to
dominate the flow dynamics and the perturbation growth begins. In contrast, if we decrease
the viscosity ratio between reactants to Rb = 0.3, the flow remains stable for the entire time
domain as shown in the inset of figure 3(b) despite an unfavourable viscosity contrast.
Thus, we have obtained two values of Rb showing that an increase in viscosity contrast
leads to the transition in stability for the non-reactive situation. Now we analyse how the
stability of the monotonic viscosity profile is influenced by varying Rc.

3.3.1. Effect of Rc
When we consider the non-reactive displacement, we have to deal only with a
perturbed concentration that follows a linearized perturbed equation corresponding to
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one convection–diffusion equation. While in the reactive case, we have to handle three
perturbed concentrations that follow (3.3c)–(3.3e), and the complexity of the system
analysis escalates. Therefore, it is absurd to compare the evolution of perturbed reactive
or non-reactive concentrations directly. Additionally, we want to compare VF dynamics
as a result of the modified viscosity profile, hence we find a value of Rc for which the
corresponding viscosity profile is not modified in the presence or absence of the reaction.

When the product viscosity differs from that of the displacing fluid reactant B, i.e.
Rc /= Rb, the viscosity profile becomes either non-monotonic or remains monotonic but
with steeper viscosity contrast as shown in figure 3(a) for Da = 100, Rb = 0.5 and various
Rc. Due to the presence of all three fluids, Hejazi et al. (2010) has identified two mixed
zones: the trailing and leading zones. The region occupied by the displacing reactant A
and product C is defined as the trailing zone, while the region inhabited by displaced
fluid, B and C is termed as the leading zone. The significance of defining these regions
is that different viscosity contrast occurs in these two zones when Rb /= Rc and plays an
individual role in determining the overall stability of the system. The viscosity contrast at
the trailing zone is decided by the factor Rc/2 while Rb − Rc/2 determines the viscosity
ratio at the leading zone (Hejazi et al. 2010; Verma et al. 2023). For Rb = Rc = 0.5, it
is evident that Rc/2 = Rb − Rc/2, that is, the viscosity in both zones is the same. Thus,
the viscosity contrast for Rc = 0.5 is monotonic, similar to that of Rb = 0.5 as shown in
figure 3(a). Thus, when a chemical reaction alters the viscosity profile, this specific case
of Rc = 0.5 can be used as a reference viscosity profile. For instance, if we compare the
viscosity profile in figure 3(a), it is evident that the viscosity profile remains monotonic for
Rc = 0, 1 but the reaction results in a non-monotonic viscosity profile for Rc = 1.5,−0.5.
Even for the monotonic case, if we compare the profiles for Rc = 0, 0.5, 1, we can see that
the viscosity profile at the trailing zone is steepened for Rc = 1, while it is steepened at
the leading zone for Rc = 0. We analyse how this affects the onset of instability.

We have plotted the log energy amplification curve for various Rc with Rb = 0.5 in
figure 3(b). For Rc = 1, the viscosity profile steepens at the trailing zone particularly
and becomes flat at the leading zone where Rb − Rc/2 = 0. Due to this, the onset
occurs early and the system exhibits more energy amplification for Rc = 1 than Rc = 0.5
despite the same endpoint viscosity contrast. Now we analyse the energy amplification for
Rc = 0, where unfavourable viscosity contrast is shifted at the leading zone. The energy
amplification for Rc = 0 is more than that of Rc = 0.5 at a later time only. However,
at an early time, the energy amplification is less for Rc = 0, and hence the system
is less destabilized than Rc = 0.5. It shows the significance of the location where the
unfavourable viscosity contrast occurs and instability appears. Here, the viscously stable
trailing zone stabilizes the system at early times. While the unstable, leading zone will
be carried into effect late and the system destabilizes more when instability appears in
the trailing zone. Thus, despite the same viscosity contrast in their unstable zone for
Rc = 0, 0.5, 1 and Rb = 0.5, the system may attribute stability transition at a different
time by varying unfavourable viscosity contrast locations.

Further, when Rc = 1.5 and Rc = −0.5, the viscosity profile becomes non-monotonic,
resulting in unfavourable viscosity contrasts at the trailing and leading zones, respectively.
Figure 4(a) shows the position of the r, at which the average reaction rate attains maximum,
is the separator between the two zones. For Rc = 1.5 (Rc = −0.5), the leading (trailing)
zone stabilizes and instability is expected to develop at the trailing (leading) zone. To
illustrate this, we plot the perturbation profile for c′ in polar coordinates at t = 1 for both
Rc = −0.5 and Rc = 1.5 in figures 4(b) and 4(d), respectively. For Rc = 0.5, the viscosity
profile is monotonic, and hence, the perturbation profiles are distributed symmetrically
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Figure 4. (a) Averaged reaction rate profile, 〈R〉(r, t) = (1/2π)
∫ R0

r0
R(r, θ, t) dθ and R = DaAbBb for base

state for Da = 100 and Pe = 3000. Cropped plot of perturbed concentration profile C (104 × c′) for Pe = 3000,
Da = 100, Rb = 0.5, (b) Rc = −0.5, (c) Rc = 0.5 and (d) Rc = 1.5 at final time t = 1 in polar coordinates.
Here, the black-dashed line denotes the position where the reaction rate is maximum, as shown in (a).

in both mixing zones, as depicted in figure 4(c). In contrast, the presence of localized
unstable zones leads to a more concentrated distribution of perturbation at the trailing
(leading) zone when Rc = 1.5 (Rc = −0.5). Moreover, we plot perturbation profiles for
a′, b′ and z′ in Appendix A.

In the energy amplification plots in figure 3(b), ln(E(t)) increases more for Rc = 1.5
than Rc = −0.5 depicting more amplified perturbations for Rc = 1.5 despite the same
viscosity contrast at respective unstable zones. It can be concluded that the perturbations
amplify more with enhanced energy amplification ln(E(t)) with a higher growth rate of
perturbations for an increased viscosity contrast, |Rb − Rc| for any fixed Rb. This aligns
with both the findings from the existing linear stability analysis (Hejazi et al. 2010) and
NLS (Sharma et al. 2019; Verma et al. 2023) qualitatively. The NLS indicate that as the
viscosity ratio increases, the onset time of instability decreases, which leads to rigorous VF
patterns (Sharma et al. 2019; Verma et al. 2022, 2023). In addition, the mixing phenomena
are enhanced (Verma et al. 2023).

Further, it can be seen that for each pair |Rc − Rb|, despite the identical viscosity
contrasts, the system exhibits a greater energy amplification for the case Rc − Rb > 0 than
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Figure 5. (a) Log energy amplification and (b) growth rate with time for Da = 100, Pe = 3000, Rb = 0.3
and various Rc showing unstable displacement. Inset: growth rate for Rc = 1.1,−0.5 showing an unstable and
stable displacement, respectively, despite the same viscosity contrast |Rb − Rc|.

the corresponding case, Rc − Rb < 0 as shown in figure 3(a). This raises the question of
why the perturbations amplify more when the unstable zone is situated at the trailing zone
in contrast to the leading zone despite the viscosity contrast being the same (|Rc − Rb|).
The velocity profile holds the responsibility for this property of radial flow. The velocity
magnitude decreases with the radial distance, which provides more convection to the
trailing zone than the leading zone (Sharma et al. 2019; Verma et al. 2022). Moreover, it
hints at the asymmetry in the (Rb,Rc) phase plane along the non-reactive region, Rc = Rb.
We explore the asymmetry in the (Rb,Rc) phase plane by taking corresponding stable
non-reactive situations and finding the corresponding Rc parameters that destabilize the
flow. In the inset of figure 3(b), the flow is shown stable for Rb = 0.3. If the reaction
generates a product with enough high or less viscosity that makes the viscosity profile
non-monotonic and one of the zones becomes viscously unstable, the flow may become
unstable. We will next investigate these situations.

In figure 5(a), the flow is shown stable for some range of Rc, including Rc = 0.3 and
on further increment of viscosity ratio, the system becomes unstable. For the viscosity
contrast |Rc − Rb| = 1 (Rc = 1.3,−0.7), the flow is unstable as ln(E(t)) increases with
time after attaining a minimum, while the flow is stable for Rc = −0.4. It is interesting to
note that when Rc = 1, the system behaves inconsistently. Following a minimum, ln(E(t))
rises at first, then starts to fall as the energy amplification increases to saturation. For better
visualization, we compute the growth rate as in Tan & Homsy (1987):

σ = t
2E

dE
dt
. (3.7)

Evidently, the growth rate of perturbations is negative for Rc = 1 at later times after
onset; there is a decay in perturbation growth as shown in figure 5(b). The positive growth
rate indicates that the perturbations grow after onset time. However, the unfavourable
viscosity contrast at the trailing zone is not enough to sustain the growth of perturbations
for a longer time and it starts to decrease again. A similar transition in stability is observed
in the literature (Hota & Mishra 2018) for rectilinear flow. There, the secondary instability
appears at late times after the first minima in ln(E(t)). The uniform velocity in the
rectilinear displacement constantly feeds the flow and is responsible for this transition.
However, in our case, the flow velocity reduces with radial distance and at the unstable
zone with time. As a result of this, once the flow is stabilized, convection is not able to
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Figure 6. Log energy amplification with time for Da = 10, Pe = 3000, (a) Rb = 0.5, (b) Rb = 0.3 and
various Rc showing unstable displacement.

induce instability again. Hence, the flow is considered stable for Rc = 1. In conclusion,
we have obtained a stable zone for a range of Rc when the corresponding non-reactive
displacement is stable. In addition, we obtain such values of Rc where the flow is unstable
when Rc − Rb > 0 (Rc = 1.1) while stable for the corresponding case Rc − Rb < 0 (Rc =
−0.5) showing asymmetry in the (Rb,Rc) phase plane. We discuss this in detail in § 4.
The growth rate of perturbations is negative for Rc = −0.5, while the system shows a
positive growth rate after onset in perturbation evolution for Rc = 1.1. Now, the question
arises of how changing the reaction rate, Da, influences the stability of the reactive system,
regardless of whether the system is initially stable or unstable.

3.4. Effect of Da
When reactants are isoviscous, Rb = 0, NLS have shown that the onset of instability gets
delayed and the critical viscosity ratio for instability is exceeded with lowering Da (Sharma
et al. 2019). Here, we explore the effect of Da when Rb /= 0. From the comparison of the
figures 3 and figure 6(a), it can be observed that the ln(E(t)) is less for Da = 10 after onset
time. It happens as a result of the reduced amount of product decreasing the viscosity and
thus the viscosity gradient, resulting in slower growth of perturbations. Furthermore, if we
compare energy amplification for Rb = 0.3, Da = 100, 10 and various Rc as in figures 5
and 6(b), the stable range of Rc increases for decreased Da. Flow is unstable for both the
parameters Rc = 1.3,−0.7 when Da = 100, but for Da = 10, these parameters belong in
the stable range of Rc for Rb = 0.3.

We have now covered the cases when the viscosity profile is modified due to the formed
product having viscosity contrast with reactants. However, there is another case when
product viscosity is identical to displacing fluid reactant B, i.e. Rb = Rc regardless of
Da, the viscosity profile remains the same as the corresponding non-reactive situation,
(Rb,Da = 0) (Nagatsu & De Wit 2011). For such cases, we claim that no change in the
flow stability occurs when Rb = Rc provided the flow is stable with or without the reaction,
for instance, when Rb = 0.3. No change in perturbation growth or energy amplification
should be observed when the system is already unstable for corresponding non-reactive
situations Rb = 0.5 for changing Da. Instead of reactant A, we show energy amplification
for dye concentration. Since dye concentration follows the convection–diffusion equation
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Figure 7. Log energy amplification with time for Rb = Rc = 0.5, 0.3 and various Da, and Pe = 3000. Here,
all the curves for different Da and fixed viscosity contrast are merged.

as followed by A when Da = 0, considering z allows us to examine the stability of the
parameter Rb = Rc for varied Da ranging from Da = 0 to Da = 100.

From figure 7, it can be concluded that the stability is unaffected by a chemical reaction
when Rb = Rc as energy amplification regardless of whether the system is stable or
unstable before the reaction.

4. Nonlinear simulations

To support the fact that the results of LSA are not a consequence of linearized equations,
we perform NLS for the VF instability on the system of equations given in (2.2).
We utilize a highly efficient pseudospectral method hybridized with the compact finite
difference method to solve the coupled nonlinear system of partial differential equations.
We decompose the velocity into two parts with rotational velocity (urot) and potential
velocity, (upot) that defines the unperturbed flow as given in (2.4b). In addition, we define
the rotational component to capture the instability by introducing the stream function as

u = upot + urot, urot =
(
∂ψ

∂y
,−∂ψ

∂x

)
, (4.1a)

∇2ψ = −ω, ω = Rc

(
v
∂c
∂x

− u
∂c
∂y

)
+ Rb

(
v
∂b
∂x

− u
∂b
∂y

)
. (4.1b)

We solve Poisson equations (4.1b) by applying Fourier sine expansion to solve
x− derivative and discretize the y− derivative with the compact finite difference of
sixth order. Further, the initial value problem in (2.2)(b–e) is solved by the third-order
Runge–Kutta method with adaptive time steps satisfying the Courant–Friedrichs–Lewy
condition. The remaining details are explained in Sharma et al. (2019) and Verma et al.
(2022).

To track the instability, we plot the dye concentration profile for Rb = −1, 1, Da = 100,
Pe = 3000 and for various Rc at the final time t = 1 in figure 8. It is evident that the flow is
unstable for Rb = 1 irrespective of Rc. In contrast, the flow is stable for Rb = −1, and we
obtain a range of Rc where a transition can be observed in flow stability. For non-reactive
flow, the flow is stable for Rb = −1 due to a monotonically decreasing viscosity profile. A
chemical reaction generates a product having some viscosity contrast with reactants and
the viscosity profile becomes non-monotonic with extremum. However, we obtain stable
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Figure 8. Dye concentration profile for (Da,Pe) = (100, 3000), (a) Rb = −1 and (b) Rb = 1 and various Rc
at final time t = 1.

displacement when Rc = 5,−3 and unstable when Rc = −8, 6. Evidently, reaction can
induce instability but it requires a critical viscosity contrast for instability. This supports
the findings presented by LSA in figure 3(b), suggesting that instability persists in reactive
flow if the equivalent non-reactive system is unstable. Furthermore, upon comparing
figure 8(a i,b i) and figure 4(b) obtained from NLS and LSA, respectively, we note that
instability predominantly develops in the leading zone when Rc < Rb. Similarly, instability
appears in the trailing zone when Rc > Rb, as evidenced by LSA in figure 4(d) and NLS
in figure 8(a v,b v). When Rc = Rb, the instability is not localized in any specific zone,
as shown by LSA in figure 4(d) for Rb = Rc = 0.5 and by NLS in figure 8(b iii) for
Rb = Rc = 1. Additionally, a comparison between figures 5(a) and 8(a) illustrates a stable
range of Rc in the (Rb,Rc) phase plane for a constant Rb in the corresponding stable
non-reactive system.

The experimental findings of Riolfo et al. (2012) confirm our results. They have
conducted experiments where a highly viscous fluid, polyacrylic acid (PAA), displaces
a less viscous fluid, sodium hydroxide (NaOH), leading to a reaction PAA + NaOH →
SPA + H2O, resulting in the formation of a highly viscous product, salt sodium
polyacrylate (SPA). In this scenario, the viscosity ratios were characterized by Rb =
ln(μB/μA) = −6.7685 and Rc = ln(μC/μA) = 1.495, with viscosities of PAA, NaOH
and SPA are 870 centipoise (cp), 1 cp and 3880 cp denoted as μA, μB and μC, respectively.
This value of Rb and Rc lies in Zone III in (Rb,Rc) phase plane. We have explained the
zones in Appendix C. The non-monotonic viscosity profile, exhibiting maxima within
the reaction zone, induces instability in the trailing zone as shown in figure 5(b) from
Riolfo et al. (2012). Further, they present another experiment where a highly viscous fluid,
SPA, displaces a less viscous fluid, an aqueous mixture of hydrogen chloride and glycerol
(HCl), resulting in a reaction SPA + HCl → PAA + NaCl and generating a less viscous
product (PAA). In this case, the viscosity ratios were Rb = −4.3745 and Rc = −5.0676,
with viscosities of 794 cp, 10 cp and 5 cp for PAA, HCl and SPA, respectively. This value
of Rb and Rc lies in Zone II in (Rb,Rc) phase plane as explained in Appendix C. Again,
the non-monotonic viscosity profile within the reaction zone led to instability and the
formation of fingering patterns due to the increment in viscosity at the leading zone, as
shown in figure 5(b) from Riolfo et al. (2012).
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The viscosity gradient at the trailing and leading zone is decided by Rc/2 and Rb − Rc/2,
respectively. The instability is anticipated to occur at the trailing zone if Rc > 0. Thus,
we determine the critical viscosity ratio at the leading zone so that the diffusion can
weaken the responsible forces due to convection in the trailing zone. In another way, we
find a critical Rb that can stabilize the flow. Similarly, if Rc < 0, then the flow can be
destabilized for increasing viscosity gradient, Rb − Rc/2 > 0 at the leading zone. Hence,
finding a critical Rb for a given Rc for the computational study will be convenient. To
determine instability, we measure the deformation of the interface by interfacial length
in the dye concentration (Mishra, Martin & De Wit 2008; Sharma et al. 2019). It is
calculated by I(t) = ∫

Ω
|∇z| dΩ . For stable displacement, interfacial length follows the

relation I0(t) = 2π

√
r2

0 + t/π (Sharma et al. 2020). Evidently, for a deformed interface,
the interfacial length increases, and if interfacial length, I(t) coincides with I0(t) for the
entire time domain, that parameter can be considered as stable displacement. We define
the flow as unstable when the relative difference in interfacial length is greater than zero,
that is, 
I = (I − I0)/I0 > 0.

A phase plane (Rb,Rc) is presented in figure 9 where the solid curves show critical
viscosity ratio (Rb,Rc) for instability for each Da and the region below the curve is
stable and above the curve is the unstable region. It can be observed that if reactants
have favourable viscosity contrast, i.e. Rb < 0.66, then two critical Rc can be determined
that destabilize the flow for a given reaction rate. It happens when a chemical reaction
introduces a non-monotonic viscosity profile and persuades convection and diffusion
to compete, as suggested by LSA results. We obtain a range of Rc when Rb < 0.66
corresponds to the stable flow. This range contracts for increasing Rb and vanishes when
Rb = Rc = 0.66. The viscosity contrast between reactants, Rb = 0.66, is the maximum
Rb for which flow is stable before the reaction and the reaction may alter the stability.
Moreover, if reactants have viscosity contrast, Rb > 0.66 and the stability will not be
changed by the reaction. It exhibits the limitations of the influence of reaction on the
stability of the system. It is evident in figure 9 that the region around Rc = 0.66 is stable
for all values of Da. This is the Da-independent critical regime that we have reported for
radial VF.

The value of viscosity ratio (Rb,Rc) = (0.66, 0.66) is of special interest for us. For
(Rb,Rc) = (0.66, 0.66), the viscosity profile is monotonic and identical to its inherent
viscosity profile in corresponding non-reactive situations. Now, we claim that the viscosity
ratio when Rb = 0.66 is also the critical viscosity ratio for the non-reactive fluids. For
non-reactive fluids, Sharma et al. (2020) have established a scaling relation between Péclet
number Pe and critical log-mobility ratio Rb numerically:

Rb = α(r0)Pe−β, α = 30(1 + 10r0). (4.2)

Here β lies under confidence bounds (0.52, 0.59) and critical parameters (Rb,Pe) lies on
the boundary that is given by Rb = α(r0)Pe−0.55. Since (4.2) is determined numerically
and has theoretical and experimental support, it provides a fair opportunity to compare
reactive displacement with the corresponding non-reactive displacement in the context of
stability. In all the simulations, we have considered Pe = 3000 and r0 = 0.075, if we put
the same value of Pe and r0 in (4.2), we obtain the critical Rb = 0.642. In addition, if
we find the range for this critical viscosity ratio in the 95 % confidence bound, we obtain
Rb ∈ (0.466, 0.817). The obtained critical viscosity Rb for the reactive case lies in the
range Rb ∈ (0.466, 0.817) which also contains the calculated viscosity ratio, Rb = 0.642
for the non-reactive displacement.
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Figure 9. The (Rb,Rc) phase plane for Pe = 3000, various Da along with Da → ∞. Inset: dye concentration
profile for Rb = 1, (i) Rc = −3, (ii) Rc = 1, (iii) Rc = 5 showing unstable displacement and (iv) Rb = Rc = 0
showing stable displacement in polar coordinates.

Though the viscosity profile is modified only when Rb /= Rc, thus the effect of
product viscosity Rc on stability can be compared along the line Rb = Rc whether
the reaction increases or decreases the viscosity of the system. The specific value
(Rb,Rc) = (0.66.0.66) distinguishes the stability behaviour of reactive and non-reactive
displacement. Furthermore, during the LSA analysis, we noticed an asymmetry in the
(Rb,Rc) phase plane along the line Rc = Rb. Despite having the same viscosity contrast
(|Rc − Rb|), perturbations exhibit a higher growth rate when Rc > Rb compared with the
opposite case, Rc < Rb as in figures 3(b) and 6(a). The critical viscosity contrast is greater
when the reaction decreases viscosity, i.e. Rc < Rb, than in the opposite case, Rc > Rb, if
a system is stable for the corresponding non-reactive case (Rc = Rb) as shown in figures 5
and 6(b). Similarly, in the (Rb,Rc) phase plane obtained from NLS, we observe asymmetry
along the line Rc = Rb. The critical Rb decreases more significantly when Rc > 0.66
compared with when Rc < 0.66. To visualize more about this asymmetry, we have plotted
a phase plane between Rc/2 and Rb − Rc/2 that shows viscosity contrast at trailing and
leading zone in figure 10(a). It can be observed that if the trailing front is stable, the
critical viscosity contrast for instability, Rb − Rc/2 is more than Rc/2 if the leading front
is stable. The asymmetry is a consequence of the spatially dependent base state velocity
profile. When Rc < 0.66, the instability appears at the leading zone due to steeper viscosity
contrast while the trailing zone stabilizes the flow. On the other hand, when Rc > 0.66, the
instability appears at the trailing zone for the same viscosity contrast at the unstable zone.
If we compare both Rc values for the same Rb maintaining the viscosity gradient |Rc − Rb|,
the driving force provided by convection is more efficient at the trailing than at the leading
zone. Consequently, the critical viscosity contrast to trigger instability at trailing zone
Rc/2 is less than the critical viscosity ratio, Rb − Rc/2, to trigger the instability at the
leading zone. Similar asymmetric behaviour is observed in Sharma et al. (2019). A higher
viscosity ratio is required for instability when the reaction produces a less viscous product
for Rb = 0 compared with when the product is highly viscous.
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Figure 10. (a) Phase plane between the viscosity ratio at trailing and leading zone, Rc/2 and Rb − Rc/2 for
Pe = 3000 and various Da. (b) The (Rb,Rc) phase plane for Pe = 3000, 1000 for Da → ∞. Here below the
curve is a stable region, and above the curve is an unstable region. Here the dashed lines correspond to the
non-reactive case Da = 0 for Pe = 3000 (blue) and Pe = 1000 (red).

4.1. Effect of Da and Pe (Da → ∞)
It is reported that the stable region exists for all moderate ranges of Da, and the width
of the interval of stable Rc decreases with Da when Rb = 0 (Sharma et al. 2019).
Interestingly, the stable region even exists for Da → ∞ when Rb = 0 (Verma et al. 2022).
When we increase Da, more product is formed that enhances the viscosity of the system as
in (2.3), leading to an enhanced viscosity contrast and a higher growth rate of perturbations
in the system as predicted by LSA and illustrated in figures 3(b), 5 and 6. Hence, the critical
viscosity ratio decreases for higher Da as shown in figures 5, 6(b) and 9. However, the
existence of the critical viscosity contrast is shown only for the particular case, Rb = 0. It
will be intriguing to examine whether that critical viscosity occurs or identify the range of
Rc that corresponds to stable displacements when Rb /= 0. To investigate the same, we have
performed simulations for a wide range of Da, including the limiting case Da → ∞. For
an instantaneous reaction, Da → ∞, the reaction front occurs in an infinitesimally small
region. This replicates an ideal situation where reactants are fully consumed at the reaction
front as soon as the reactants meet, i.e. a → 0, b → 0 at the reaction front. The concept
of the trailing zone and the leading zone is also based on this ideal situation Da → ∞. As
the trailing zone is only occupied by fluid A and C, and the leading zone is occupied by
fluid B and C, in order to perform simulations for Da → ∞, we rearrange our system of
governing equations as in Verma et al. (2022), Nagatsu & De Wit (2011) and Michioka &
Komori (2004) as follows:

∂h
∂t

+ u · ∇h = 1
Pe

∇2h, (4.3a)

(a, b, c) =
{
(0, 1 − 2h, h), h < 0.5,
(−1 + 2h, 0, 1 − h), h ≥ 0.5.

(4.3b)

In figure 9, we have plotted the critical (Rb,Rc) curves for various Da. The stable zone
in the (Rb,Rc) phase plane contracts for increasing Da but does not vanish even when
Da → ∞. It can be verified from a recent article (Kim et al. 2021) for the asymptotic limit
of Pe and Da. For Rb = 0, it is reported that the minimum viscosity contrast to induce
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the instability (|Rc|) is more, if the reaction generates a less viscous product (Rc < 0)
than a high viscous product (Rc > 0). Further, the stable region in the Da–Rc phase plane
along the line Rc = 0 becomes less symmetric with Da (Sharma et al. 2019). We observe
the same for the case when Rb /= 0. The stable region in the (Rb,Rc) phase plane becomes
asymmetric for increasing Da around the line Rc = Rb. In addition, if we consider Da = 0,
the stable region is obtained as Rb < 0.64, and the remaining region in the (Rb,Rc) phase
plane is an unstable zone. Further, the viscosity profile is monotonic in the neighbourhood
of Rb = Rc, and it is identical for each Da. Thus, the VF dynamics remain unchanged,
and for this particular viscosity, all (Rc,Rb) curves showing the critical viscosity contrast
are merged for various Da in the neighbourhood of Rb = Rc. This can be confirmed
by both LSA and NLS as shown in figures 7 and 9, respectively. Thus, the reaction
affects the stability of the flow, but the inherent non-reactive system equally contributes
to the instability. There exists a region in the (Rb,Rc) phase plane that is preserved and
unaffected by the reaction. This illustrates that the reaction is able to influence the stability
of the system and may destabilize the initially stable system, for some values of Rc only.

Further, it can be observed that if we increase the value of r0, it leads to weaker
convection even at the initial time (Sharma et al. 2020). Consequently, the critical viscosity
contrast required to trigger instability also increases for larger r0 as stated in (4.2), and this
holds for reactive fluids as well. In the phase plane (Rb,Rc) illustrated in figure 9, the
maximum critical value of Rb required to induce instability increases with the increment
of r0, following the relationship (4.2). Below this maximum value of Rb, the stable range
of Rc expands with an increase in r0 for each Rb.

Finally, we check the effect of Pe on the stability of the system for given other
parameters (Da,Rb,Rc). The Pe number definition suggests a tuning between the flow
rate and diffusion coefficient. In another way, it decides the competition between forces
due to convection and diffusion, and flow gets stabilized for decrements in Pe as diffusion
works as a stabilizing factor. It is already reported that the stable region in the Rc–Da
plane widens for decreasing Pe. However, the qualitative behaviour shown by the critical
Rc–Da curves remains preserved for varying Pe (Sharma et al. 2019). To understand
the effect of Pe on the VF dynamics when Rb /= 0, we have fixed Da by Da → ∞
and performed simulations for Pe = 3000, 1000. For Pe = 1000, the stable zone widens,
and critical (Rb,Rc) increases to trigger the instability as in figure 10(b). Also, we can
examine the critical viscosity ratio obtained in the case Rb = Rc for that VF dynamics gets
unaffected by chemical reaction for Pe = 1000. The critical viscosity ratio for non-reactive
displacements is found around Rb = Rc = 1.17 for Pe = 1000, is the same value as
computed from (4.2) for Pe = 1000 and r0.

5. Conclusion

Reactive displacements in a porous medium are encountered in several transport
phenomena that affect the productivity of the process, as the chemical reaction can alter
the physical properties at the fluid–fluid interface. The presented problem is motivated as
the generated product modifies the viscosity profile that affects the overall stability of the
system. In this manuscript, we address the stability of a reactive system A + B → C in a
porous medium subjected to VF instability, exploring a range of (Rb,Rc) through LSA. We
discuss how the product viscosity of the inherent system influences the temporal evolution
of the perturbations.

The LSA predicts that the modified viscosity contrast, i.e. Rc /= Rb stimulates the growth
rate of perturbations. This leads to an earlier onset of instability and a higher growth rate of
perturbations if the flow is already unstable without the reaction. These results agree with
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the experimental studies (Nagatsu et al. 2007, 2009) as the reaction enhances the instability
for radial flow. On the other hand, if the corresponding non-reactive displacement is stable,
such chemical reactions can be categorized into two parts based on product viscosity, Rc.
For a given reaction rate, Da, we can find a range of reaction types, Rc, including Rc = Rb,
which correspond to the stable flow. In such reactive displacement, the altered viscosity
profile is not enough to trigger instability. The system becomes unstable for the remaining
reaction types Rc. Another conclusion that can be drawn from the LSA is that the system
exhibits an early onset time and more amplified perturbations when induced by a high
viscous product generation rather than a less viscous product. Moreover, such reactive
displacements show a higher growth rate of perturbations if we increase Da. Meanwhile,
the stable range of Rc contracts if the corresponding non-reactive displacement is stable.
Also, some reactions exist where product viscosity is the same as the reactant, B, Rc = Rb,
and thus, the stability of the system remains unaltered after the reaction regardless of Da.

Further, we perform NLS to determine the critical viscosity ratio (Rb,Rc) exhibiting
instability in reactive displacement for a given Da and Pe. We provide sufficient data to
determine the stability of the reactive displacement. We present a (Rb,Rc) phase plane
separated by critical viscosity ratio for instability into the stable and unstable regions for
the entire range of Da and various Pe explored. The importance of each parameter in
determining the stability of the system is explained by the phase plane. The stable region in
the (Rb,Rc) phase plane reduces for increasing Da and Pe but never completely disappears.

Our findings contribute to understanding the interaction between chemical reactions
and VF dynamics. Further, the study has implications for various chemical-enhanced oil
recovery mechanisms to reduce residual oil and increase oil production in reservoirs.
Strategies such as controlling the mobility ratio (Green et al. 1998; Weidong et al.
2017; Sun et al. 2019), reducing interfacial tension (Sedaghat et al. 2016) and enhancing
miscibility between displaced and displacing fluids (Jiang, James & Mojarab 2020) are
fundamental mechanisms in enhanced oil recovery processes (Fani et al. 2022). Moreover,
the reactive VF can help improve the sweep efficiency of injected CO2, ensuring that
it contacts more of the reservoir rock and displaces more of the resident fluids (e.g. oil
or brine) (Sainz-Garcia et al. 2017; Lei & Luo 2021). This can lead to more effective
CO2 storage and reduced residual trapping of CO2. In this regard, we establish a relation
between critical viscosity ratios Rb and Rc to trigger the instability. Further, by adjusting
the reaction rate Da and flow rate Pe, it is possible to achieve an optimum mixing
depending on whether the flow is stable. Moreover, if the flow is stable, a transition
in stability can be obtained by varying Da and Pe as per the application. For instance,
instability is a suitable choice to increase fluid miscibility in chemical flooding during
enhanced oil recovery.
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Stability analysis of reactive viscous fingering

Flow inputs k ( s−1 ) a0 (mole m−3 ) Q (m2 s−1) r0 (m) Da = r2
0ka0/Q

Values [0.011, 0.049] [0.004, 0.012] [0.64, 770] × 10−9 0.002 [0.0003, 3.675]

Table 2. The parameters and corresponding values used in the experimental study from Nagatsu et al. (2009).

Appendix A. Choice of characteristic length scale

For the non-dimensionalization of the spatial vector, x, we can utilize either
√
κ ,
√

Qtf or
r0. Despite several choices, determining an appropriate length scale has been a challenge.
Previous works by Tan & Homsy (1987) utilized

√
κ as a length scale due to the absence

of an explicit length scale for non-reactive fluids. Further, if we consider r0, a0 and μ0
as the characteristic scale for length, concentration and viscosity, the quantities can be
non-dimensionalized as

x = x̃
r0
, u = ũ

Q/r0
, t = t̃

r2
0/Q

, (A1a–c)

(a, b, c) = (ã, b̃, c̃)
a0

, μ = μ̃

μ0
, p = p̃

Qμ0/κ
, (A2a–c)

where r0 is the initial radius of a circular region filled by fluid A. Following this
non-dimensionalization, the definition of Péclet number (Pe) remains the same as
mentioned in the previous studies (Tan & Homsy 1987; Nagatsu et al. 2007; Sharma et al.
2019), i.e. Pe = Q/D. While the Da formulation will be altered as

Da = hydrodynamic time scale
reactive time scale

= r2
0/Q

1/ka0
. (A3)

If we substitute the values from an experimental study performed by Nagatsu et al.
(2009) and determine the range of Da, it varies between 0.0003 to 3.675 (as given in
table 2). However, Nagatsu et al. (2009) obtained an extensive range of Da, varied from
1.4 to 64. Clearly, the Da range we obtain from this non-dimensionalization does not
correspond with the findings of Nagatsu et al. (2009). Hence, It is apparent that r0 may
not be an appropriate selection for a characteristic length scale for such a reactive flow.

In our study, we define the length scale as
√

Qtf (Sharma et al. 2019). This choice
offers practical advantages as it enables us to confine our temporal domain, given that
the fingering pattern develops in the diffusive regime in later stages, contingent upon the
Péclet number (Pe) (Chui et al. 2015; Verma et al. 2023).

Appendix B. Perturbation profile for a′, b′ and z′

We have plotted the density plot of perturbation for all the perturbed concentrations, a′,
b′ and z′ in figure 11. Given that the concentrations of base state reactants A and B are
localized in the downstream and upstream mixing zones, respectively. In contrast, the
perturbed z′ remains unlocalized in any mixing zone, resembling the base state profile.
Additionally, we observe a quadruple structure for the perturbed concentration c′ in
figure 4, influenced by the perturbed concentrations of reactants b′ and a′, as described
in (3.3).
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Figure 11. Cropped plots of perturbed concentration of A, B and dye for Da = 100, Pe = 3000, Rb = 0.5 and
Rc = 0.5 at final time t = 1 in polar coordinates. Here, (a) 104 × a′, (b) 104 × b′ and (c) 104 × z′.
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Figure 12. The (Rb,Rc) phase plane for Pe = 3000 for Da → ∞.

Appendix C. Stable and unstable zones in (Rb, Rc) phase plane

For a given Pe and Da, the (Rb,Rc) phase plane can be divided into four zones as described
below and shown in figure 12. The flow is stable below the solid curve and is denoted as
Zone IV. While above the solid curve, the flow becomes unstable and can be divided
into three parts as follows. Here, above the dashed lines (Zone I) is the zone where flow
remains unstable with or without reaction. Further, the region confined between solid
curve and dashed lines (Zones II and III) is also an unstable region. In Zone II, reactions
induce instability by decreasing the viscosity, whereas in Zone III, instability is induced
by reaction that increases viscosity.

REFERENCES

BABAEI, M. & ISLAM, A. 2018 Convective-reactive CO2 dissolution in aquifers with mass transfer with
immobile water. Water Resour. Res. 54 (11), 9585–9604.

BEN, Y., DEMEKHIN, E.A. & CHANG, H.-C. 2002 A spectral theory for small-amplitude miscible fingering.
Phys. Fluids 14 (3), 999–1010.

BISCHOFBERGER, I., RAMACHANDRAN, R. & NAGEL, S.R. 2014 Fingering versus stability in the limit of
zero interfacial tension. Nat. Commun. 5 (1), 1–6.

1000 A72-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.544


Stability analysis of reactive viscous fingering

BRAU, F., SCHUSZTER, G. & DE WIT, A. 2017 Flow control of A + B → C fronts by radial injection. Phys.
Rev. Lett. 118 (13), 134101.

CATCHPOOLE, H.J., SHALLIKER, R.A., DENNIS, G.R. & GUIOCHON, G. 2006 Visualising the onset of
viscous fingering in chromatography columns. J. Chromatogr. A 1117 (2), 137–145.

CHEN, C.Y., HUANG, C.W., GADÊLHA, H. & MIRANDA, J.A. 2008 Radial viscous fingering in miscible
hele-shaw flows: a numerical study. Phys. Rev. E 78 (1), 016306.

CHEN, J.-D. 1987 Radial viscous fingering patterns in Hele-Shaw cells. Exp. Fluids 5 (6), 363–371.
CHEN, Y.-F., FANG, S., WU, D.-S. & HU, R. 2017 Visualizing and quantifying the crossover from capillary

fingering to viscous fingering in a rough fracture. Water Resour. Res. 53 (9), 7756–7772.
CHUI, J.Y.Y., DE ANNA, P. & JUANES, R. 2015 Interface evolution during radial miscible viscous fingering.

Phys. Rev. E 92 (4), 041003.
CORREDOR, L., MAINI, B. & HUSEIN, M. 2018 Improving polymer flooding by addition of surface modified

nanoparticles. In SPE Asia Pacific Oil and Gas Conference and Exhibition. OnePetro.
CUBAUD, T. & MASON, T.G. 2012 Interacting viscous instabilities in microfluidic systems. Soft Matt. 8 (41),

10573–10582.
DANIEL, D., TILTON, N. & RIAZ, A. 2013 Optimal perturbations of gravitationally unstable, transient

boundary layers in porous media. J. Fluid Mech. 727, 456–487.
DE WIT, A. 2020 Chemo-hydrodynamic patterns and instabilities. Annu. Rev. Fluid Mech. 52, 531–555.
DE WIT, A. & HOMSY, G.M. 1999 Viscous fingering in reaction-diffusion systems. J. Chem. Phys. 110 (17),

8663–8675.
DELANNOY, E., TELLIER, G., CHOLET, J., LEROY, A.M., TREIZEBRÉ, A. & SONCIN, F. 2022

Multi-layered human blood vessels-on-chip design using double viscous finger patterning. Biomedicines
10 (4), 797.

DENTZ, M., LE BORGNE, T., ENGLERT, A. & BIJELJIC, B. 2011 Mixing, spreading and reaction in
heterogeneous media: a brief review. J. Contam. Hydrol. 120–121, 1–17.

DONG, R., WHEELER, M.F., MA, K. & SU, H. 2020 A 3D acid transport model for acid fracturing treatments
with viscous fingering. In SPE Annual Technical Conference and Exhibition. OnePetro.

FAKHARI, A., LI, Y., BOLSTER, D. & CHRISTENSEN, K.T. 2018 A phase-field lattice Boltzmann model
for simulating multiphase flows in porous media: application and comparison to experiments of CO2
sequestration at pore scale. Adv. Water Resour. 114, 119–134.

FANI, M., POURAFSHARY, P., MOSTAGHIMI, P. & MOSAVAT, N. 2022 Application of microfluidics in
chemical enhanced oil recovery: a review. Fuel 315, 123225.

GÉRARD, T. & DE WIT, A. 2009 Miscible viscous fingering induced by a simple A + B → C chemical
reaction. Phys. Rev. E 79 (1), 016308.

GREEN, D.W., WILLHITE, G.P., et al. 1998 Enhanced Oil Recovery, vol. 6. Henry L. Doherty Memorial Fund
of AIME, Society of Petroleum Engineers.

HEJAZI, S.H., TREVELYAN, P.M.J., AZAIEZ, J. & DE WIT, A. 2010 Viscous fingering of a miscible reactive
A + B → C interface: a linear stability analysis. J. Fluid Mech. 652, 501–528.

HOTA, T.K. & MISHRA, M. 2018 Non-modal stability analysis of miscible viscous fingering with
non-monotonic viscosity profiles. J. Fluid Mech. 856, 552–579.

HOTA, T.K., PRAMANIK, S. & MISHRA, M. 2015a Nonmodal linear stability analysis of miscible viscous
fingering in porous media. Phys. Rev. E 92 (5), 053007.

HOTA, T.K., PRAMANIK, S. & MISHRA, M. 2015b Onset of fingering instability in a finite slice of adsorbed
solute. Phys. Rev. E 92 (2), 023013.

HUPPERT, H.E. & NEUFELD, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev.
Fluid Mech. 46, 255–272.

JIANG, J., JAMES, S.C. & MOJARAB, M. 2020 A multiphase, multicomponent reservoir-simulation
framework for miscible gas and steam coinjection. SPE Res. Eval. Engng 23 (02), 551–565.

JIMÉNEZ-MARTÍNEZ, J., PORTER, M.L., HYMAN, J.D., CAREY, J.W. & VISWANATHAN, H.S. 2016
Mixing in a three-phase system: enhanced production of oil-wet reservoirs by CO2 injection. Geophys.
Res. Lett. 43 (1), 196–205.

KIM, M.C., PRAMANIK, S., SHARMA, V. & MISHRA, M. 2021 Unstable miscible displacements in radial
flow with chemical reactions. J. Fluid Mech. 917, A25.

LEI, T. & LUO, K.H. 2021 Pore-scale simulation of miscible viscous fingering with dissolution reaction in
porous media. Phys. Fluids 33 (3), 034134.

LIU, F., LU, P., ZHU, C. & XIAO, Y. 2011 Coupled reactive flow and transport modeling of CO2 sequestration
in the Mt. Simon sandstone formation, Midwest USA. Intl J. Greenh. Gas Control 5 (2), 294–307.

MAHARDIKA, M.A., SHE, Y., SHORI, F., PATMONOAJI, A., MATSUSHITA, S., SUEKANE, T. &
NAGATSU, Y. 2021 Enhanced heavy oil recovery by calcium hydroxide flooding with the production

1000 A72-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.544


P. Verma, V. Sharma, C.-Y. Chen and M. Mishra

of viscoelastic materials: study with 3-D x-ray tomography and 2-D glass micromodels. Energy Fuels 35
(14), 11210–11222.

MAINSTER, M.A. 1990 The fractal properties of retinal vessels: embryological and clinical implications. Eye
4 (1), 235–241.

MATAR, O.K. & TROIAN, S.M. 1999 Spreading of a surfactant monolayer on a thin liquid film: onset and
evolution of digitated structures. Chaos 9 (1), 141–153.

MATSUSHITA, M. & FUJIKAWA, H. 1990 Diffusion-limited growth in bacterial colony formation. Physica A
168 (1), 498–506.

MAYER, E.H., BERG, R.L., CARMICHAEL, J.D. & WEINBRANDT, R.M. 1983 Alkaline injection for
enhanced oil recovery-a status report. J. Petrol. Technol. 35 (01), 209–221.

MICHIOKA, T. & KOMORI, S. 2004 Large-eddy simulation of a turbulent reacting liquid flow. AIChE 50 (11),
2705–2720.

MISHRA, M., MARTIN, M. & DE WIT, A. 2008 Differences in miscible viscous fingering of finite width
slices with positive or negative log-mobility ratio. Phys. Rev. E 78 (6), 066306.

MUGGERIDGE, A., COCKIN, A., WEBB, K., FRAMPTON, H., COLLINS, I., MOULDS, T. & SALINO, P.
2014 Recovery rates, enhanced oil recovery and technological limits. Phil. Trans. R. Soc. A 372 (2006),
20120320.

NAGATSU, Y. & DE WIT, A. 2011 Viscous fingering of a miscible reactive A + B → C interface for an
infinitely fast chemical reaction: nonlinear simulations. Phys. Fluids 23 (4), 043103.

NAGATSU, Y., KONDO, Y., KATO, Y. & TADA, Y. 2009 Effects of moderate Damköhler number on miscible
viscous fingering involving viscosity decrease due to a chemical reaction. J. Fluid Mech. 625, 97–104.

NAGATSU, Y., MATSUDA, K., KATO, Y. & TADA, Y. 2007 Experimental study on miscible viscous fingering
involving viscosity changes induced by variations in chemical species concentrations due to chemical
reactions. J. Fluid Mech. 571, 475–493.

NAGATSU, Y. & UEDA, T. 2001 Effects of reactant concentrations on reactive miscible viscous fingering.
AIChE 47 (8), 1711–1720.

NAGATSU, Y. & UEDA, T. 2003 Effects of finger-growth velocity on reactive miscible viscous fingering.
AIChE J. 49 (3), 789–792.

PATERSON, L. 1985 Fingering with miscible fluids in a Hele-Shaw cell. Phys. Fluids 28 (1), 26–30.
PEI, H., ZHANG, G., GE, J., TANG, M. & ZHENG, Y. 2012 Comparative effectiveness of alkaline flooding

and alkaline–surfactant flooding for improved heavy-oil recovery. Energy Fuels 26 (5), 2911–2919.
POJMAN, J.A. 2010 Frontal Polymerization. Wiley-VCH Verlag GmbH & Co. KGaA.
PRAMANIK, S., HOTA, T.K. & MISHRA, M. 2015 Influence of viscosity contrast on buoyantly unstable

miscible fluids in porous media. J. Fluid Mech. 780, 388–406.
RANA, C., PRAMANIK, S., MARTIN, M., DE WIT, A. & MISHRA, M. 2019 Influence of langmuir adsorption

and viscous fingering on transport of finite size samples in porous media. Phys. Rev. Fluids 4 (10), 104001.
RICHARDSON, J.P. & NICKLOW, J.W. 2002 In situ permeable reactive barriers for groundwater

contamination. Soil Sediment Contam. 11 (2), 241–268.
RIOLFO, L.A., NAGATSU, Y., IWATA, S., MAES, R., TREVELYAN, P.M.J. & DE WIT, A. 2012 Experimental

evidence of reaction-driven miscible viscous fingering. Phys. Rev. E 85 (1), 015304.
SAINZ-GARCIA, A., ABARCA, E., NARDI, A., GRANDIA, F. & OELKERS, E.H. 2017 Convective mixing

fingers and chemistry interaction in carbon storage. Intl J. Greenh. Gas Control 58, 52–61.
SCHMID, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39 (1), 129–162.
SEDAGHAT, M., MOHAMMADZADEH, O., KORD, S. & CHATZIS, I. 2016 Heavy oil recovery using asp

flooding: a pore-level experimental study in fractured five-spot micromodels. Can. J. Chem. Engng 94 (4),
779–791.

SHALLIKER, R.A., CATCHPOOLE, H.J., DENNIS, G.R. & GUIOCHON, G. 2007 Visualising viscous
fingering in chromatography columns: high viscosity solute plug. J. Chromatogr. A 1142 (1), 48–55.

SHARMA, V., CHEN, C.-Y. & MISHRA, M. 2023 A linear stability analysis of instabilities with reactive flows
in porous medium. Phys. Fluids 35 (6), 064105.

SHARMA, V., NAND, S., PRAMANIK, S., CHEN, C.-Y. & MISHRA, M. 2020 Control of radial miscible
viscous fingering. J. Fluid Mech. 884, A16.

SHARMA, V., PRAMANIK, S., CHEN, C.-Y. & MISHRA, M. 2019 A numerical study on reaction-induced
radial fingering instability. J. Fluid Mech. 862, 624–638.

SHEN, S.F. 1961 Some considerations on the laminar stability of time-dependent basic flows. Aerosp. Sci. J.
28 (5), 397–404.

STREITBERGER, K.-J., LILAJ, L., SCHRANK, F., BRAUN, J., HOFFMANN, K.-T., REISS-ZIMMERMANN, M.,
KÄS, J.A. & SACK, I. 2020 How tissue fluidity influences brain tumor progression. Proc. Natl Acad. Sci.
117 (1), 128–134.

1000 A72-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.544


Stability analysis of reactive viscous fingering

SUN, Z., WU, X., KANG, X., LU, X., LI, Q., JIANG, W. & ZHANG, J. 2019 Comparison of oil displacement
mechanisms and performances between continuous and dispersed phase flooding agents. Pet. Explor. Dev.
46 (1), 121–129.

TAN, C.T. & HOMSY, G.M. 1986 Stability of miscible displacements in porous media: rectilinear flow. Phys.
Fluids 29 (11), 3549–3556.

TAN, C.T. & HOMSY, G.M. 1987 Stability of miscible displacements in porous media: radial source flow.
Phys. Fluids 30 (5), 1239–1245.

TILTON, N., DANIEL, D. & RIAZ, A. 2013 The initial transient period of gravitationally unstable diffusive
boundary layers developing in porous media. Phys. Fluids 25 (9), 092107.

TREFETHEN, L.N., TREFETHEN, A.E., REDDY, S.C. & DRISCOLL, T.A. 1993 Hydrodynamic stability
without eigenvalues. Science 261 (5121), 578–584.

VERMA, P., SHARMA, V. & MISHRA, M. 2022 Radial viscous fingering induced by an infinitely fast chemical
reaction. J. Fluid Mech. 945, A19.

VERMA, P., SHARMA, V. & MISHRA, M. 2023 Understanding stable/unstable miscible A + B → C reaction
front and mixing in porous medium. Phys. Fluids 35, 044102.

VIDEBÆK, T.E. & NAGEL, S.R. 2019 Diffusion-driven transition between two regimes of viscous fingering.
Phys. Rev. Fluids 4 (3), 033902.

WANG, W., ZHANG, C., PATMONOAJI, A., HU, Y., MATSUSHITA, S., SUEKANE, T. & NAGATSU, Y. 2021
Effect of gas generation by chemical reaction on viscous fingering in a Hele-Shaw cell. Phys. Fluids 33 (9),
093104.

WEIDONG, L., LITAO, L., GUANGZHI, L., LUO, Z., YUNYUN, W. & JIANG, W. 2017 Experimental study on
the mechanism of enhancing oil recovery by polymer–surfactant binary flooding. Pet. Explor. Dev. 44 (4),
636–643.

1000 A72-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.544

	1 Introduction
	2 Mathematical formulation
	3 Linear stability analysis
	3.1 Linearized perturbed equations
	3.2 Initial value calculations
	3.3 Transient energy growth
	3.3.1 Effect of Rc

	3.4 Effect of Da

	4 Nonlinear simulations
	4.1 Effect of Da and Pe (Da)

	5 Conclusion
	Appendix A. Choice of characteristic length scale
	Appendix B. Perturbation profile for a', b' and z'
	Appendix C. Stable and unstable zones in (Rb,Rc) phase plane
	References

