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CATEGORICAL MODELS OF SYNTACTIC CONTROL
OF INTERFERENCE REVISITED, REVISITED

GUY MCCUSKER

Abstract

The question of what categorical structure is required to give
semantics to O’Hearn et al.’s type system Syntactic Control
of Interference Revisited (SCIR) is considered. The previously
proposed notion of bireflective model is rejected as being too
restrictive to accommodate important concrete models based
on game semantics and object spaces; furthermore it is argued
that the existing proof-sketch of the important property of
coherence for these models is incorrect. A new, more general
notion of model is proposed and the coherence property proved.

1. Introduction

Interference lies at the heart of imperative programming. Two program phrases are
said to interfere if the execution of one of them may have an impact on the later exe-
cution of another. Of course, this is the very purpose of the assignment statement:
to have impact on the result of later dereferencing of the assigned variable. However,
when interfering phrases are combined in more sophisticated ways, such as through
procedure calls, reasoning about programs becomes difficult. Indeed, the rule for
procedure calls in Reynolds’s Specification Logic for Algol-like languages [11] has a
side condition requiring that the procedure and its arguments are non-interfering.

It is therefore important to be aware of which program phrases potentially in-
terfere and which do not. The simplest source of interference is through shared
identifiers: if two phrases both refer to program variable x, there is a good chance
they interfere. However, because of aliasing, shared identifiers are not the only
source of interference: program phrases with completely disjoint sets of free identi-
fiers may nonetheless interfere if those identifiers become bound to some common
resource. In Syntactic Control of Interference [10], Reynolds proposes a discipline
of programming in a higher-order imperative language which eliminates this diffi-
culty, reducing interference once again to the presence of shared identifiers. This
renders all interference syntactically obvious, and thus allows one to use the rea-
soning principle from Specification Logic more readily.

The key idea behind the Syntactic Control of Interference (SCI) system is to
eliminate aliasing at source. In the Algol-like language under consideration, the
only way to bind an identifier to a pre-existing resource is through a procedure call:
(λx.M)N . The only other binding construct in the language is the allocation of
fresh local variables, which by definition cannot introduce aliasing.
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In the program phrase above, the identifier x in M becomes bound to N . Suppose
now that M and N have a free identifier y in common. After this binding takes
place, x and y within M may interfere, so prior reasoning about M which may have
assumed x and y to be non-interfering resources is rendered incorrect.

Reynolds eliminates this difficulty by insisting that procedures and their argu-
ments should be non-interfering. Thus it is safe to assume that distinct identifiers
are non-interfering, and therefore it is easy to establish the non-interference prop-
erty! In modern terms, this restriction amounts to the use of a multiplicative typing
rule for application:

Γ � M : A → B ∆ � N : A

Γ, ∆ � MN : B
.

Here the contexts (set of free variables) of the function and its argument, Γ and ∆,
are required to be disjoint.

An important extension to these ideas, also proposed by Reynolds, is the recog-
nition of passive types. Certain types contain only phrases which have no effect on
the store; for example, the type of arithmetic expressions. Identifiers within such
phrases may be freely shared without risk of interference. Reynolds described this
relaxed system, but noted that the condition on programs to be admitted in the
system was not closed under reduction. Though this poses no problems in practice,
it does lead to a troubling situation: a syntactically safe program can reduce to an
apparently unsafe one, although no harm will in fact be done.

In Syntactic Control of Interference Revisited [8], O’Hearn et al. gave a type
system, SCIR, which incorporates all of Reynolds’s ideas and does not suffer from
the difficulties with subject reduction discovered by Reynolds. The key innovation
is to use structured contexts: the judgements of the system divide contexts into two
zones, one for identifiers which are used only passively in the term being typed, the
other for arbitrary identifiers. This setup is similar to that of Barber’s DILL [1].
They also proposed a notion of categorical model for the system, bireflective models,
and sketched the proof of an important correctness result for such models, coher-
ence. A functor category model was given as an example of this structure. Yang and
Huang have studied the question of type inference in the SCIR system [15], building
on previous work for the original SCI system [5]; and the categorical properties of
bireflective models have been studied by Freyd et al. [4, 3].

The notion of bireflective model is quite restrictive. In particular, bireflectivity
forces certain computationally unnatural elements to exist in the model, and renders
the property of definability (every element of the model being the denotation of some
program phrase) unattainable (see [14] for a proof). Moreover, two new models of
the SCIR type system have been discovered which do not quite fit the definition
of bireflective model: Reddy’s object-spaces model [9] and a model based on game
semantics [14]. Swarup, Reddy and Ireland have developed a related type system,
Imperative Lambda-Calculus Revisited (ILCR), and given a domain-theoretic model
which is not bireflective [12, 13].

Additionally, the sketched proof of coherence for bireflective models of SCIR
given in the original paper [8] appears to suffer from a couple of technical flaws,
which we outline in Section 4 below. Reddy has indicated in a personal communica-
tion that he believes the problem of coherence for SCIR and ILCR is open, despite
the proof sketches given in the literature.
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This paper addresses both of these problems together. We present a generaliza-
tion of the notion of bireflective model, obtained by weakening some of the condi-
tions on such models: instead of asking for a bireflection we merely demand a re-
flection and a coreflection. (Some categorical properties of this kind of structure are
studied in [2].) This setup is flexible enough to incorporate the new, non-bireflective
models mentioned above, and subsumes the bireflective case. We go on to give a
detailed proof of coherence for this new notion of model, subject to one additional
constraint, which is enjoyed by all bireflective models as well as the games and
object-spaces models.

2. The SCIR type system

The types of the language are given by the grammar

A ::= γ | A → A | A × A | PA

where γ ranges over a given set of ground types. Among these types, some are
termed passive types. The passive types are those generated by the grammar

X ::= PA | X × X | A → X.

We will use A, B, C, . . . as metavariables for arbitrary types, and X, Y , and Z for
passive types.

The intuition behind passive types is that they contain only phrases which have
no effect on the store. These types form an exponential ideal: since the only way to
use a function is to apply it, if the return type of a function is passive, the function
itself must be passive.

The P constructor allows us to create a passive type from any other type. In-
tuitively, PA contains certain phrases of type A which happen not to affect the
store. Our presentation of the type system generalizes the original in admitting
the P operation on all types: the original SCIR contained only a ‘passive function
space’ construct, corresponding to types of the form P (A → B) in our system. Our
generalization is harmless and can be encoded in the original system with some
syntactic sugar; including the P operation directly has the advantage of bringing
the language slightly closer to its categorical model.

The terms of the language are given by the grammar

M ::= x | λx : A.M | MM | 〈M, M〉 | π1M | π2M | prom(M) | der(M) | k
where x ranges over a countable set of variables and k over a specified set of
constants. We assume each constant k is associated with a type Ak.

The type system is given by an inductively defined set of judgements of the form

Γ | ∆ � M : A.

Here Γ and ∆ are contexts, that is to say, lists of identifier-type pairs written as
x : B for example, with each identifier appearing at most once in Γ, ∆; M is a term;
and A is a type. A judgement such as this means that term M has type A, with free
identifiers drawn from Γ and ∆, and that the identifiers in Γ are used only inside
passive subterms.

The rules defining the type system are as follows.
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Variable

− | x : A � x : A

Functions
Γ | ∆, x : A � M : B

Γ | ∆ � λx : A.M : A → B

Γ1 | ∆1 � M : A → B Γ2 | ∆2 � N : A

Γ1, Γ2 | ∆1, ∆2 � MN : B

Products
Γ | ∆ � M : A Γ | ∆ � N : B

Γ | ∆ � 〈M, N〉 : A × B

Γ | ∆ � M : A × B

Γ | ∆ � π1M : A

Γ | ∆ � M : A × B

Γ | ∆ � π2M : B

Permeability rules
Γ, x : A | ∆ � M : B

Γ | ∆, x : A � M : B

Γ | ∆, x : A � M : X
X passive

Γ, x : A | ∆ � M : X

Promotion and dereliction
Γ | − � M : A

Γ | − � prom(M) : PA

Γ | ∆ � M : PA

Γ | ∆ � der(M) : A

Weakening
Γ | ∆ � M : A

Γ ⊆ Γ′, ∆ ⊆ ∆′
Γ′ | ∆′ � M : A

Contraction
Γ, x : A, y : A | ∆ � M : B

Γ, x : A | ∆ � M [x/y] : B

Exchange
Γ | ∆ � M : A

Γ′ a permutation of Γ, ∆′ a permutation of ∆
Γ′ | ∆′ � M : A

Constants

− | − � k : Ak
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The way contexts are combined means that in a function application MN , M
and N do not have identifers in common, whereas in a pair 〈M, N〉 they may.
Contraction is allowed in the passive zone only, so passively used identifiers may be
shared. A term containing no actively used identifiers can be promoted to a passive
type; such a term can then be derelicted back to its original type for later use.

The permeability rules are central to the system. The first, which we call activa-
tion, allows the type system to forget the information that an identifier is passively
used. The second states that inside a term of passive type, all identifiers may be
deemed passively used.

2.1. An illustrative language
O’Hearn et al. describe an SCIR-based language, that is to say, a collection

of base types and constants, which illustrates the ideas behind the system. The
language is essentially an extension of Reynolds’s Idealized Algol.

The base types are exp, the type of arithmetic expressions; com, the type of com-
mands which affect the store and return no result; and var, the type of assignable
variables which store numerical values.

Constants include:
• numerals and arithmetic operations: e.g. 3 : Pexp and + : Pexp × Pexp →

Pexp. Note the use of the P constructor to ensure that arithmetic expressions
do not affect the store.

• basic imperative constructs: e.g. assign : var× Pexp → com for assignment;
assign〈x, 4〉 would more commonly be written as x := 4. To look up a value
stored in a variable we have a constant deref : var → Pexp. Further constants
provide for sequential composition of commands (seq : com × com → com),
while-loops etc.

• local variable allocation: new : (var → com) → com. The idea here is that
new(λx.C) allocates a fresh variable, binds x to that variable, executes the
command C, and finally deallocates the variable.

• block expressions: do : P (var → com) → Pexp. The intuition is that
do(prom(λx.C)) allocates a fresh variable, binds x to it, executes C, and then
returns the final value of x as a result. The P constructor on the type of the
argument ensures that the command C has no effect on the store, except per-
haps on x, so that the resulting expression is side-effect-free and can be given
the passive type Pexp. For instance, one could write the factorial function as
follows.

λa : Pexp.do(prom(λx.new(λy. y := a;
x := 1;
while(!y > 1)

x :=!x×!y;
y :=!y − 1; ))

Despite making crucial use of the imperative constants in the illustrative lan-
guage, this term has the purely passive type Pexp → Pexp. The games model
of this illustrative language [14] demonstrates that the passive sublanguage
is purely functional: it has the same denotational semantics as the Hyland–
Ong fully abstract model of PCF [6]. Thus the block expression allows us to
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write purely functional programs in an imperative fashion. The type system
guarantees that the use of state made by passively-typed programs is com-
pletely encapsulated, in a manner quite different from, for instance, Haskell’s
monad-based approach [7].

3. Modelling SCIR categorically

The idea behind our categorical model is the same as that in [8]: the passive
types form a full subcategory of the category used to model the language, and the
inclusion functor has both left and right adjoints which allow us to interpret the
novel typing rules of promotion, dereliction and permeability.

We briefly illustrate the key ideas in this interpretation. Let C be our base
category, and P the full subcategory of ‘passive type objects’, with inclusion functor

J : P ↪→ C

having left adjoint S and right adjoint P :

S � J � P.

A judgement x : A | y : B � M : C will be interpreted as a map

JSA ⊗ B → C

in C, and the type constructor P will be interpreted using the functor JP .
Thus a judgement like x : A | − � M : B with no actively-used identifiers will be

interpreted as a map JSA → B. Since J � P , such maps are in 1-1 correspondence
with maps SA → PB and since J is full and faithful, these are in 1-1 correspondence
with maps JSA → JPB. This allows us to interpret the promotion rule, while the
counit ε′ : JP → Id of the adjunction J � P gives rise to an interpretation of
dereliction.

For the permeability rules, note that a judgement

− | x : A � M : X

where X is passive will be interpreted as a map A → JX ′ for some object X ′ in
the passive subcategory. Passing across the adjunction S � J and using the fullness
of the embedding J , these maps are in 1-1 correspondence with maps JSA → JX ′

which interpret judegements of the form

x : A | − � M : X

thus allowing us to interpret passification. The activation rule is handled by com-
position with the unit η : Id → JS of the adjunction S � J .

In [8], these ideas are taken further: it is insisted that S and P be the same
functor, giving rise to the notion of bireflective model. However, this notion is overly
restrictive, and indeed forces models to contain certain unnecessary elements. For
instance, the block-expression constant do from the illustrative language should
correspond to a map

JP (var → com) → JPexp.

Since J is full, such maps are in correspondence with maps

P (var → com) → Pexp

in P.
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If P = S, we can now pass across the adjunction S � J to see that these maps
are in 1-1 correspondence with maps

(var → com) → JPexp.

That is to say, the P constructor on the argument type of do can be removed. But
our intuition is that it is essential to use the P constructor there, in order to prevent
the creation of terms of type Pexp which have impact on the store. Thus the notion
of bireflectivity introduces some counterintuitive degeneracy into the models.

Indeed, the work of Wall [14] shows that no bireflective model of the illustrative
language can possess the property of definability, which asks that every (finite)
element of the model be the denotation of some term. This is a serious obstacle
if one wants to build a fully abstract model, for example, since full abstraction
typically relies on some sort of definability result.

To counter these difficulties, we will not insist that the left and right adjoints
are the same functor. This gives rise to a more flexible class of models, without
the problems mentioned above. Moreover, two more recently discovered models of
SCIR, which are not bireflective models, do fit into our generalized setting: the
game-theoretical model of [14] and Reddy’s event-based model [9]; as does the
imperative-domains model of ILCR [12].

3.1. Definition of a categorical model

We ask for a symmetric monoidal category (C,⊗, I, α, ρ, symm), with finite prod-
ucts written as × for the binary product and 1 for the terminal. To interpret the
passive types, we ask for a full subcategory P of C with inclusion functor

J : P ↪→ C

having left adjoint S and right adjoint P :

S � J � P.

We write the unit and counit of S � J as η and ε, and use η′ and ε′ for the unit
and counit of J � P .

The following are standard.

Lemma 1. Each component εX : SJX → X of the counit of the adjunction S � J
is an isomorphism. As a corollary, each component ηJX : JX → JSJX of the unit
of this adjunction is also an isomorphism, and ηJSA = JSηA : JSA → JSJSA for
all objects A of C.

Dually, each component η′
X : X → PJX of the unit of the adjunction J � P is

an isomorphism, as is each ε′JX : JPJX → JX, and ε′JPA = JPε′A.

Proof. Since J is full and faithful, it induces a natural isomorphism P(X,−) ∼=
C(JX, J−) for any passive object X. The adjuction J � S induces a natural iso-
morphism C(JX, J−) ∼= P(SJX,−). Chasing idX across this chain of natural iso-
morphisms gives εX , so by the Yoneda lemma the composite natural isomorphism
P(X,−) ∼= P(SJX,−) is P(εX ,−), and therefore εX is itself an isomorphism. Since
ηJX ; JεX = idJX by adjuction laws, ηJX is an isomorphism too.
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Finally we have that

JSηA; JεSA = J(SηA; εSA)
= J(idSA) by adjunction laws
= idJSA

and also ηJSA; JεSA = idJSA. Since JεSA is an isomorphism, it follows that JSηA =
ηJSA.

The proofs for the other adjunction are dual.

An immediate consequence of our definitions is that P has finite products. The
product of passive objects X and Y is given by P (JX × JY ):

P(Z, P (JX × JY )) ∼= C(JZ, JX × JY )
∼= C(JZ, JX) × C(JZ, JY )
∼= P(Z, X) × P(Z, Y ).

We will again use × for the product structure in P. It is also immediate that J
preserves products, since it is a right-adjoint.

A judgement x : A | y : B � M : C will be interpreted as a map

[[x : A | y : B � M : C]] : JSA ⊗ B → C

and the passive-type constructor P will be modelled using the functor JP .
Since the functors J and S are used on contexts, we require them to be strong

monoidal, that is, we ask for natural isomorphisms

sA,B : SA × SB → S(A ⊗ B) s′ : 1 → SI

and

jX,Y : JX ⊗ JY → J(X × Y ) j′ : I → J1

subject to the following coherence constraints for s and s′, and similar ones for j
and j′.

SA × (SB × SC) (SA × SB) × SC

SA × S(B ⊗ C) S(A ⊗ B) × SC

S(A ⊗ (B ⊗ C)) S((A ⊗ B) ⊗ C)

α

id × s

s

s × id

s

Sα
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SA × 1 SA × SI S(A ⊗ I)

SA

id × s′ s

Sρ
ρ

SA × SB S(A ⊗ B)

SB × SA S(B ⊗ A)

s

symm

s

Ssymm

Since J is a right adjoint, J1 is a terminal object, so the isomorphism j′ means
that I is terminal, and the isomorphism s′ means that SI is terminal too.

The fact that I is terminal implies that there are ‘projection’ maps out of the
tensor: the left projection is given by

A ⊗ B A ⊗ I A
id⊗! ρ

and right projection similarly. We will write these projections as π1 and π2, and
use the same notation for projection from the product ×.

Lemma 2. The natural isomorphisms s and j commute with projections; that is

SA × SB S(A ⊗ B)

SA.

s

π1

Sπ1

and similar diagrams for π2 and for j.

Proof. Consider the diagram below.

SA × SB S(A ⊗ B)

SA × SI S(A ⊗ I)

SA × 1 SA

s

Sid × S!

s

S(id⊗!)

id×!

ρ

Sρ

The upper rectangle commutes by naturality of s, and the lower is an instance of
the unit coherence diagram for s, using the fact that the unique map ! : S1 → 1
is the inverse of s′. The top-right route around the rectangle is s; Sπ1, and the
left-bottom route is π1.

To model SCIR, we will also require that the unit η : Id → JS and counit
ε : SJ → Id of the adjunction S � J be monoidal natural transformations; that is,
that the following diagrams commute.
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SJX × SJY X × Y

S(JX ⊗ JY )

SJ(X × Y )

εX × εY

s

Sj

εX×Y

1 1

SI

SJ1

id

s′

Sj′

ε1

A ⊗ B JSA ⊗ JSB

J(SA × SB)

JS(A ⊗ B)

ηA ⊗ ηB

j

Js

ηA⊗B

I JSI

J1

JSI

ηI

j′

Js′

id

In fact these equations hold automatically.

Lemma 3. The unit η : Id → JS and counit ε : SJ → Id of the adjunction S � J
are monoidal natural transformations.

Proof. The diagrams involving the units are trivial since 1 and JSI are terminal.
Of the other two, we will consider only the case of the unit η. The case for ε is
similar.

First note that since J preserves products, J(SA × SB) is a product, with pro-
jections given by Jπ1 and Jπ2. Thus JSA⊗JSB is also a product, and by Lemma 2
its projections are π1 and π2. Similarly JS(A ⊗ B) is a product, with projections
JSπ1 and JSπ2.

Therefore to check that the diagram commutes, we need only check that

ηA⊗B ; JSπ1 = ηA ⊗ ηB ; j; Js; JSπ1

and similarly for π2.
By Lemma 2 again, the right hand side above is equal to ηA ⊗ ηB ; π1, which is

π1; ηA by naturality of projections, which is equal to the left hand side by naturality
of η.

3.1.1. Example of the structure
The following construction gives a large class of examples of the structure we desire,
which illustrate the intuition behind the categorical model, albeit in a somewhat
degenerate way. Given any cartesian closed category B, construct a category C as
follows. Objects of C are pairs (A, X) of B-objects, and an arrow from (A, X) to
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(B, Y ) is given by a commuting square

A × X B × Y

X Y

f

π2 π2

f ′
in B. Composition is by pasting squares together. The category B itself plays the
role of P, with the inclusion functor J taking an object X to (1, X). The intuition
behind this construction is that the object (A, X) consists of some active data A
and passive data X; the commuting square expresses the idea that maps may only
use passive input data in computing passive output data.

The category C has products, given componentwise, and exponentials, given by

(A, X) ⇒ (B, Y ) = (A × X ⇒ B, X ⇒ Y )

and is hence cartesian closed. This construction therefore does not provide an ac-
curate account of SCIR: there is no restriction on contraction in this model, since
the monoidal structure is in fact cartesian. It is nevertheless an informative con-
struction, because of the nature of the left and right adjoints to J .

The left adjoint S takes an object (A, X) to X and a map as in the diagram
above to the lower component f ′. The right adjoint P takes (A, X) to A × X and
a map as in the above diagram to the upper component f . It is straightforward to
verify that these are indeed left and right adjoints to J .

This example provides useful intuition about the roles of S and P : the functor
S restricts an object to its passive part, while P declares the entire object passive.
This is analogous to the way in which these functors work in the games model and
the object-spaces model. In models such as these, S and P have quite different roles,
whereas in a bireflective model the two are identified. This is one reason why we
believe it is important to introduce this more general notion of model: bireflectivity
enforces a view of the SCIR system which does not correspond to computational
intuition.

3.2. Passification and promotion

Lemma 4. Let f : A → B in C. If B is isomorphic to JX for some X in P, there
is a unique pass(f) : JSA → B such that

A JSA

B.

ηA

pass(f)
f

Proof. Let i : B → JX be any isomorphism, and define

pass(f) = JS(f ; i); Jε; i−1.
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To see that η; pass(f) = f , consider the following diagram.

A JSA

B JSB

JX JSJX

B JX

η

f JSf

η

i

η

JSi

i−1 Jε

i−1

id

The upper two squares commute by naturality of η. One of the triangles is trivial,
and the other is one of the triangular equations for an adjunction.

To see that pass(f) is unique, let g be such that η; g = f . Then

pass(f) = pass(η; g)
= JSηA; JSg; JSi; JεX ; i−1

= ηJSA; JSg; JSi; JεX ; i−1 by Lemma 1
= g; i; ηJX ; JεX ; i−1 by naturality of η

= g; i; id; i−1 by adjunction laws
= g.

The proof is complete.

Because the adjunction S � J is monoidal, this result can be parameterized as
follows.

Lemma 5. Let f : A⊗B → C be any map in C, and suppose that C is isomorphic
to JX for some object X. Then there exists a unique passB(f) : A ⊗ JSB → C
such that id ⊗ ηB ; passB(f) = f .

Proof. Define passB(f) as

A ⊗ JSB JSA ⊗ JSB J(SA × SB) JS(A ⊗ B) C.
ηA ⊗ id j Js pass(f)

Then id ⊗ ηB ; passB(f) = ηA ⊗ ηB ; j; Js; pass(f) = ηA⊗B ; pass(f) = f using the
monoidalness of η and the defining property of pass(f). Uniqueness follows similarly
to that of pass(f).

In what follows we will often abuse notation and write simply pass(f) for passB(f).
The other adjunction gives us the following dual result.
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Lemma 6. Let f : A → B in C. If A is isomorphic to JX for some X in P, there
is a unique prom(f) : A → JPB such that

A JPB

B.

prom(f)

ε′B
f

3.3. Interpreting types

We have products in our category, to interpret the × operation on types, and we
have a functor JP which will allow us to interpret the P operation. To interpret
the function types, we require our category C to have certain exponentials. Rather
than asking for all exponentials to exist, we ask only for the ones we need: this is
to accommodate the object-space and game-based models, which do not have all
exponentials.

We ask instead that there exists a collection of objects, called type objects, con-
taining at least one object to interpret each ground type, closed under products and
the functor JP , and such that for any object A and type object B, the exponential
A → B (w.r.t. the tensor structure) exists, and is itself a type object.

Interpretation of types is now straightforward: γ is interpreted by [[γ]], [[A×B]] =
[[A]] × [[B]], [[PA]] = JP [[A]] and [[A → B]] = [[A]] → [[B]]. We will often drop the
semantic brackets and use A to mean both the type A and the type-object [[A]].

Given a map f : A⊗B → C, C is a type object, we will write Λ(f) : A → (B →
C) for the curried map given by the exponential. The evaluation map we write as
evB,C : (B → C) ⊗ B → C.

3.4. Interpreting derivations

For each derivation of a typed term Γ | ∆ � M : C we will define, by induction
on derivations, a map

JSA1 ⊗ · · · ⊗ JSAn ⊗ B1 ⊗ · · · ⊗ Bm → C.

To ease notation, we often abbreviate this as JSΓ ⊗ ∆ → C.
First, some observations are in order. We say that a type-object is passive if it

is isomorphic to JX for some X. Note that, since JX ∼= JSJX, it is the case that
any passive object A is isomorphic to JSA.

Lemma 7. Let A and B be type objects. If both A and B are passive, so is A × B.
If B is passive, then A → B is passive (even if A is not).

Proof. By definition of passive object, A ∼= JX and B ∼= JY for some objects X
and Y of P. Then we have

A × B ∼= JX × JY ∼= J(X × Y )

since J preserves products.
For A → B where B ∼= JY , consider the following sequence of natural isomor-

phisms.
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C(−, A → B) ∼= C(−⊗ A, B)
∼= C(−⊗ A, JY )
∼= P(S(−⊗ A), Y )
∼= C(JS(−⊗ A), JY ) since J is full
∼= C(JS −⊗JSA, B)
∼= C(JS−, JSA → B)
∼= P(S−, P (JSA → B))
∼= C(−, JP (JSA → B))

By the Yoneda lemma, A → B ∼= JP (JSA → B).

Thus the type object interpreting any passive type is itself passive. This is vital
for our interpretation of the typing rules involving passive types.

The inductive definition of the semantics of derivations is as follows.

Variable. The derivation

− | x : A � x : A

is interpreted by the identity map id : A → A.

Abstraction.
Γ | ∆, x : A � M : B

Γ | ∆ � λx : A.M : A → B

Given an interpretation m : JSΓ ⊗ ∆ ⊗ A → B of the premise, the conclusion is
interpreted by

Λ(m) : JSΓ ⊗ ∆ → (A → B).

Application.

Γ1 | ∆1 � M : A → B Γ2 | ∆2 � N : A

Γ1, Γ2 | ∆1, ∆2 � MN : B

If m interprets the first premise and n the second, the conclusion is interpreted by

JSΓ1 ⊗ JSΓ2 ⊗ ∆1 ⊗ ∆2 JSΓ1 ⊗ ∆1 ⊗ JSΓ2∆2 (A → B) ⊗ A B.
∼= m ⊗ n evA,B

Pairing.

Γ | ∆ � M : A Γ | ∆ � N : B

Γ | ∆ � 〈M, N〉 : A × B

If m interprets the first premise and n the second, the conclusion is interpreted by
〈m, n〉.

Projection.

Γ | ∆ � M : A × B

Γ | ∆ � π1M : A
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If m : JSΓ ⊗ ∆ → A × B interprets the premise, the conclusion is interpreted by
m; π1. Right projection is interpreted similarly.

Activation.
Γ, x : A | ∆ � M : B

Γ | ∆, x : A � M : B

If the premise is interpreted by m : JSΓ ⊗ JSA ⊗ ∆ → B, the conclusion is
interpreted by

JSΓ ⊗ ∆ ⊗ A JSΓ ⊗ A ⊗ ∆ JSΓ ⊗ JSA ⊗ ∆ B.
∼= id ⊗ ηA ⊗ id m

Passification.

Γ | ∆, x : A � M : X
X passive

Γ, x : A | ∆ � M : X

If the premise is interpreted by m : JSΓ⊗∆⊗A → X, the conclusion is interpreted
by

JSΓ ⊗ JSA ⊗ ∆ JSΓ ⊗ ∆ ⊗ JSA X.
∼= passA(m)

Note that we are relying on the fact that [[X]] is a passive object, so that passA(m)
exists.

Promotion.
Γ | − � M : A

Γ | − � prom(M) : PA

If the premise is interpreted by m : JSΓ → A, the conclusion is interpreted by
prom(m) : JSΓ → JPA.

Dereliction.
Γ | ∆ � M : PA

Γ | ∆ � der(M) : A

If m interprets the premise, the conclusion is interpreted by m; ε′A.

Weakening.

Γ | ∆ � M : B

Γ′ | ∆′ � M : B

where Γ′ and ∆′ are extensions of Γ and ∆.
If m interprets the premise, the conclusion is interpreted by

JSΓ′ ⊗ ∆′ JSΓ ⊗ ∆ B
πΓ′,Γ ⊗ π∆′,∆ m

where the π maps are appropriate projections.

Contraction.
Γ, x : A, y : A | ∆ � M : B

Γ, x : A | ∆ � M [x/y] : B
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If m interprets the premise, the conclusion is interpreted by

JSΓ ⊗ JSA ⊗ ∆ JSΓ ⊗ JSA ⊗ JSA ⊗ ∆ B
id ⊗ diag ⊗ id m

where diag : JSA → JSA⊗JSA is a diagonal map, which exists since JSA⊗JSA ∼=
JSA × JSA.

Constants. For each constant k of type A we fix a map [[k]] : 1 → [[A]] as its
interpretation.

4. The problem of coherence

For any derivation of a judgement Γ | ∆ � M : A, the definitions of the previous
section give an interpretation as a map JSΓ ⊗ ∆ → A in C. However, because of
the structural rules (weakening, contraction and exchange) and the permeability
rules (passification and activation), a given judgement may have more than one
derivation. Thus a natural question arises: is every derivation of a given judgement
interpreted as the same map? We term this the coherence problem for models of
SCIR, since it has something of the flavour of categorical coherence problems.

In the remainder of the paper we show that, subject to one additional condition,
our notion of model does indeed enjoy coherence.

For bireflective models, a coherence result was stated and a proof sketched in [8].
Our approach to the proof is slightly different; in fact much of the work in this paper
was motivated by the fact that the present author was unable to recover the original
proof from its sketch. We shall now outline the sources of difficulty in the original
proof, with the aim of motivating the detailed constructions which follow.

The original proof comes in two parts. First it is shown that any two ways of
extending a derivation of Γ | ∆ � M : A to one of Γ′ | ∆′ � M ′ : A using
structural rules and permeability rules give rise to the same semantics; this is termed
‘coherence of structural extensions’ and is quite straightforward to establish. Next
consider two distinct derivations of a judgement Γ | ∆ � M : A. These must consist
of a derivation of a judgement Γi | ∆i � Mi : A, ending with a term-forming rule,
followed by a structural extension turning this judgement into Γ | ∆ � M : A.
The proof then proceeds by induction on the size of the derivations up to the last
term-forming rule, and by cases according to what the last term-forming rule was.

The most interesting case is that of application. We have derivations

··· φi

Γi | ∆i � Mi : A → B

··· φ′
i

Γ′
i | ∆′

i � Ni : A

ΓiΓ′
i | ∆i∆′

i � MiNi : B

(for i = 1, 2) and sequences of structural rules which turn each

ΓiΓ′
i | ∆i∆′

i � MiNi : B

into Γ | ∆ � MN : B. The idea given in the original proof-sketch is to push some of
these structural rules up above the application rule, so that M1 and M2 are unified,
and N1 and N2 are unified, and then apply the inductive hypothesis.

However, this cannot be done in general, for two reasons.
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1. When the type B is passive but A is active, the original structural extensions
may involve passifying and contracting variables inside the Ni, which cannot
be performed before the application rule.

2. There may be extraneous weakenings in the derivations which make it impos-
sible to unify the judgements before the application rule is used.

To illustrate the first problem, consider the following derivations. We begin with
the judgement

− | f : com → com → Pexp, x : com, y : com � fxy : Pexp

which is clearly derivable. From it we can derive z := fxx as follows.

− | f, x, y � fxy : Pexp
passify

x, y | f � fxy : Pexp
contract

x | f � fxx : Pexp
weaken

x | f, z � fxx : Pexp

− | z : var � z : var
weaken

x | f, z � z : var
assignment

x | f, z � z := fxx : com

(Assignment is a combination of syntactic sugar and an admissible rule involving
two uses of the application rule.) We can also derive z := fxy very straightfor-
wardly:

− | f, x, y � fxy : Pexp
weaken− | f, x, y, z : var � fxy : Pexp

− | z : var � z : var
weaken− | f, x, y, z � z : var
assignment.− | f, x, y, z � z := fxy : com

Now consider applying some g : com → Pexp to each of these, yielding derivations
of

x | g, f, z � g(z := fxx) : Pexp

and
− | g, f, x, y, z � g(z := fxy) : Pexp.

It is possible to unify these two judgements by means of structural rules: one simply
passifies x and y in the latter judgement and contracts them to x. However, it is
not possible to unify the two argument-judgements by structural extensions: one
cannot passify x and y in − | f, x, y, z � z := fxy : com because the result type is
not passive.

Thus the induction outlined in the original paper cannot be pushed through,
at least not without further analysis. The coherence proof presented in this paper
introduces the notion of pseudo-passification to allow for the early passification of
variables we know will eventually appear in passively typed subterms, so that the
induction can be completed.

The second problem is rather easier to overcome, but nevertheless was not men-
tioned in the original proof-sketch, so we illustrate it here.

Using the variable and weakening rules, one can clearly derive judgements such
as

x | a � a y | b � b
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and hence (assuming appropriate typing, with all types active)

x, y | a, b � ab. (1)

Similarly, we can clearly derive

− | a � a − | x, b � b

and from these

− | x, a, b � ab. (2)

Judgements 1 and 2 can be unified by means of structural rules, operating only
on the first derivation:

x, y | a, b � ab

x | a, b � ab

− | x, a, b � ab .

The original proof then suggests that we should be able to unify the judgements

x | a � a with − | a � a

and

y | b � b with | x, b � b

using structural rules, in such a way that performing application on the resulting
judgements gives us a

Γ | ∆ � MN

which can itself be turned into

− | x, a, b � ab

using structural rules. This cannot be done. Any unification of the first pair of
judgements must look like

Γ | ∆, a � a

with at least one variable (resulting from contracting x with some other variable)
in Γ, ∆. Similarly any unification of the second pair of judgements must look like

Γ′ | ∆′, x, b � b

with at least one variable appearing in Γ′, ∆′. After application, we obtain

ΓΓ′ | ∆∆′, x, a, b � ab.

But the Γ, Γ′, ∆, ∆′ are non-empty, and it is not possible to perform contractions
between these variables and x, a, b, so it is not possible to transform this judgement
into − | x, a, b � ab by means of structural rules.

This problem is handled by first eliminating extraneous weakenings from the
derivations we consider: a strengthening lemma allows us to do that.

In the rest of this section, we perform a detailed analysis of the structural and
permeability rules, which will aid us in the coherence proof to follow.
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4.1. Structural maps

Let Γ | ∆ and Γ′ | ∆′ be contexts. We say that a function ρ mapping the variables
contained in Γ′ | ∆′ to those in Γ | ∆ is a syntactic structural map if

• ρ respects types: if x : A in Γ′ | ∆′ then ρ(x) : A in Γ | ∆;

• ρ does not make variables more passive: if ρ(x) is in Γ then x is in Γ′;

• ρ does not contract active variables: if ρ(x) = ρ(y) then either x = y or x and
y appear in Γ′.

We write ρ : Γ | ∆ → Γ′ | ∆′ when this is the case.
Contexts and syntactic structural maps clearly form a category, with the usual

composition of functions.
A morphism JS[[Γ]]⊗ [[∆]] → JS[[Γ′]]⊗ [[∆′]] in C is a semantic structural map if

and only if it is of the form

JSΓ ⊗ ∆ JSΓ ⊗ ∆1 ⊗ ∆′ JSΓ′ ⊗ ∆′
idJSΓ⊗ ∼= f ⊗ id∆′

where ∼= is a permutation isomorphism and f : JSΓ ⊗ ∆1 → JSΓ′ is a tuple of
maps of the form πi or πi; η for some i. (Recall that JSΓ′ = JSA′

1 ⊗ · · · ⊗ JSA′
n is

a product).
It is easy to check that the composition of two semantic structural maps is again

a semantic structural map, so there is a category of contexts and semantic structural
maps. Note also that a semantic structural map is completely determined by its
composite with the projections from JSΓ′ ⊗∆′ to the various JSC and D objects.

These two categories of structural maps are equivalent.

Lemma 8. Let Γ | ∆ and Γ′ | ∆′ be contexts. There is a 1-1 correspondence between
semantic structural maps JS[[Γ]] ⊗ [[∆]] → JS[[Γ′]] ⊗ [[∆′]] and syntactic structural
maps Γ | ∆ → Γ′ | ∆′. This correspondence gives rise to an equivalence of the
categories of semantic and syntactic structural maps.

Proof. Given a semantic structural map f : JS[[Γ]]⊗ [[∆]] → JS[[Γ′]]⊗ [[∆′]], consider
the composite maps f ; πx, where πx is the projection from the tensor product
JS[[Γ′]] ⊗ [[∆′]] to the component corresponding to the variable x.

By definition of semantic structural maps, each f ; πx is either πy or πy; η for
some y. Define a function ρ by

ρ(x) = y if f ; πx = πy or πy; η.

The constraints in the definition of semantic structural maps imply that ρ is a
syntactic structural map Γ | ∆ → Γ′ | ∆′.

For the converse, first note that if ρ : Γ | ∆ → Γ′ | ∆′ is a syntactic structural
map, then ρ � ∆′ is an injective function with image in ∆. There is therefore a
permutation φ : ∆ → ∆1⊗∆′ such that for each variable x in ∆′, φ; πx = πρ(x). We
then define f : JSΓ ⊗ ∆1 → JSΓ′ as the unique map such that, for each x in Γ′,

f ; πx =
{

πρ(x) if ρ(x) ∈ Γ;
πρ(x); η if ρ(x) ∈ ∆.

The required semantic structural map is then given by

JSΓ ⊗ ∆ JSΓ ⊗ ∆1 ⊗ ∆′ JSΓ′ ⊗ ∆′.
id ⊗ φ f ⊗ id
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It is routine to check that the passages between semantic and syntactic structural
maps are mutually inverse. Furthermore, they are functorial, so the two categories
of semantic and syntactic structural maps are equivalent.

Given a syntactic structural map ρ, we write [[ρ]], or sometimes just ρ, for the
corresponding semantic structural map.

4.2. Structural maps and structural rules

Our definition of syntactic structural map is intended to capture a general notion
of manipulation of contexts using the rules of contraction, weakening and activation.
Indeed, any such rule of the form

Γ | ∆ � M : A

Γ′ | ∆′ � M ′ : A

corresponds to a syntactic structural map Γ′ | ∆′ → Γ | ∆ as follows.
The rule of activation

Γ, x : A | ∆ � M : B

Γ | ∆, x : A � M : B

corresponds to the identity function, which is a valid structural map Γ | ∆, x : A →
Γ, x : A | ∆.

The rule of weakening

Γ | ∆ � M : B
Γ ⊆ Γ′, ∆ ⊆ ∆′

Γ′ | ∆′ � M : B

corresponds to the injection from Γ ∪ ∆ to Γ′ ∪ ∆′.
The rule of contraction

Γ, x : A, y : A | ∆ � M : B

Γ, x : A | ∆ � M [x/y] : B

corresponds to the function which acts as the identity on Γ ∪ ∆ and maps both x
and y to x.

Since structural maps form a category, any sequence of these structural rules
also induces a syntactic structural map ρ. This map is nothing more than the
substitution induced by the various contractions which are performed, and we will
write ρ(M) for the result of applying the substitutions indicated by ρ to the term
M .

Lemma 9. Let Θ be a derivation of a judgement Γ | ∆ � M : A, and let φ be a
sequence of structural rules extending this derivation to yield Γ′ | ∆′ � M ′ : A.
We write Θ;φ for this extended derivation. Let ρ be the syntactic structural map
corresponding to φ. Then

[[Θ;φ]] = [[ρ]]; [[Θ]].

Proof. By induction on the length of the sequence φ. The base case is trivial, and
for the inductive step it suffices to check that the lemma holds for the case when φ
has length one, i.e. for the case of a single structural rule. This is straightforward:
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one need only check that the semantics of each structural rule is obtained by pre-
composition with the appropriate semantic structural map, which is indeed the
case.

As an immediate corollary, we have that any two ways of extending a derivation
with activation, contraction and weakening rules which induce the same substitution
have the same semantics.

Corollary 10 (Coherence of Structural Extensions). Let Θ be a deriva-
tion of a judgement Γ | ∆ � M : A, and let φ1 and φ2 be sequences of structural
rules which can both be used to extend this derivation, yielding Γ′ | ∆′ � M ′ : A
and inducing the same syntactic structural map. Then [[Θ;φ1]] = [[Θ;φ2]].

5. Coherence

We are now in a position to set about the proof of our central result, that
models of SCIR in the sense we have described here are coherent, i.e. that any
two derivations of a given judgement have the same semantics. Thus we have a
semantics of judgements, not merely of derivations.

We can now summarize what we require in order to model SCIR and establish
coherence.

Definition. A categorical model of SCIR consists of a symmetric monoidal cate-
gory C with finite products and a full subcategory P of C with inclusion functor
J , such that J has both a right adjoint P and a left adjoint S, with J and S being
strong monoidal functors. Furthermore, there should be an appropriate collection
of type objects as defined in Section 3.3.

A categorical model of SCIR is called retractive if, for every object A of C, there
is a map αA : JSA → A such that

JSA A

JSA.

αA

ηA
idJSA

This condition deserves a little discussion. The terminology obviously comes from
the fact that retractivity makes JSA a retract of A. It holds in all models studied to
date: in bireflective models it is part of the definition, and in the games-based and
object-space models it is a consequence of the interpretation of JS as an operation
which projects a type onto its passive part. For both these models, we can view a
type as consisting of a passive part and an active part, conjoined by (something
like) a product operation, just as in the construction described in Section 3.1.1.
Thanks to the computational nature of these models, every type is inhabited by
at least one element, the computation which diverges i.e. enters an infinite loop.
Thus we can always embed the passive part of a type in the whole type, by acting
as identity on the passive part and diverging in the active part. This yields the
required retraction, which may informally be described by the diagram below.

X A × X X
〈diverge, id〉 π2
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(For the construction of Section 3.1.1, retractiveness fails in general, but holds if
we restrict attention to pairs (A, X) in which A is non-empty, along the same lines
as above.)

Note that we do not insist that α be a natural transformation. In fact, the
following lemma holds.

Lemma 11. A retractive model of SCIR in which α is a natural transformation is
a bireflective model.

Proof. The definition of bireflective model implies a retractive model with α = ε′

the counit of J � P , which is natural.
In [4, 3] it is shown that bireflective subcategories are given by split idempotent

natural transformations on the identity functor, and in a retractive model with α
natural, η; α provides such a natural transformation, and hence a bireflection.

The existence of the maps αA makes it straightforward to calculate the passifi-
cation of a map, as follows.

Lemma 12. In a retractive model, given f : A ⊗ B → C where C is passive i.e.
C ∼= JX for some X,

passB(f) = idA ⊗ αB ; f : A ⊗ JSB → C.

Proof. By Lemma 5, it suffices to show that idA ⊗ (η; α); f = f , and since ηC is an
isomorphism for passive C, it is enough to show that

idA ⊗ (η; α); f ; η = f ; η.

We calculate as follows:

(idA ⊗ (η; α)); f ; ηC

= (idA ⊗ (η; α)); ηA⊗B ; JSf (η natural)
= (idA ⊗ (η; α)); (ηA ⊗ ηB);∼=; JSf (η monoidal)
= (ηA ⊗ ηB ; αB ; ηB);∼=; JSf

= (ηA ⊗ ηB);∼=; JSf (α; η = id)
= ηA⊗B ; JSf (η monoidal)
= f ; ηC (η natural)

completing the proof.

The image of a map under the functor JS can also be calculated using α.

Lemma 13. In a retractive model, for any f : A → B, JSf = α; f ; η.

Proof. Consider the diagram below.

JSA A B

JSA JSB

αA f

id

JSf

ηA ηB

The square commutes by naturality of η and the triangle by definition of α.
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The following lemma is proved by a strightforward inductive argument.

Lemma 14 (Strengthening). Suppose Θ is a derivation of a judgement Γ | ∆ �
M : A, and that Γ′ ⊆ Γ and ∆′ ⊆ ∆ are such that all free variables of M appear in
Γ′ ∪ ∆′. Then there is a derivation Θ′ of Γ′ | ∆′ � M : A such that

JSΓ ⊗ ∆ JSΓ′ ⊗ ∆′

A

weak

[[Θ′]]
[[Θ]]

where weak is the appropriate weakening map. Moreover, the derivation Θ′ is no
larger (that is, uses no more rules) than Θ.

Definition. Let Γ | ∆ be a context and ∆1, ∆2 a permutation of ∆. In a retractive
model, the maps α on the objects of ∆1 together with some permutation maps give
rise to a morphism

JSΓ ⊗ JS∆1 ⊗ ∆2 JSΓ ⊗ ∆1 ⊗ ∆2 JSΓ ⊗ ∆.
id ⊗ α ⊗ id ∼=

We will use the notation
α : Γ, ∆1 | ∆2 → Γ | ∆

for this map. We refer to such maps as pseudo-passifications, and say that α makes
passive the variables in ∆1.

Given such an α, if ρ : Γ′ | ∆′ → Γ, ∆1 | ∆2 is a structural map such that for
every x ∈ ∆1, ρ(x) ∈ Γ′, we call the composite

ρ; α : JSΓ′ ⊗ ∆′ → JSΓ ⊗ ∆

a pseudo-structural map (psm). That is, a psm is the composition of a structural
map and a pseudo-passification, subject to the condition that any variable which α
makes passive is left passive by ρ.

Our critique of the sketched proof of coherence for bireflective categories given
in [8] hinged around the fact that one cannot push passifications up a derivation
tree. We have introduced the (semantic) notion of pseudo-passification to overcome
this difficulty. A derivation consisting of several structural rules followed by a passi-
fication corresponds semantically to a map α; ρ where ρ is a structural map and α is
a pseudo-passification, here interpreting a genuine passification rule. The following
lemma demonstrates that such a map can always be written as a psm ρ′; α′. Thus
if we work with psms rather than structural maps, we can push passifications up
the (pseudo-)derivation, which facilitates an inductive proof of coherence.

Lemma 15. The composition of a pseudo-structural map with a structural map
yields a pseudo-structural map. That is, if ρ1; α is a psm and ρ2 is a structural
map whose domain is the codomain of α, then there exists a psm ρ′; α′ such that
ρ1; α; ρ2 = ρ′; α′.

Proof. It is straightforward to verify that any structural map can be written as a fi-
nite sequence of contractions, weakenings and activations. We proceed by induction
on the length of such a sequence giving rise to the structural map ρ2.
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In the base case, ρ2 is a single contraction, weakening or activation.
Suppose ρ2 is an activation, activating variable z. If α makes z passive, the

composite α; ρ2 takes the form

Γ, ∆1, z | ∆2 Γ | ∆, z Γ, z | ∆.
α ρ2

This is equal to the pseudo-passification α′ : Γ, ∆1, z | ∆2 → Γ, z | ∆ which makes
passive the same variables as α does, less z which is already passive in the codomain.
Since α′ makes fewer variables passive than does α, it is immediate that ρ1; α′ is a
psm.

If α does not make z passive, the composite α; ρ2 takes the form

Γ, ∆1 | ∆2, z Γ | ∆, z Γ, z | ∆.
α ρ2

There is a pseudo-passification α′ : Γ, ∆1, z | ∆2 → Γ, z | ∆, and an activation map
ρ′2 : Γ, ∆1 | ∆2, z → Γ, ∆1, z | ∆2 activating z. It is clear that α; ρ2 = ρ′2; α

′ so
it just remains to show that ρ1; ρ′2; α

′ is a psm, i.e. that the structural map ρ1; ρ′2
does not activate any variable made passive by α′. By construction ρ1; ρ′2 activates
z and any variable activated by ρ1. Since ρ1; α is a psm, none of these variables is
made passive by α and hence not by α′.

For the case when ρ2 is a contraction, note that the composite

Γ, ∆1, x | ∆2 Γ, x | ∆ Γ, x, y | ∆
α ρ2

is equal to the psm

Γ, ∆1, x | ∆2 Γ, ∆1, x, y | ∆2 Γ, x, y | ∆
ρ′2 α′

where ρ′2 is again a contraction and α′ is a pseudo-passification which extends α
by carrying the additional variable y along. Since ρ1; α is a psm and α′ makes the
same variables passive as does α, ρ1; ρ′2; α

′ is a psm as required.
The case when ρ2 is a weakening is similar.
Finally for the inductive step, suppose ρ2 = ρ′2; ρ

′′
2 and that the lemma holds

for ρ′2 and ρ′′2 . Then there is a psm ρ′; α′ such that ρ′; α′ = ρ1; α; ρ′2. Applying the
inductive hypothesis again we find a psm ρ′′; α′′ such that ρ′′; α′′ = ρ′; α′; ρ′′2 =
ρ1; α; ρ′2; ρ

′′
2 = ρ1; α; ρ2 as required.

At last we are ready to embark on our inductive coherence proof.

Lemma 16 (Main lemma). Suppose Θ1 and Θ2 are derivations of Γ1 | ∆1 � M1 :
A and Γ2 | ∆2 � M2 : A respectively. For i = 1, 2, let ρi; αi : Γ | ∆ → Γi | ∆i be
psms such that ρ1(M1) = ρ2(M2). Then in any retractive model,

ρ1; α1; [[Θ1]] = ρ2; α2; [[Θ2]].

Proof. The proof is by induction on the sum of the sizes of the derivations Θ1 and
Θ2. We approach the proof by cases on the last rules in these derivations; the base
case is handled by the cases for constants and variables.

We first consider the case when one of the two derivations ends in a structural
rule.
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Suppose one of Θ1, Θ2 ends with a passification rule; without loss of generality
let this be Θ1, so our derivations have the following form.

···· Θ′
1

Γ1 | ∆1, x � M1 : A

Γ1, x | ∆1 � M1 : A

···· Θ2

Γ2 | ∆2 � M2 : A

In this case A is a passive type and [[Θ1]] = [[αx]]; [[Θ′
1]] where αx : Γ1, x | ∆1 → Γ1 |

∆1, x is the pseudo-passification map on the variable x.
We are given psms ρ1; α1 and ρ2; α2 such that ρ1(M1) = ρ2(M2) and must show

that
ρ1; α1; [[Θ1]] = ρ2; α2; [[Θ2]].

Since the target type is passive, it will suffice to show that

α; ρ1; α1; [[Θ1]] = α; ρ2; α2; [[Θ2]]

where α : Γ∆ | − → Γ | ∆ is the pseudo-passification which passifies all active
variables. By Lemma 15, there are psms ρ1; α′ and ρ2; α′′ such that

ρ1; α′ = α; ρ1

and
ρ2; α′′ = α; ρ2.

It therefore suffices to show that

ρ1; α′; α1; αx; [[Θ′
1]] = ρ2; α′′; α2; [[Θ2]].

The maps ρ1; α′; α1; αx and ρ2; α′′; α2 are psms since their source types contain no
active variables, so we may apply the inductive hypothesis to the derivations Θ′

1

and Θ2 to complete this case.
Suppose now that (without loss of generality) Θ1 ends in another structural rule:

activation, contraction, weakening or exchange. Then Θ1 has the form
··· Θ′

1

Γ′
1 | ∆′

1 � M ′
1 : A

Γ1 | ∆1 � M1 : A

and [[Θ1]] = ρ; [[Θ′
1]] for some structural map ρ, with M1 = ρ(M ′

1). Given psms αi; ρi

as in the statement of the lemma, we must show that

ρ1; α1; ρ; [[Θ′
1]] = ρ2; α2; [[Θ2]].

By Lemma 15, ρ1; α1; ρ can be written as a psm ρ′; α′
1. We can now apply the

inductive hypothesis to derivations Θ′
1 and Θ2 to conclude that

ρ′; α′
1; [[Θ

′
1]] = ρ2; α2; [[Θ2]]

which gives us the required result.
If neither derivation ends in a structural rule, they must both end with a term-

forming rule, and since ρ1(M1) = ρ2(M2), the terms M1 and M2 have the same
outermost term constructor, so their derivations must end in instances of the same
rule. We therefore proceed by cases according to which rule was used.
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Variable. For i = 1, 2, let Θi be the derivation

− | xi � xi : A

and suppose we have psms ρi; αi : Γ | ∆ → − | xi such that ρ1(x1) = ρ2(x2). We
must show that

ρ1; α1; [[x1]] = ρ2; α2; [[x2]]

but since [[x1]] = [[x2]] = id, we just need to show that ρ1; α1 = ρ2; α2.
If ρ1(x1) ∈ ∆, then since ρ1; α1 is a psm, α1 does not passify x1 and hence α1

is the identity. Thus ρ1 : Γ | ∆ → − | x1 is simply a projection; similarly α2 is the
identity and ρ2 is the appropriate projection, and the result follows.

If ρ1(x1) ∈ Γ, then α1 must passify x1, and similarly α2 must passify x2. It must
then be the case that ρ1 and ρ2 are both equal to the projection from Γ | ∆ to
JSA, and α1 = α2 = αA : JSA → A.

Promotion. Suppose for i = 1, 2 that Θi is of the form

Θ′
i···

Γi | − � Mi : A

Γi | − � prom(Mi) : PA

and we have psms ρi; αi : Γ | ∆ → Γi | − for which ρ1(prom(M1)) = ρ2(prom(M2)).
In this case, since the target contexts have no active variables, the pseudo-

passifications must be identities: each ρi is a structural map Γ | ∆ → Γi | −
and we must show that

ρ1; [[Θ1]] = ρ2; [[Θ2]] : JSΓ ⊗ ∆ → JPA.

Since the target type is passive, it suffices to show that

α; ρ1; [[Θ1]] = α; ρ2; [[Θ2]] : JSΓ ⊗ JS∆ → JPA

where α : Γ∆ | − → Γ | ∆ is the pseudo-passification which passifies all variables.
By Lemma 15, each α; ρi can be written as a psm ρi; α′ : Γ∆ | − → Γi | −, and

again since the target type is purely passive, α′ is the identity, so ρi may be seen
as a structural map Γ∆ | − → Γi | − and we must show that

ρ1; [[Θ1]] = ρ2; [[Θ2]] : JSΓ ⊗ JS∆ → JPA.

By Lemma 6, it will be enough to show that ρ1; [[Θ1]]; ε′A = ρ2; [[Θ2]]; ε′A. Since by
definition [[Θi]] = prom([[Θ′

i]]), we have that [[Θi]]; ε′A = [[Θ′
i]]. Since ρ1(prom(M1)) =

ρ2(prom(M2)), we also have ρ1(M1) = ρ2(M2), and we can apply the inductive
hypothesis to the derivations Θ′

i to conclude that

ρ1; [[Θ′
1]] = ρ2; [[Θ′

2]]

as required.
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Dereliction, constants, pairing, projection, abstraction. The cases where the deriva-
tions end in a dereliction, constant, pairing, projection or abstraction rule are simple
applications of the inductive hypothesis. We shall give the case of abstraction as an
illustration.

Suppose the Θi have the form

Θ′
i···

Γi | ∆i, x : A � Mi : B

Γi | ∆i � λx.Mi : A → B

and suppose there are psms ρi; αi : Γ | ∆ → Γi | ∆i such that ρ1(λx.M1) =
ρ2(λx.M2). Let ρ′i be the structural map which extends ρi with the identity action
on the variable x, so that ρ′1(M1) = ρ′2(M2). Similarly let α′

i extend αi with the
identity action on x. It is clear that ρ′i; α

′
i : Γ | ∆, x → Γi | ∆i, x are psms, and by

inductive hypothesis,

ρ′1; α
′
1; [[Θ

′
1]] = ρ′2; α

′
2; [[Θ

′
2]] : Γ | ∆, x → B.

Currying ρ′i; α
′
i; [[Θ

′
i]] yields ρi; αi; [[Θi]] and the proof is complete.

Application. We now come to the most troublesome case, that of application.
Suppose Θi has the form

φi···
Γi | ∆i � Mi : Ai → B

φ′
i···

Γ′
i | ∆′

i � Ni : Ai

ΓiΓ′
i | ∆i∆′

i � MiNi : B

and we have psms

Γ | ∆ ΓiΓ′
i∆i,1∆′

i,1 | ∆i,2∆′
i,2 ΓiΓ′

i | ∆i∆′
i

ρi αi

(where ∆i,1, ∆i,2 is a permutation of ∆i and similarly for the ∆′
i,j) such that

ρ1(M1) = ρ2(M2) and ρ1(N1) = ρ2(N2).
First note that the argument types A1 and A2 must be the same: this holds

because N1 and N2 can be unified by the substitutions ρ1 and ρ2, which preserve
the types of free variables, and because a term can have at most one type once the
types of its free variables are specified.

We shall assume for now that every variable in the contexts ΓiΓ′
i | ∆i∆′

i appears
free in MiNi; we will extend our argument to the general case via the strengthening
lemma (Lemma 14) later.

Define a new map σ1 on the variables in Γ1∆1,1 | ∆1,2 (exactly the free variables
of M1) by

σ1(x) = ρ1(x)M

i.e. σ1(x) is a variable resulting from tagging ρ1(x) with the symbol M . We assume
this yields a completely fresh variable symbol.

Similarly define σ2 with domain Γ2∆2,1 | ∆2,2 (the free variables of M2) by

σ2(x) = ρ2(x)M .
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We shall use the following notations: if f is a function which relabels variables
(such as the σi), and Γ is a context, then f(Γ) is the context resulting from re-
labelling the variables in Γ according to f ; we also use set-operations on contexts,
so that Γ∩Γ′ is the context containing those variables in both Γ and ∆, and so on.
The order in which these variables appear is not relevant.

Define two new contexts as follows:

ΓM = σ1(Γ1∆1,1) ∩ σ2(Γ2∆2,1) and
∆M = σ1(Γ1∆1,1 | ∆1,2) \ ΓM .

(Note that since ρ1(M1) = ρ2(M2), the functions σ1 and σ2 have the same image,
so ∆M could just as well have been defined as σ2(Γ2∆2,1 | ∆2,2) \ ΓM .)

We now claim that σ1 : ΓM | ∆M → Γ1∆1,1 | ∆1,2 is a structural map which
does not activate any variable of ∆1,1.

• Suppose σ1(x) = σ1(y) and x = y. Then ρ1(x) = ρ1(y), so x, y ∈ Γ1Γ′
1∆1,1∆′

1,1

since ρ1 is a structural map. Therefore x, y ∈ Γ1∆1,1 as required.

• Suppose σ1(x) ∈ ΓM . By definition of ΓM , σ1(x) must be equal to some σ1(y)
where y ∈ Γ1∆1,1. If x = y then x ∈ Γ1∆1,1 as required. Otherwise we have
σ1(x) = σ1(y) and x = y, so we can argue that x ∈ Γ1∆1,1 as above.

• Finally, suppose x ∈ ∆1,1. Since ρ1; α1 is a psm, and α1 passifies all of ∆1,1

by definition, ρ1 does not activate x, so ρ1(x) ∈ Γ. Since ρ1 and ρ2 have the
same image, ρ1(x) = ρ2(y) for some y ∈ Γ2∆2,1 | ∆2,2. Since ρ2(y) ∈ Γ, it
must be that y ∈ Γ2∆2,1, and so σ2(y) ∈ σ2(Γ2∆2,1). But σ2(y) = ρ2(y)M =
ρ1(x)M = σ1(x). Thus σ1(x) ∈ σ2(Γ2∆2,1). By definition we also have σ1(x) ∈
σ1(Γ1∆1,1), so that σ1(x) ∈ ΓM as required.

Similarly we can define structural maps

σ′
i : ΓN | ∆N → Γ′

i∆
′
i,1 | ∆′

i,2

by σ′
i(x) = ρi(x)N . As above, these maps do not activate any of the variables in

the ∆′
i,1.

Note immediately that σ1(M1) = σ2(M2) and σ′
1(N1) = σ′

2(N2). Furthermore,
the pseudo-passifications αi can each be split into two pseudo-passifications:

βi : Γi∆i,1 | ∆i,2 → Γi | ∆i

β′
i : Γ′

i∆
′
i,1 | ∆′

i,2 → Γ′
i | ∆′

i

such that

σi; βi : ΓM | ∆M → Γi | ∆i

and

σ′
i; β

′
i : ΓN | ∆N → Γ′

i | ∆′
i

are psms.
We can now apply the inductive hypothesis to the derivations φi and φ′

i to
establish that

σ1; β1; [[φ1]] = σ2; β2; [[φ2]] and
σ′

1; β
′
1; [[φ

′
1]] = σ′

2; β
′
2; [[φ

′
2]].
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By definition, [[Θi]] is given by

ΓiΓ′
i | ∆i∆′

i (A → B) ⊗ A B.
[[φ1]] ⊗ [[φ2]] ev

Eliding permutations, we have psms

ΓMΓN | ∆M∆N ΓiΓ′
i∆i,1∆′

i,1 | ∆i,2∆′
i,2 ΓiΓ′

i | ∆i∆′
i

σi ⊗ σ′
i βi ⊗ β′

i

and it follows that

σ1 ⊗ σ′
1; β1 ⊗ β′

1; [[Θ1]] = σ2 ⊗ σ′
2; β2 ⊗ β′

2; [[Θ2]].

We now define a map σ on the variables ΓMΓN | ∆M∆N which removes the M
and N tags:

σ(xM ) = x and σ(xN ) = x.

We claim that this is a structural map

σ : Γ | ∆ → ΓMΓN | ∆M∆N .

• Suppose σ(x) = σ(y) = z and x = y. We must show that x, y ∈ ΓMΓN .
Without loss of generality, x is zM and y is zN , and we need to show that
zM ∈ ΓM and zN ∈ ΓN .
By definition, ΓM | ∆M is the image of σ1, so zM = σ1(w) for some w ∈
Γ1∆1,1 | ∆1,2. Similarly zN = σ′

1(w
′) for some w′ ∈ Γ′

1∆
′
1,1 | ∆′

1,2. Thus
w = w′ but ρ1(w) = z = ρ1(w′). Since ρ1 is a structural map, w ∈ Γ1∆1,1

and w′ ∈ Γ′
1∆

′
1,1. Therefore zM ∈ σ1(Γ1∆1,1) and zN ∈ σ′

1(Γ
′
1∆

′
1,1).

Similarly we can establish that zM ∈ σ2(Γ2∆2,1) and zN ∈ σ′
2(Γ

′
2∆

′
2,1). There-

fore zM ∈ ΓM and zN ∈ ΓN as required.

• Suppose that σ(x) ∈ Γ. We must show that x ∈ ΓMΓN . Without loss of
generality let x = yM ; we shall show yM ∈ ΓM .
Since ΓM | ∆M is the image of σ1, yM = σ1(z) for some z ∈ Γ1∆1,1 | ∆1,2.
Then ρ1(z) = y = σ(x) ∈ Γ, so z ∈ Γ1Γ′

1∆1,1∆′
1,1, i.e. z ∈ Γ1∆1,1. Therefore

yM = σ1(z) ∈ σ1(Γ1∆1,1).
Similarly we can argue that yM ∈ σ2(Γ2∆2,1), and therefore yM ∈ ΓM .

Since σ is a structural map, it has a semantic counterpart which we shall also write
as σ. Clearly

σ; σi ⊗ σ′
i; βi ⊗ β′

i = ρi; αi

and hence

ρ1; α1; [[Θ1]] = ρ2; α2; [[Θ2]]

completing the proof.
Finally we must show that our assumption that all variables in the context

appear free in the term may be lifted. Suppose we have derivations Θ1, Θ2 as
above, but without this stipulation, and psms ρi; αi as before. By Lemma 14, there
are derivations Θ′

1 and Θ′
2 in which all variables appearing in the context do appear

free in the terms, and weakening maps weaki, such that weaki; [[Θ′
i]] = [[Θi]].

By Lemma 15, each ρi; αi; weaki can be written as a psm ρ′i; α
′
i. We can then

apply the above argument to show that ρ′1; α
′
1; [[Θ

′
1]] = ρ′2; α

′
2; [[Θ

′
2]], completing this

case.

204https://doi.org/10.1112/S1461157000001364 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001364


categorical models of scir revisited

Our coherence theorem is a straightforward corollary of this result.

Theorem 17 (Coherence for retractive models). If Θ1 and Θ2 are deriva-
tions of a judgement Γ | ∆ � M : A then in any retractive model, [[Θ]] = [[Θ′]].

Proof. Apply the main lemma using the identity structural maps and pseudo-
passifications.

6. Conclusions and further work

We have presented a notion of categorical model for the SCIR system which
subsumes the original notion of bireflective model, and additionally incorporates
two new concrete models, the games model of [14] and the object-spaces model
of [9]. We have established the coherence of such models, subject to the constraint
of retractivity: any two derivations of the same judgement have the same deno-
tation, so that our models provide a semantics of judgements rather than merely
of derivations. Thus the foundational material required for the development of the
games and object-spaces models is belatedly in place.

Our results apply only to retractive models. All models that have been studied
to date do indeed enjoy the extra property of retractivity, but the type system
does not seem to require it. This suggests two questions: are non-retractive models
coherent, and is there a natural way to incorporate retractivity in the type-system?

While distinguishing the two functors S and P eliminates certain degeneracies
from the notion of model, it also takes the definition of model away from the
type system: there is no representation of the functor JS in the syntax. It would
be interesting to develop a language which incorporates S as a type-constructor.
Perhaps this would allow us to eliminate the two-zoned judgements in favour of
more traditional ones (possibly even two kinds of judgement, corresponding to the
two categories at hand) and to establish a model/theory correspondence. Such a
study might also shed light on the role of the retractivity condition.

In another direction, a deeper investigation into the power of multiple-zoned
contexts might yield interesting results. For example, can language-based security
be treated in this way, with the various zones in the contexts representing different
security levels? If so, can the kind of categorical setup described here be used as a
semantics?
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