
Proceedings of the Edinburgh Mathematical Society (1992) 35, 405-418 !

EXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR A
CLASS OF NONLINEAR SINGULAR ELLIPTIC PROBLEMS IN

ANNULAR DOMAINS
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We establish the existence of positive radially symmetric solutions of Au + /(r, u, u') = 0 in the domain
Rl<r<R0 with a variety of Dirichlet and Neumann boundary conditions. The function / is allowed to be
singular when either u = 0 or u' = 0. Our analysis is based on Leray-Schauder degree theory.
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1.

In this paper we consider the existence of positive radially symmetric solutions of the
singular equation

u,u'(r)) = 0 in Rl<r<Ro (1.1)

subject to one of the following sets of boundary conditions

u = 0 on r = Rt and u=0 on r = R0 (l-2a)

u = 0 onr = R, and — = 0 on r = R0 (1.2b)
or

— = 0 on r = R, and u = 0 on r = R0 (l-2c)
or

Here r = \x\, xeUN, N2:3; d/dr denotes differentiation in the radial direction;
Ko = °°; / is continuous on (Rj,R0) x(0, oo) x( — 00,00). The equation is singular
because / is allowed to be singular at u = 0, u' = 0 and r = R0, Ri.

Equation (1.1) arises in many branches of mathematics and applied mathematics. It
has been studied by many authors, see for example, [5], [8], [14].

Recently, the problem of the existence of positive radially symmetric solutions of the
problem
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406 Z. GUO

Au + /(«) =M)=0 in fi 1
«=o on an] (1.3)

where Q <= Rw, N ̂  3 is a symmetric domain and / is nondecreasing, has attracted much
interest and has been treated by many authors (see [5, 9, 15-16, 10]). An important
contribution was made by Gidas, Ni and Nirenberg [10] who showed that all positive
solutions in C2(fi) of the equation (1.3) are radially symmetric provided that fi is a
N-ball. They also provided that no such result automatically applies to the annulus (see
also [13]). On the other hand, when f(u) is superlinear (i.e. lim,^00/(f)/t=oo) the
existence of positive solutions of problem (1.3) with a general Q has been provided
under various sets of assumptions, always including a restriction on the growth of / at
infinity (see [1, 4,14]). It is known that such a growth condition is, in general, necessary
for starlike domains [18]. In the case of the annulus, such a growth condition is not
necessary [2]. Therefore, the problem of the existence of solutions of equation (1.1) in
an annulus is of much interest. It is natural to look for radially symmetric solutions
because an annulus is a symmetric domain. We easily give many references
([2,6,11-13]).

We shall study the problems when / depends on u and u! and / is nonincreasing for
u and «'. When f(r, u, u'(r)) = f(u) and f(u) is nonincreasing, some results about the
existence and uniqueness of a positive radially symmetric solution of the problem (1.1)
with the boundary condition (1.2a) has been given in [11].

Putting

(Ht)=(lN-2)tyk k=(2N -2)/(N -2)

t, = l(N-2)R?-2rl «=0,l (1.4)

radial solutions of (1.1) are solutions of

M"(0 + </>Wir(t,u,«'(0)=o to<t<tl (l.iy

(see [2]). Now the boundary conditions become

u(to) = O and u(t,) = 0 (1.2a)'

u'(to) = 0 and ^1^ = 0 (1.2b)'

u(to) = 0 and u'(t,) = 0 (1.2c)'

(when R0 = ao, to = 0). In this, or other equivalent forms, these problems have been
investigated by many authors (see [3, 7,11,17]). Our results improve on the results of
[3], [17] and cover many new examples not treated by [3], [11], [17].
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By a solution u of (1.1)' we mean ueC2(t0,tt) n C ' [ t o , t i ] .
In Sections 2-3, we use the Leray-Schauder degree to seek positive solutions of (1.1)'

subject to one of (1.2a)', (1.2b)' and (1.2c)'. All the results obtained in Sections 2-3 can
be applied to obtain the existence of a positive radial solution of (1.1).

2.

In this section we establish the existence of positive solutions on [to»'i]

K ' '

where to>0, <j>{t) is as in (1.4).

Theorem 2.1. Suppose that

(i) g is continuous on [t0, tx] x (0, oo) x (— oo, oo);

(i i ) 0 < g ( t , u , z ) ^ \ l / ( t ) h ( u ) on ( t 0 , t t ) x ( 0 , co) x ( - c o , co), where

( a ) h(u)>0 is continuous and nonincreasing on (0,oo),

(b) I/J>0 is continuous on [to>*i]»

(c) \/h(k(t — t0)) is continuous on [ i o > t i ] / ° r eacn constant k,Q<k<\.

(d) J|ih{k(t — to))ip(t)dt<co for any constant k,O<k<\,

(e) \im,_a,h(t)$'llh(s)rlds = co.

(iii) for each constant M o > 0 there exists £(t) continuous on [to>^i] and positive on
(to,ti) such that g(t,u,z)^,^(t) on [to>ti] * (0 ,M 0 ] x( — 00,00). Then Problem (2.7)
has a positive solution.

Example 1. Let g(t,u,z) = r2u-1'2(l + 3ui'2)(2 + z2)(l + z2)-1 and £(t) = 3 r 2 . We let
/I(U) = M~1 / 2 (1 + 3U 1 / 2 ) , \\i(t) = 2t~2, an easy calculation shows that g(t,u,z), h{u) and
satisfy all the conditions of Theorem 1. Therefore, the equation

for r e [# , , # ( ) ] with the boundary condition (1.2c) has a positive radially symmetric
solution.

Example! Let g(t,u,z)=(t-t0)
2u-5/2(3 + z2)(l +z2)~\ £(r) = M 0 - 5 / 2 ( r - t 0 ) 2 , where

Mo is as in (iii). Let h(u) = u~S12, ip(t) = 3(t — t0)
2, we obtain from Theorem 2.1 that the

equation
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for re [i?j,/?,)] with the boundary condition (1.2c) has a positive radially symmetric
solution.

Proof of Theorem 2.1.
We consider the problem:

u" + (t>(t)g{t,u,u')=0
u(to)=l/n,u'(ti)=b^0

where nefy = {l,2,3,...} to avoid the possible singularity of g at u = 0. If u is any
solution to (2.2), then u"<0 on ((0»^)- So, u'>b^0 on (to,tx) which implies that u is
strictly increasing on (to,ti)- Accordingly, we may remove the singularity at u=0 by
defining

g(t uz) = {g(t>l"l'z)> to<t<h,\u\^l/n
\g(t, \/n,z), to<t<tl,\u\<l/n

So, every solution v of

" J-/h(Aa(t " "̂  = ° (2.3)

is a solution to (2.2). We now consider the family of problems

t,u,u) = 0
u(to)=l/n,u'(ti) = b

where 0<<5<l is a positive real number which is determined below and Ae[0,1]. Let
u(t) be a solution of (2.4)^, then u(t)^l/n, u'(t)^b for te[to , t i]- We also have
w" + (l — A)S + A(j)(t)il/(t)h(u)'^.u" + (l — X)8-\-X4>{t)gn(t,u,u') = 0 and this implies
— u"^(l— X)6 + X4>(t)\j/{i)h{u). Integrating from t to tt we obtain

h ~t0) + A | (Hs)iHs)h(u(s))dsZS(tl -10) + h{u(t)) j </>(s)̂ (s)ds,

since /i is nonincreasing. Thus,

u\t) g 5(t, -10) + fc(u(t)) J 0(s)^(s) ds + i. (2.5)
ro

Dividing by h(u(t)) and integrating from t0 to t we obtain
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(2.6)

It follows from (e) that there exists a constant C o >0 which is independent of k, 5, n,
such that

u(t)^C0 re [ t o , t i ] (2.7)

therefore \/n^u(t)^C0. On the other hand, from u"(t)^ — (1— k)d — k4>(t)^(t), we obtain
u{t) ̂  6{t) + l/n, where

> >i

0(t) = b{t~to) + 2'\l-k)5(2tl-to-t)(t-to) + kl $<p(v)t(v)dvds. (2.8)
ro s

Let

and

then C'(to) = fco>0. Hence there is an e>0 such that C(0^2 ' ^ ( t - t o ) on [ t o , t o +e] .
Since £(t)/(t —10) is bounded below on [to + M i ] , t n e r e is a constant fc^O such that

^ M t - t o ) o n C'o + e^i]- Let ^=min{ko/2,fc1}, therefore,

(2.9)

Let 0<<5<min{(t1-to)"1,k(t1-to)"1,1}. We obtain

l/n + p - ^ ^ - t o H t t - t o J ^ i i W ^ C o . (2.10)

Using |u"(t)|^ 1 +</>(0IW»(M(0).
 w e know that

KISi+^O^WMP'^^i-toJKt-to)), (2.H)

and then

| | l C1, (2.12)
10

where C^ >0 is independent of A, n. Let x(t) = 1/MC2"1^! -^o)](^-'o))» t h e n
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\x(t)u"(t)\^x(t) + <t>(t)<P(t)^C2. (2.13)

For ueC2(t0,tl)nCl[t0,t1~] define

||«||o=sup \u(t)\,
Ito.ti]

||u||& =max(||M||0, ||u'||o),

||ii||2 = max(||tt||o,||«'||o,sup|x(t)ii1'(t)|).
[lo.li]

Set

Kai(, = {ueC2(fo,t1)nC1[to,ti]u(to) = a^0,M'(t1) = b ^ 0 and ||u||2<oo}

with norm ||-||2 and

C = {u e C(t0, tj): sup \u(t)\ < 00}
[to,d]

with the obvious norm. We know that Kab and C are Banach spaces (see [3]). Define
mappings Gi,11:C1[to,ti]-»C, j:^1/n,b^Cl\_t0,til L:K1/n,b^C by G A »( r ) =
^(O[(l-^)^ + ̂ (Ofn(t.«.«')]» J» = ". and L« = x(t)«"(0- Clearly GAfl is continuous by
the continuity of x(t)gn. By the same idea as in [3], [17] we know that j is completely
continuous and L" l exists and is continuous. Now, (2.4)5 is equivalent to

1GW-)(M) = 0. (2.14)

Let

-t0)} (2.15)
[to.!i)

and define

{ | | | | } (2.16)

then (I + L-lGitJ){u)^0 on dU. Finally, by l/n + b(t-to) + 2-lS(2ti-to-t)(t-to)eU
and properties of the Leray-Schauder degree, we have

deg(I + G1J,U,0) = l. (2.17)

Then (2.3) has a solution in U. The remainder of the proof is similar to the proof of
Theorem 1 of [3].
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Remark 1. The results of Theorem 1 extend the results of [3], [17]. In [17], one of
the conditions on h(u) is f0n(s)rfs<oo, ce[0,oo). So, for example, no result of [17]
applies to Example 2 above.

Theorem 2.2. Suppose that

(i) g is continuous on (t0, t j x (0, oo) x (0, oo),

(ii) ^t)^g(t,u,z)^(t)h(u)p(z) on(t0,ti)x(0,oo)x(0,oo),

where

(a) h(u) > 0, p(z) > 0 are continuous and nonincreasing on (0, oo),

(b) i/*(t)>0 and £(t)>0 are continuous on (to.*i); £(*i)>0 and j!i

(c) J;;</'(t)/!(a(t-to))p(0(ti -t))dt< oo, for each pair (a,/?), 0<a,/?< 1,

(d) g(t,",2)/[1A(0Ma(t-to))p(i3(ti-0)].[«/'(0Ma(t-to))p(/3(ti-0)]"1 are continuous
on \_to,t1'\ x(0, oo) x(0, oo) and [to.ti] respectively for a, jS, 0<a,/?<l. T/ien
Problem (2.1) has a positive solution.

Example 3. Let g(t,u,z) = il/(t)h(u)p{z); here tfr(t) = t, /I(M) = M " 3 / 4 ( 1 + U3 / 4) and

1/2, 0 < z < l

Let î (t) = t/2. A calculation shows that the functions satisfy the conditions of Theorem 2.2.

Proof of Theorem 2.2.
We only discuss the case when u'(t1) = b = O. For b # 0 this theorem follows easily

from the proof of Theorem 2.1. We consider the family of problems

• ' " " • ' - " (2.18)5

where

u Z) = l
' ' ' \g{t,l/n,l/n),

0<(5< 1 is determined below and Ae[0,1]. Let « be a solution of (2.18)", then u(t)^l/n
u'(t)^l/n, for t6[ t o , t i ] . It follows from (ii) that u(t)^0(t) + 1/n and u'{t)^ff(t) + l/n
where
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= 2-l(l-X)5(2tl-to-t)(t-to) + x\ 'j(j>(v)Z(v)dvds, (2.19)
(0 3

d'(t) = (l-X)5{h -t) + k\ Hs)Z(s)ds, (2.20)
i

. (2-21)

Then, there exists a C 3 > 0 such that $'t'0(t>(s)Z(s)ds>C3 and

(2.22)

Using the same methods as in the proof of Theorem 2.1, we have that there exists a
constant k2, 0<k2 < 1 such that

u(t)^k2(t-t0) for te(to,ti). (2.23)

Whether £(ti) = co or not, there exists a constant C4>0 such that 4>{tl)£,{tl)>CA, and

0"(tj)^-(l-A)5-AC4. (2.24)

Using the same idea as above, we have that there exists a constant k3, 0</c3<l such
that

ff(t)>k3(h-t), for teito.h). (2.25)

Therefore, u ' W ^ ^ i - O + Vn and |M"(t)|^l+</»(0^(0''(Mt-to))P(*3(ti-0)- Hence, by
conditions (c),

and

|«(t)|gC6 for teCto.tJ. (2.26)

06 = 03(^-10). Let x(t) = [^(0^2(t-to))p('c3(t1-t))]~1> then, |x(tK(t)| = x(t) + 0(O =
C7. Here C5, C6 and C7 are positive constants which are independent of 1, n. The
remainder of the proof is similar to the proofs of Theorem 2.1.

If g(t,u,z) has singularities at t = t0, t = ti and limli_oog(£,u,z) = 0 for (t,z)e(to,t1) x
(—00,00), then the condition (ii) of Theorem 2.2 does not hold. In this case the
following theorem applies:

Theorem 23. Suppose that
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(i) g is continuous on (t0, tt) x (0, oo) x (— oo, oo);

(ii) 0 <g{t, u, z) g ij/{t)h(u) on (t0, tt) x (0, oo) x ( - oo, oo), where

(a) h>0 is continuous and nonincreasing on (0, oo),

(b) ^ > 0 is continuous on (to>
fi) and \',l0(t — to)tl/(t)dt<oo,

(c) g{t,u,z)/l\p{t)h(k(t-to)y] and l/[>lt(t)h(k(t-to)y] are continuous on lto,t^ x
(0,oo) x( — oo,oo) and [to. fi] respectively, for each constant k, 0<fc<l.

(d) fa h{k(t — to))tl/(t)<l>(t)dt< oo for any constant k,O<k<l,
(e) lim^a,h(t)\\lh(s)rlds = ao.

(iii) For each constant Mo>0 there exists £(t)>0 continuous on (to>*i) and
i'tl

0(t-toK(t)dt<co, such that g(t,u,z)^£(t) on (t,,,^) x(0,Mo] x(-oo,oo). Then
Problem (2.1) has a positive solution.

Proof. Let x(t) = {i/'Wi([2"1^(ti-to)](t-to))}"1 be as in Theorem 2.1, then the
result of this theorem follows from a slight modification of the proof of Theorem 2.1 by
changing the order of integration (see [3], [11]).

If g{t,u,z) has singularities at t = £0> t = tt and l im^^^ ,u ,z ) = 0 for (t,u)e(to,ti) x
(0, oo), then the following theorem applies:

Theorem 2.4. Suppose that

(i) g is continuous on (t0, tt) x [0, oo) x (0, oo),

(ii) 0<g{t,u,z)£il/(t)p(z) on (tQ,t1)x(0,oo)x(0,co), where
(a) p(z)>0 is continuous and nonincreasing on (0, oo) and zp(z) is nondecreasing

on (0, co),

(b) *l/(t)>0 is continuous on (to,ti) and fcipitfdKco,
(c) g{t, u, z)l[^/{t)p{k(tl — t))'] is continuous on [£0>*i] x [0, oo) x(0, oo) for each

constant k>0,
(iii) for constants Mt, M2>0 there exists a continuous, positive function £(£) on (to*^)

and fa £(t)dt< co such that g(t,u,z)^Z(t) on (to,^) x(0, M J x(0,M2]. Then
Problem (2.1) has a positive solution.

Proof. We only discuss the case when u'(tl) = b = O. We consider the family of
problems

Here gn(t,u,u'), ). are as in the proof of Theorem 2.2. Let u be a solution of (2.27)", then
u(t)^l/n and u'(t)^l/n, for te[to , t i]- From (ii) we know that (l/p(u'(t)))u"(t) +

^O. Let
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/(z) is increasing since p(z) is decreasing and (/(u'(r)))' + A0(t)i/'(O = O- Therefore,

The fact that f(z) is increasing and condition (b) together imply that |u'(t)|^C8 and
|u(t)|^C8(t1 —10). Let Cg = C8(tl—t0). Then C8 and C9 are independent of A, n. By
condition (iii) and the same idea as in the proof of Theorem 2.2, we have that there
exists fc4>0 such that u'(t)^Mf-i — O and

\u"(t)\ = A0(tW(Op(A*4(ti - ' ) ) = mWMUh - 0)- (2-28)

Let x(*) = l/[X0p(fc4(*i—0)]- Define IK1/nl/m L, j , G ,̂, as in Theorem 2.1 for 5 = 0,
the proof is then a consequence of Leray-Schauder degree theory as in the proof of
Theorem 2.1.

Remark 2. By the same methods we can discuss the following problem

,u') = 0
)=O l ' '

and obtain results similar to the above theorems.

3.

In this section we examine the existence of positive solutions on (to,tl)(t0>0) to

u,u) = 0
= u(t1)=0 ' { '

Theorem 3.1. Suppose that

(i) g is continuous on (t0, tt) x (0, oo) x ( - oo, oo);

(ii) 0<g(t,u,z)^il/(t)h(u) on (to,ti) x(0, °°) x( -oo, oo), where
(a) h(u) is continuous and nonincreasing on (0, oo),

(b) \p>0 is continuous on (to,ti) and \'t
1
0(t1 — t){t — t0)il/(t)dt<oo,

(c) g(t,«,z)/[1A(0/i(fe(t-to)(t1-0)]eCo([t0,ti]x(0,oo)x(-oo,oo)), for each
constant k, 0 < k < 1,
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(d) Jj^(t)/i(fe(t-to)(t1 — l))dr< oo/or any constant k,O<k<l,

(e) liml^/i(Oji[Ms):r1<fa = co.
(iii) for each constant Mo > 0 there exists a continuous and positive function l;(t) on

(*o,*i), fu>{t-h)(ti-t)^(t)dt<co such that

g(t,u,w')^£(t) cm (t0, tj) x (0,Mo] x ( - c o , co).

Then Problem (3.1) has a positive solution.

Proof. Use the same idea as in the proof of Theorem 1 of [11].

Theorem 3.2. Suppose that

(i) g(t, u, z) is continuous on [t0, t t ] x (0, co) x (0, oo);

(ii) Z(t)£g(t,u,z)g,il/(t)h{u)p(z) on [to , t i] x(0,co) x(0,oo), where

(a) h>0, p>0 are continuous and nonincreasing on (0, oo), limz^0p(z) = co,

(b) £ ( t ) > 0 , <A(0>0 are continuous on [ t o > t i ] , £ > 0 at t = t0, tlt

(c) $;°S°Mt)h(k(t-t0))dt<oo; fc_eiHt)h(k(ti-t))dt<oo; f«op(t)dt<oo, for
each constant e, k, 0<£, k< 1,

(d) l//i(/c(t1 —t) and l/h(k{t —10)) are continuous on [t0, tx] . T/ien problem

, |« | ) = O f 3 .

a s a positive solution in C2(t0, t{) n C 1 ^ , t x ] .

Proof. We consider the family of problems

n(t,u+l/n,M') = 0

Here gn(t,M,u') is as in the proof of Theorem 2.2. Let u be a solution of (3.3)", then u ^ 0
for terjo.tj]. Let t2

e(to,ti)> "(t2) = maxto«<tiu(0- By t n e proof of Theorem 2.2, we
know that there exist k5, k6 satisfying 0<k5,k6<l such that u(t)^k5(t — to), u ' (0^
M*2 —0 f°r t e [ fo , f2]- A similar argument on [£2,ti] yields u(t)^fc7(c1 —t), |«'(0|^
fc8(t-t2) for lG[£2,t,]. Here, 0<fc7)fc8<l. Then,

(3.4)
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Let

x(t) = I VW'l* ~ lo))P(k6(t2 ~ t)), te(to,t2)U jl/MM'i-'MM'-^)), te(t2,tiy

By condition (d), xeC0[t0, ' i] . Therefore,

\x(t)u"{t)\SCl0. (3.5)

Condit ion (c) and (3.4) imply

| | , | « ( t ) | g C 1 2 . (3.6)

Here C10, C l t and C12 are positive constants which are independent of k, n and S. The
remainder of the proofs follows from a slight modification of the proof of Theorem 1
of [11].

Remark 3. It follows easily that the results of Theorems 2.3 and 3.2 still hold for
to = 0 if the function m(t) = <j)(t)\]/(t) satisfies the conditions imposed on tp(t), n(t) =
(j)(t)^(t) satisfies the conditions imposed on £(t). The result of Theorem 2.2 holds for
to = 0, if m(t) satisfies the conditions imposed on [fj(i) and f'0'</>(r)£(t)dt<oo. These results
prove the existence of a positive radially symmetric solution u of equation (1.1) in
Q = {|x|,|x|>R1} and u satisfies u | r = R 1=0 and limr_oou(r) = 0.

Remark 4. Consider the following problem:

,u+l/n,u')=O
0

Here gn(t, u,«') is as in Theorem 3.2. Using the same idea as in the proof of Theorem
3.2, we can obtain an existence result for Problem (3.2) if g(t, u, z), \jj{t) and p(z) satisfy
all the conditions of Theorem 2.4 but (c) replaced by

(c)' g(t, u, z)/\j/(t) is continuous on [t0, tj] x [0, oo) x (0, oo).

We also need limz_0 p(z) = oo.

Remark 5. By the results obtained in [17], we prove the existence of positive radial
solutions of (1.1) subject to one of the following sets of boundary conditions

and u = b^0 on r = Ro

and — = b>0 ont = Ro
or
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= a>0 on r = Ri and u = b^0 on r =
dr

where 0<R1
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