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HOMOLOGY OF ABELIAN COVERINGS 
OF LINKS AND SPATIAL GRAPHS 

MAKOTO SAKUMA 

ABSTRACT. We give ( 1 ) a formula of the first Betti numbers of abelian coverings of 
links in terms of the Alexander ideals, (2) certain estimates of the orders of the torsion 
parts of their first homology groups in terms of the Alexander polynomials, and (3) a 
structure theorem of the first homology groups of Z^-coverings of spatial graphs. As an 
application, we generalize a result of E. Hironaka on polynomial periodicity of the first 
Betti numbers in certain towers of abelian coverings of complex surfaces. 

Introduction. Classical results of Goeritz [Ge] and Fox [F] show that the rank and 
the order of the first homology group of a cyclic covering of the 3-sphere S3 branched 
over a knot can be expressed in terms of its Alexander invariants. (Closely related results 
had been obtained by Zariski [Z], where he had studied the first Betti numbers of cyclic 
branched coverings of the complex projective plane.) Since then, the homology groups of 
abelian coverings have been studied extensively. (See [GS, Gr, GL, He, Hll, 2, HK, MM, 
P, Ri, Ski, 2, SS, Sul, 2, VW, W]; for related studies from the view point of complex 
surfaces, see [Hrl, LI, 2, Sr] and references therein.) In particular, in the crucial article 
[MM], Mayberry and Murasugi obtained a formula which expresses the order of the first 
homology group of an arbitrary abelian covering of S3 branched over a link L in terms 
of the Alexander polynomials of the sublinks of L. They also gave a formula on the 
orders of the torsion parts of the first homology groups of unbranched coverings under 
certain conditions. However we don't have a general formula for the first Betti numbers 
of abelian coverings except for the formula for "strictly cyclic" coverings of links (see 
[HK]) and the formula for those of unbranched coverings corresponding to "product 
representations" (see [L2, Hrl, Sr]). Further, the formulae in [MM] are proved only for 
links in S3, and give no information on the torsion parts of the homology groups in case 
they have nontrivial ranks. 

The purpose of this paper is to consider these remaining problems. In fact, we give a 
precise formula of the first Betti numbers of (branched or unbranched) abelian coverings 
of links in homology 3-spheres (Theorem 1.1), and certain estimates of the orders of 
the torsion parts of their first homology groups (Theorem 8.1). As an application of the 
proof of Theorem 1.1, we give a refinement of a certain weak version of Torres' second 
condition (Proposition 6.3). Our formula of the Betti numbers are actually valid under 
more general situations (Theorem 7.3); and as an application, we give a generalization 
of the result of Hironaka [Hrl, Theorem 1.7] on "polynomial periodicity" of the first 
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Betti numbers in certain towers of abelian coverings of complex surfaces (Theorem 7.5). 

After having completed this work, I was informed that she had also obtained a similar 

generalization of her result [Hr2]. 

Our basic idea is to decompose the homology group of an abelian covering into the di­

rect sum of the 'pure parts" of the homology groups of smaller cyclic coverings. Though 

this idea is very natural from the view point of the elementary representation theory of 

finite groups, I came to the idea through the article of Nakao [Nkl ], where he proved the 

following theorem by using Reidemeister-Schreier method: 

THEOREM [NK 1 ]. Let 6 be a 6-curve (i.e., a graph with two vertices and three edges, 

where each edge joins the two vertices) embedded in S3, and let Kj (i = 1, 2, 3) be its 

constituent knots. Then 

HX (M2e2(0); Z) <* 0 t f , (M2(K,); Z), 

where M2@i(Q) [resp. MiiKi)] is the Z2 0 Z2 [resp. Ti] covering ofS3 branched over 9 

[resp. Kj]. 

In [Nk2], he generalized this result to the Z2 0 Z2 covering of S3 branched over a 

complete graph with 4 vertices. In this paper, we also give a generalization of these 

results to Z2 coverings of homology 3-spheres branched over graphs (Theorems 14.1 

and 14.2). 

This paper consists of three chapters. Sections 1, 2, and 3, respectively, are focused on 

the first Betti numbers of abelian coverings of links in homology 3-spheres, the torsion 

parts of their homology groups, and the structure of the first homology groups of Tc[-

coverings of spatial graphs in homology 3-spheres. In Section 1, homology groups are 

considered to be with coefficients C, the complex number field, unless otherwise stated; 

in Sections 2 and 3, homology groups are considered to be with coefficients Z, the ring 

of the integers, unless otherwise stated. 

1. Betti numbers of abelian coverings of links. 

/. Statement of results. Let L — K\ U Kn U • • • U K^ be an oriented link in a homology 

3-sphere M and let E(L) = M — intN(L) be its exterior, where N(L) denotes a regular 

neighbourhood of L in M. Put G = H\ (E(L) ; Z V and let tt be the element of G represented 

by a meridian of Ki for each / (1 < i < p). We recall the definition of the elementary 

ideals of L. Let E{L) be the universal abelian covering of E(L), and let * be the inverse 

image in E(L) of a base point * G E(L). Then H\ (Ë(L), *; Z) has a structure of a module 

over Z[G], the integral group ring of G. This module is called the Alexander module of 

L, and the d-th elementary ideal Sj(L) of L is defined to be the d-th elementary ideal, or 

the d-th determinantal ideal {cf. [Bo, p. 101]), of the Alexander module of L. To be more 

precise, consider a finite presentation of the Alexander module 

Z[Gf - ^ Z[Gf —> H] (Ë(L), *; Z) > 0. 
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Then G</(L) is the ideal in Z[G] generated by the (q — d)x (q — d) sub-determinants of the 
matrix Q. If d < 0 fresp. d > q], G</(L) is defined to be 0 [resp. Z[G]]. The elementary 
ideals of a link can be calculated from the link group. In fact, if (x\,..., xq \ r\,..., rp) is a 
presentation of the link group TT\ (E(L)), then the matrix (^)]<i<p \<j<q *

s a presentation 
matrix of the Z[Gl-module H\(Ë(L),*;Z\. Here ^ is Fox's free derivation, and 7 is 
(the ring homomorphism between group rings induced by) the Hurewicz homomorphism 
7Tj (£(L)) —> G (c/ [BZ, Chapter 9]). For a group homomorphism </? from H\ (E(L); Z) 
to Sl, the multiplicative group of complex numbers of modulus 1, we define null (L; p), 
the p-nullity of L, by 

null (L; y>) = max{d \ <p(®d(LJ) = 0}. 

Here the symbol p in the parenthesis denotes the ring homomorphism Z[G] —• C induced 
by 9?. It should be noted that (1) null (L; p) is defined even if L = 0, and (2) rank g^ = 
g — null (L;p)—\ for any presentation matrix Q with size (p, g) of the Alexander module 
ofL. 

Let A be a finite abelian group, and let 7r: G = H\ (E(L); Z) —> A be an epimor-
phism. Then E^iL) and M^{L) are, respectively, the unbranched covering of E(L) and the 
branched covering of M branched over L associated with n. Let Z^ denote the set of the 
irreducible representations of A over C, i.e., ZA is the set of the group homomorphisms 
£:A —* S1 (C C). Z^ denotes the set of the nontrivial irreducible representations of A 
over C, i.e., Z?A — 2^ — {1}. For an element (G ZA, let L^ be the sublink of L consisting 
of those components K, such that (^(t,) ^ 1. Note that 

H{(E(L^)a)=Hx(E{L)',l)l{U | Kt £ L&) 

^Hx{E{L)\Z)l(ti\Cp{ti)=\), 

and therefore, (p induces a homomorphism H\ (EiL^)', Z) —> S1. We denote this homo­
morphism by the same symbol. In this chapter, we prove the following theorem: 

THEOREM 1.1. The first Betti numbers of E^(E) and Mn(L) are determined as fol­
lows: 

( 1) fa (En(L)) = 1 + ECezA null (L; <TT) = p + E C G Z ; null (L; fr). 

(2) /3i(M,(L)) = 1 + Ecez, null(LC7r;C7r) = £C e Z; null ( L ^ T T ) . 

2. Outline of the proof of Theorem 1.1. First, we quickly review some elementary facts 
in the representation theory of finite groups {cf. [NT]). For each (e ZA, put 

where |A| denotes the order of A (cf. [NT, p. 197]). Then e^ is an element of the group 
ring C[A] of A over C, and the following holds: 
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LEMMA 2.1. (1 ) ae^ — C>(a)e^for any a G A. 

(2)erer = \e< ' K = C' 

(3) Let B be a subgroup of A. Then 

where Tr Z? = E/>efl ^ and ZA(B) = {f] G ZA \ Ker(r/) D #}. 7ft particular, 

Ce 2-4 

For £ G 2j4, let (£) be the irreducible C[A]-module determined by £, /.<?., the 1-
dimensional complex vector space C where the action of A is defined by az = C,(a)z 
{a G A,z G C). Let 7/ be a finitely generated C[A]-module. For each £ G ZA, put 
[//]ç = ^/ / . We call it the ^-component of H. Then by Lemma 2.1, we have the fol­
lowing (c/ [NT, pp. 16-17]): 

LEMMA 2.2. (I) [H]ç is a C[A]-submodule ofH, which is isomorphic to the direct 
sum {Çf for some non-negative integer p. 

(2) H = ®ieZA[H]c. 

Schur's lemma asserts the following (cf. [NT, p. 23]): 

LEMMA 2.3. Let £ and (f be mutually different elements of ZA. Then the 0-map is 
the only C[A]-homomorphismfrom (Çf to (Cf)q for any positive integers p and q. 

The proof of Theorem 1.1 is divided into the following steps. Throughout this chapter, 
homology groups are considered to be with coefficients C unless otherwise stated. 

STEP 0. H\ (^(L)) and H\ (M^iO) are finitely generated C[A]-modules, and hence, 
by Lemma 2.2, 

HX(E«(L))= 0[//,(^(L))l, 

H\(MAL))~ 0[//i(M,(L))l. 
CeZA 

STEP 1. For each ( G ZA , the ^-components of the first homology groups of the 
abelian coverings are isomorphic to those of certain cyclic coverings, i.e., 

[H^EAL^^IH^EÇAL))^ 

[H^MAL^^IH^M^L))^. 

Here E^ and M^, respectively, denote the unbranched cyclic covering and the branched 
cyclic covering corresponding to the homomorphism£7r with the covering transformation 
group lm(0 = Im(̂ 7r). 
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STEP 2. [Hx (MC7r(L)) ]c = [H{ (E^L&j) } c 

STEP 3. The dimensions of the above modules over C are determined by the nullities 
of Las follows: 

A- \zr(i7 /r\\l f null(L;£7r) if C^ 1 » 
dmiH^(L))\={nul\(L^)+l ifC=l, 

d i m[// ,(^M]-In u l l (^ ;^ i f^ 1 -
null(LC7r;C7r)+l if C = 1. 

We can now obtain Theorem 1.1. [Note that if ( = 1, then [HI(E^(L))] = 

Hx (E(LJ) ^ W and [Hx (E^L^))]^ <* HX(M) <* 0.] 

3. Proof of Step 1. Put B = Ker(Q C A. Then M<7T(L) ^ M^Q/B. Hence, by an 
argument using transfer (see [Br, pp. 118-120]), we obtain 

Hx (MCn(L)) * Hx (MV(L)/B) * (JTB)HI (MV(LJ). 

Further, 

(TvB)Hx(Mn(L))^( £ ejH^MAL)) by Lemma 2.1(3) 
\eZA(B) 

^ © [Hi{Mn(L))] by Lemmas 2.1(2) and 2.2(2). 
T)£Z,A{B) V 

Hence, by using Lemma 2.1(2) and the fact that £ G Z>A{B\ we see 

[HX(M^(L))\=\ © [HX(M„(L))}} ^ [Hx(Mn(L))}c. 
^ l€ZA(B) '^ *> 

This proves the second part of Step 1. The first part of Step 1 is proved similarly. 

4. Proof of Step 2. Put n = | Im(Q| and identify lm(0 with the abstract group (t \ f = 
1). Let £ be the homomorphism A —> Im(Q = (t \ f — 1) determined by Ç Then any 
C(r | f = l)-module is regarded as a C[A]-module via(. Note that M^(L) = M^(L^). If 
£ = 1, then M^(L^n) — M = E(L^), and the assertion holds trivially. Suppose £ ̂  1, i.e., 
n > 1. For each componenet^/ of L^, let b[ be the element of Hx ( ^ ( L ^ ) ) represented 
by a lift of a meridian of Kt in £C7r(LC7r). Then # ! (MC7r(Lc?r)) ^ //i (%(LC7r)) / % where S 
denotes the C(t \ f — l)-submodule generated by \bi \ Ki C L^}. For each component 
Kt of LQT, there is an integer d[ such that (^ — 1)/?/ = 0 and 0 < dt < n. [In fact, 
let ni be the order of (piU) E {t \ f = \)\ then nt is a nontrivial divisor of n, and 
di = n/rii satisfies the condition.] Hence, *B is contained in ®\im(V)\<n 
So, « D [Hi (EfriL&j) ] = 0, and we see 

[//l(Mc.(L))]( * [ # , ( £ ^ ( 1 ^ ) ) / ^ 

s [//, (£^(LCJ) y (« n [//, (£<„(/<,)) ]c) 
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5. Proof of Step 3. Let Q be a finite presentation matrix of the C[G] -module H\ (Ë(L), * ) , 

i.e., 

C[Gf - ^ C[Gf — • Hi (Ë{L\ *) —> 0. 

Then we obtain the following exact sequence of C[Al-modules (cf. [BZ, Chapter 9.C]); 

C ( r | / , = \y^C{t\f= \)q >H{(E(p(L\*) >0. 

Here * denotes the inverse image in E^iL) of a point * G E(L). By Lemma 2.3, this exact 

sequence induces the following exact sequence; 

(cr ^ (0" —» [wi (%(^x *)\ —» o. 
Hence, 

dim[//i (#C7r(L), *) ]. = q - rank gC7r = null (L; (TT) + 1. 

On the other hand, from the homology exact sequence of the pair (E^(L), *) and 

Lemma 2.3, we see 

[»l(E1,a,.i)lM |Hfcf)1(e(a *"" 
L v ^ yjc \ / / , ( E ( L ) ) ifc = i. 

This completes the proof of the second part of Step 3. The same argument also proves 

the second part of Step 3. [Note that the above argument works even if L = 0.1 Now the 

proof of Theorem 1.1. is completed. 

6. Relation to Torres' second condition. For each / (1 < / < /i), let % be the image 

of H\(dN(Ki)\Z) in HX{E(L)\Z). Then Torres' second condition [T] {cf. [H11, p. 831) 

implies the following: 

PROPOSITION 6.1. Suppose \x = \L\ > 2. Let <p:H\(E(L);Z) -—> S1 c C be a 

homomorphism such that Tj C Ker((p)for some i. Then null (L; (p) > 1. 

PROOF. Suppose ^ c Ker((^). Then v?(YM) = 1 and tp{t\] • • • tX^{) = 1, where 

\j = \k(Kj,K^). Hence Ai(ip(t\),..., (p(t^)) = 0 by Torres' second condition, except 

when \i — 2 and (p = 1. Since Gj(L) = /^(A/,), where 1^ = (t\ — I,.. .,t^ — \) (see 

[Hll, p. 86]), we obtain the desired result. 

In this section, we improve this proposition by using the previous arguments. To do 

this, consider the homomorphism j : H\ (dE^L)) —> H\ (En(LJ\ induced by the inclusion. 

The following proposition gives the structure of Im(/) as a C[A]-module. 

PROPOSITION 6.2. Im(/) = 0f=1 C [ A / T T ( ^ ) 1 . 

PROOF. Note that H{{dEAL)) = 0f=1{C[>4/7r(^)] © C[A/TT(2*).]}- SO, we have 
only to show that the following identity holds for any ( G Z^; 

dimlm(/c) = l-dim[H{(dEn(L))] 
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By the homology exact sequence and Lemma 2.3, we obtain the following exact sequence 
for each ( E Z ^ ; 

[H2(EAL),dEAL))\ - ^ [//,(a^(L))]c - ^ [//,(^(L))]c. 

Here 3^ and^, respectively, are the restrictions of the boundary homomorphism d and 
the homomorphism j to the (-components. On the other hand, by considering restrictions 
of intersection forms, we obtain the following commutative diagram, where <j>\ and <\>2 
are A-equivariant and non-singular: 

[//, (dEv(LJ) I x [//, (dEAL)) \ - ^ C 

[//2(^(L),3^(L))]c x [//^(L))^ 

DIAGRAM 6.1 

Thus we see; 

x G Ker(/C) <* 02 (y JC to) = ° f o r anY ^ ^ [#2 ( X ( U 3^(L)) ](, 

<* </>i(dc(y),x) = 0 for any y e [//2(^(L),3^(L))]C, 

^ i G (lm(8c)) . 

Here J_ denotes the the orthogonal complement with respect to </>i. Hence, 

Ker(/C) = ( imO^) 1 = (Ker(/c))
X. 

This implies that dimKer(/^) = ^ dimf/7] (dEAL)) 1 , and hence, we obtain the desired 
result. 

For each ( G ZA, put m(() = #{/1 % C Ker(CTr)}. Then 

êc[A/7T(2?)]=©{ © ( 0 ) = © ( 0 m ( C ) -

Hence we have [Im(/)]^ = (0m(^}- So, by Step 3 and Proposition 6.2, 

null(L;C7r) 
dim[//, (EAD)\ > dim[Im(/')]c = m(Q if C ^ 1, 

dim// i (£(L))- 1 = / i - 1 i f ( = 1. 

Thus we have the following proposition, which refînes Proposition 6.1. 
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PROPOSITION 6.3. Let ip\H\(E(L)\l)) —» Sl C C be a nontrivial homomorphism 
with a finite image. Then 

null(L; (f) > #{i \ % C Ker(^)}. 

7. Polynomial periodicity. A sequence {/3(rc)}n€^ of integers is said to be of polynomial 
periodic if there is an integer N and a finite sequence of polynomials po(x),p\ (x), . . . , 
PN-\(X) such that if n = i (mod N) and 0 < / < Af — 1 then /?(rc) = pt(n). Sarnak [Sr] 
and Hironaka [Hrl] proved polynomial periodicity of the Betti numbers in certain towers 
of abelian coverings. In this section we give a generalization of their results. To do this, 
we generalize Theorem 1.1. In this section, (Af, L) denotes a pair which satisfies one of 
the following conditions: 

(7. 1) M is a compact rc-manifold (possibly with boundary), and L is a (possibly 
empty) union of mutually disjoint codimension 2 locally flat proper subman-
i f o l d s ^ i , . . . , ^ o f M . 

(7.2) M is a compact smooth complex surface, and L is a (possibly empty) union of 
(possibly singular) complex curves K\,..., K^ in M. 

Let E(L), G = //i(£(L);Z), tt G G (1 < i < //), Gd(L) (C Z[G]), null (L; <p), A, 
7r: G —-> A, E^(L) and Mn(L) be as in Section 1, except that in case (M, L) is as in (7.2), 
Mn(L) does not denote the branched covering itself but denotes a desingularization of 
the branched covering. (For branched coverings of complex manifolds, see [Nm].) In 
this case, we denote the branched covering by the symbol Mn(L). Note that all desingu-
larizations of a given complex surface are mutually birationally equivalent, and hence, 
they have the same first Betti numbers. Theorem 1.1 is generalized as follows: 

THEOREM 7.3. Suppose (M, L) is as in (7.1) or (7.2). Then 
(1) Px (EALJ) = 1 + £C G Z A null (L; c » = /3i (E(LJ) + £C e Z ; null (L; (TT). 

(2) /3i(Af„(!,)) = 1 + T,^ZA null(V,C7r) = ^M) + E^z /nu lKL^;^) . 

PROOF. If (M, L) is as in (7.1), then the proof of this theorem is the same as that of 
Theorem 1.1 except that (3\(M) = null(0; 1) + 1 does not vanish in general. 

Suppose (M,L) is as in (7.2). Let S be the set of the singularities of L, and let N(S) 
be a regular neighbourhood of S in M. Let N(S) be the inverse image of N(S) in Mn(L). 
Then, by [LI, (3.2)], H{(Mn(L)) ^ H^M^L) - intN(S)). [Here, we essentially use the 
fact that M is 2-dimensional over C, because the arguments in [LI, (3.2)] uses the fact 
that the intersection matrix of the exceptional curves of a desingularization of a complex 
surface is negative definite.] On the other hand, the pair (M — int N(S),L — int/V(S)) 
satisfies (7.1), and M^(L) — intN(S) is a branched covering of M — intAf(L) branched 
over L — intN(S). Hence we obtain the desired result from the corresponding result for 
the case where (7.1) is satisfied. 
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REMARK 7.4. Suppose (M,L) is as in (7.2) and L consists of smooth curves with 
normal crossings. Then Mn(L) has only rational singularities, and we see f3\ (Mn(L)^ = 

P\(MAL)). 
By using Theorem 7.3, we prove the following theorem, which generalizes the result 

of Hironaka [Hrl, Theorem 1.7] (cf. [Sr]): 

THEOREM 7.5. Let A be an abelian group, and let <j>:G = H\ (E(L)\ Z) —• A be 
an epimorphism. Put A(n) — A 0 Zn, and let 7Tn:G —>• A(n) be the composite ofcj) and 
the projection A —• A(n). Then the first Betti numbers /3\ [E^n(L)\ and /3\ (Mnn(L)) are 
polynomial periodic with respect to n. 

REMARK 7.6. Hironaka [Hrl] proved the above theorem in case (M, L) is as in (7.2) 
and satisfies certain homological conditions. She also observed in [Hrl, Remark 2.3] that 
in case M = S3, the above theorem immediately follows from Sarnak's result [Sr, Corol­
lary 1.4] by using the special presentation matrix of H\ (Mn(L)) given by Mayberry and 
Murasugi [MM]. This is a generalization of the result of Gordon [Gr, Theorem 4.1(h)] 
that the first Betti numbers of the branched cyclic coverings of a knot in a homology 
3-sphere is periodic. 

The following lemma is a reformulation of [Sr, Proposition 1.7] (see also [Hrl, Propo­
sitions 1.9 and 2.5]), and it is a key for the proof of the above theorem: 

LEMMA 7.7. Let F be a finitely generated free abelian group, and let (5 be an ideal 
in Z[F]. For each positive integer n, put F(n) — F 0 Zn, and let 7Tn:F —• F(n) be 
the projection. Let V(G)n = {C G ZF{n) \ Cpn(Qi) = 0}. Then the number |V(G)„| is 
polynomial periodic. 

COROLLARY 7.8. Let G, A, A(n), nn: G —• A(n) be as in Theorem 7.5, and let S 
be an ideal in Z[GJ. Let V(Q;nn) = {( G ZA(n) | ÇTT^G) = 0}. Then |V(G;TTW)| is 
polynomial periodic. 

PROOF. Since G is finitely generated, there is a finitely generated free abelian group 
F and an epimorphism ip:F —>• G. Let G be the ideal in 1\F\ generated by ^ - 1(C) and 
Ker[</>V;- ~%W\ —* ~^[M\ Then we can see that there is a bijection between V(G; 7r„) and 
V(Q)n. Hence, the desired result follows from Lemma 7.7. 

Keeping the above corollary in mind, we reformulate Theorem 7.3. Let ll be a "sub-
link" of L, i.e., a (possibly empty) union of comoponents of L. [Here a component of 
L means a connected component or an irreducible component of L according as (M, L) 
is as in (7.1) or (7.2).] Let/?:Z[G] = Z[HX(E(L)\Z)] -> T[HX{E(L')\Z)] be the nat­
ural projection. For each non-negative integer d, put Qd(L') — p~HQïd(L')). Let L" 
be a sublink of L'. Then Q:d{L',L") denotes the ideal in Z[G] generated by 6^(L;) and 
{ti - 1 | Kt ^ L"). Note that Qd(L') = Gd(L\Lf). Let 

VAL'\ir)={ÇeZA\Çir(Gd(L'j)=0}, 

Td{L'\ 7T) = {C E Vd(L'\ 7T) | (n(ti - 1) ^ 0 if Kt C L7}, 
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Vd(L\ L"; 7T) = {C <E Vd(L'; TT) | frfo - 1) = 0 if ff, g L"}, 

= {Ce^|Cr(e</(L ,,L"))=0}. 

Then we can see that Theorem 7.3 is equivalent to the following: 

THEOREM 7.9. Suppose (M, L) is as in (7.1) or (7.2). Then 
(I) /3,(^(L)) = l+Erf|Vrf(L;7r)|. 
(2; /3i(M,(L)) - 1 +EL'CLEJ |V*(L / ;TT) | . 

Further, we have the following: 

LEMMA 7.10. \Vd(L';n)\ = ZL»cLi-l)lL'~L"]\Vd(L\L";Tr)\. 

PROOF. We prove this lemma when l! — L. The other cases can be proved similarly. 
For each sublink L' of L, put [L'\ = Vd(L, L'\ TT) and [L'f = {C £ VA I Cn(U - 1 ) = 0 if 
and only if K, g L'}. Then, [Lf] = UL»CL>[L"T and [Lf = ^(L;TT). We show that 

\[L']*\ = Y:(-lf'-L"l\[Lff}\ 
L"CL' 

for any sublink L' of L, by using induction on \L'\. For L' = 0, we see [0]* = [0], and 
the desired identity clearly holds. Next, we show that if the identity holds for any proper 
sublink of L', then the identity holds for L'. We show this when L' = L. (The same 
argument works for any L'.) By using the fact that [L] = \1L>^L[L'Y, we see 

\iLT\ = \m\-E lu-'ri 
L'CL 

= m\-E{ E (-DW-L'\L"]\\ 
L'CLlL"ClJ J 

= 1^1-E{ E (-»W-L"1)\[L"]\ 

[\L-L"\-X (\L-L"\\\ 

= I W I - E E (-DT ')m"}\ 
L"CL I r=0 \ r / J 

= \[L]\- E(-1) | /-L" |-'|[L"]| 
L"CL 

= E(-D,L-Z'!|[z/]|. 

This completes the proof of Lemma 7.10. 

We now prove Theorem 7.5. By définition, 

Vd(Uirn) = V(Qd(L)'9nn)9 

Vd(L\L";irn) = v(Gd(L\L"y,*irn). 
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Hence, by Theorem 7.9 and Lemma 7.10, 

Pi(EVtt(L)) = l+Y^\v(&AL)\nn)[ 
d 

frfM^L)) = 1 + £ E E (-l^'-^'IV^L'.L");^)!. 
J L'CLL"CL' 

Hence, by Corollary 7.8, f3\ (/^(L)) and /3i (M^/;(L)) are polynomial periodic. 

2. Torsion numbers of abelian coverings of links. 

8. Statement of results. In this chapter, we study the Z-torsion parts of the integral ho­
mology groups of abelian coverings of links in homology 3-spheres. Throughout this 
chapter, homology groups are considered to be with coefficients Z unless otherwise 
stated, and we use the following notation. If H is a finitely generated abelian group and/? 
is a prime number, ther\H{p) denotes the/?-torsion part of//, i.e.,H{p) = {x G H \ pex — 0 
for some e > 0}. Then Tor//, the Z-torsion part of//, is the direct sum 0^ HiJ)\ where p 
runs over the set of the prime numbers. If {a\}\eA is a set of complex numbers indexed 
by a finite set A, then fl\e\a\ denotes the product of all non-zero a / s . If «A = 0 f°r 

any A G A, it is defined to be 1. For an integer n and a prime number /?, n{p) denotes the 
/^-component of n. Thus | Tor / /^ , the /^-component of the order of Tor//, is equal to 
\H{p) |, the order of the /7-component / / ^ of H. 

Let M,L,A, 7T, En(L), and M^(L) be as in Section 1. Then we have the following: 

THEOREM 8.1. Let p be a prime number which does not divide \A |. 

(1) |//i (En(L))\{p) is divisible by | n C e Z ; A L ( C ^ I ) , . . . , C ^ ) ) ^ 

(2) \Hl (MAL)) 1^ is divisible by \%z*A^ (C^i ) , . . . , C ^ ) ) 1^ 

REMARK 8.2. (1) Unfortunately, the above estimates are not so good as explained 
in Section 13. However, we have the following: 

(i) The two numbers in Theorem 8.1(1) are equal, provided that either (a) 
f3\ (Mn(L)) = 0 and IT is "indivisible" in the sense of [MM], i.e., 7r(^) = A for any / 
(1 < / < /i), or (b) TT\ (E(L)) is generated by two elements. 

(ii) The two numbers in Theorem 8.1(2) are equal, provided that either (a) 
f3\ (MAL)) = 0, or (b) TT\ (E(L)) is generated by two elements. 

(2) In case M is S3 and Condition (a) (in (i) or (ii)) holds, each of the above identities 
follows from the results of Mayberry and Murasugi [MM]. In fact, they gave precise 
formulae for the orders of Tor//i (E^L)) and H\ (Mn(L)) under these conditions. 

9. Outline of the proof of Theorem 8.1. The proof of Theorem 8.1 is parallel to the proof 
of Theorem 1.1. Let CA denote the set of the subgroups B of A such that A JB is cyclic. 
For each B G CA, put 

^B = \A\ £ '< = £ { £ Ôi>}*-

Then *£# is an element of the integral group ring Z[A] of A, and we can easily prove the 
following by using Lemma 2.1. 
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LEMMA 9.1. (1) bŒ^B = *EB for any b G B. 
_\\A\<EB ifB = B', 

(3) Let B be a subgroup of A, and put CA(B) — {Bf G CA \ B' D B}. Then 

£ <EB, = [A;B]TvB. 
B'eCA(B) 

In particular, 

BeCA 

Let H be a finitely generated Z[A]-module. For each B G CA, put [7/]^ = £#//. This 
is a Z[A]-submodule of H, and it can also be considered as a Z [A/#]-module, since the 
action of B on [//]# is trivial by Lemma 9.1(1). 

LEMMA 9.2. Let *¥ be the Z[A]-homomorphism @B<ECA[H]B —* H induced by the 
inclusions. Then we have the following: 

(1) |A|Ker(O) = 0. 
(2) Coker(O) is a quotient ofH/\A\H. 

PROOF. (1) Let (CLEXB)B^CA ^ e a n e l e m e n t °f KerO, i.e., T,BeCA ^B^B = 0 in H. 
Then for any BQ G &, we have the following by Lemma 9.1(2), which proves (1); 

0=<EBO(Y; <EBXB) = \A\<EB0XBO. 
BeCA 

(2) By Lemma 9.1(3), we see Im(O) D Im(T,BeCA ̂ ) = \A\H. This implies the 
desired result. 

In the remainder of this chapter, p denotes a prime number which does not divide \A |. 

LEMMA 9.3. ^{jHM) = CE^H)^. 

PROOF. Since H^} C H, ^{H^) is contained in (Œ^H)^. Conversely, let x = ^y 
be an element of (2#/ / )^ . Since/? does not divide \A\, there is an element z G Hip) such 
that Jt = \A\z. Then, 

\A\<E*z = <EBx = ^ C £ ^ ) = |A| Î : 5 } ; = |A|x. 

Since x and l^z are elements of H^\ we see JC = ŒLBZ G <EB(H^). 

Let [//]^} denote the submodule T^iH^) = {tEBH){p\ Then by Lemma 9.2, we have 
the following: 

LEMMA 9.4. / / ^ ^ e f î G G [H] (P) 
B ' 

The following lemmas can be proved easily: 
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LEMMA 9.5. Suppose the Z[A]-module structure of H comes from a Z[A /B]-module 
structure for some B E CA- Then [//]# (of the Z[A]-module H) is Z[A /B]-isomorphic to 
[H]^} (of the Z[A/B]-module H). 

LEMMA 9.6. Let B and B' be two mutually distinct elements of CA- Then for any pair 
of finitely generated Z[A]-modules H and H'\ the 0-map is the only Z[A]-homomorphism 
from [mf to [H']%\ 

We now give an outline of the proof of Theorem 8.1. 

STEP 0. H\(E^ijSj and //i(M^(L)) are finitely generated Z[A]-modules. So, by 
Lemma 9.4, 

ff.w^e[fli(«C 
B£CA 

(P) / / , (M,(L)) W ^ 0 [ / / , (M, (L) )J 
B£CA 

STEP 1. Let B be an element of G, and p be the projection A-^ A/B. Then 

[//i(M„(L))Jf * [//,(M„(L))f\ 

STEP 2. Let Lpn be the sublink of L consisting of those components Kj such that 
pTrfe)^ l.Then 

[Hx(Mp„(L))]^ * [H^E^LpxJ)]^. 

STEP 3.a. Let n be the order of the cyclic group Im(p). We can identify Im(p) with 
(t | t — 1) and find an epimorphism p from H\ (£(L)) to the infinite cyclic group (t), 
such that the following diagram is commutative: 

f = \) 

//](£(V)) A/B Hi(E(L)) - ^ A -?-

DIAGRAM 9.1 

Here the vertical map (?) —» (t | t" = 1} is the natural projection, and the homomorphism 
H] (£(Lp7r)) —» (?) induced by p is denoted by the same symbol. Then we have 

H\(E~p{LJ) iW 

r [//,(£/m(L))]| (f«-l)//,(^(L))J{l} ' 

/ / , ( ^ (V) ) i<" 

(r"-l)//,(£p(L^)) { i } 
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Here Ep denotes the infinite cyclic covering corresponding to p, and the modules in the 
parentheses on the right-hand sides are regarded as Z(t | f — l)-modules. 

STEP 3.b. By using the results in Step 3.a, we prove the following: 

(1) \Hx{E^{L))f^\ = I l lKerC^A^C^i ) , . . . , ^^ ) ) !^ , provided that the right-
hand side is not 0. 

(2) | [ / / i ( ^ . ( V ) ) ] f | = |nKerC^ALc„(<7r(fi),...,CTT^))^, provided that the right-
hand side is not 0. We can obtain Theorem 8.1 through these steps. [Note that, if B = A, 
then Ep7T(L) = E(L) and Ep7T(Lp7T) = M.] 

10. Proof of Step 7. As in Section 3, we see 

Hx (MPAL))(P) = Hx (MAL)/B){P) 

^ (TrB)Hx(Mir(L))ip) by [Br, pp. 118-120] 

^ ([A'9B]i:rB)Hx(Mn(L)){p) sincep does not divide \A\ 

~ ( £ <£B,)H{(MAL))(P) by Lemma 9.1(3) 

r: 0 [Hx (M^L)) Ç by Lemmas 9.1 (2) and 9.4. 
B'£CA(B) 

Hence, by using Lemma 9.1(2) and the fact that B 6 CA(B), we see 

LB'eCA(B) JB 

This completes the proof of the second part of Step 1. The first part can be proved simi­
larly. 

77. Proof of Step 2. Put A{n) = Z(t \ f = 1) (= T[A/B}\ and regard 77i (Afp7r(L)) and 

Hx (Ep7T(Lp7T)) as A(„)-modules. Then, by Lemma 9.5, the assertion in Step 2 is equivalent 

to the assertion that \H\(Mp7r(L)) 1 = \Hx(Ep7r(Lp7T))] as A(n)-modules. As in Sec­

tion 4, for each component Kj of Lp7r, let b( be the element of Hx (£p7r(Lp7r)) represented 

by a lift of a meridian of Kt in Epn(Lp7r). Since Mp7T(L) = Mp7r(Lpn), Hx (Mp7r(L)) = 

H\(Epi:{Lplx))/*B, where *B is the A(n)-submodule of Hx(Ep7r(Lp7r)) generated by {b{ \ 

KiC L ^ . P u t E , = £ { 1 } GA(„). 

LEMMA 11.1. For any divisor d ofn with 0 < d < n, r4 — 1 divides "Ex in A(A7). 

PROOF. Let Exit) be the integral polynomial defined by E\{t) = Ew{E"r0' ûff} 
where UJ runs over all primitive n-th roots of 1. Then Ex(t) — Ex in Ain). For any d-th 
root a/ of 1, we can easily see £i(a/) = 0. Thus r4 — 1 divides £1(0 in Z(f), and we 
obtain the desired result. 

LEMMA 11.2. <E]
fB = 0. 

PROOF. For each Kt C Lp7r, there is a divisor d\ of AÏ such that {fl> — \)bi — 0 and 
0 < dj < n (see Section 4). Thus we see *E\ bj = 0 by Lemma 11.1. 
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LEMMA 11.3. For any x G iBn<E\H\ (Ep7r(Lpn)\ we have nx = 0. 

PROOF. Since x £ S, we have £ i x = 0 by Lemma 11.2. On the other hand, x = *E\y 

for some y G H\ (Ep7X{Lp7T)). Hence *E\x = Œ%y = n 'Eu = nx by Lemma 9.1 (2). Thus 

we have nx = 0. 

Since /? does not divide «, we see the following: 

AP) 

(EiH\(Ep7r(Lpn)) 
fBn<ExHx{Efnç{LfyK)) 

l<E\H\^Ep7T(Lp7T)j) 

(p) 

— lH\(Ep7r(Lp7r))\ 
(P) 

{i}' 

12. Proof of Step 3.a. First, we prove the existence of the epimorphism p. Let s be 

a generator of Im(p), and let rif be an integer such that rjirfc) = sn' (1 < i < p). Put 

d — g.c.d.{n\, n^}, then sd is also a generator of Im(p). Put t — sd G Im(p). Then 

Im(p) is identified with (t \ f — 1). Consider the infinite cyclic group (t) generated by 

the symbol t, and let p be the homomorphism from H\ (£(L)) — (t\,..., t^ ) to (t) defined 

by p{tj) = tn'ld. Then p satisfies the required conditions. 

The first isomorphism follows from Lemma 9.6 and the exact sequence induced by 

the following short exact sequence of chain complexes; 

0 — - C*(EP(L)) f-^ C*(EP(L)) — * C*(£P(L)) — 0. 

The second isomorphism can be proved similarly. 

13. Proofs of Step 3.b and Remark 8.2. 

LEMMA 13.1. Let H be a finitely generated Z(t)-module and p a prime number 

which does not divide n. Then 

H 

(tn - \)H 

(p) H 

PnW 

(P) 

{1} U{1} 

where </>„(/) is the n-th cyclotomic polynomial. 

Suppose further that H has a square presentation matrix whose determinant is A(t), 

and that A(UJ) ^ 0 for any primitive n-th root of 1. Then \[H/(f — \)Hy?\\ = 

\R\A(t), <f>n(t)) • Here R\A(t), (/>«(0) denotes the resultant of A(t) and 4>n(t); so it is equal 

to r L A(LU), where UJ runs over all primitive n-th roots of I. 

This lemma will be proven later. Now the first part of Step 3.b follows from the fol­

lowing facts: 
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(1) the Z(^)-module H\(EP(L)) has a square presentation matrix with determinant 
(t- l)AL(p(fi ) , . . . , p(tp)) or AL(p(f i ) , . . . , pifyS) accoringasp > 2 or p = 1 (c/ [Sal, 
Theorem l(i)]). 

(2) Since \R(t — l,<^n(0)| — 1^(1)1 *s a divisor of n, andp is not a divisor of n, 

/?((*- D A L ^ , ) , . . . , ^ ) ) , ^ ) ) ^ = | /?(AL(^i), . . . ,p(rM)),^(0 
(/>) 

I I AL(C7r(r,),...,CTT(^)) 
KerC=S 

(/?) 

The second part of Step 3.b is proved similarly. 
We now discuss the effectiveness of Theorem 8.1. Let B, p, and p be as in the above. 

Then we can see that, for any £ € Z>A with Ker(Q = Z?, the following holds (see Sec­
tion 1): 

[H\(Ep^L)^)] 
c 

/J,(E*(L);C) HX{E~P{L)'X) 

t>n{t)H\(Ep(L)\V) 

> (fi(n)m(B;7T), 

L(f"-l)//,(£p(L);C)j 

On the other hand, by the proof of Proposition 6.2, 

dim[/*i (£„(£.); C)^ > #{i | $• C Ker(C7r)}. 

The latter number is equal to m(B\ if) = #{;' | 7r(î^) C 6}. Thus we have 

/ H,(E,WX) , 

Un(0Hi(£p(L);C); 

where (/? denotes the Mobius function, i.e., tp(n) is equal to the number of positive 
integers less than n that is relatively prime to n. In particular, if m(B\ IT) ^ 0, then 
H\(Ep(L))/<j>n(t)H\(Ep(L)) has a nontrivial rank, and hence the corresponding resul­
tant vanishes; so, in Theorem 8.1(1), we ignore the order of \HX (Ep7T(L))\f. [The author 
does not know an estimate of the above order in terms of the Alexander invariants in 
case m(B\ IT) ^ 0.] 

Keeping the above observation in mind, we prove the assertion (i) in Remark 8.2(1). 
Suppose the condition (a) is satisfied. Then, for each £ G Z>A with Ker(Q = B, the 
following holds: 

0 = [HX {MPAL)\ C) ]C since ft (Mn(L)) = 0 

/ / , (^(L);C) 

h(t)H{(E~p(L);C) 
since L = Lsn by the indivisibility of IT. 

So, the corresponding resultant does not vanish. Hence, we obtain the desired result. 
Next, suppose the condition (b) is satisfied. Then for each sublink Lpn of L, TT\ (E(Lp7T)) 

is generated by two elements. Hence the Z(t)-module H\ [Ep{LpiS) is generated by one el­
ement. So, if the corresponding resultant is zero, then H\ (#p(L)) /<j>n{t)H\ (Ep(L)) is iso­
morphic to Z(t) I (4>n(0) (since <j)n(t) is irreducible over Z), and therefore, it is Z-torsion 
free. Hence, we obtain the desired result. 

The assertion (ii) in Remark 8.2(1) is proved similarly. 
In the rest of this section we prove Lemma 13.1. 

https://doi.org/10.4153/CJM-1995-010-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-010-2


HOMOLOGY OF ABELIAN COVERINGS 217 

LEMMA 13.2. Let %^ be the 7L(t)-module determined by the following short exact 
sequence; 

0- (') © (t) 

<<"-!) 4 . ( ^ « > 
£->0. 

Here the map from the first term to the middle term is the natural one. Then %^ is a finite 
Z(t)-module such that \%J contains only prime factors ofn. 

PROOF. Let {d\,..., dk} be the set of the divisors of n, and let % (1 < i <k— 1) 
be the T(t)-module determined by the following exact sequence; 

if) 
<nf=;<M0) (^,(t)) (n;=/+i^(0) 

^ - • o . 

Here the first homomorphism is the natural one. Then we have |^, | = nf=/ \%\, since 
t" — 1 = nj=i <l>dj(t)- On the other hand, we see 

%.= 
{4>dl(t),n

k
j=M4>d1(t)y 

and hence, 

i^i = \R(4>di(t), n > , « 

k 

E = n | * ( < M O , <t>dj(t))\. 

Note that 

^(^,.(0,^.(0)1 = II("i ~ "À = IK1 " ^1^2) 

where u\ [resp. o^] runs over all primitive dri\\ [resp. dj-ih] roots of 1; so û\U2 is a d-th 
root of 1 for some nontrivial divisor d of d\d2. Thus the above number is a product of 
|</>j(l)|'s and therefore it contains only prime factors of d[d}. Hence |^J contains only 
prime factors of ELL/ 4- S° \%\ contains only prime factors of n. 

PROOF OF LEMMA 13.1. LetMbe a presentation matrix of the Z (t) -module //, i.e., 

(t)p - ^ Z ( f ) * — # • 

Then we have the following exact sequence 
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Hence, we obtain the following commutative diagram of exact sequences: 

0 0 

I 
\®d\n WE)) 

I 
'RS 

I 
o 

I 
H 

K) \v 

I 

(t"-\)H 

®d\n H(l 

0 

Here %, is as in Lemma 13.2, @d\n M and M are the natural homomorphisms induced by 

M, and 
A V ( A ^ 

/ / j = Coker 

H 

M: 
d(t))) V(Mt)) 

i(t)H 

By the snake lemma, we have the exact sequence; 

Ker(M) 
H H 

(tn - \)H 
• Coker(M). 

By Lemma 13.2, Ker(M) and Coker(M) are finite abelian groups whose orders are not 

divisible by p. Hence we have 

H 

(tn - \)H 

(p) 

© • 
\-d\n ' 

H 

>d(»H 

(p) 

and therefore we obtain the first part of Lemma 13.1. The second part follows from [Ski, 

Lemma 2] or [W]. 

3. Homology of abelian coverings of spatial graphs. 
14. Statement of results. Throughout this chapter, homology groups are considered to 

be with coefficients Z. Let T be a finite graph embedded in a homology 3-sphere M, such 

that the valency of any vertex of Y is 2 or 3. In this chapter, we use the term "edge" 

to denote the closure of a component of F — {vertices with valency 3}. For each edge 

e of r , let te be the homology class in H\ (M — V) represented by a small simple loop 

around e. We call it the meridian of e. Let A be a finite abelian group isomorphic to Z2 

for some positive integer d, and let 7r: H\ (M — T) —> A be an epimorphism such that 

n(te) 7̂  1 for any edge e of T. Then T can be considered as a "colored" graph with color 

set A — {1} satisfying the following condition: Let e\, ei, £3 be edges of V with a common 
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vertex, and let a\, a2, a 3 be their colors; then a\a2a^ — 1. Let M^(T) be the covering of 
M branched over T determined by 7r. Then Mn(T) is a 3-manifold. In fact, an abelian 
covering of a 3-manifold branched over a graph is again a 3-manifold, if and only if each 
of the vertices of the graph has valency 2 or 3, and the monodromy group is Z2 for some 
d > 0. This is the reason why we restrict our attention to the situation described in the 
above. As in Section 9, let CA be the set of all subgroups B of A such that A/B is cyclic. 
Put CX — CA — {A}. For an element B of CX-> let ^B be the subgraph of V consisting of 
those edges e such that 7r(te) ^ 1 in A/B = T2. Then TB is a link in M, and the double 
cover M2(TB) of M branched over TB is homeomorphic to M^{T)/B. 

THEOREM 14.1. (1) Hx (Mn(T); C) 9* @BeC. Hx (M2(TB); C). 
(2) For any odd prime p, 

(p) 

For special cases, we can also determine the 2-torsion parts, and obtain the following: 

THEOREM 14.2. (1) Suppose A = T\, andTB is connected for any B G Q . Then 

/ / ^ ( D ) ~ ( 0 //i(M2(rfi)))®zf, 
W; J 

where v is the number of edges ofT. 
(2) Suppose A = Z2 and T is the complete graph with 4 vertices. Then 

/ / , (M,(D)^ 0 HX{M2{TB)). 
BeQ 

EXAMPLE 14.3. Let Td — (a circle) U (d arcs) be the colored graph as illustrated in 
Figure 14.1. Then it satisfies the assumption of Theorem 14.2(1). Hence, 

Wc v J ) 
The cases where d — 1 and 2 correspond to the results of [Nkl] and [Nk2] respectively. 

A = (x\x2 = \)e(y\f= 1) 

FIGURE 14.1 
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15. Proof of Theorems 14.1 and 14.2. Note that the generator of the covering trans­
formation group of each of the double coverings M2(TB) —• M acts on H\ \M2(TB)) as 
multiplication by —1 (see [Br, pp. 118-120]). Theorem 14.1(1) and (2) can be proved 
by using this fact and the arguments in Steps 0 and 1 in the proofs of Theorems 1.1 and 
8.1. Theorem 14.2(2) follows from Theorem 14.1(2) and the fact that Mn(V) is a Z2-
homology 3-sphere when T and n satisfy the assumption of Theorem 14.2(2); this fact 
follows from Proposition 15.5, which is proved later. 

In the following we prove Theorem 14.2(1). To do this, we need to refine the argu­
ments in Section 9. This refinement is based on the following observation: Let A = Z^, 
B an element of C%, and a an element of A which is not contained in B\ then *£# = 
(1 — a)TvB. The following can be proved by direct calculation. 

LEMMA 15.1. (1) ForB,B' £ Q, we have 

T r o T r r>f _ \ 2 " TrZ? ifB = Bf, 

(2) Efl€G
 TrB = 2d~l + ld~X T r A 

Since H\(Mn(L)/À) = HX{M) ^ 0, we see TrA = 0 as an endmorphism of 

H\ [M^(L)\ (see [Br, pp. 118-120]). Thus from the above lemma, we have 

LEMMA 15.2. In Endf//, (MAL))), we have the following identities; 

(1) ForB,B' E Q, 

•*>••»*-{t,Tr $ ; * 
(2) E e e Q TrZ?=2 ' / - 1 . 

Suppose TB is connected for any B £ C\- Then MiiTg) is a Z2-homology 3-sphere (cf. 
Sublemma 15.4), and therefore we have the following by the argument of [Br, 
pp. 118-120]; 

Hi(M2ÇTBj) ^ (Trfi)//,(A/T(D). 

Hence, by using Lemma 15.2, and noting the fact that the above groups are of odd order, 
we can see 

( £ TVB)H{(MAT)) = ©(Tre) / / , (M„(n) * ® H,{M2(TB)). 
BeC; ' BeQ BeQ 

On the other hand, by Lemma 15.2(2), 

Mi {MAT)) Hj {MAT)) 

( E B e Q Trfi)//, (MAT)) 2d~'H{ (MAT)) ' 

Hence, we obtain the following short exact sequence: 

Hi(MAT)) 

ie»-(^.))-".(^)--^,Wl(,#B(n) 
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In this short exact sequence, the first term has an odd order and the last term has an even 
order. Thus H\ (M^T)) is the direct sum of these two terms. Suppose, further, d = 2. 
Then the last term is isomorphic to H\ (M^ÇT); Z2). Thus, Theorem 14.2(1) follows from 
the following lemma. 

LEMMA 15.3. Suppose T, n, and A satisfy the condition of Theorem 14.2(1). Then 

/ / 1 (M,(D;Z 2 )^Z^ / 3 " 1 , 

where v is as in Theorem 14.2(1). 

To prove this we need the following fact, which is probably well-known. 

SUBLEMMA 15.4. Let M be a ^-homology ^-sphere, and L a \i-component link in 
M. Let Mi(L) be the double cover of M branched over L. Then 

/ / 1 (M 2 (L) ;Z 2 )^Z^ 1 . 

PROOF. Since M is a Z2-homology sphere, there is a compact surface V in M with 
dV = L. As in [GL, Section 2], we define a bilinear form ÇV\HX(V\ Z2)xHi(V; Z2) —> Z2 

as follows: Suppose a, /3 G //i(V;Z2) are represented by 1-cycles a,b. Then 2b can 
be pushed off V into M — V, obtaining b, say. Define Çv(ot, /3) to be the Z2-linking 
number of a and b. Let {a\,...,an} be a basis of H\(V\ Z2), and let G be the matrix 
(Çv(ai, dj)\. Then as in [Ro, p. 212] (cf. [GL, Section 3]), we see G is a relation matrix 
of H\ (M2(L)', Z2). On the other hand, since Qy is equal to the Z2-intersection pairing on 
H\(V\ Z2) (cf. [Ro, p. 202]), we see the nullity of G is equal to /1 — 1. Hence, we obtain 
the desired result. 

PROOF OF LEMMA 15.3. Choose an element B of Q. Then we have the following 
tower of double branched coverings; 

M,(r)^M 2 (r B )^M. 

Here the branch set for p2 is / ^ ( r ^ ) , where TC
B = c/(T — r#). Since T# is connected by 

the assumption, M2(r^) is a Z2-homology 3-sphere by Sublemma 15.4. Each component 
of r^ is an arc with endpoints in TB. [Proof: Since TC

B has the single color b where {b} — 
B — {1}, each component of TC

B is an arc or a circle. If there is a circle component, then 
some constituent link TB> (B' G Q ) is disconnected, contradicting the assumption.] Let 
v(B) be the number of the components of T^. Thenp\{(Tc

B) is a link of z/(#)-components, 
and therefore Hl (MAT); Z2) = Z ^ - 1 by Sublemma 14.4. Noting that v(B) is equal to 
the number of edges of T whose colors are equal to b, we have v(B\ ) + v(B2)+v(Bi) — 1/, 
where Q = {B\,B2,B3}. Since all z/(#/)'s a r e equal, v(B) = i//3. 

Finally, we present a proposition, which completes the proof of Theorem 14.2(2), and 
justifies its condition. 
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PROPOSITION 15.5. Let M be a Z2-homology 3-sphere, and let r , 7r, A = Zd
2, and 

M7r(r) be as described in the beginning of Section 14. Then M 7 r (0 is again a 

JL2-homology 3-sphere, if and only if one of the following conditions is satisfied; 

(1 ) d = 1 and T is a knot, 

(2) d = 2 and T is a 2-component link with linking number 1 (mod 2), 

(3) d — 2 and V is a 6-curve, 

(4) d = 3 and V is the complete graph with 4 vertices. 

PROOF. By repeatedly using Sublemma 15.4, we can prove the "if" part. So, we 

prove the "only if" part. In case d = 1, the proposition is a special case of Sublemma 15.4. 

So, we assume d > 2. Choose an element B of C\, and identify A with B 0 Z?. Let 

p: A = B 0 Z2 —>• B be the projection, and let TQ be the subgraph of T consisting of those 

edges e such that p7i(te) ^ 1. Then we obtain the following tower of coverings; 

Here pi is a double covering whose branch set is the link p\l (TQ), where r[} = cl(T— To). 

Since pi induces an epimorphism between the fundamental groups, we see Mn(V) is a 

Z2-homology sphere, if and only if Mpir(Vo) is a Z2-homology sphere and p^"1 (F0) is a 

knot. Suppose these conditions hold. Then TQ is connected, and therefore it is either a 

circle or an arc. 

CASE 1. d = 2: Then To is a knot by Sublemma 15.4. If r[} is a circle, then 

lk(ro,lHo) = 1 (mod 2), since p ] " 1 ^ ) is a knot. Thus (2) is satisfied. If V0 is an an 

arc, then (3) is satisfied. 

CASE 2. d = 3: Then, by the above, r 0 satisfies (2) or (3). 

SUBCASE (I). r ( ) satisfies (2); i.e. r 0 is a 2-component link K\ UK2 with lk(A^i, K2) = 

1 (mod 2): Note that the covering projection p \ is the composite of the following cov­

ering projections 

Mp7T(To)J^M2(Kl)^M, 

where the branch set for p'[ is the inverse image K2 of K2 in M2(K\ ) . If Tc
0 is a circle, then 

the inverse image P0 of T^ in M2(K\) satisfies lk(f^ ,^ 2 ) = 21k( r 0 , ^ 2 ) = 0 (mod 2), 

and therefore p]"1 ( r o ) = (P'\)~](TQ) is a 2-component link. Thus TQ must be an arc. If TQ 

joins K\ and K2, then the meridian t of rf} is null-homologous, and therefore 7i(t) = 1. 

If 3FQ is contained in either K\ or K2, then Y is the disjoint union of a #-curve and a 

circle. This situation is treated in the next subcase, where it is concluded that this does 

not occure. Hence this subcase does not occur. 

SUBCASE (II). TQ satisfies (3); i.e., To is a #-curve: Suppose TL
{) is a circle. Then we 

can see EjLj IMFQ,Kî) = 0 (mod 2), where K\, K2, and ^3 are the constituent knots of 

r 0 . [This following from the fact that E-=i [#/] = 0 in / / , ( r 0 ; Z2).] Thus lk(rj}, ^ ) = 0 

(mod 2) for some Kj, and therefore we see / ^ ( F Q ) is not connected. Hence rj} must 
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be an arc. Suppose dTc
0 lies in an edge of To. Then there is a constituent knot ATo of To 

which is disjoint from Tc
0. The covering p\ is the composite of the following covering 

projections; 

A W r 0 ) - ^ M 2 ( K 0 ) ^ M . 

We see (P\)~1(TQ) is a union of two arcs; so/?]"1^) is a union of two loops, a contradic­
tion. Hence Tc

0 joins different edges of To, and therefore F is the complete graph with 4 
vertices. 

CASE 3. d — A\ Then VQ is the complete graph with 4 vertices. If Vc
0 is a circle, then 

as in the argument in the first half of Subcase (ii) of Case 2, we can find a constituent knot 
Kj of TQ such that lk(rf), Kt) = 0 (mod 2), and hence/?-1 (I^j) is not connected. Thus Tc

0 

is an arc. Then, by an argument similar to that in the latter half of Subcase (ii) of Case 2, 
we see this case does not occur. 

CASE 4. d > 5: Then we have the following tower of coverings 

MAT)-^ MAT') ^M, 

where p\ is a Z^-branched covering, and/?2 is a iteration of double branched coverings. 
By Case 3, M^ÇT') is not a Z2-homology sphere. Since p'2 induces an epimorphism be­
tween the fundamental groups, MW(T) is not a Z2-homology sphere; so this case does not 
occur. Now the proof of Proposition 15.5 is complete. 

4. Acknowledgement. Main part of this work was done while I was staying at 
Toronto University and at Ruhr University. I would like to express my sincere gratitude 
to Prof. K. Murasugi and Prof. H. Zieschang for their kind hospitality and encourage­
ment. I would also like to express my sincere gratitude to Prof. A. Libgober for pointing 
out the relation of this work to polynomial periodicity, and to Prof. M. Namba for helpful 
conversations concerning branched coverings of complex surfaces. Finally, I thank Prof. 
K. Murasugi again for introducing me to these problems, for valuable conversations, and 
for showing me his notes, in which some partial results and stimulating conjectures are 
contained. 

REFERENCES 

[Bo] N. Bourbaki, Commutative algebra, Hermann-Addison Wesley, Paris-Reading, 1972. 
[Br] G. Bredon, Introduction to compact transformation groups, Academic Press, London, New York, 1972. 
[BZ] G. Burde and H. Zieschang, Knots, de Gruyter Stud. Math. 5, Walter de Gruyter, Berlin, New York, 1985. 
[F] R. H. Fox, Free differential calculus III, Ann. of Math. 59(1954), 195-210. 
[Ge] L. Goeritz, Die Betti'schen Zahlen der zyklishen Ùberlagerungsràume der Knotenausserdume, Amer. 

J. Math. 56(1934), 194-198. 
[GS] F. Gonzalez-Acuna and H. Short, Cyclic branched coverings of knots and homology spheres, Rev. Mat. 

Univ. Complut. Madrid 4(1992), 97-120. 
[Gr] C. McA. Gordon, Knots whose branched cyclic covering have periodic homology, Trans. Amer. Math. 

Soc. 168(1972), 357-370. 

https://doi.org/10.4153/CJM-1995-010-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-010-2


224 MAKOTO SAKUMA 

[GL] C. McA. Gordon and R. A. Litherland, On the signature of a link, Invent. Math. 47(1978), 53-69. 
[He] J. Hempel, Homology of branched coverings of*3 -manifolds, Canad. J. Math. 44(1992), 119-134. 
[HI1] J. A. Hillman, Alexander ideals of links, Lecture Notes in Math. 895, Springer-Verlag, Berlin, Heiderberg, 

New York, 1981. 
[H12] , New proofs of two theorems on periodic knots Arch. Math. 37(1981), 457-461. 
[Hrl] E. Hironaka, Polynomial periodicity for Betti numbers of covering surfaces, Invent. Math. 108(1992), 

289-321. 
[Hr2] , Intersection theory on branched covering surfaces and polynomial periodicity, Internat. Math. 

Res. Notices 6(1993), 185-196. 
[HK] F. Hosokawa and S. Kinoshita, On the homology group of branched cyclic covering spaces of links, 

Osaka J. Math. 12(1960), 331-335. 
[LI] A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 

49(1982), 833-851. 
[L2] , On the homology of finite abelian coverings, Topology Appl. 43(1992), 157-166. 
[MM] J. P. Mayberry and K. Murasugi, Torsion groups of abelian coverings of links, Trans. Amer. Math. Soc. 

271(1982), 143-173. 
[NT] H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press, 1989. 
[Nkl] M. Nakao, On the Z2 0 Z2 branched coverings of spatial 0-graphs, Kobe J. Math. 9(1992), 89-99. 
[Nk2] , On the Z 20Z 2 branched coverings of spatial K4-curves. In: Knot 90, (ed. A. Kawauchi), Walter 

de Gruyter Co., 1992, 103-116. 
[Nm] M. Namba, Branched coverings and algebraic functions, Res. Notes Math. 161, Pitman-Longman, 1987. 
[P] A. Plans, Aportacion al estudio de los grupos de homologia de los recubrimientos cicicos ramificados 

correspondiente a un nudo, Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid 47(1953), 161-193. 
[Ri] R. Riley, Growth of order of homology of cyclic branched covers of knots, Bull. London Math. Soc. 

22(1990), 287-297. 
[Ro] D. Rolfsen, Knots and links, Publish or Perish Inc., 1976. 
[Ski] M. Sakuma, The homology groups of abelian coverings of links, Math. Sem. Notes, Kobe Univ. 7( 1979), 

515-530. 
[Sk2] , On the polynomials of periodic links, Math. Ann. 257(1981), 487-494. 
[Sr] P. Sarnak, Betti numbers of congruence groups, preprint. 
[SS] Y Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with applications to links, 

Trans. Amer. Math. Soc. 163(1972), 101-121. 
[Sul] D. W. Sumners, Polynomial invariants and the integral homology of coverings of knots and links, Invent. 

Math. 15(1972), 78-90. 
[Su2] , On the homology of finite cyclic coverings of higher-dimensional links, Proc. Amer. Math. Soc. 

46(1974), 143-149. 
[T] G. Torres, On the Alexander polynomial, Ann. of Math. 57(1953), 57-89. 
[VW] P. d. Val and C. Weber, Plans' theorem for links, Topology Appl. 34(1990), 247-255. 
[W] C. Weber, Sur une formule de R. H. Fox concernant Thomologie des revetments cycliques, Enseign. Math. 

25(1979), 261-271. 
[Z] O. Zariski, On the topology of algebroid singularities, Amer. J. Math. 54(1932), 453^-65. 

Department of Mathematics 
Faculty of Science 
Osaka University 

Toyonaka, Osaka 560 

Japan 
e-mail: sakuma@math.wani.osaka-u.ac.jp 

https://doi.org/10.4153/CJM-1995-010-2 Published online by Cambridge University Press

mailto:sakuma@math.wani.osaka-u.ac.jp
https://doi.org/10.4153/CJM-1995-010-2

