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SUMMARY

The aim of this study was to monitor the spatio-temporal spread of influenza incidence in Spain
during the 2009 pandemic and the following two influenza seasons 2010-2011 and 2011-2012
using a Bayesian Poisson mixed regression model; and implement this model of geographical
analysis in the Spanish Influenza Surveillance System to obtain maps of influenza incidence for
every week. In the pandemic wave the maps showed influenza activity spreading from west to
east. The 2010-2011 influenza epidemic wave plotted a north-west/south-east pattern of spread.
During the 2011-2012 season the spread of influenza was geographically heterogeneous. The
most important source of variability in the model is the temporal term. The model of spatio-
temporal spread of influenza incidence is a supplementary tool of influenza surveillance in Spain.
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INTRODUCTION

Influenza is an important public health problem
worldwide. Annual seasonal influenza epidemics are
associated with a substantial hospitalization and mor-
tality rate [1-3] as well as a considerable demand
for health resources. In addition, there is the threat
of the appearance of a new virus capable of causing
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pandemics, something that occurred for the first
time in this century in the form of the 2009
A(HINT1) virus pandemic [4].

Sentinel systems are a decisive element for influenza
surveillance, and have now been introduced in almost
all countries [5-7]. Their fundamental feature is that
they allow for combined collection of virological and
epidemiological data on influenza, and so help ensure
early detection and characterization of circulating
viruses and assessment of their capacity for propa-
gation in the population [§8]. The Spanish Influenza
Surveillance System (SISS) was implemented more
than a decade ago, in accordance with the guidelines
established for these types of systems [9].
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Geographical analysis is a complementary tool of
public health surveillance systems that enables a dis-
ease’s spatial distribution within a territory and its
trend over time to be analysed. Studies have been
reported which perform spatial analysis of influenza
within the framework of sentinel surveillance net-
works [10, 11], using the kriging geostatistical tech-
nique [12]. This technique renders it possible for the
weekly influenza incidence rates of each sentinel phy-
sician (SP) to be extrapolated to other places in the
study region, according to their distance from sites
where a SP is located. Nevertheless, this geostatistical
technique poses certain problems, such as heterogen-
eity among reporters, differing variance in the rates
at each point, and failure to take into account temp-
oral dependence in the models. Although some of
these problems inherent to influenza surveillance
can be addressed by good compliance of the sentinel
surveillance guides, the effects can be minimized by
a preprocessing of the data or improved geographical
analysis [13].

In 2010, Martinez-Beneito et al. [14] proposed a
Bayesian Poisson mixed regression model for per-
forming spatio-temporal analyses of the spread of influ-
enza incidence, which overcame the above-mentioned
limitations of the kriging technique. They applied
their proposal at a regional context for one of the
19 Spanish regions.

The aim of this study was to monitor the spatio-
temporal spread of influenza incidence in Spain,
both at national and regional levels, during the 2009
pandemic and the following two influenza seasons
2010-2011 and 2011-2012, on the basis of data col-
lected by SISS sentinel networks and adapting the
above-mentioned model [14] to this new setting.
A second goal of this study was implementation this
tool of geographical analysis in the SISS, in order to
incorporate the information obtained from influenza
incidence maps in the weekly surveillance of this
disease in Spain.

MATERIALS AND METHODS
SPs and the monitored population

Influenza case data were obtained from the SISS
which has been described previously [15]. The system
is currently adopted by 17 regional sentinel influenza
surveillance networks of the 19 Autonomous Regions
(ARs), including general practitioners and paedia-
tricians as SPs. Twenty network-affiliated labora-
tories including the National Influenza Reference
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Laboratory (National Centre of Microbiology, WHO
National Influenza Centre) provide virological data.
The SISS comprised, depending on the epidemic sea-
son, from 841 to 867 SPs during the study period with
more than one million population under surveillance.

Sentinel general practitioners and paediatricians
report on a weekly basis cases of influenza-like illness
(ILT) detected in their reference populations following
an ILI definition based on the EC case definition [16]:
sudden onset of symptoms, and at least one out of
four systemic symptoms (fever or feverishness, malaise,
headache, myalgia); and at least one out of three res-
piratory symptoms (cough, sore throat, shortness of
breath); and in the absence of other suspected clinical
diagnosis. For virological influenza surveillance, SPs
take nasal or nasopharyngeal swabs which are sent
to the network-affiliated regional laboratories for
influenza virus detection.

During the 2009 pandemic, in line with inter-
national surveillance recommendations, SISS was
strengthened in mainly two aspects [17]. First, there
was an increase in the number of participating SPs
and therefore the population under surveillance
increased by 22% compared to the preceding season.
The number of participating SPs in SISS increased
from 698 in the 2008-2009 season to 867 in the pan-
demic period, and since then has remained quite stable
at 841 and 848 in the 2010-2011 and 2011-2012 sea-
sons, respectively. Figure 1 shows the geographical lo-
cation of SISS participating SPs during the 2010-2011
season. The annual population under the surveillance
of the sentinel networks in the SISS was 1131012
inhabitants in the pandemic period, 1081440 in the
2010-2011 season and 1086983 in the 2011-2012
season, which represents 2-53%, 2-38% and 2-40%,
respectively, of the population of ARs with a sentinel
network in the SISS, respectively. Second, SPs were re-
commended to swab all patients meeting the influenza
case definition during summer 2009, although the
swabbing strategy changed from all cases to a system-
atic sampling before the start of the pandemic wave in
Spain in week 40 (2009). Since then, this systematic
strategy has been adopted by SISS (the first two ILI
patients consulting each week) to obtain virological
information which better represent the distribution
of influenza cases in the community.

Data

In the SISS, individual ILI cases were reported on
a weekly basis. Furthermore, regular dispatch of
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Fig. 1 [colour online]. Geographical location of the participating sentinel physicians (SPs) in the Spanish Influenza Surveillance

System during the 2010-2011 season.

respiratory specimens to laboratories meant that re-
ported cases could be confirmed virologically [8, 15].
Clinical, epidemiological and virological data, as
well the population under surveillance, were reported
weekly and included in the system’s web-based software
application (http://vgripe.isciii.es/gripe).

In Spain every SP has a catchment area which is
their reference population and each Spanish indi-
vidual is assigned to a specific general practitioner
(if aged >14 years) or to paediatrician (if aged <15
years old) who is available all year round.

For analysis of the geographical spread of influenza,
we used weekly ILI rates for each SP, with numerator
and denominator of non-reporting practices excluded.

It is important to note that in this article the con-
cept behind the term ‘spread of influenza activity’
refers to the geographical progression of weekly senti-
nel clinical information (ILI rates) along the studied
territory, while virological information has not been
used in the analysis of the geographical spread of
influenza.

As a result of the improvements implemented in
the 2009 pandemic, the SISS maintained its activity
during summer 2009. Therefore, we included in the
analysis the so-called ‘pandemic period’, which
encompassed the entire period from week 20 (2009)
to week 20 (2010). For seasons 2010-2011 and
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2011-2012, the period of analysis encompassed week
40 of one year to week 20 of the following year.

All SPs were geocoded, by being assigned the x,y
coordinates of the centroid of the respective towns
to which they belonged.

The pandemic period was analysed retrospectively,
after obtaining the necessary data from each sentinel
network for both periods. In the 2010-2011 and
2011-2012 seasons, the implementation of the model
of spatio-temporal analysis of influenza incidence
in a server (see below) and SISS software application,
allowed the creation of weekly maps of the geographi-
cal spread of influenza incidence in Spain to be
obtained for all seasons.

Spatio-temporal analysis

To derive the geographical distribution of weekly
influenza incidence rates for each period studied,
influenza cases reported by each SP were directly mod-
elled using a Poisson distribution that depended on the
population allocated to each SP. For the spatio-
temporal modelling of influenza incidence across the
monitored territory as a whole, the data obtained
from each SP were interpolated using an extension
of the Bayesian Poisson mixed regression model pro-
posed by Martinez-Beneito et al. [14]
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In summary, the model proposed includes the
following terms:

e An intercept (¢ in our model), modelling the
mean incidence rate for the whole period and
region of study.

e An independent Gaussian random effect
(Sentinel; in our model) accounting for hetero-
geneity among SPs, as some SPs usually over-
estimate/underestimate the weekly number of
influenza cases they see due to disparities of
criteria in the case-finding process.

e A temporal term (Time; in our model) reflecting
the progress of the epidemic wave during the sur-
veillance period. This temporal term is modelled
as a first-order Gaussian random walk in order
to describe the epidemic wave without any para-
metric function.

e A term modelling the spatio-temporal interaction
of the incidence rates (ST; in our model). This
term allows the incidence rates to have specific
behaviours in different geographical locations,
for example geographical differences in onset or
height of the peak of the epidemic wave. The spa-
tial structure of this term is induced by the sum of
three kernel smoothing processes with Gaussian
kernel function of different standard deviations
(0, #ij., w;; in our model). Every one of these pro-
cesses is based on a regular hexagonal grid [18]
of different distances between their knots
(40, 80 and 160 km, respectively). The standard
deviations of the Gaussian kernels were set to the
distance between the knots of the corresponding
grid. Therefore, these processes are able to model
spatial patterns of very different range, as proposed
by Higdon [18]. In fact, the contribution of these
random effects may be different, i.e. being more
relevant those with a higher standard deviation.
Temporal dependence is induced in all three kernel
processes by means of the prior structure of their
random effects. Specifically all these random ef-
fects are assumed to follow temporally dependent
first-order autoregressive processes. These pro-
cesses allow us to tune the amount of temporal de-
pendence in the random effects by means of a single
parameter; therefore, the choice of this prior struc-
ture may be seen as a balance between flexibility
and parsimony. The combination of the temporal
dependence of the autoregressive process and the
spatial dependence of the kernel processes yield
the spatio-temporally dependent process that we
sought. The extrapolation of this process to
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locations with no information available from the
sentinel network will allow us to derive both spa-
tially and temporally dependent predictions, i.e.
spatially and temporally smooth predictions.

e A spatially and temporally independent Gauss-
ian random effect (g; in our model) in order
to model the remaining overdispersion unex-
plained by the remaining factors in the model.

We have included a full formulation of the model
below, where O; denotes the number of observed
cases by the ith SP on week j, n is the number of prac-
titioners in the network and m is the number of weeks.
Cy, C,, C5 (Fig. 2) denote the sets of knots corre-
sponding to every one of the three kernel spatial pro-
cesses considered. X; and X denote, respectively, the
location of the ith SP and the kth knot of the kernel
processes. S is a constant which intends to make
vague the corresponding distributions.

O;; ~ Poisson(Jj; - Population;)
log(1;;) = u + Sentinel; 4+ Time; + ST;; + ¢;

STy =Y Na(XilXx, 01)0s+ Y Na(Xil Xx, 02y
ke keC,

+ Y No(Xil X, 03)yi

kEC;
Sentinel; ~ N(0,0,) (i=1, ..., n)
Time; ~ N(Time;_1,0/) (j =2, ..., m)
u~ U(—00, 0)
0 ~N(p-0ij-1y,09) i=1,...,n,j=2,..,m)
Gy~ Np-dijrypop)(i=1,..n,j=2,..,m)
Wi~ N(p - Yij—1)s o)(i=1,..,nj=2.,m
p~U11
g; ~ N(0, o;)

Os, 0¢, 09, 0-(/)’ 0-14/7 Og ™~ U(()’ S)

The Sentinel term in the model accounts for hetero-
geneity among practitioners. This term is quite im-
portant since heterogeneity is an important source of
variability in the data [14]. The first weeks of sur-
veillance for every season are definitively the weeks
where the monitoring system is particularly useful,
since it shows the onset of the epidemic wave in
specific locations. We always run the model with
data from the current season (until the current surveil-
lance week) together with data from the previous one.
In this way we are able to estimate the Sentinel effect
even at the very beginning of the season, and therefore
disentangle the Sentinel and Spatio-temporal terms
at any week of the current season.
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Fig. 2 [colour online]. Set of knots corresponding to each of the three kernel spatial processes.

To speed up computations we have considered
the bivariate Normal distribution N,(X}|X,0) to be
equal to O for those SPs and knots whose distance
was >2 standard deviations (¢). This has allowed us
to develop a sparse coding of the former model with
a substantial computational improvement.

Inferences were drawn from the model using
WinBUGS 1.4.3 (http://www.mrc-bsu.cam.ac.uk/bugs/).
Six chains were run in parallel by means of six inde-
pendent calls to WinBUGS, each one of them in a sep-
arate core of the server. Five thousand iterations were
run from every chain, with the first 1000 being dis-
carded as burn-in. Results from only one out of
every 24 iterations were finally saved, therefore, the
posterior sample from the Markov chain Monte
Carlo contained a total of 1000 iterations. Spatial pre-
dictions and maps were made by means of R v. 2.13.1
(R Foundation, Austria) (http://www.r-project.org/) in
order to further speed up computations in WinBUGS.

The model was implemented on a server with eight
cores in order to run the required routines and obtain
maps showing weekly influenza incidence.

RESULTS
Spatio-temporal analysis pandemic period

During the pandemic period spatio-temporal analysis
of influenza activity in Spain revealed the first
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increases in influenza incidence rates took place in
the second half of July [week 29 (2009)], in the north
of mainland Spain and in the islands (results not
shown). This influenza activity was associated with
a predominant circulation of the 2009 A(HIN1) pan-
demic virus [15, 17, 19], which spread progressively
towards the south of mainland Spain during summer
2009 [19]. The influenza incidence maps for the begin-
ning of September, showed increases of influenza inci-
dence rates in most of the SISS sentinel networks
[week 39 (2009)] (Fig. 3). This reflected the pandemic
wave which began in Spain during weeks 39-40
(2009), and peaked at the national level at week 46
(2009). This data dovetails with ILI spread rates and
other surveillance indicators. During the pandemic
wave’s rising phase, the influenza incidence maps
showed influenza activity spreading from west to east.
The highest modelled ILI rates were registered by
sentinel networks in the west of mainland Spain in
weeks 41-42 (2009), in the centre in week 43 (2009),
and in the east in weeks 45-46 (2009).

From week 47 (2009), the modelled ILI rates pro-
gressively declined throughout the SISS-monitored ter-
ritory and, in the last weeks of surveillance, fell to very
low levels nationwide, except for some specific foci.

The weekly modelled ILI rate maps (see http://
vgripe.isciii.es/gripe) correspond to the entire pan-
demic period in Spain, as well to the following two
influenza seasons.
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Fig. 3 [colour online]. Spread of influenza during the pandemic period.

2010-2011 season Spain and was seen to spread, advancing steadily
eastwards [week 50 (2010)] (Fig. 4). In week 51
(2010), the upward phase of the epidemic wave started

and the highest modelled ILI rates occurred in the

The first increases in modelled ILI rates were observed
in weeks 4748 (2010) in the western part of mainland
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Fig. 4 [colour online]. Spread of influenza during the 2010-2011 season.
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north-west of mainland Spain. Over the following
week [week 52 (2010)], influenza activity continued
to rise along the north-west corridor. However, the
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beginning of the increases in influenza activity in
those sentinel networks situated in the east and south-
east of the mainland was observed in weeks 24 (2011).


https://doi.org/10.1017/S0950268813003439

2636 D. Gomez-Barroso and others
From week 6 (2011) and during the following weeks,
the modelled ILI rates were observed to decline pro-
gressively throughout the country, with the epidemic
wave ending at week 8 (2011) (Fig. 4). This decline
started first in the north-west side of Spain, precisely
the region where the epidemic wave had first arrived.
The 2010-2011 influenza epidemic wave plotted
a north-west/south-east pattern of spread across
mainland Spain.

2011-2012 season

During the 2011-2012 season, modelled ILI rates
started to increase in weeks 50-51 (2011) (Fig. 5) in
the centre of mainland Spain. In week 52 (2011), the
influenza incidence rate did exceed the baseline thresh-
old at the national level, heralding the beginning of
the upward phase of the epidemic wave. Nevertheless,
the spatio-temporal distribution of incidence shows
a distribution of modelled ILI rates very focused at
the centre of mainland Spain and influenza activity
had not yet spread throughout the whole country.
During the following weeks of the epidemic seasonal
period the modelled TLI rates continued to be higher
in the centre of the mainland with influenza activity
later spreading heterogeneously across the rest of
the territory. In week 6 (2012) the influenza activity
began to decline progressively in the centre while
in other geographical sentinel networks it was still
high. From week 12 (2012) the modelled ILI rates
reached pre-epidemic values across the country.

During the 2011-2012 season, the epidemic wave
did not show a defined geographical pattern. The geo-
graphical propagation of the influenza activity was
heterogeneous.

For each influenza season, influenza incidence maps
for each surveillance week were obtained <24 h after
collection of influenza surveillance data and were
displayed on the SISS webpage in a timely manner
during the entire influenza season.

A thorough analysis of the model for the pandemic period

Beyond the epidemiological results of the pandemic
period and influenza seasons already described, some
specific results of the model for the pandemic period
are now presented.

Table 1 shows the variability accounted for every-
factor intervening in the modelling of the log-
incidence (/; in the model). Every term in Table 1 cor-
responds with the mean of the empirical posterior
standard deviation of the random effects in the
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model. Higher variability corresponded to the temp-
oral term. Heterogeneity among sentinels is the second
source of variability in the study.

Regarding the variability of the spatio-temporal
term, Table 1 indicates that the main source of vari-
ation comes from very close locations (short-range
dependence or local dependence). The importance
of this term is closely followed by the long-range or re-
gional dependence and finally the medium-range term
contributes far less than the other two terms to spatio-
temporal variability. That is, there are two important
sources of variability in the data, the first one is
mainly local and the second one is mainly regional
of a large range. The local term would indicate vari-
ations in incidence which are very focused in specific
locations. By contrast, the regional term indicates
smooth geographical differences in incidence, i.e. the
epidemic wave would show marked geographical
differences, e.g. causing the peak of the epidemic to
be reached in some places before than in others. In
any case, this decomposition of the variability shows
the importance of the multi-scale approach as it
allows the inclusion of different scales of dependence
into the model. This desirable property cannot be
easily reproduced within a geostatistical approach.

Finally, the term modelling heterogeneity between
notifications (¢) has also a considerable variability.
This value, of comparable magnitude to the standard
deviations of the rest of the terms in the model,
advises us against leaving it out of the model. This
term accounts for the specific behaviour of some
sentinels in some specific weeks. That is, the specific
modelling of those variations is needed in order to
correctly reproduce the spatio-temporal pattern of
the disease.

DISCUSSION

This study analysed the spatio-temporal distribution
of influenza incidence rates in the pandemic period
and in the 2010-2011 and 2011-2012 influenza sea-
sons in Spain. The estimates of influenza incidence
in the territory monitored by the SISS were smooth
in space and time. They displayed a coherence
in spatial distribution, without any sharp increases
or decreases in spatially contiguous territories.
Furthermore, coherence was observed in the time
trend, with no sudden, inexplicable changes from
one week to the next. This is in sharp contrast to
purely spatial (not spatio-temporal) models.


https://doi.org/10.1017/S0950268813003439

Geographical spread of influenza, Spain

Week 50 (2011) Week 52 (2011)

Influenza rates Influenza rates

(cases/100000 pop.) (cases/100000 pop.)
0-25 0-25

© 25-50 + 25-50

#50-100 # 50-100

#100-200 + 100-200

# 200-400 # 200-400

# 400-800 % 400-800

+>800 + >800

Week 4 (2012)
Influenza rates Influenza rates
(cases/100000 pop.) (cases/100000 pop.)
0-25 0-25
+25-50 © 25-50
#50-100 + 50-100
#100-200 + 100-200
#200-400 = # 200-400
400-800 & # 400-800
#>800 ¢ + >800
v 4 i
< I'. J -
Week 6 (2012) Week 8 (2012)
Influenza rates Influenza rates
(cases/100000 pop.) (cases/100000 pop.)
0-25 0-25
+25-50 © 25-50
+50-100 * 50-100
# 100-200 *
100-200
4+ 200-400
! # 200-400
4 # 400-800 # 400-800
#>800 # >800

™ 4
e .‘. J
Week 10 (2012)
Influenza rates Influenza rates
(cases/100000 pop.) (cases/100000 pop.)
0-25 0-25

4 25-50 “ 25-50
# 50-100 + 50-100
# 100-200 # 100-200
+ 200-400 # 200-400
# 400-800 # 400-800
+ >800 4 >800

Week 16 (2012)
Influenza rates Influenza rates
(cases/100000 pop.) (cases/100000 pop.)
0-25 0-25
© 25-50 + 25-50
+ 50-100 + 50-100
# 100-200 + 100-200
# 200-400 % 200-400
# 400-800 % 400-800
# >800 + >800

2637

Fig. 5 [colour online]. Spread of influenza during the 2011-2012 season.

rate pattern during the summer weeks of 2009 was
north-south, influenza activity was seen to spread
from west to east in autumn 2009. In the 2010-2011

For the three influenza seasons analysed, the pat-
tern of geographical progression of influenza activity
was not similar. While the modelled ILI sequence
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Table 1. Variability

Term in s.p. of mean
Source of variability the model (95% CI)
Heterogeneity among sentinels Sentinel 0-81 (0-77-0-85)
Temporal differences in disease incidence Time 0-99 (0-89-1-09)
Long-range spatio-temporal variability 0 0-64 (0-51-0-78)
(regional, 160 km)
Medium-range spatio-temporal variability ¢ 0-27 (0-06-0-45)
(80 km)
Short-range spatio-temporal variability W 074 (0-:67-0-82)
(local, 40 km)
Heterogeneity of every notification & 069 (0-68-0-71)

s.D., Standard deviation; CI, confidence interval.

season, the geographical spread pattern of the wave
was north-west to south-east. In the 2011-2012 sea-
son, no specific geographical pattern of influenza
spread could be observed. In one study analysing the
trend in influenza activity in Europe over seven
influenza seasons, from 2001-2002 to 2006-2007, the
influenza spread activity similarly failed to display
a similar pattern in the influenza seasons [20]. This
same study described a north-south pattern of spread
for three seasons and a west-east pattern for the other
four, resembling the heterogeneity observed in our
study for Spain in the three seasons.

Geostatistical kriging models have been previously
used in several countries to study influenza incidence
[10, 11, 13, 21]. Recently, Inaida et al. [22] analysed
the geographical trend spread of pandemic (HIN1)
2009 in metropolitan areas of Japan, based on
sentinel-network data. Nevertheless, one of the main
advantages of our approach over traditional kriging
methods is its computational convenience. For
example, to run our model for the last week of sea-
son 2010-2011 we have 841 SPs*32 weeks=26912
observed values for that same season, plus 867
SPs*52 weeks=45084 observed values for the pre-
vious season. In that case we are jointly modelling
71996 values in a single model, where most of these
values are (spatio-temporally) dependent. This is not
affordable for many methods. Both the temporally
conditional formulation of the autoregressive struc-
ture and the computational convenience of the kernel
processes have made it possible to carry out inference
in our setting.

The methodology proposed in this paper follows
the model already developed by Martinez-Beneito
et al. [14]. Nevertheless, our model has one novelty
with respect to the former proposal. We have resorted
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to several kernel processes of different ranges in order
to describe the spatial dependence. This has been poss-
ible as the amount of data we have available in our
system makes it feasible to include different kernel
processes and to determine which of them should
have a higher contribution to explain the data under
the model setup. The process resulting from this new
multi-resolution approach can be viewed as a mixture
of spatial patterns of different ranges. This yields a
broader class of spatial processes as it can accommo-
date several patterns of different range (and therefore
of different nature) in a single proposal.

There are other studies in different countries during
the pandemic period that used spatial and temporal
analysis of influenza. For instance Chowell ef al. [23]
analysed the spatial distribution of A(HIN1)pdm09
influenza in Peru during this period. To show the
maps of the distribution of the disease these authors
used ILI data and represented the cumulative number
of cases for provinces and the peak day for spatial
unit. Their results showed substantial spatial varia-
bility in the pandemic pattern across the country.
The same authors [24] analysed influenza surveillance
data to made a spatial and temporal analysis during
the pandemic, concluding that there were three spa-
tially heterogeneous waves of the A(HIN1)pdm09 in
Mexico. Our study shows that Spain experienced a
pandemic wave in autumn 2009, in line with other
indicators of influenza activity.

We have also analysed the spatio-temporal dif-
fusion of influenza in the following two seasons. In
our study the temporal term is the most important
source of variability. This is not surprising since it is
very unlikely to obtain high influenza incidence values
for non-epidemic periods and vice versa. That is, time
was expected to be one of the main determinants
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of influenza incidence, which has been confirmed with
our analysis.

In addition, another reported limitation of geo-
graphical studies of influenza incidence which rely
on sentinel networks, is the difference in sensitivity
of participating SPs when it comes to deciding
whether or not a patient seeking attention suffers
from influenza symptoms [13]. Some authors have
tried to control for heterogeneity in SP reporting, by
using harmonization indices for consultation to
study trends in influenza incidence in Germany and
Holland [13]. Allowance is made for this factor in
the spatio-temporal model applied in this study [14],
i.e. by including a term to control for the dynamic
of each SP’s over- or underreporting which takes
each SP’s seasonal behaviour into account, thereby re-
ducing the bias in incidence estimates. We confirm in
this study that heterogeneity among sentinels is the
second source of variability. This makes it absolutely
necessary to control for this term within the model
if we want to produce accurate estimates of the geo-
graphical spread of disease. Otherwise, without con-
trolling for this term, the geographical pattern would
show persistent spurious peaks caused by the presence
of abnormal sentinels at some specific places.

Regarding the spatio-temporal term, there are two
important sources of variability in the data, the first
is mainly local (short range) and the second is mainly
regional (long range). The local term would indicate
variations in incidence which are very focused in
some specific locations. By contrast, the regional
term indicates smooth geographical differences in inci-
dence, i.e. the epidemic wave would show marked
geographical differences, e.g. causing the peak of the
epidemic to be reached in some places before others.
In any case, this decomposition of the variability
shows the advantage of the multi-scale approach
as it allows the inclusion of different scales of depen-
dence into the model.

Finally, the term modelling heterogeneity between
notifications (¢) has also a considerable variability.
This value, of comparable magnitude to the standard
deviations of the rest of terms in the model, advises us
against leaving it out of the model. This term accounts
for the specific behaviour of some sentinels in some
specific weeks. That is, the specific modelling of
those variations is needed in order to correctly re-
produce the spatio-temporal pattern of the disease.

In spite of the factors mentioned, we cannot exclude
other factors that can influence the morbidity-related
site effect independently of the behaviour of the SP.
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Thus, despite controlling for heterogeneity in SP
reporting, there are still areas or sentinel networks
where influenza incidence remains systematically
higher than elsewhere after the seasonal wave has
ended. This suggests that other factors relating to
uniformity of influenza case-reporting criteria in the
different sentinel networks may be influencing the geo-
graphical estimates made. Indeed, a SISS assessment
study [25] revealed a great degree of heterogeneity in
the use of the influenza case-definition by different
sentinel networks. New assessment studies are thus
required, especially following the reinforcement of
SISS activity during the 2009 pandemic, in order to
achieve greater harmonization in surveillance criteria
and systematic data collection in all the sentinel
networks comprising the SISS.

We used the weekly ILI rates of each SP as a mar-
ker of influenza activity, since this was the parameter
available for inclusion of each SP in the model. Other
indicators of influenza activity could be virological, as
the percentage of positive specimens, or a mix indi-
cator which would take in account clinical and virolo-
gical information. Further approaches considering
the use of other markers of influenza activity, includ-
ing variation by age and type/subtype of influenza
virus, are ongoing to monitor the spatio-temporal
spread of the influenza in Spain.

Another limitation of this study stems from the fact
that our analysis did not include information on the
entire mainland area, as two ARs had no sentinel
networks. Furthermore, in ‘frontier’ areas, such as
those bordering on either of the ARs for which no in-
formation is available, or having natural or adminis-
trative boundaries with other countries, there is a
‘so-called’ edge or boundary effect [26], which consists
of obtaining less precise estimates.

Using the influenza incidence maps obtained in this
study, the spread of influenza epidemic waves can be
displayed and analysed at both national and regional
levels, and foci of high influenza incidence eligible
for adoption of disease-control measures can be iden-
tified. Starting with influenza season 2010-2011, the
model of spatio-temporal spread of influenza inci-
dence was implemented in the SISS as a supplemen-
tary tool of influenza surveillance in Spain. This map
was obtained with a short delay, <24 h, and it has
great spatial disaggregation. This is possible because
of the existing coordination between the SISS sentinel
networks and reception and analysis of the data.

As a result, geographical national and regional
maps of influenza incidence in Spain have been
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disseminating weekly via the SISS webpage (http://
vgripe.isciii.es/gripe/inicio.do).

APPENDIX
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(Area de Epidemiologia, Direccién General de Salud
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Gutierrez Gonzalez (Direccion General de Salud
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(Seccion de Vigilancia de Enfermedades Transmisibles,
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