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Simultaneously preperiodic points for a
family of polynomials in positive
characteristic
Dragos Ghioca
Abstract. In the goundbreaking paper [BD11] (which opened a wide avenue of research regarding
unlikely intersections in arithmetic dynamics), Baker and DeMarco prove that for the family of
polynomials fλ(x) ∶= xd + λ (parameterized by λ ∈ C), given two starting points a and b in C, if
there exist infinitely many λ ∈ C such that both a and b are preperiodic under the action of fλ , then
ad = bd . In this paper, we study the same question, this time working in a field of characteristic
p > 0. The answer in positive characteristic is more nuanced, as there are three distinct cases: (i)
both starting points a and b live in Fp ; (ii) d is a power of p; and (iii) not both a and b live in Fp ,
while d is not a power of p. Only in case (iii), one derives the same conclusion as in characteristic 0
(i.e., that ad = bd ). In case (i), one has that for each λ ∈ Fp , both a and b are preperiodic under the
action of fλ , while in case (ii), one obtains that also whenever a − b ∈ Fp , then for each parameter λ,
we have that a is preperiodic under the action of fλ if and only if b is preperiodic under the action
of fλ .

1 Introduction

We start by setting up some basic notation for our paper in Subsection 1.1.

1.1 Notation

Throughout this paper, given a self-map f on some quasiprojective variety X, we
denote by f n its n-th compositional power; by convention, f 0 represents the identity
map idX on X. A preperiodic point x ∈ X for f has the property that f m(x) = f n(x) for
some 0 ≤ m < n; if m = 0 (i.e., f n(x) = x), then the point x is called periodic (under
the action of f ).

1.2 Our results

We prove the following main result.
Theorem 1.1 Let d ≥ 2 be an integer, let L be a field of characteristic p > 0, and let
α, β ∈ L. We let L be a fixed algebraic closure of L, and we let Fp be the algebraic closure
of Fp inside L. We consider the family of polynomials

fλ(x) ∶= xd + λ parameterized by λ ∈ L.
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2 D. Ghioca

Then there exist infinitely many λ ∈ L such that both α and β are preperiodic under the
action of fλ if and only if at least one of the following statements holds:

(1) α, β ∈ Fp ∩ L.
(2) d = p� for some positive integer � and β − α ∈ Fp ∩ L.
(3) αd = βd .

Moreover, if either one of the conditions (1)–(3) holds, then for each λ ∈ L, we have that
α is preperiodic under the action of fλ if and only if β is preperiodic under the action
of fλ .

1.3 The principle of unlikely intersections

Our Theorem 1.1 fits into the general principle of unlikely intersections; for a wonder-
ful introduction to this area stemming from classical arithmetic geometry, we refer
the reader to the book [Zan12].

Inspired by the results of Masser and Zannier from [MZ10], Baker and DeMarco
[BD11] proved a first outstanding result for unlikely intersections in a purely dynamical
context. So, given an integer d ≥ 2 and given complex numbers a and b, Baker-
DeMarco [BD11] prove that if there exist infinitely many λ ∈ C such that both a and b
are preperiodic under the action of fλ(x) = xd + λ, then ad = bd . In other words, the
infinite occurrence of the unlikely event that both a and b are preperiodic points for
the same polynomial fλ can only happen if both a and b have the same iterates under
the entire family of maps { fλ}λ∈C; so, a very rigid global condition is derived from the
existence of infinitely many discrete unlikely events. The result of [BD11] was extended
for more general families of polynomials and starting points (see [GHT13, BD13],
for example), including families of polynomials parameterized by points in a higher
dimensional space (see [GHT15, GHT16]). Also, extensions of [BD11] were obtained
for certain families of rational maps (see [DWY15, GHT15]), and also for arbitrary
families of Lattés maps (see [DM20]). Each time, the proof of any of the above results
had two distinct parts. First, one proves that a certain equidistribution theorem for
points of small height holds for the given dynamical system, which leads to knowing
that certain canonical heights (suitably normalized) computed for the two starting
points with respect to our family of maps are equal. Second, using the equality of
the above canonical heights, one derives the precise relation between the two starting
points.

Now, the key ingredient for establishing the first part of the above strategy comes
from any of the equidistribution theorems of Baker-Rumely [BR06], Chambert-Loir
[CL06], Favre-Rivera-Letelier [FRL06], or Yuan [Yua08]. Verifying the hypotheses
of the aforementioned equidistribution theorems is the difficult part and requires a
detailed analysis of the arithmetical properties of the given dynamical system. Usually,
completing the second step of the above strategy is easier, and it generally relies on
two ingredients: a complex dynamics argument (which in turn uses crucially some
key features of complex analytic functions, such as the Open Mapping Theorem),
along with the refined characterization provided by Medvedev and Scanlon [MS14]
of the subvarieties of AN , which are invariant under the coordinatewise action of N
one-variable polynomials. All of the above results hold over fields of characteristic 0,
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Simultaneously preperiodic points 3

essentially because in positive characteristic, one lacks completely the tools for dealing
with the aforementioned second step. In the present paper, we obtain a first complete
answer to an unlikely intersection problem for a dynamical system in characteristic p.

1.4 The picture in positive characteristic

Overall, there are only a handful of results for the unlikely intersection principle
in characteristic p. These known results are valid for Drinfeld modules (see [BM17,
BM22, GH13, Ghi24]) since the Drinfeld modules are the natural vehicle in positive
characteristic for many of the classical questions in arithmetic geometry, such as
the André-Oort conjecture (see [Bre05]), the Bogomolov conjecture (see [Bos02]),
the Mordell-Lang conjecture (see [Ghi05, GT08]), the Manin-Mumford conjecture
(see [Sca02]), and the Siegel’s theorem (see [GT07]). Generally, if one tries to prove
results in characteristic p beyond the world of Drinfeld modules, then one encounters
significant difficulties, especially in a purely dynamical setting.

In Theorem 1.1, we establish the counterpart of the main result of [BD11] in positive
characteristic. The three different possibilities (1)–(3) from Theorem 1.1 show the
distinct three scenarios one has to deal with when working arithmetic questions in
characteristic p. First, we have the case when the starting points α and β live in
Fp – that is, the so-called isotrivial case, which is always very special. Second, we
have the case when d = p� is a power of the characteristic; this is special since then
each polynomial fλ(x) = xd + λ from our family is an affine map on Ga (i.e., it is a
composition of an additive polynomial x ↦ x p�

with a translate x ↦ x + λ). Third,
we have the generic case; that is, in the absence of the above two cases, then indeed
the only possibility for α and β to admit infinitely many parameters λ such that both
starting points are preperiodic under the action of fλ is when αd = βd (same as in
characteristic 0).

Remark 1.2 The second case above (i.e., case (2) in Theorem 1.1) appears due to
the fact that when d = p�, our family of polynomials fλ = x p� + λ commutes with
additional polynomials (besides the identity map). In fact, given any translate Tξ(x) =
x + ξ for some ξ ∈ Fp , then Tξ commutes with f m

λ , where m is a positive integer so that
ξ ∈ F�m

p .

1.5 The strategy for our proof

We also prove (see Theorem 6.1) a generalization of Theorem 1.1 by replacing the
hypothesis that there exist infinitely many parameters λ for which both α and β are
preperiodic under the action of fλ with the weaker hypothesis that (in a suitable
product formula field L) there exist infinitely many parameters λn such that

lim
n→∞

ĥ fλn
(α) = ĥ fλn

(β) = 0;(1.5.1)

for more details regarding the global canonical heights ĥ fλ , see Subsection 3.5. The
fact that we can reduce in our Theorem 1.1 to the case L is a product formula field
is explained in Subsection 6.1 (especially, see Proposition 6.2). Also, as noted in
Remark 3.9, once α (or β) is preperiodic under the action of fλ , then its global
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4 D. Ghioca

canonical height (with respect to fλ) equals 0; hence, the condition (1.5.1) is weaker
than the hypothesis from Theorem 1.1.

Similar to the proof of Baker-DeMarco [BD11], the first move is proving that the
equidistribution theorem from [BR10] holds, which allows us to conclude that certain
local canonical heights constructed with respect to the two starting points α and β are
equal (for more details, see Section 3 and, also, see Theorem 4.1). In order to state
the equidistribution theorem that we will employ in our proof (see Theorem 2.2),
we need a technical setup both from the theory of Berkovich spaces and also from
arithmetic dynamics; this is done in Section 2. We continue by introducing canonical
heights (both local and global) associated to our family of polynomials; this is done in
Section 3. Our results from Section 3 provide the technical background for obtaining
the crucial Theorem 4.1 in Section 4. Theorem 4.1 says that the existence of an infinite
sequence of parameters λn satisfying equation (1.5.1) yields that for each parameter λ
and for each nonarchimedean place v of L, we have

ĥv ,λ(α) = ĥv ,λ(β);(1.5.2)

for the precise definition of the local canonical heights ĥv ,λ , we refer the reader to
Section 3.

In Section 5, we prove Proposition 5.1, which says that assuming equation (1.5.2)
holds (for each place v and each parameter λ), and also assuming that d is a not a power
of p and that not both α and β live in Fp , then condition (3) from Theorem 1.1 must
hold. Its proof requires a refined analysis of the valuations for αd − βd , obtained by
employing equation (1.5.2) for suitably chosen parameters λ. Theorem 4.1 coupled with
Proposition 5.1 proves the direct implication (which is the much harder part) from the
conclusion of Theorem 1.1. Finally, in Section 6, we conclude our proof of Theorem 1.1.
We actually state and prove the more general Theorem 6.1 and show first how to deduce
Theorem 1.1 as a consequence of Theorem 6.1. The main part of Section 6 is devoted
to proving Theorem 6.1; once again, the key ingredient is our Proposition 5.1.

2 Equidistribution for points of small height

As mentioned in Section 1, we will need to apply the arithmetic equidistribution
discovered independently by Baker-Rumely [BR06], Chambert-Loir [CL06], and
Favre-Rivera-Letelier [FRL06]; when the base field is a nonarchimedean field, the
equidistribution theorem is best stated over the Berkovich space associated to the
underlying variety in question. We will introduce briefly the desired equidistribution
theorem for points of small height (see Theorem 2.2); for a comprehensive introduc-
tion to Berkovich spaces, we refer the reader to [BR10]. In our presentation, we use the
approach of Baker-Rumely, which connects the equidistribution theorem to the theory
of arithmetic capacities. Hence, the material presented in this Section 2 is mainly from
the book [BR10] by Baker and Rumely.

So, following [BR10, Definition 7.51], we let L be a field of characteristic p endowed
with a product formula (i.e., there exists a set ΩL of (pairwise inequivalent) absolute
values satisfying the following conditions):
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Simultaneously preperiodic points 5

(i) for each nonzero x ∈ L, we have ∣x∣v = 1 for all but finitely many v ∈ ΩL ; and
(ii) for each nonzero x ∈ L, we have

∏
v∈ΩL

∣x∣v = 1.(2.0.1)

We note that usually, one asks that the product formula (2.0.1) holds in a slighly more
general form: ∏v∈ΩL

∣x∣Nv
v = 1 for some given positive integers Nv ; however, since all

the absolute values from ΩL are nonarchimedean, we can absorb the exponents Nv
in the definition of the respective absolute values ∣ ⋅ ∣v (see also [GH13, Equation 2.2]).
Furthermore, as mentioned in [BR10, Chapter 7], one does not require L to be a global
(function) field, but rather one needs that L is a general product formula field (see
equations (i)–(ii) above). In particular, we can let L0 be the perfect closure of the
rational function field (in one variable) over Fp , that is,

L0 ∶= Fp (t, t1/p , t1/p2
, ⋅ ⋅ ⋅ , t1/pn

, ⋅ ⋅ ⋅ ) ,(2.0.2)

and then take L to be any finite extension of L0; then L is a product formula field.
Indeed, each place of Fp(t) (which geometrically, corresponds to a point of P1(Fp))
extends uniquely to a place w of L0, thus making L0 a product formula field. Above
each given place w of L0, there exist finitely many places v of L; we denote by Ω ∶= ΩL
this set of places of L. Then L is a product formula field with respect to Ω. Furthermore,
the separable closure Lsep of L coincides with its algebraic closure L (see also [GS22,
Remark 1.1]). Finally, we have the following fact: only the points in Fp are the points
x ∈ L which are integral at each place in Ω; that is,

if ∣x∣v ≤ 1 for each v ∈ Ω, then x ∈ Fp .(2.0.3)

In the rest of this section, we work with an arbitrary product formula field L;
however, the relevant case for our results is a finite extension of the field from (2.0.2).
Now, for each v ∈ ΩL , we let Cv be an algebraically closed field containing L, which
is also complete with respect to a fixed extension of ∣ ⋅ ∣v to Cv . Let A1

Berk,Cv
denote

the Berkovich affine line over Cv (see [BR10] or [BD11, Section 2] for more details).
In order to apply the main equidistribution result from [BR10, Theorem 7.52], we
recall briefly the potential theory on the affine line over Cv . The right setting for
nonarchimedean potential theory is the potential theory on A

1
Berk,Cv

developed in
[BR10]. We quote here part of a nice summary of the theory from [BD11, Section 2]
without going into details (we refer the reader to [BR10, BD11] for all the details and
proofs).

So, let E be a compact subset of A1
Berk,Cv

. Then analogous to the complex case, the
logarithmic capacity c(E) = e−V(E), and the Green’s function GE of E relative to ∞ can
be defined where V(E) is the infimum of the energy integral with respect to all possible
probability measures supported on E. If c(E) > 0, then the exists a unique probability
measure μE , also called the equilibrum measure on E, attaining the infimum of the
energy integral. Furthermore, the support of μE is contained in the boundary of the
unbounded component of A1

Berk,Cv
/E. The Green’s function GE(z) of E relative to

infinity is a well-defined nonnegative real-valued subharmonic function on A
1
Berk,Cv
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6 D. Ghioca

which is harmonic on A
1
Berk,Cv

/E (in the sense of [BR10, Chapter 8]). The following
result (see [BD11, Lemma 2.5]) summarizes the key features of the Green’s function.

Lemma 2.1 Let E be a compact subset of A
1
Berk,Cv

and let U be the unbounded
component of A1

Berk,Cv
/E.

(1) If c(E) > 0 (i.e., V(E) < ∞), then GE(z) = V(E) + log ∣z∣v for all z ∈ A1
Berk,Cv

such
that ∣z∣v is sufficiently large.

(2) If GE(z) = 0 for all z ∈ E , then GE is continuous on A
1
Berk,Cv

, Supp(μE) = ∂U and
GE(z) > 0 if and only if z ∈ U .

(3) If G ∶ A1
Berk,Cv

→ R is a continuous subharmonic function which is harmonic on
U , identically zero on E, and such that G(z) − log+ ∣z∣v is bounded, then G = GE .
Furthermore, if G(z) = log ∣z∣v + V + o(1) (as ∣z∣v → ∞) for some V < ∞, then
V(E) = V, and so, c(E) = e−V .

To state the equidistribution result from [BR10], we consider the compact Berkovich
adèlic sets, which are of the following form

E ∶= ∏
v∈ΩL

Ev ,(2.0.4)

where Ev is a nonempty compact subset of A1
Berk,Cv

for each v ∈ ΩL , and furthermore,
Ev is the closed unit disk D(0, 1) in A

1
Berk,Cv

for all but finitely many v ∈ ΩL . The
logarithmic capacity c(E) of E is defined as follows:

c(E) = ∏
v∈ΩL

c(Ev).(2.0.5)

Note that in (2.0.5), there is a finite product as for all but finitely many v ∈ ΩL , we have
c(Ev) = c(D(0, 1)) = 1. Let Gv ∶= GEv be the Green’s function of Ev relative to ∞ for
each v ∈ ΩL . For every v ∈ ΩL , we fix an embedding of the separable closure Lsep of
L into Cv . Let S ⊂ Lsep be any finite subset that is invariant under the action of the
Galois group Gal(Lsep/L). We define the height hE(S) of S relative to E by

hE(S) = ∑
v∈ΩL

( 1
∣S∣ ∑

z∈S
Gv(z)) .(2.0.6)

Note that this definition is independent of the particular embedding Lsep into Cv that
we choose at each place v ∈ ΩL . Finally, for each v ∈ ΩL , we let μv be the equilibrum
measure on Ev . The following is a special case of the equidistribution result [BR10,
Theorem 7.52] that we need for our application.

Theorem 2.2 With the above notation, let E = ∏v∈Ω Ev be a compact Berkovich adèlic
set with c(E) = 1. Suppose that Sn is a sequence of Gal(Lsep/L)-invariant finite subsets
of Lsep with ∣Sn ∣ → ∞ and hE(Sn) → 0 as n → ∞. For each v ∈ ΩL and for each n, let
δn be the discrete probability measure supported equally on the elements of Sn . Then the
sequence of measures {δn} converges weakly to μv the equilibrium measure on Ev .
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Simultaneously preperiodic points 7

3 Dynamics and heights associated to our family of polynomials

Throughout this section, we let L0 be the perfect closure of Fp(t) (see its definition
from (2.0.2)), and then we let L be a given finite extension of L0. Then each finite
extension of L is separable (i.e., Lsep = L); so, from now on, we fix an algebraic closure
L of L. Also, for the sake of simplifying our notation, we let Ω ∶= ΩL be the set of
inequivalent places of L witnessing the fact that L is a product formula field.

3.1 Preperiodic parameters for a given starting point

We let d ≥ 2 be an integer. We work with a family of polynomials as given in
Theorem 1.1 (i.e., fλ(x) = xd + λ parameterized by λ ∈ L). Given γ ∈ L, we define

Pn ,γ(λ) ∶= f n
λ (γ) for each n ∈ N;(3.1.1)

then Pn ,γ(λ) is a polynomial in λ. A simple induction on n yields the following result.

Lemma 3.1 With the above hypothesis, for each n ∈ N, the polynomial Pn ,γ(λ) is monic
and has degree dn−1 in λ.

Remark 3.2 We immediately obtain as a corollary of Lemma 3.1 the fact that γ is not
preperiodic for the entire family of polynomials fλ . Furthermore, we obtain that if γ
is preperiodic for fλ , then λ ∈ L.

3.2 Generalized Mandelbrot sets

From now on, in Section 3, we fix a place v ∈ Ω.
Following the same approach as in [BD11], one defines the generalized Mandelbrot

set Mγ ,v ⊂ A
1
Berk,Cv

associated to γ; roughly speaking, Mγ ,v is the subset of Cv
consisting of all λ ∈ Cv such that Pn ,γ(λ) is v-adic bounded, as we let n → ∞.

Let λ ∈ Cv and define the local canonical height ĥv ,λ(x) of x ∈ Cv with respect to
the polynomial fλ ; more precisely, we have the formula

ĥv ,λ(x) ∶= lim
n→∞

log+ ∣ f n
λ (x)∣v

dn ,(3.2.1)

where log+(z) = log max{z, 1} for each real number z. Clearly, ĥv ,λ(x) is a continuous
function of both λ and x on Cv . Also, we will be using the following easy fact:

ĥv ,λ(x) =
ĥv ,λ( f m

λ (x))
dm for each m ∈ N and for each x ∈ Cv .(3.2.2)

As Cv is a dense subspace of A1
Berk,Cv

, continuity in λ implies that the canonical
local height function ĥv ,λ(γ) has a natural extension on A

1
Berk,Cv

(note that the
topology on Cv is the restriction of the weak topology on A

1
Berk,Cv

, so any continuous
function onCv will automatically have a unique extension toA

1
Berk,Cv

). Then λ ∈ Mγ ,v

if and only if ĥv ,λ(γ) = 0. Thus, Mγ ,v is a closed subset ofA1
Berk,Cv

; in fact, the following
is true (as previously proved in [BD11]).

Proposition 3.3 Mγ ,v is a compact subset of A1
Berk,Cv

.
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Proof Since we already know that Mγ ,v is a closed subset of the locally compact
space A1

Berk,Cv
, then in order to prove Proposition 3.3, it suffices to show that Mγ ,v is a

bounded subset of A1
Berk,Cv

. This last fact follows immediately from Lemma 3.4, part
(iii). ∎

The following Lemma 3.4 is not only used in the proof of Proposition 3.3, but
it is also repeatedly used throughout Section 5; its proof is easy but its findings are
important.

Lemma 3.4 Let γ, λ ∈ Cv .
(i) If max{∣λ∣v , ∣γ∣v} ≤ 1, then

ĥv ,λ(γ) = 0.

(ii) If ∣γ∣dv > max{1, ∣λ∣v}, then

ĥv ,λ(γ) = log ∣γ∣v > 0.(3.2.3)

(iii) If ∣λ∣v > max {1, ∣γ∣dv }, then

ĥv ,λ(γ) = log ∣λ∣v
d

> 0.

Proof of Lemma 3.4. We first note that conclusion (i) is immediate since knowing
that both λ and γ are integral at the place v yields that each f n

λ (γ) is integral at v, thus
showing that ĥv ,λ(γ) = 0.

Next, we work under the hypotheses from part (ii). The fact that ∣γ∣dv > max{1, ∣λ∣v}
yields that

∣ fλ(γ)∣v = ∣γd + λ∣v = ∣γ∣dv > ∣γ∣v .

An easy induction on n shows that for each n ≥ 1, we have that

∣ f n
λ (γ)∣v = ∣γ∣d

n

v ;

then the desired conclusion in part (ii) follows.
Finally, part (iii) is a consequence of part (ii) because the inequality ∣λ∣ >

max {1, ∣γ∣dv } yields

∣ fλ(γ)∣v = ∣γd + λ∣v = ∣λ∣v > ∣λ∣
1
d
v .(3.2.4)

Equation (3.2.4) allows us to apply the conclusion from part (ii) to the point fλ(γ) and
the parameter λ, and thus, we get

ĥ fλ ( fλ(γ)) = ∣ fλ(γ)∣v = ∣λ∣v .

Then equation (3.2.2) yields the desired conclusion in Lemma 3.4, part (iii). ∎

3.3 The logarithmic capacities of the generalized Mandelbrot sets

Next, our goal is to compute the logarithmic capacities of the v-adic generalized
Mandelbrot sets Mγ ,v associated to γ for our given family f polynomials fλ .

https://doi.org/10.4153/S0008414X24000841 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000841


Simultaneously preperiodic points 9

Theorem 3.5 The logarithmic capacity of Mγ ,v is c(Mγ ,v) = 1.

The strategy for the proof of Theorem 3.5 is to construct a continuous subharmonic
function Gλ ,v ∶ A1

Berk,Cv
→ R satisfying Lemma 2.1 (3); the technical steps follow

identically as in the proof of the similar result from [BD11]. So, we let

Gγ ,v(λ) ∶= lim
n→∞

log+ ∣ f n
λ (γ)∣v

dn−1 = d ⋅ ĥv ,λ(γ).(3.3.1)

Note that Gγ ,v(λ) ≥ 0 for all λ ∈ A1
Berk,Cv

; also, λ ∈ Mγ ,v if and only if Gγ ,v(λ) = 0.
The proof of the next result is essentially the same as the proof of [BD11, Proposi-

tion 3.7].

Lemma 3.6 Gγ ,v is the Green’s function for Mγ ,v relative to ∞.

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Lemma 3.4 (iii) yields that

Gγ ,v(λ) = log ∣λ∣v , for ∣λ∣v sufficiently large.(3.3.2)

Combining Lemma 2.1 (3) and Lemma 3.6, along with equation (3.3.2), we find that
V(Mγ ,v) = 0. Hence, the logarithmic capacity of Mγ ,v is 1, as desired. ∎

3.4 The generalized adèlic Mandelbrot set

Let us call Mγ = ∏v∈Ω Mγ ,v the generalized adèlic Mandelbrot set associated to γ. As
a corollary to Theorem 3.5 and Lemma 3.4, we get that Mγ satisfies the hypothesis of
Theorem 2.2; the proof of the next result is identical as its counterpart from [BD11].

Corollary 3.7 For all but finitely many nonarchimedean places v, we have that Mγ ,v is
the closed unit disk D(0; 1) in A

1
Berk,Cv

; furthermore, c(Mγ) = 1.

3.5 Global canonical heights

For each λ ∈ L (again note that L = Lsep), we will use the notation

hMγ (λ) ∶= hMγ (S) where S is the Gal(Lsep/L)-orbit of λ.(3.5.1)

The notation from (3.5.1) is connected to the global canonical height associated to the
polynomials fλ .

Definition 3.8 For each x ∈ L, we define its Weil height as

h(x) ∶= 1
[L(x) ∶ L] ⋅ ∑

v∈Ω
∑

y∈Gal(Lsep/L)⋅x
log+ ∣y∣v .(3.5.2)

For each λ ∈ L, we define the global canonical height of x ∈ L with respect to the
polynomial fλ as

ĥ fλ (x) = lim
n→∞

h ( f n
λ (x))
dn .(3.5.3)
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Remark 3.9 If γ is preperiodic under the action of fλ , then it is immediate to see
(based on equation (3.5.3)) that ĥ fλ (γ) = 0 (since there are finitely many distinct
points f n

λ (γ)).
However, using [Ben05, Theorem B], one can also establish the converse statement

as well (i.e., once ĥ fλ (γ) = 0, then γ must be preperiodic under the action of fλ).
Indeed, as long as λ ∉ Fp , then fλ is not isotrivial, and therefore, [Ben05, Theorem B]
shows that a point is preperiodic if and only if its canonical height equals 0. Finally,
if λ ∈ Fp , then it is immediate to see that γ is preperiodic if and only if also γ ∈ Fp .
Similarly, if ĥ fλ (γ) = 0 (and λ ∈ Fp), then we must have that ∣γ∣v ≤ 1 for each place
v ∈ Ω (see Lemma 3.4 (ii)), and therefore, we must also have that γ ∈ Fp (see (2.0.3)).

The following fact follows easily from the decomposition of the global canonical
height as a sum of local canonical heights; a similar result was obtained in the proof
of [GH13, Theorem 2.6] in the context of Drinfeld modules.

Lemma 3.10 Let γ ∈ L. Then for each λ ∈ L, we have hMγ (λ) = d ⋅ ĥ fλ (γ).

4 Equality of the respective local canonical heights

We continue with the notation as in Section 3. In particular, L is a finite extension of
the perfect closure of the rational function field in one variable over Fp (see (2.0.2)).
Also, for any point γ ∈ L, we construct the generalized adèlic Mandelbrot set Mγ and
then define the associated height hMγ .

The following result is the key technical ingredient which we extract from Theo-
rem 2.2. Its proof is essentially the same as its counterpart from [BD11] because we
are both dealing with the same family of polynomials; the technical ingredients used
in the proof of Theorem 4.1 are contained in Theorem 2.2 and Lemma 3.10. We also
note that a similar result was proven in [GH13, Theorem 2.6] for dynamical systems
coming from Drinfeld modules.

Theorem 4.1 Let L, fλ , ĥ fλ , ĥv ,λ be defined as in Section 3; also, let α, β ∈ L. Assume
there exists an infinite sequence {λn} in L with the property that

lim
n→∞

ĥ fλn
(α) = lim

n→∞
ĥ fλn

(β) = 0.(4.0.1)

Then for each λ ∈ L and for each v ∈ Ω, we have that ĥv ,λ(α) = ĥv ,λ(β).

5 Proof of the precise relation between the starting points.

In this section, we prove the following result.

Proposition 5.1 Let L0 ∶= Fp (t, t1/p , t1/p2
, ⋅ ⋅ ⋅ , t1/pn

, ⋅ ⋅ ⋅ ) and let L be a finite exten-
sion of L0. We denote by Ω ∶= ΩL the set of inequivalent places of L. We let α, β ∈ L, not
both of them contained in Fp. Let d ≥ 2 be an integer, which is not a power of the prime
p. We let

fλ(x) ∶= xd + λ
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be a family of polynomials parameterized by λ ∈ L. As in Section 3, for each λ ∈ L and
for each place v ∈ Ω, we let

ĥv ,λ(α) = lim
n→∞

log+ ∣ f n
λ (α)∣v

dn and ĥv ,λ(β) = lim
n→∞

log+ ∣ f n
λ (β)∣v

dn .

If for each λ ∈ L and for each place v ∈ Ω, we have that

ĥv ,λ(α) = ĥv ,λ(β),(5.0.1)

then we must have that αd = βd .

Proposition 5.1 constitutes the bridge in our arguments between Theorem 4.1 and
Theorem 1.1 (see also Theorem 6.1).

5.1 The strategy for proving Proposition 5.1

From now on, we work under the hypotheses from Proposition 5.1. We split its proof
into Subsections 5.2, 5.3, 5.4, and 5.5.

So, we let S be the (finite) set of places v ∈ Ω with the property that

max{∣α∣v , ∣β∣v} > 1.(5.1.1)

Note that our hypothesis from Proposition 5.1 that not both α and β live in Fp yields
that S is a nonempty set. Our strategy will be to prove that

∣αd − βd ∣v ≤ 1 for each v ∈ S .(5.1.2)

Indeed, since S consists of all the places v where α or β is not v-adic integral (see
inequality (5.1.1)), then the only places of Ω for which αd − βd may not be a v-adic
integer are exactly the ones from the set S. So, inequality (5.1.2) would prove that αd −
βd is integral at each place v ∈ Ω. Due to the product formula (2.0.1) on L (see also
(2.0.3)), this means that αd − βd ∈ Fp , which is sufficient to deduce that αd = βd if d =
2 (see Lemma 5.12). Now, in the case d > 2, we can actually prove that the inequality
in (5.1.2) is strict; this is sufficient to deduce that αd = βd (see Lemma 5.11). We also
note (see Remark 5.10) that it is exactly in the last part of our argument (the proof
of Lemma 5.9) where we employ the hypothesis from Proposition 5.1 that d is not a
power of p.

In order to deduce the inequality (5.1.2), we employ the hypothesis (5.0.1) from
Proposition 5.1 for various well-chosen λ’s in L. Also, we first prove that

∣αd − βd ∣v ≤ ∣α∣v = ∣β∣v for each v ∈ S;(5.1.3)

this is done in Subsection 5.2.

5.2 First step in the proof of Proposition 5.1

In this subsection, we will establish (5.1.3). We first prove the following easy fact which
will be used repeatedly in our proof of Proposition 5.1.

Lemma 5.2 For each place v ∈ S, we have ∣α∣v = ∣β∣v > 1.
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Proof of Lemma 5.2. The desired conclusion is an easy corollary of Lemma 3.4,
parts (i)–(ii) using λ = 0 and v ∈ S (see (5.1.1)), along with the hypothesis (5.0.1) of
Proposition 5.1. ∎
Corollary 5.3 With the hypothesis as in Proposition 5.1, we have that neither α nor β
live in Fp.

Proof Indeed, Lemma 3.4 shows that both α and β are not integral at the places from
S; hence, neither one can live in Fp . ∎

In particular, Corollary 5.3 yields that α and β are nonzero. The following Lemma
will finish the proof for the assertion from (5.1.3).

Lemma 5.4 For each place v in S, we have that ∣βd − αd ∣v ≤ ∣α∣v .

Proof of Lemma 5.4. We argue by contradiction, and so we assume that ∣βd − αd ∣v >
∣α∣v , and we will derive a contradiction.

Indeed, we consider λ0 ∶= −αd and then apply Lemma 3.4 for λ0 and γ ∶= fλ0 (β) =
βd − αd ; since ∣βd − αd ∣dv > ∣λ0∣v = ∣α∣dv (according to our assumption), Lemma 3.4 (ii)
yields that

ĥv ,λ0 (γ) = log ∣βd − αd ∣v .

But then using the fact that ĥv ,λ0 (β) = ĥv ,λ0 (γ)
d (see equation (3.2.2)), we obtain that

ĥv ,λ0 (β) = log ∣βd − αd ∣v
d

.(5.2.1)

However, we compute

fλ0 (α) = 0 and f 2
λ0

(α) = −αd .

Then using again Lemma 3.4 (ii), this time for λ0 and −αd (note that ∣αd ∣dv > ∣αd ∣v),
we conclude that

ĥv ,λ0 (−αd) = log ∣αd ∣v .

But then again, using equation (3.2.2), we get that

ĥv ,λ0 (α) =
ĥv ,λ0 ( f 2

λ0
(α))

d2 = log ∣α∣v
d

.(5.2.2)

However, our assumption that ∣αd − βd ∣v > ∣α∣v coupled with equations (5.2.1) and
(5.2.2) contradict the main hypothesis from our Proposition 5.1 that ĥv ,λ0 (α) =
ĥv ,λ0 (β). In conclusion, indeed, we must have that

∣αd − βd ∣v ≤ ∣α∣v = ∣β∣v ,(5.2.3)

for each place v in S. ∎

5.3 Second step in the proof of Proposition 5.1

The inequality from equation (5.1.3) says that ∣αd − βd ∣v is much smaller than one
would expect it to be; that is, since ∣α∣v = ∣β∣v > 1 (for v ∈ S), then normally one would
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expect ∣αd − β∣v to be larger than ∣α∣v = ∣β∣v . The next Lemma refines further the
inequality from (5.1.3) showing that we actually have a strict inequality in (5.1.3).

Lemma 5.5 For each place v in S, we have that ∣βd − αd ∣v < ∣α∣v .

Proof of Lemma 5.5. We argue by contradiction and therefore assume that ∣αd −
βd ∣v ≥ ∣α∣v . Then Lemma 5.4 yields that actually ∣αd − βd ∣v = ∣α∣v .

Claim 5.6 There exists some nonzero γ0 ∈ Fp such that

∣βd − αd − γ0 ⋅ α∣v < ∣α∣v .(5.3.1) ∎

The existence of γ0 as in the conclusion of Claim 5.6 is essential in the proof of
Lemma 5.5. Furthermore, the argument used in the proof of Claim 5.6 will also be
useful in our further arguments for proving Lemma 5.5.

Proof of Claim 5.6. Let K = Fp(t, α, β); then K is a subfield of L. Moreover, K is
a global function field (of transcendence degree 1) over Fp (it is a finite extension of
Fp(t)). We letOK ,v be the ring of v-adic integers in K; thenOK ,v is a discrete valuation
ring. We let πv ∈ OK ,v ⊂ L be a uniformizer for the restriction of ∣ ⋅ ∣v on K; that is,

∣πv ∣v = max {∣x∣v ∶ ∣x∣v < 1 and x ∈ K} .

So, there exists some positive integer e with the property that both (βd − αd) ⋅ πe
v and

α ⋅ πe
v are v-adic units in K (note that e > 0 since ∣βd − αd ∣v = ∣α∣v > 1). We let redv ∶

OK ,v �→ Fp be the reduction map at the place v; then we simply compute

γ0 ∶=
redv ((βd − αd) ⋅ πe

v)
redv (α ⋅ πe

v) ∈ Fp
∗

,(5.3.2)

which satisfies the desired conclusion from Claim 5.6. ∎

So, we let γ0 ∈ Fp as in the conclusion of Claim 5.6.

Claim 5.7 With the above notation, there exists some γ1 ∈ Fp such that

(γ1 + γ0)d = 1 and γd
1 ≠ 1.(5.3.3)

Proof of Claim 5.7. We argue by contradiction and therefore we assume that for
each u ∈ Fp such that ud = 1, we have that also (u − γ0)d = 1. This means that the d-th
roots of unity in Fp can be grouped in disjoint subsets of p elements (note that γ0 ≠ 0):

u, u − γ0 , u − 2γ0 , ⋅ ⋅ ⋅ , u − (p − 1)γ0 .

However, this would mean that there are p ⋅ k solutions (for some positive integer k)
for the equation xd = 1 in Fp . This is a contradiction because the equation xd = 1 has
s solutions in Fp , where d is written as s ⋅ p� for some integer � ≥ 0 and some positive
integer s coprime with p. The fact that p does not divide s shows that indeed one can
find some γ1 satisfying conditions (5.3.3). ∎

Then we consider (with γ1 satisfying the conclusion of Claim 5.7)

λ1 ∶= γ1 ⋅ α − αd ;
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a simple computation shows that

f 2
λ1

(α) = fλ1 (γ1α) = (γd
1 − 1)αd + γ1α.

Since γd
1 ≠ 1, we conclude that

∣ f 2
λ1

(α)∣v = ∣α∣dv > ∣α∣v = ∣λ1∣1/dv ,

and thus, an application of Lemma 3.4 (ii) (coupled with equation (3.2.2)) yields

ĥv ,λ1 (α) =
ĥv ,λ1 ( f 2

λ1
(α))

d2 = log ∣α∣dv
d2 = log ∣α∣v

d
.(5.3.4)

However, we compute

f 2
λ1

(β) = fλ1 (βd − αd + γ1α) = (βd − αd + γ1α)d + γ1α − αd .(5.3.5)

Claim 5.8 With our choice for γ0 as in Claim 5.6 and for γ1 as in Claim 5.7, we have
that

∣(βd − αd + γ1α)d − αd ∣v < ∣αd ∣v .(5.3.6)

Proof of Claim 5.8. In order to justify (5.3.6), we argue similarly as in our proof of
Claim 5.6. So, letting as before, πv be a uniformizer of K = Fp(t, α, β) at the place v,
then for some positive integer e and some v-adic units u1 , u2 in K (and therefore in L),
we have

βd − αd = π−e
v ⋅ u1 and α = π−e

v ⋅ u2;(5.3.7)

in particular, (5.3.7) yields ∣αd ∣v = (∣πv ∣−e
v )d = ∣πv ∣−d e

v . Then we obtain

∣(βd − αd + γ1α)d − αd ∣
v
= ∣π−d e

v ⋅ (u1 + γ1u2)d − π−d e
v ⋅ ud

2 ∣v = ∣πv ∣−d e
v ⋅ ∣(u1 + γ1u2)d − ud

2 ∣v .

So, in order to get inequality (5.3.6), it suffices to prove that

∣(u1 + γ1u2)d − ud
2 ∣v < 1;(5.3.8)

furthermore, using that u1 and u2 are v-adic units, inequality (5.3.8) is equivalent with
asking that

∣( u1

u2
+ γ1)

d
− 1∣

v
< 1.(5.3.9)

We rewrite the left-hand side in (5.3.9) as

∣(u1 − γ0u2

u2
+ (γ0 + γ1))

d
− 1∣

v
.(5.3.10)

Equation (5.3.1) (see also (5.3.2)) yields that

∣u1 − γ0u2

u2
∣
v

< 1;(5.3.11)

so, coupling equations (5.3.11) and (5.3.10), along with the fact that (γ0 + γ1)d = 1, we
obtain inequality (5.3.9) (which, in turn, delivers the desired inequality (5.3.6)).

This finishes our proof of Claim 5.8. ∎
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Now, inequality (5.3.6) yields (see also equation (5.3.5)) that

∣ f 2
λ1

(β)∣v < ∣α∣dv .(5.3.12)

We let M ∶= max {∣α∣v , ∣ f 2
λ1

(β)∣v}; inequality (5.3.12) yields

M < ∣α∣dv .(5.3.13)

Using inequality (5.3.12), we obtain

∣ f 3
λ1

(β)∣v = ∣( f 2
λ1

(β))d + γ1α − αd ∣
v

≤ max {∣ f 2
λ1

(β)∣dv , ∣α∣dv } = Md .(5.3.14)

An easy induction (similar to deriving inequality (5.3.14)) shows then that for each
n ≥ 2,

∣ f n
λ1

(β)∣v ≤ Md n−2
.(5.3.15)

Inequality (5.3.15) yields that ĥv ,λ1 (β) ≤ log(M)
d2 ; then coupling this last inequality with

equations (5.3.4) and (5.3.13), we obtain that

ĥv ,λ1 (β) < ĥv ,λ1 (α),

which contradicts our main hypothesis (5.0.1) from Proposition 5.1. This concludes
our proof of Lemma 5.5.

5.4 Third step in the proof of Proposition 5.1

We continue our analysis for ∣βd − αd ∣v (for v ∈ S) with the goal of proving the
inequality from (5.1.2). This time, we need to split our proof depending whether d = 2
or d > 2.

Lemma 5.9 For each v ∈ S, we must have that
(i) if d > 2, then ∣βd − αd ∣v < 1.

(ii) if d = 2, then ∣βd − αd ∣v ≤ 1.

Proof of Lemma 5.9. We let λ2 ∶= α − αd . Then clearly, fλ2 (α) = α, which means
that for any place v (not just the ones from the set S), we have that

ĥv ,λ2 (α) = 0.(5.4.1)

From now on, we argue by contradiction and assume that for some v ∈ S, we have
• ∣βd − αd ∣v ≥ 1 if d > 2.
• ∣βd − αd ∣v > 1 if d = 2.

However, we know from Lemma 5.5 that ∣βd − αd ∣v < ∣α∣v .
Next, we write d = p� ⋅ s for some integer � ≥ 0 and some positive integer s coprime

with p. Furthermore, due to our hypothesis that d ≠ p�, then we must have that s ≥ 2.
We compute

f 2
λ2

(β) = fλ2 (βd − αd + α) = (βd − αd + α)d + α − αd .
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Then we let ε ∶= βd − αd and proceed as follows:

f 2
λ2

(β) = (ε + α)d − αd + α = (εp�

+ αp�

)
s
− αs p�

+ α.(5.4.2)

Then we expand

(εp�

+ αp�

)
s
= αs p�

+ sα(s−1)p�

εp�

+
s

∑
i=2

(s
i
) ⋅ α(s−i)p�

ε i p�

.

From our assumption that ∣βd − αd ∣v ≥ 1 (for any d ≥ 2) along with the conclusion of
Lemma 5.5, we have that

1 ≤ ∣ε∣v < ∣α∣v (with the left inequality being strict if d = 2).(5.4.3)

Since p does not divide s, inequality (5.4.3) shows that

∣sα(s−1)p�

εp�

∣
v

= ∣α(s−1)p�

εp�

∣
v

> ∣(s
i
) ⋅ α(s−i)p�

ε i p�

∣
v

(5.4.4)

for each i = 2, . . . , s. Equation (5.4.4) allows us to conclude that

∣(εp�

+ αp�

)
s
− αs p�

∣
v

= ∣α(s−1)p�

εp�

∣
v

.(5.4.5)

Clearly, if d > 2, then (s − 1)p� ≥ max{s − 1, p�} ≥ 2; hence, using again that ∣ε∣v ≥ 1 if
d > 2, we derive that

∣α(s−1)p�

εp�

∣
v

≥ ∣α∣2v > ∣α∣v if d > 2.(5.4.6)

Furthermore, using our assumption that ∣ε∣v > 1 if d = 2, then we also derive that

∣α(s−1)p�

εp�

∣
v

= ∣α ⋅ ε∣v > ∣α∣v if d = 2,(5.4.7)

because then p ≠ 2 and so, � = 0 and s = 2 if d = 2.

Remark 5.10 We note that it is precisely in deriving inequalities (5.4.6) and (5.4.7)
that we used the hypothesis that d is not a power of the prime p, since this translates
to the inequality s ≥ 2, which is used in both of the above two inequalities (along with
the fact that we cannot have s = p = 2). ∎

Combining inequalities (5.4.6), (5.4.7), (5.4.5), and (5.4.2) yields that

∣ f 2
λ2

(β)∣v = ∣α(s−1)p�

εp�

∣
v

> ∣α∣v = ∣λ2∣1/dv .(5.4.8)

Inequality (5.4.8) along with Lemma 3.4 (ii) yields that

ĥv ,λ2 ( f 2
λ2

(β)) = log ∣α(s−1)p�

εp�

∣
v

> 0.(5.4.9)

Finally, using equations (5.4.9) and (3.2.2), we conclude that ĥv ,λ2 (β) > 0. Coupled
with equation (5.4.1), this contradicts the main hypothesis (5.0.1) that ĥv ,λ2 (α) =
ĥv ,λ2 (β). This concludes our proof of Lemma 5.9.
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5.5 Final step in the proof of Proposition 5.1

Now we can finish our proof of Proposition 5.1. Once again, we split our analysis into
two cases: d > 2, respectively d = 2.

Lemma 5.11 If d > 2, then the conclusion in Proposition 5.1 holds.

Proof of Lemma 5.11. By definition of the set S (see (5.1.1)), we have that if ∣βd −
αd ∣v > 1, then we must have that v ∈ S. However, Lemma 5.9 yields that ∣βd − αd ∣v < 1
if v ∈ S. Hence, βd − αd is integral at all places, and furthermore, for the places v ∈ S
(note that S is nonempty due to our assumption that not both α and β are in Fp), we
have that ∣βd − αd ∣v < 1; this contradicts the product formula (2.0.1), unless αd − βd =
0, which is precisely the desired conclusion from Proposition 5.1. ∎

Lemma 5.12 If d = 2, the conclusion in Proposition 5.1 must hold.

Proof The same argument as in the proof of Lemma 5.11 yields that ∣β2 − α2∣v ≤ 1 for
each place v ∈ S. Since we already know that ∣β2 − α2∣v ≤ 1 for v ∉ S, then (2.0.3) yields
that ε = β2 − α2 ∈ Fp .

Furthermore, we note that p ≠ 2 since we know that d = 2 is not a power of the
prime p (according to the hypothesis in Proposition 5.1).

Again, we work with λ2 = α − α2 as in Lemma 5.9. We compute (with ε = β2 − α2)

fλ2 (β) = β2 + α − α2 = α + ε and f 2
λ2

(β) = (2ε + 1)α + ε2(5.5.1)

and then

f 3
λ2

(β) = (4ε2 + 4ε)α2 + (4ε3 + 2ε2 + 1)α + ε4 .(5.5.2)

Now, if 4ε2 + 4ε ≠ 0, then we get (note that ε ∈ Fp)

∣ f 3
λ2

(β)∣v = ∣α∣2v for v ∈ S .(5.5.3)

Using inequality (5.5.3) along with Lemma 3.4 (ii) yields that for v ∈ S, we would have
that ĥv ,λ2 ( f 3

λ2
(β)) > 0, and therefore, we would also have that ĥv ,λ2 (β) > 0, which

contradicts that ĥv ,λ2 (α) = 0 because α is a fixed point under the action of fλ2 . So, we
must have instead that

4ε2 + 4ε = 0.(5.5.4)

Since p ≠ 2, then equation (5.5.4) yields either ε = 0 (which provides the desired
conclusion α2 = β2), or we must have ε = −1. However, this last possibility would
provide a contradiction since then we can run the same argument with α and β
reversed, and we would have gotten that

α2 − β2 = −1,

thus contradicting β2 − α2 = −1. More precisely, we could consider next

λ3 ∶= β − β2

and impose the condition that ĥv ,λ3 (α) = 0 for each v ∈ S. Letting μ ∶= −ε = α2 − β2

and then arguing along the same lines as in the derivation of equations (5.5.1), (5.5.2),
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(5.5.3), and (5.5.4), we would obtain that either μ = 0 (which is the desired conclusion),
or that μ = −1. Since we cannot have that

ε = −1 and μ = −ε = −1

because the characteristic p of our field is not 2 (because d = 2 is not a power of the
characteristic), we conclude that also when d = 2, we must have that α2 = β2.

This concludes our proof of Lemma 5.12. ∎

Combining Lemmas 5.11 and 5.12, we obtain the desired conclusion in Proposi-
tion 5.1.

6 Proof of our main results.

In this section, we finish our proof for Theorem 1.1. We actually prove a more general
result.

Theorem 6.1 Let L0 = Fp (t, t1/p , t1/p2
, ⋅ ⋅ ⋅ , t1/pn

, ⋅ ⋅ ⋅ ) and let L be a finite extension
of L0. Let d ≥ 2 be an integer and let α, β ∈ L. We consider the family of polynomials

fλ(x) ∶= xd + λ parameterized by λ ∈ L.

Then there exists an infinite sequence {λn}n≥1 in L with the property that

lim
n→∞

ĥ fλn
(α) = lim

n→∞
ĥ fλn

(β) = 0,(6.0.1)

if and only if at least one of the following statements holds:
(1) α, β ∈ Fp .
(2) d = p� for some positive integer � and β − α ∈ Fp .
(3) αd = βd .
Moreover, if either one of the conditions (1)–(3) holds, then for each λ ∈ L, we have that
α is preperiodic under the action of fλ if and only if β is preperiodic under the action
of fλ .

We start by proving Theorem 1.1 assuming that Theorem 6.1 holds; this is done in
Subsection 6.1. Then we will prove Theorem 6.1 by splitting our argument into two
steps in Subsections 6.3 and, respectively, 6.4.

6.1 Proof of Theorem 1.1 assuming Theorem 6.1 holds.

The next proposition shows that in Theorem 1.1, we may assume trdeg
Fp

L = 1.

Proposition 6.2 Let d ≥ 2 be an integer, let L be a field of characteristic p > 0, and let
α, β ∈ L. If there exists λ1 ∈ L such that both α and β are preperiodic for the polynomial
fλ1 (x) = xd + λ1, then trdeg

Fp
Fp(α, β) ≤ 1.

Proof We recall the notation from Subsection 3.1 (see Lemma 3.1) that for each γ ∈ L,
we have

Pn ,γ(λ) ∶= f n
λ (γ),(6.1.1)
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which is a monic polynomial of degree dn−1 (in λ). Furthermore, the constant term
is Pn ,γ(0) = γd n

. An easy induction yields that each coefficient of λ i in Pn ,γ(λ) for
i = 1, . . . , dn−1 − 1 is itself a polynomial in γ, that is,

Pn ,γ(λ) = λd n−1
+

d n−1−1
∑
i=1

cn , i(γ) ⋅ λ i + γd n
,(6.1.2)

with each cn , i ∈ Fp[x] being a polynomial of degree less than dn . Therefore, imposing
the condition that α is a preperiodic point under the action of some fλ1 yields an
equation of the form

Pn ,α(λ1) = Pm ,α(λ1) for some 0 ≤ m < n.

Using equation (6.1.2) (along with the information about the degrees of each corre-
sponding polynomials cm , i and cn , j), we obtain that α ∈ Fp(λ1). A similar reasoning,
using this time that β is preperiodic under the action of fλ1 , yields that also β ∈ Fp(λ1).
Hence, we conclude that

trdeg
Fp
Fp(α, β) ≤ trdeg

Fp
Fp(λ1) ≤ 1,

as desired for the conclusion of Proposition 6.2. ∎
Proof of Theorem 1.1 as a consequence of Theorem 6.1. First, we note that Theo-
rem 1.1 is left unchanged if we replace L by any field extension of Fp(α, β).

Second, Proposition 6.2 allows us to assume that trdeg
Fp

L = 1 in Theorem 1.1; that
is, α and β live in a fixed algebraic closure of Fp(t).

So, from now on, we take L0 be the perfect closure of the rational function field in
one variable over Fp , that is,

L0 = Fp(t)per = Fp (t, t
1
p , t

1
p2 , ⋅ ⋅ ⋅ , t

1
pn , ⋅ ⋅ ⋅ )(6.1.3)

and we let L be a finite extension of L0 containing both α and β.
Now, assume that we have infinitely many λn ∈ L with the property that both α and

β are preperiodic under the action of fλn . Then (according to Remark 3.9), we have that
ĥ fλn

(α) = ĥ fλn
(β) = 0 for each n ≥ 1; hence, the direct implication from Theorem 6.1

yields that at least one of the conditions (1)–(3) are met.
Conversely, assuming that at least one of the conditions (1)–(3) are met, then the

“moreover” statement from Theorem 6.1 yields that for each λ ∈ L, α is preperiodic
under the action of fλ if and only if β is preperiodic under the action of fλ . So, in order
to prove the converse statement in Theorem 1.1, it suffices to establish the following
fact.
Proposition 6.3 Let L be an arbitrary field of characteristic p and let γ ∈ L. Then there
exist infinitely many λ ∈ L such that γ is preperiodic under the action of fλ . ∎

If L were C, then the conclusion from Proposition 6.3 follows from a more general
result established in [DeM16]; however, since L is a field of characteristic p, once again
we require a different proof.
Proof of Proposition 6.3. If γ ∈ Fp , then the statement is obvious because then γ
is preperiodic under fλ for each λ ∈ Fp . So, from now on, we assume γ ∈ L/Fp . The
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desired conclusion in Proposition 6.3 follows from the next Lemma, which provides
a more refined conclusion.

Lemma 6.4 Assume γ ∉ Fp. Then there exist infinitely many λ ∈ L with the property
that there exists some prime number q such that f q

λ (γ) = γ. ∎

Proof of Lemma 6.4. We argue by contradiction and so assume the set

P ∶= {λ ∈ L∶ there exists a prime q such that f q
λ (γ) = γ}

is finite. In particular, this means that there exists a positive integer M with the
property that for each prime q > M and for each λ ∈ L such that

f q
λ (γ) = γ,(6.1.4)

there exists a prime q0 < M (with q0 depending on λ, of course) such that

f q0
λ (γ) = γ.(6.1.5)

However, since q and q0 are distinct primes, then equations (6.1.4) and (6.1.5) yield that
fλ(γ) = γ (i.e., λ = γ − γd ). Hence, letting Pq ,γ(λ) ∶= f q

λ (γ) as before (see equation
(6.1.1)), the only solution λ ∈ L to the equation Pq ,γ(λ) = γ is λ0 ∶= γ − γd . Now, using
the shape of the polynomial Pq ,γ(λ) (see equation (6.1.2)), we conclude that

Pq ,γ(λ) = (λ − λ0)d q−1
.(6.1.6)

In particular, this means that the constant term in the polynomial Pq ,γ must be (γd −
γ)d q−1

. However, we know that the constant term in the polynomial Pq ,γ is γd q
; this

leads to the equation

(γd − γ)d q−1

= γd q
.(6.1.7)

Any solution γ to equation (6.1.7) must live inFp , thus contradicting the hypotheses of
Lemma 6.4. Therefore, indeed, the set P must be infinite, as claimed in the conclusion
of Lemma 6.4. ∎

Lemma 6.4 shows that also when γ ∉ Fp , there exist infinitely many λ ∈ L such that
γ is preperiodic under the action of fλ . This concludes our proof for Proposition 6.3.

So, Proposition 6.3 shows that there exist infinitely many λ ∈ L such that α is
preperiodic under the action of fλ and therefore (according to the “moreover” claim
in Theorem 6.1), also β is preperiodic under the action of fλ . Hence, this establishes
the converse statement in Theorem 1.1.

This concludes our proof of Theorem 1.1, assuming that Theorem 6.1 holds.

6.2 Strategy for proving Theorem 6.1

We split our proof of Theorem 6.1 into the remaining two subsections of the current
Section 6. In particular, we prove the “moreover” claim from Theorem 6.1 in Subsec-
tion 6.3, and then we finish the proof of Theorem 6.1 in Subsection 6.4.

So, from now on, we work with the notation and the assumptions from Theorem 6.1.
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6.3 Proof of the “moreover” claim from Theorem 6.1.

In this subsection, we show that if either one of conditions (1)–(3) from the conclusion
of Theorem 6.1 holds, then for each λ ∈ L, we have that α is preperiodic under the
action of fλ if and only if β is preperiodic under the action of fλ .

We argue case by case, as follows.

(1) For any γ ∈ Fp , using equations (6.1.1) and (6.1.2), we get that for each λ ∈ L, we
have that γ is preperiodic under the action of fλ if and only if λ ∈ Fp . Therefore,
if both α and β live in Fp , we have that for each λ ∈ L, α is preperiodic under the
action of fλ if and only if β is preperiodic under the action of fλ .

(2) Now, assume d = p� for some positive integer �. Then a simple induction on n
shows that for each γ ∈ L, we have (see equations (6.1.1) and (6.1.2)) that

Pn ,γ(λ) = f n
λ (γ) = γpn�

+
n−1
∑
i=0

λp i�
.(6.3.1)

Now, assume also that α − β ∈ Fp ; more precisely, we assume ν ∶= α − β ∈ Fp�m for
some positive integer m. Then equation (6.3.1) yields that for each n ≥ 1, we have

f n
λ (α) − f n

λ (β) = νpn�
;(6.3.2)

moreover, the elements {νpn�}
n≥1

cycle among the values

ν, νp�

, νp2�
, ⋅ ⋅ ⋅ , νp(m−1)�

(since νpm�

= ν).

Therefore, α is preperiodic under the action of fλ if and only if β is preperiodic
under the action of fλ , as desired in the “moreover” claim from the conclusion of
Theorem 6.1.

(3) Finally, if αd = βd , we note that for each λ ∈ L, we have that fλ(α) = fλ(β), and
therefore, α is preperiodic under the action of fλ if and only if β is preperiodic
under the action of fλ .

This concludes our proof that whenever one of the conditions (1)–(3) from the
conclusion of Theorem 6.1 holds, then for each λ ∈ L, we have that α is preperiodic
for fλ if and only if β is preperiodic under the action of fλ . Furthermore, according to
Proposition 6.3, we know there exist infinitely many λ ∈ L such that α (and therefore,
also β) is preperiodic under the action of fλ . Therefore, either one of the conditions
(1)–(3) from Theorem 6.1 yields the existence of infinitely many λn ∈ L such that both
α and β are preperiodic under the action of fλn . Clearly (see also Remark 3.9), for each
such λn ∈ L, we have

ĥ fλn
(α) = ĥ fλn

(β) = 0.(6.3.3)

In particular, equation (6.3.3) allows us to establish the converse statement in
Theorem 6.1. So, it remains to prove the direct implication from the statement of
Theorem 6.1; this is done in Subsection 6.4.
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6.4 Conclusion of the proof of Theorem 6.1

In this subsection, we prove the last remaining statement from Theorem 6.1;
that is, that if there exist infinitely many λn ∈ L such that limn→∞ ĥ fλn

(α) =
limn→∞ ĥ fλn

(β) = 0, then at least one of the conditions (1)–(3) from the conclusion
of Theorem 6.1 must hold.

Theorem 4.1 shows that condition (6.0.1) yields that for each λ ∈ L and for each
place v ∈ Ω = ΩL , we have that

ĥv ,λ(α) = ĥv ,λ(β)(6.4.1)

(i.e., hypothesis (5.0.1) from Proposition 5.1 is met). Then Proposition 5.1 yields that
(1) either both α and β live in Fp ;
(2) or d = p� for some positive integer �;
(3) or αd = βd .
So, it remains to prove that when d = p�, then we must have that also α − β ∈ Fp .
Indeed, we will see that the existence of a single λ1 ∈ L such that both α and β are
preperiodic under the action of

fλ1 (x) = xd + λ1 = x p�

+ λ1(6.4.2)

would give that α − β ∈ Fp . Now, the existence of such λ1 ∈ L comes from the fact that
once α is preperiodic under the action of some fλ1 (and there are infinitely many such
parameters λ1 ∈ L according to Proposition 6.3), then actually α is preperiodic under
the action of fσ(λ1) for any σ ∈ Gal(Lsep/L) (since σ( f n

λ1
(α)) = f n

σ(λ1)
(α) for any n,

because α ∈ L is fixed by σ). But then (see Remark 3.9), we have

ĥv ,σ(λ1)(α) = 0 for each v ∈ Ω and for each σ ∈ Gal(Lsep/L).(6.4.3)

Equations (6.4.3) and (6.4.1) yield that ĥv ,σ(λ1)(β) = 0 for each v ∈ Ω and for each σ ∈
Gal(Lsep/L). Using equations (2.0.6), (3.3.1), and (3.5.1) along with Lemma 3.10, we
conclude that ĥ fλ1

(β) = 0. But then, as noted in Remark 3.9, also the converse holds:
we must have that β must be preperiodic under the action of fλ1 .

So, knowing that both α and β are preperiodic under the action of fλ1 , we argue
as in Subsection 6.3 (see equations (6.3.1), (6.3.2), and (6.4.2)) and writing ν = α − β,
then we get that the sequence {νp�n }

n≥1
must consist of finitely many distinct elements

(because its elements are the differences of the elements in the orbits of α and,
respectively, of β under the action of fλ1 ). This can only happen if ν ∈ Fp , as desired.

This concludes our proof of Theorem 6.1.
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