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A. G. D. Watson (1939-41), remarking that there are no Ricci
principal directions at a world-point of- space-time at which the
Einstein equations R^ = J gtj R are satisfied, shows how to define at
any world-point a set of principal directions intrinsically related to
the Riemann tensor Rijkl itself. These directions are unique except
when the space-time has any kind of rotational symmetry about the
•world-point.

Principal directions for any F4 have also been defined in terms of
the Riemann tensor by Kretschmann and Struik (see Struik, 1927-28).
A related discussion is that of Churchill (1932), who confines himself,
however, to 4-dimensional Riemannian spaces of positive-definite da2.
I have myself recently given a detailed account of the matter (Ruse,
1947) for a F4 satisfying the Einstein condition but having any
signature.

Watson's approach to the subject is so different from that of the
previous authors that it is not easy to see whether there is any con-
nection between his work and theirs. It is the purpose of this paper
to analyse his theory, but for a ds2 of any signature and not merely
for one having the signature ± 2 as in Relativity.

§ 1 contains a summary of results, taken from my own paper
{1947), which will be needed in the discussion of Watson's theory.
In § 2 it is shown that his tensor Ilyij is simply expressible in terms of
the conformal curvature tensor, and in § 3 his principal directions are
defined for a F4 of any signature. The connection between his and
the Kretschmann-Struik directions is obtained in § 4.

§ 1. Principal directions in an Einstein F4.

Let then the signature of ds2 be unspecified, and for the present
suppose F4 to be such that

Bii = lgiiR(i,j=l, 4). (1.1)
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At any point (**) of F4 take an arbitrary orthogonal ennuple h{
a such

that
1 • 7 j O / 1 9 \

9ij "•„ % = 9ab = °ab> {*••*)

a, b, c, d being used for ennuplet and i, j , k, .... for tensor suffixes.
If ds2 is not positive definite at (a;*), some of the h{

a will be imaginary.
At (a;') form the ennuplet components of all tensors under con-

sideration. Then by (1.2), the ennuplet fundamental tensor gab is
equal to the Kronecker delta. Consider the quadratic form

i Robed pab p " 1 , (L 3)

where pab is a simple bivector. Equated to zero, this gives the
equation of the Riemann line-complex in the projective 3-space
associated with F4 at the point (xl). When ds2 is indefinite, some of
the components of Rabcd are purely imaginary unless they happen to
be zero.

Replace the skew suffix-pairs ab, cd by single Greek suffixes
according to the scheme

ab = 23 31 12 14 24 34 | ( 1 4>
a = l 2 3 4 5 6 j "

Greek suffixes will all run from 1 to 6. Then the quadratic form (1.3)
becomes Ralip

a p?, where, for an Einstein space, the symmetric 6 x &
matrix R^ has the form1

P

P and 8 being symmetric 3 x 3 matrices, not necessarily real. Also,
if

9abed = 9ac ffbd — 9ad 9be> i1-6)

then the quadratic form

becomes ga^PaPp, where .

/ and 0 being respectively the unit and null 3 x 3 matrices. Further ,
if eijki is the dualising tensor of components ± y/ g, 0 (imaginary when

1 I n a n o n - E i n s t e i n s p a c e J?a/3 is r e p r e s e n t e d b y a g e n e r a l s y m m e t r i c 6 x 6 m a t r i x
a n d n o t b y o n e of t h e p a r t i c u l a r f o r m (1 .5 ) .
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the signature of cZs2 is ± 2, g then being negative), the quadratic form

\e**V*P* (1-9)
becomes eapp°-pff, where

Now let

x1 - — J P 1 + P"), x*= ^ ( P ^ + P6), x3 = J2(P
3 +

or, as one equation,

where the matrix K = [K^\ is given by

(Ruse, 1947, §2). Obviously

K^K^K-1, (1.13)
t denoting the transpose. In terms of the ^-variables, the quadratic
form (1.3) becomes (x)J?^ x" X^> where

= i?v6 Zv Z«,
^WRK (1.14)

in matrix notation, whence, by (1.5), (1.12) and (1.13),

Similarly, for the quadratic forms (1.7) and (1.9),

gro/3 remaining invariant under the transformation and so retaining
the form (1.8). It should be noted that the variables %°- depend upon
the initial choice of ennuple ft*. They will be described as belonging
to hi

If the elementary divisors of the matrices P ± S are simple1, it

1 This proviso is necessary because, although P ±S are symmetric, they are not
necessarily real.
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is possible to find linear orthogonal transformations

(x1. x2» x3) -» (V. V. V ) l a i 7 )
(x4, x6. x6) -» (Y. V. Y ) l

which respectively reduce P + <S, P — S to diagonal form. Because
of the orthogonality of the transformations, the quadratic forms

S (xa)2 and 2 (xa)2 are invariant, and the g- and e-matrices therefore
1,2,3 4 5,6

retain the forms (1.16). But the J?-matrix becomes

f-^123
L 0 Mi56U-

where M123 and Mi56 are 3 x 3 diagonal matrices. Thus the R-, g-
and e-matrices are all in diagonal form in the '^-system. Their
simultaneous reducibility to diagonal form is a characteristic property
of an Einstein space.

To the transformation (1.17) corresponds in F4 a rotation of the
orthogonal ennuple A* to a new ennuple 'A*, the 'x* being the variables
that belong to 'A* in the sense defined above. This ennuple gives four
directions in F4 which are one set of Kretschmann-Struik principal
directions for the Einstein space.

When the latent roots of the matrix P + 8 are unequal, and those
of P — 'S are also unequal, there are exactly six such sets of-orthogonal
directions.1 A change from one set to another in F4 corresponds to a
signed permutation2 of the variables ('x1, 'x2, 'x3) or of ('^4, 'x5, 'x6)
among themselves.

When ds2 is positive definite at (x1), all six of the orthogonal
ennuples 'A* define real directions of F4. When the signature of ds2

at (xl) is i . 2, exactly one of them gives real directions; and when the
signature is zero, some or none may define real directions (Ruse,
loc.cit.,%4).

If the latent roots of P ± S are not all different, but their
elementary divisors are simple, there are an infinite number of sets
of orthogonal directions defined in this way. In that case the F4 has
some kind of symmetry about (xl). If the elementary divisors are not
simple, there are no principal directions in the sense defined above.

1 There are also nine other sets of Kretsohmann-Struik principal directions (Ruse,
• loc. cit., §8). But in an Einstein space all nine consist of null directions, and we shall
not be concerned with them in the present paper.

* A signed permutation is a transformation like 'X4 = - "X4> 'X5 = ~ "X"i 'XB = ~ "Xs,
the signs being chosen so as to make it unimodular.
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§ 2. Watson's tensor Tlijkl.

Now suppose F4 not necessarily an Einstein space. Let

(2-D

(2-2)
where gm = gik gfl — g^ gjk.

Watson's theory involves only one tensor AWiW explicitly, but two
implicitly, the one being the complex conjugate of the other. It must
be remembered that e ^ , as defined in this paper, is purely imaginary
when the signature of ds2 is ± 2, and A+, A~ are then complex con-
jugates. A similiar remark applies to the tensors I1+, II" below.
They replace Watson's single tensor II.

Let

n& = \U ^n
 Rmnn + * *& R> (2.3)

"«« = A«WB A^rs #»»" + i A-u R. (2.4)

Like i2ytz, both II-tensors are skew in i, j and in k, I, are symmetric
for an interchange of the pairs ij, hi, and satisfy the cyclic identity

n«H + ntt0 + n w t = o. (2.5)
Also, as is easy to prove, the Ricci tensors formed from them are both
zero, that is, both satisfy

Ily = flf- 1 1 ^ = 0. .(2.6)

Let now °Bijkl be the dual of Rim and BiAk^ the " semi-dual " defined

by
°Bm = i€ijmn eUpq Rmnp«, (2.7)

Rim) = Rmij = I €klpq R*<t (2.8)

the suffixes on the right being raised in the usual way by means of
gij. Then a simple calculation shows that

n&» = i (Rw + °Rw +" s*w + B(i}*t) + & (9an + ««H) B. (2.9)

Now (Ruse, 1944, p. 71)

°Bm = Bm + (gik Bji + gn Rik - ga Rjk - gjk Ra) - \ gijkl R, (2.10)

and, if Ciild is the conformal curvature tensor (Eisenhart, 1926, p. 90),
then

Giju = Bm + I {gik Rfl + gn Rik - ga Rjk - gjk Ba) - ^ gm R. (2.11)

The last two equations give

°Rm, + $gmR), (2.12)
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whence
(ij)JW = t l i j m n - " . . k l

= \ (SltiiU + Rmi) + I ««« R) • (2-!3)
From (2.9), (2.12) and (2.13) it follows that

n&i = UCm + Ciim). (2.14)

Similarly
^m = UCm-C(mi). (2.15)

The apparent asymmetry of these in the pairs of suffixes ij, kl is
accounted for by the fact that

C<ij)kl = Gij(kl)>

as is obvious from (2.13).

§ 3. Watson's principal directions.

The tensor C^i has the same symmetry properties for inter-
changes of its suffixes as the Riemann tensor, and also satisfies the
cyclic identity. Moreover, the Ricci tensor formed from it is zero,
that is,

C(j = gmnCimnj=0. (3.1)

It therefore satisfies the Einstein condition (with zero " cosmological
constant") even though the Riemann tensor itself may not do so.
So, if we start as in § 1 with an arbitrary orthogonal ennuple A*,
forming the ennuplet1 components Cubcd of Gijkl and then replacing
suffix-pairs by single Greek suffixes, we obtain for Ca8 a matrix of the
form (1.5), say

where A, B are symmetric 3 x 3 matrices. From C^^ we therefore
obtain

C^-g^^C^. (3.3)

But the matrix eyS is equal to its reciprocal exfi, so by (1.8) and (1.10),

IB A
_r7 °i \° zi \

<°>"-Lo i \ \ i 0\ IB A \ {3A)

A B

1 This introduction of an ennuplet system corresponds to Watson's use of locally
galilean coordinates.
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Hence by (2.14), (2.15), (3.2) and (3.4),
'A + B A + Bl
A + B A + J5J' " ( 3 ' 5 )

A-B -(A-i

If we now transform to the ^-variables of (1.11) by pre-multiplying
and post-multiplying by the matrix K [cf. (1.14) and (1.15), with
reference to (1.13)], we obtain

B
Thus

°-BI
 (3-8)

are ternary quadratic forms in (x\ X2> X3) a n d (x4, X6> X6) respectively.
If these are simultaneously reduced to sums of squares by orthogonal
transformations x~> 'x °^ the type (1.17), which can be done when
the elementary divisors of the matrices A ± B are simple, we obtain,
in F4, a rotation of the ennuple Ua to a new ennuple 'h^ in the manner
described in § 1 for an Einstein space. Having found one such, signed
permutations of ( 'x\ 'x2> 'x3) o r °f Cx*> X5> X6) lea<l *° n v e other
essentially distinct ennuples of the same type. The six sets are
unique when the latent roots of A ± B are unequal; otherwise (a;*) is
a point about which F4 has some kind of symmetry, and the number,
of ennuples is infinite. To avoid the need for constant reference to
the latter possibility, it will hereafter be assumed that the latent
roots are all different.

The six ennuples give six sets of Watson principal directions. I t
will be seen below that only one is real in the case considered by him,
namely when dsz has signature ± 2.

The principal directions as thus donned are non-existent when
the conformal curvature tensor is zero. If it is zero everywhere in F4,
then F4 is conformal to a flat space (Eisenhart, 1926, p. 92). They
are also non-existent when the elementary divisors of A ±B are not
simple.

I t may be noted that Watson's tensor P ,^ , defined to be twice
the real part of his tensor 11,^.;, is minus the confocmal tensor Cy^,
and that he takes the Riemann tensor with sign different from that
of the present paper.

https://doi.org/10.1017/S0013091500024445 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024445


A. G. D. WATSON'S PRINCIPAL DIRECTIONS FOR A RIEMANNIAN V4 151

§ 4. Identification of Watson's directions.

Still supposing that F4 is not necessarily an Einstein space, let

Gm=%{Rm + °Rm).. (4.1)

This, so to speak, is the self-dual part of the Riemann tensor, since
obviously

°Gim = Gm. (4.2)

The last equation is equivalent to

Gu=>lg«G. (4-3)

where G{j = g™ Gimnj, G = rfi G{j.= R (Ruse, 1944, p. 71).
By (2.12),

Gnu = Cm - TV gm R, (4.4)

and so, forming ennuplet components with respect to an arbitrary
ennuple h\ and proceeding as before, we have, by (3.2) and (1.8),

^ = LJS A . (4>5)

where A'=A-T\RI. , (4.6)

Pre- and post-multiplying by the matrix K of (1.12), we obtain

[A' + B 0

This is the equation for the tensor Giikl corresponding to equation
(1.15) for the Riemann tensor in the case when the latter satisfies the
Einstein condition.

Now the orthogonal transformations x~^X that reduce (x)£ra/3 to
diagonal form are exactly the same as those of § 3 which reduce II +
and 11^ to diagonal form. For by (4.6),

A' ±B = A±B-
and the matrix / is invariant under an orthogonal transformation.
Hence Watson's principal directions are the non-null Kretschmann-
Struik directions for the self-dual part Gijkl of the Riemann tensor.

When the Riemann tensor itself satisfies the Einstein condition,
it is self-dual, and so

°Rijkl ~ Rijkb

whence Gm = RijU.

Therefore when ' Rti = \ g{j R,
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152 H. S. RUSE

Watson's directions are the non-null Kretschmann-Struik directions
themselves.

Whether Riikl is self-dual or not, it follows from the work quoted
in § 1 that there are six sets of these directions, real or imaginary
(according to the signature of ds2) as there described.
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