A. G. D. Watson's principal directions for a
Riemannian V,

By H. S. Rusk.

(Received 12th April, 1945. Read 4th May, 1945.)

A. G. D. Watson (1939-41), remarking that there are no Ricei
principal directions at a world-point of. space-time at which the
Einstein equations R; = 1g;; R are satisfied, shows how to define at
any world-point a set of principal directions intrinsically related to
the Riemann tensor R;;, itself. These directions are unique except
when the space-time has any kind of rotational symmetry about the
world-point.

Principal directions for any V, have also been defined in terms of
the Riemann tensor by Kretschmann and Struik (see Struik, 1927-28).
A related discussion is that of Churchill (1932), who confines himself,
however, to 4-dimensional Riemannian spaces of positive-definite ds2.
I have myself recently given a detailed account of the matter (Ruse,
1947) for a V, satisfying the FEinstein condition but having any
signature.

Watson’s approach to the subject is so different from that of the
previous authors that it is not easy to see whether there is any con-
nection between his work and theirs. It is the purpose of this paper
to analyse his theory, but for a ds? of any signature and not merely
for one having the signature 4 2 as in Relativity.

§1 contains a summary of results, taken from my own paper
{1947), which will be needed in the discussion of Watson’s theory.
In §2 it is shown that his tensor II;;; is simply expressible in terms of
the conformal curvature tensor, and in § 3 his principal directions are
defined for a V, of any signature. The connection between his and
the Kretschmann-Struik directions is obtained in §4.

§1. Principal directions in an Einstein V.

Let then the signature of ds? be unspecified, and for the present
suppose V, to be such that

BRj=1%95RB(,5=1,....,4) (1.1)
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At any point (2%) of V, take an arbitrary orthogonal ennuple A} such
that .
gi; BS b = gap = 8a, (1.2)

a, b, ¢, d being used for ennuplet and i, j, &, .. .. for tensor suffixes.
If ds? is not positive definite at ('), some of the 2% will be imaginary.

At (z') form the ennuplet components of all tensors under con-
sideration. Then by (1.2), the ennuplet fundamental tensor g, is
equal to the Kronecker delta. Consider the quadratic form

} Based ¥ P, (1.3)
where p® is a simple bivector. Equated to zero, this gives the
equation of the Riemann line-complex in the projective 3-space
associated with V, at the point (). When ds? is indefinite, some of
the components of R,,,; are purely imaginary unless they happen to
be zero.

Replace the skew suffix-pairs ab, cd by single Greek suffixes
according to the scheme

(1.4)

ab=23 31 12 14 24 34
a= 1 2 3 4 5 6]

Greek suffixes will all run from 1 to 6. Then the quadratic form (1.3)
becomes R,z p* pf, where, for an Einstein space, the symmetric 6 x 6
matrix B4 has the form?

P 8
Ra= |l 2], 1.5
g P (1.5}
P and S being symmetric 3 X 3 matrices, not necessarily real. Also,
if '
GJabed = Jac Ioa = Fad Jbes (1'6)
then the quadratic form
& Jabea ¥ P _ (1.7}
becomes g,, p* pf, where .
I 0
= =" 1.8
gaﬂ gﬂa B [0 I ] ( )

I and O being respectively the unit and null 3 x 3 matrices. Further,
if ;4 is the dualising tensor of components + 4/ g, 0 (imaginary when

"1 In a non-Einstein space Rop is represented by a general symmetric 6 x 6 matrix
and not by one of the particular form (1.5).
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the signature of ds?is + 2, g then being negative), the quadratic form

) ¥ €ab p* p (1.9)
becomes ¢,z p* p?, where
P = ¢f = [? (ﬂ (1.10)
Now let '
= o P+ P, = s (PP B, = (P )
RV ’ V2 ’ 2 (1.11)
1 1 1 ' '
4 _ 1__ ¢ 5— ' (p2_mb 6 - (p3__ p
xt=o 5 P):.X \/2(10 P°), X \/2(10 _p)j
or, as one equation,
. X“=KZI’B:
where the matrix K = [K§] is given by
1 [1 1]
== e - . 2
K vaolr —1 v (1.12)

{Ruse, 1947, §2). Obviously _

~ K= K=K, (1.13)
t denoting the transpose. In terms of the x-variables, the quadratic
form (1.3) becomes (,R,; x* x°, where

_p Oprop
g = Ry 5 Ty
= R, KY K,
. =K'RK (1.14)
‘in matrix notation, whence, by (1.5), (1.12) and (1.13),
P+ 8 0
olas = [ 0 p_ S}' (1.15)
Similarly, for the quadratic forms (1.7) and (1.9), .
I 0 I 0 »
09ap = [0 ]]’ (x)€ap = ‘:O _ I]’ ) (1.16)

g.s remaining invariant under the transformation and so rétaining
the form (1.8). It should be noted that the variables x* depend upon
the initial choice of ennuple ki. They will be described as belonging
to Ai.

If the elementary divisors of the matrices P 4+ S are simple!, it

‘1 This proviso is necessary because, althéugh P * S are symmetric, they are not
necessarily real. '
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is possible to find linear orthogonal transformations

[

(Xl’ XZ’ Xs) - (/Xls ’XZ’ X)} (1.17)
X% X = (xh %% X0
which respectively reduce P 4 S, P — § to diagonal form. Because
of the orthogonality of the transformations, the quadratic forms
% ()2 and T (x*)? are invariant, and the g- and e-matrices therefore
1,2,38 45,6

retain the forms (1.16). But the R-matrix becomes

— M123 0 18
(’X)Eﬂﬂ - l: 0 M456]' (l. )

where Mi,3 and M, are 3 X 3 diagonal matrices. Thus the E-, g-
and e-matrices are all in diagonal form in the ’y-system. Their
simultaneous reducibility to diagonal form is a characteristic property
of an Einstein space.

To the transformation (1.17) corresponds in V, a rotation of the
orthogonal ennuple %% to a new ennuple ‘A%, the ‘x* being the variables
that belong to ‘A} in the sense defined above. This ennuple gives four

" directions in ¥V, which are one set of Kretschmann-Struik principal
directions for the Einstein space.

When the latent roots of the matrix P -+ § are unequal, and those
of P —'S are also unequal, there are exactly six such sets of orthogonal
dlrectlons 1 A change from one set to another in_ V, corresponds to a
s1gned permutation® of the variables (‘x., 'x2, 'x®) or of ('x%, 'x% 'x°)
among themselves. ’

When ds? is positive definite at (x%), all six of the orthogonal
ennuples 'A% define real directions of V,. When the signature of ds?
at (2%) is + 2, exactly one of them gives real directions; and when the
signature ig zero, some or none may define real directions (Ruse,
loc. cit., § 4). :

If the latent roots of P 4§ are not all different, but their
elementary divisors are simple, there are an infinite number of sets
-of orthogonal directions defined in this way. In that case the V,has
some kind of symmetry about (zi). If the elementary divisors are not
simple, there are no principal directions in the sense defined above.

-

1 There are also nine other sets of Kretschmann-Struik principal directions (Ruse,
-loc. cit., §8). But in an Einstein space all nine consist of null directions, and we shall
not be concerned with them in the present paper.

2 A signed permutation is a transformation like 'X* = — 7x*, /x5 = - 7x6 /x6= - 7x5
the signs being chosen 8o as to make it unimodular.
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§2. Watson’s tensor Il.

Now suppose V, not necessarily an Einstein space. Let

Ay = } (Gijm + €iina) (2.1)
A = £ (Gijpa — €sja)s (2.2)
where Gijer = Qix It — Jir Pk

Watson’s theory involves only one tensor A;;, explicitly, but two
implicitly, the one being the complex conjugate of the other. It must
be remembered that ¢;;,, as defined in this paper, is purely imaginary
when the signature of ds? is + 2, and A+, A~ are then complex con-
jugates. A similiar remark applies to the tensors IT+, II- below.
They replace Watson’s single tensor II.

Let
HJLZ = A'L_]an i BT+ ¢ Aukl R, (2.3)
Hz;kl - Aumn Iclr.s Rrmnrs + & Aukl E. (2'4)

Like R;;,, both II-tensors are skew in 4, j and in k, [, are symmetric
for an interchange of the pairs ij, kl, and satisfy the cyclic identity

W + Ty + Ty = 0. (2.5)
Also, as is easy to prove, the Ricci tensors formed from them are both
zero, that is, both satisfy

H'ij = gmn H'mmj =0. - (2.6)

Let now °E;;;; be the dual of E;;; and Ry, the ‘“semi-dual” defined
by
°Rijy = T €ijmn €ripg B9, (2.7)
Bijuny = Boayis = § €upg B, (2.8)

the suffixes on the right being raised in the usual way by means of
g¥%. Then a simple calculation shows that

Hwkl — 4 ( Wkl + ‘R%Jkl + Rt](kl) + R(u)kl) + gulsl + ezjkl) R. (2‘9)
Now (Ruse, 1944, p. 71)
°Riw = Ry + (9w By + 9 By — gu By, — 9 By) — 3 9uu B, (2.10)

and, if C,;; is the conformal curvature tensor (Eisenhart, 1926, p. 90),
then

Cim = By + 3 (9 Byt + 9 Bit — 9u B — 9w By) — gy B, (2.11)
The last two equations give

Cis =% (Bijiy + °Bijiy + ¥ gisu B), (2.12)
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whence
Clipn = % €ijmn B™
= § (Bujim + By + & €iua B). (2.13)
From (2.9), (2.12) and (2.13) it follows that
Hi_;‘—}cl = 4 (Cirs + Cujma)- (2.14)
Similarly )
M5, = $(Cim — Cujpm)- (2.15)

The apparent asymmetry of these in the pairs of suffixes 2j, kl is
accounted for by the fact that

Coinrr = Cijonys
as is obvious from (2.13).

§3. Watson’s principal directions.

The tensor Cj, has the same symmetry properties for inter-
changes of its suffixes as the Riemann tensor, and also satisfies the
cyclic identity. Moreover, the Ricci tensor formed from it is zero,
that is,

Cii = g™ Cipnj = 0. (3.1)
It therefore satisfies the Einstein condition (with zero ¢ cosmological
constant’’) even though the Riemann tensor itself may not do so.
So, if we start as in §1 with an arbitrary orthogonal ennuple A,
forming the ennuplet! components Cy, of Cy; and then replacing
suffix-pairs by single Greek suffixes, we obtain for C,, a matrix of the
form (1.5), say :

A B
0“‘*:[3 b (3.2)

where A, B are symmetric 3 X 3 matrices. From C;; we therefore

obtain
C(o.)ﬂ = g“'Y 675 C8B° (3.3)

But the matrix ¢ is equal to its reciprocal €., so by (1.8) and (1.10),

con=[5 7115 o) [5 2]

-4 3

! This introduction of an ennuplet system corresponds to Watson’s use of locally
galilean coordinates.

(3.4)
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Hence by (2.14), (2.15), (3.2) and (3.4),

4+B A+B ,

ka:%[AJrB, A+ B (3.5)
- A—B —(4-B)

naﬁ—%[_(A_B) 1B (3.6)

If we now transform to the y-variables of (1.11) by pre-multiplying
and post-multiplying by the matrix K [cf (1.14) and (1.15), with
reference to (1.13)], we obtain

A+ B 0 :
oollds = [ 0 0:] ’ (8.7)
_ 0 0
ol = [0 e B] . (3.8)
Thus : ollE ¥ %%l x* x®

are ternary quadratic forms in (x!, x2, x%) and (x%, x°, x®) respectively.
If these are simultaneously reduced to sums of squares by orthogonal
transformations y— 'y of the type (1.17), which can be done when
the elementary divisors of the matrices 4 4+ B are simple, we obtain,
in V,, a rotation of the ennuple %) to a new ennuple ‘% in the manner
described in § 1 for an Einstein space. Having found one such, signed
permutations of ('yx', 'x%, 'x®) or of ('x*, 'x% ’x°) lead to five other
essentially distinct ennuples of the same type. The six sets are
unique when the latent roots of 4 - B are unequal; otherwise (z%) is
a point about which ¥V, has some kind of symmetry, and the number.
of ennuples is infinite. To avoid the need for constant reference to
the latter possibility, it will hereafter be assumed that the latent
roots are all different.

The six ennuples give six sets of Watson principal directions. It
will be seen below that only one is real in the case considered by him,
namely when ds? has signature 4 2.

The principal directions as thus defined are non-existent when
the conformal curvature tensor is zero. If it is zero everywhere in V,,
then V, is conformal to a flat space (Eisenhart, 1926, p. 92). They
are also non-existent when the elementary divisors of A 4+ B are not
simple.

It may be noted that Watson’s tensor P, defined to be twice
the real part of his tensor Il;;,, is minus the conformal tensor Cpy,,
and that he takes the Riemann tensor with sign different from that
of the present paper.
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§4. Identification of Watson’s directions.

Still supposing that V, is not necessarily an Einstein space, let

Gijur = 3 (Byj + °Byju).- (4.1)
This, so to speak, is the self-dual part of the Riemann tensor, since
obviously
°Giinr = Giju- (4.2)
The last equation is equivalent to
Gi=1%9;G (4.3)
where G;; = g™ G5, G =g% G;;= R (Ruse, 1944, p. 71).
By (2.12),
Giser = Cijr — 2= Yo B, (4.4)

and so, forming ennuplet components with respect to an arbitrary
-ennuple A{ and proceeding as before, we have, by (3.2) and (1.8),

y: i B
= 4.5
Gﬂﬁ I:B A/ ’ ( )
where A =4~ LRI | (4.6)
Pre- and post-multiplying by the matrix K of (1.12), we obtain
A +B )
Oap = I: g 4 — B:|- (4.7)

This is the equation for the temsor G, corresponding to equation
(1.15) for the Riemann tensor in the case when the latter satisfies the
Einstein condition.

Now the orthogonal transformations x —>’y that reduce G,z to
"diagonal form are exactly the same as those of §3 which reduce II}
and 117 to diagonal form. For by (4.6),

A +B=44+B—-}%RI,

and the matrix 7 is invariant under an orthogonal transformation.
Hence Watson’s principal directions are the non-null Kretschmann-
Struik directions for the self-dual part Gy, of the Riemann tensor.

When the Riemann tensor itself satisfies the Einstein condition,
it is self-dual, and so

°Rijii = By,

whence Gt = Ry

Therefore when . R;=1g;R,
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Watson’s directions are the non-null Kretschmann-Struik directions
themselves.

Whether R,;, is self-dual or not, it follows from the work quoted
in §1 that there are six sets of these directions, real or imaginary
(according to the signature of ds?) as there described.
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