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McCammond’s normal forms for free aperiodic
semigroups revisited

J. Almeida, J. C. Costa and M. Zeitoun

Abstract

This paper revisits the solution of the word problem for ω-terms interpreted over finite aperiodic
semigroups, obtained by J. McCammond. The original proof of correctness of McCammond’s
algorithm, based on normal forms for such terms, uses McCammond’s solution of the word
problem for certain Burnside semigroups. In this paper, we establish a new, simpler, correctness
proof of McCammond’s algorithm, based on properties of certain regular languages associated
with the normal forms. This method leads to new applications.

1. Introduction

An ω-term is a formal expression obtained from letters of an alphabet X using two operations:
the binary, associative concatenation and the unary ω-power. Any ω-term α can be given a
natural interpretation on a finite semigroup S as a mapping αS : SX → S, as follows: each
letter x of X is interpreted as the mapping sending each element of SX to its image on x,
the concatenation is viewed as the semigroup multiplication, while the ω-power is interpreted
as the unary operation which sends each element of S to its unique idempotent power. The
ω-word problem for a class C of finite semigroups consists in deciding whether two ω-terms
have the same interpretation over every semigroup of C.

One motivation for considering the ω-word problem is that its decidability is one of the
requirements of a property of pseudovarieties (classes of finite semigroups closed under taking
subsemigroups, homomorphic images, and finite direct products) called tameness, introduced
by the first author and Steinberg [3, 10, 11] to solve the decidability problem for iterated
semidirect products of pseudovarieties. In spite of its limitations for that purpose under
current knowledge, tameness remains a property of interest which has also been used to solve
membership problems involving other types of operators [6] (see [7] and [26, § 3.7.3] for a
discussion). A difficult problem occurring in computer science is related to a weak form of
tameness [4]. It asks if it is possible to separate two given regular languages by a language
recognized by a semigroup of a given pseudovariety. For the pseudovariety A of all aperiodic (or
group-free) semigroups, recognizing exactly first-order definable languages [23, 27], it amounts
to finding a first-order formula holding on (all words of) one language, and whose negation
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holds on the other one. It was solved algebraically by Henckell [17], and by simple combinatorial
methods by Place and the third author [25].

The ω-word problem has been solved for some pseudovarieties. The case of the pseudovariety
of all J -trivial semigroups, solved by the first author in [1], constitutes a classical example.
Another remarkable example, achieved by McCammond [22], is given by the pseudovariety A.
Recently, an alternative algorithm for deciding the ω-word problem for A has been proposed
in [18]. It is based on Ehrenfeucht–Fräıssé games played on representations of ω-words, and
this approach makes it possible to obtain an Exptime upper bound for this decision problem.
One should note, however, that the correctness proof of this new algorithm itself relies on
McCammond’s algorithm.

The ω-word problem has been solved for other pseudovarieties. It has been obtained by the
second author [13] for the pseudovariety of local semilattices. The first and third authors [12]
solved the ω-word problem for the pseudovariety of R-trivial semigroups, and their techniques
have been adapted for the pseudovariety DA, which consists of all finite semigroups whose
regular J -classes are aperiodic semigroups [24]. Recently, the second author [14] has applied
techniques similar to those of this paper to show decidability of the ω-word problem for the
pseudovariety of all finite semigroups.

Unlike the cases of local semilattices [15, 16] and R-trivial semigroups [6, 7], there is as
yet no published proof of tameness of A, but the above-mentioned solution of the ω-word
problem for A is a step forward in that direction. McCammond’s solution [22] consists in the
reduction of arbitrary ω-terms to a certain normal form. McCammond then goes on to show
that different ω-terms in normal form cannot have the same interpretation over A, which he
does by invoking his results on free Burnside semigroups [21].

In this paper we give an alternative proof of McCammond’s normal form theorem for ω-
terms over A, which is independent of the theory of free Burnside semigroups. Our approach
consists in associating to each ω-term α a decreasing sequence of regular languages (Ln[α])n,
whose key property is that, if α is in McCammond’s normal form, then Ln[α] is ultimately
star-free. Another crucial element in the proof is the fact that if α and β are ω-terms in normal
form and Ln[α] ∩ Ln[β] 6= ∅ for all n, then α = β.

This new approach, and particularly the fact that the languages Ln[α] are star-free, also
yields new applications on the structure of the free pro-A semigroup. Some elements of this
semigroup, called ω-words, have a nice form: they can actually be represented by an ω-term.
We show that in the free pro-A semigroup, every factor of an ω-word is also an ω-word. In turn
this result is a central piece in [9], whose main result provides a characterization of ω-words
in the free pro-A semigroup.

The paper is organized as follows. In § 2 we review background material, including the
description of McCammond’s normal form. We introduce term expansions and the languages
Ln[α] in § 3, and we prove some of their basic properties. Section 4 is mainly devoted to the
proof of a combinatorial and central lemma, about ω-terms whose ω-powers are not nested.
In § 5 we present the main properties of the languages Ln[α] and the alternative proof of
uniqueness of McCammond’s normal forms for ω-terms over A. In § 6 we establish the star-
freeness of Ln[α] for α in normal form and n large enough. Finally, we investigate in § 7 other
properties of the languages Ln[α], and derive some applications.

2. Preliminaries

In this section we briefly recall the basic definitions and results that will be used throughout
the paper. The reader is referred to [2, 26] for general background, and to [5] for a quick
introduction to the classical theories of pseudovarieties, regular languages and profinite
semigroups. For further details about combinatorics on words, see [19, 20].
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2.1. Words

In the following, X denotes a finite nonempty alphabet. The free semigroup (respectively, the
free monoid) generated by X is denoted by X+ (respectively, by X∗). The length of a word
u ∈ X∗ is denoted by |u|. Given words u and v, we write u 4 v if u is a prefix of v and u ≺ v if
u 4 v and u 6= v. If v = uw, we denote by u−1v the suffix w of v. When w = xyz = x′y′z′, we
say that the factors y and y′ of w are synchronized in w if x = x′ and z = z′ (whence y = y′).
They overlap if x 4 x′ ≺ xy or x′ 4 x ≺ x′y′. They overlap on (at least) k > 0 positions if in
addition y = u1vu2 and y′ = u′1v

′u′2 where |v| = |v′| = k and v, v′ are synchronized in w.
The following result is known as Fine and Wilf’s theorem (see [19, 20]).

Proposition 2.1 (Fine and Wilf’s theorem). Let u, v ∈ X+. If two powers uk and v` of u
and v have a common prefix of length at least |u|+ |v| − gcd(|u|, |v|), then u and v are powers
of the same word.

A primitive word is a word that cannot be written in the form un with n > 1. Two words
w and z are conjugate if one can write w = uv and z = vu, where u, v ∈ X∗. All conjugates
of a primitive word are also primitive. Let an order be fixed for the letters of the alphabet X.
A Lyndon word is a primitive word that is minimal, with respect to the lexicographic ordering,
in its conjugacy class. We recall a property following from [19, Proposition 5.1.2].

Lemma 2.2. If t ∈ X∗ is both a prefix and a suffix of a Lyndon word w, then either t is the
empty word, or t is the word w itself.

2.2. Pseudowords and ω-words

In this paper, we deal with the pseudovariety A of all finite aperiodic, or group-free, semigroups.
These are the finite semigroups T for which there exists some integer n > 0 such that sn = sn+1

for every s ∈ T . We write S for the class of all finite semigroups.
Given a pseudovariety V, we denote by ΩXV the free pro-V semigroup over X (see [5] for its

construction and main properties). We briefly recall here some of its properties needed in the
paper. First, ΩXV is a compact topological semigroup whose elements are called pseudowords
over V. For V = S or A, the free semigroup X+ embeds in ΩXV and is dense in ΩXV. For
L ⊆ X+, we denote by cl(L) (respectively, clA(L)) its closure in ΩXS (respectively, in ΩXA).
There is a unique continuous homomorphism from ΩXS to ΩXA sending each x ∈ X to itself,
and we denote it by pA. Note that pA(cl(L)) = clA(L).

Given z ∈ ΩXV, the closed subsemigroup of ΩXV generated by z contains a single idempotent
denoted by zω, which is the limit of the sequence zn!. Note that zzω = zωz. We set zω+1 = zzω.
In ΩXA, we have zω+1 = zω. For α, β ∈ ΩXS, we say that A satisfies α = β if pA(α) = pA(β).
For example, A satisfies zω+1 = zω for all z ∈ ΩXS.

A unary semigroup is an algebra (S, ·, τ), with · binary and associative and τ unary. A free
pro-V semigroup has a natural structure of unary semigroup, where τ is interpreted as the ω-
power. We denote by ΩωXV the unary subsemigroup of ΩXV generated by X, whose elements
are called ω-words over V. Each ω-word has a representation by a formal term over X in the
signature {·, ω}, called an ω-term. We do not distinguish between ω-terms that only differ in
the order in which multiplications are to be carried out. Finally, let TX be the unary semigroup
of ω-terms, which is freely generated by X as a unary semigroup. Sometimes, it will be useful
to consider also the empty ω-term, which is identified with the empty word.

2.3. The ω-word problem for A

McCammond [22] represents ω-terms over X as nonempty well-parenthesized words over the
alphabet Y = X ] {(,)}, which do not have () as a factor. The ω-term associated with such
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a word is obtained by replacing each matching pair of parentheses (∗) by (∗)ω. For example,
the parenthesized word ((a)b) represents the ω-term (aωb)ω. Conversely, every ω-term over X
determines a unique well-parenthesized word over Y . We identify TX with the set of these well-
parenthesized words over Y . Henceforth, usually when we refer to an ω-term we will mean its
associated word over Y . In particular, there is a natural homomorphism of unary semigroups
ε : TX → ΩωXA that fixes each x ∈ X when we view X as a subset of TX and ΩωXA in the
natural way. To avoid ambiguities in the meaning of the parentheses, we write ε[w] for the
image of w ∈ TX under ε.

The ω-word problem for A (over X) consists in deciding whether two given elements of
TX have the same image under ε. This problem was solved by McCammond by effectively
transforming any ω-term into a certain normal form with the same image under ε, and by
proving that two ω-terms in normal form with the same image under ε are necessarily equal.
In order to describe the normal form, let us fix a total ordering on the alphabet X, and extend
it to Y = X∪{(, )} by letting (< x <) for all x ∈ X. The rank of an ω-term α is the maximum
number rank[α] of nested parentheses in it.

McCammond’s normal form is defined recursively. Rank-0 normal forms are the words
from X∗. Assuming that rank-i normal forms have been defined, a rank-(i + 1) normal form
(ω-term) is an ω-term of the form

α0(β1)α1(β2) . . . αn−1(βn)αn,

where the αj and βk are ω-terms such that the following conditions hold:
(a) each βk is a Lyndon word of rank i;
(b) no intermediate αj is a prefix of a power of βj or a suffix of a power of βj+1;
(c) replacing each subterm (βk) by βkβk, we obtain a rank-i normal form;
(d) at least one of the properties (b) and (c) fails if we remove from αj a prefix βj (for 0 < j)

or a suffix βj+1 (for j < n).
For instance, if the letters a, b ∈ X are such that a < b, then the terms (a)ab(b),
b(ab)abaa(a)aaab(aab) and ((a)ab(b)ba)(a)ab(b) are in normal form.

McCammond’s procedure to transform an arbitrary ω-term into one in normal form, while
retaining its value under ε, consists in applying elementary changes determined by the following
rewriting rules:

1. ((α))� (α) 4R. (α)α� (α)

2. (αk)� (α) 4L. α(α)� (α)

3. (α)(α)� (α) 5. (αβ)α� α(βα)

We call the application of a rule of type 1–4 from left to right (respectively, from right to left)
a contraction (respectively, an expansion) of that type.

Since all the rules are based on identities of unary semigroups that are valid in A (in fact, all
but those of type 4 are valid in S), it follows that the elementary changes preserve the value
of the ω-term under ε. Hence McCammond’s algorithm does indeed transform an arbitrary ω-
term into one in normal form with the same image under ε. We do not describe McCammond’s
procedure here because we will usually work with ω-terms already in normal form. The reader
interested in the algorithm is referred to the original paper [22], or to [9] for a more condensed
description.

3. Expansions of ω-terms

The main tool of this paper is to associate to any ω-term α a decreasing sequence (Ln[α])n of
regular languages. Informally, for n > 0, the language Ln[α] is obtained from α by replacing
each ω-power by a power of exponent at least n. That is, Ln[α] is the language obtained from
α by replacing each ‘ω’ by ‘> n’, where we set L>n = L∗Ln for L ⊆ X+.
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Clearly, the sequence (Ln[α])n is decreasing, and ε[α] belongs to the topological closure, in
ΩXA, of each Ln[α]. The key result (Theorem 5.1 below) is that Ln[α] is star-free for α in
normal form and n large enough.

We now formally define Ln[α], first defining intermediate expansions that only unfold the
outermost ω-powers enclosing subterms of maximum rank. The main differences between this
definition and McCammond’s ‘rank i expansions’ [22, Definition 10.5] are that we require
the exponents to be beyond a fixed threshold and we do not require that the ω-terms be in
normal form.

Definition 1 (Word expansions). Let n be a positive integer. For a word α ∈ X∗, we let
En[α] = {α}. Let i > 0. For an ω-term

α = γ0(δ1)γ1 . . . (δr)γr where all δk are ω-terms of rank i and all γj are either

empty, or ω-terms of rank at most i, (3.1)

we let
En[α] = {γ0δ

n1
1 γ1 . . . δ

nr
r γr : n1, . . . , nr > n}.

For a set W of ω-terms, we let En[W ] =
⋃
α∈W En[α]. We then let

Ln[α] = Erank[α]
n [α],

where Ekn is the k-fold iteration of the operator En. For a set W of ω-terms, we let Ln[W ] =⋃
α∈W Ln[α].

For example, let α = (aωb)ω and n = 3. We have rank[α] = 2, so L3[α] = E2
3 [α]. Then,

E3[α] = {(aωb)p | p > 3} and L3[α] = (a∗a3b)∗(a∗a3b)3.

Lemma 3.1. The following formulas hold:
(a) for ω-terms α and β,

En[αβ] =


En[α]En[β] if rank[α] = rank[β],

αEn[β] if rank[α] < rank[β],

En[α]β if rank[α] > rank[β];

(b) for an ω-term α, Ln[α] = Ln[En[α]];
(c) for sets U and V of ω-terms, we have Ln[UV ] = Ln[U ]Ln[V ];
(d) for a factorization α = γ0(δ1)γ1 . . . (δr)γr of an ω-term as in (3.1),

Ln[α] = Ln[γ0]Ln[(δ1)]Ln[γ1] . . . Ln[(δr)]Ln[γr];

(e) for an ω-term α, Ln[(α)] = Ln[α]∗Ln[α]n.

Proof. (a) is immediate from the definition of the operator En. For (b), since En[α] is a set
of ω-terms whose rank is rank[α]− 1, we have

Ln[En[α]] = Erank[α]−1
n [En[α]] = Erank[α]

n [α] = Ln[α].

We first establish (c) when the rank of elements of U ∪ V is bounded by some m > 0,
proceeding by induction on m. For ω-terms α and β of rank at most m, we have

Ln[αβ] =
(b)

Ln[En[αβ]] =


Ln[En[α]En[β]] if rank[α] = rank[β],

Ln[αEn[β]] if rank[α] < rank[β],

Ln[En[α]β] if rank[α] > rank[β],

by (a)

= Ln[α]Ln[β] by induction hypothesis and (b).
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To conclude the induction step, note that

Ln[UV ] =
⋃

α∈U,β∈V

Ln[αβ] =
⋃

α∈U,β∈V

Ln[α]Ln[β] = Ln[U ]Ln[V ]. (3.2)

This shows in particular that Ln[αβ] = Ln[α]Ln[β] for all ω-terms α and β, so that (3.2) still
holds for arbitrary sets U and V , which establishes (c).

Property (d) follows from (c) by induction on the number of factors. For (e), we have

Ln[(α)] =
(b)

Ln[En[(α)]] =
⋃
m>n

Ln[αm] =
(c)

⋃
m>n

Ln[α]m = Ln[α]∗Ln[α]n.

If α is a rank-(i+1) ω-term in normal form, the elements of E1[α] are precisely McCammond’s
‘rank i expansions of α’. Since Lemma 10.7 of [22] states that every such rank-i expansion of
α remains in normal form and since E1[α] ⊇ E2[α] ⊇ E3[α] ⊇ . . . , we obtain the following
result.

Lemma 3.2. If α is an ω-term in normal form, then all ω-terms of Ekn[α] for n, k > 1 are
also in normal form.

We now associate to each term α a parameter µ[α] playing an important role in this paper.
First define the length of an ω-term α as the length of the corresponding well-parenthesized
word over Y , and denote it |α|. For an ω-term α as in (3.1), the factors of α of the form
(δj)γj(δj+1) are called crucial portions of α.

Definition 2. Let α be an ω-term. If α ∈ X+, let µ[α] = 0. Otherwise, let

µ[α] = 2rank[α] max{|β| : β is a crucial portion of α2}.

It is important to point out the following simple observation.

Lemma 3.3. If α is an ω-term and ᾱ ∈ En[α], then µ[ᾱ] 6 µ[α].

Proof. The statement is clear if rank[α] 6 1. Otherwise, µ[ᾱ] = 2rank[ᾱ]|β̄| for some crucial
portion β̄ of ᾱ2. Since 2rank[α] = 2 · 2rank[ᾱ], it suffices to show that there exists a crucial
portion β of α2 such that |β̄| 6 2|β|. Since ᾱ2 ∈ En(α2) by Lemma 3.1, β̄ is a factor of either
some δγδ′ where (δ)γ(δ′) is a crucial portion of α2, or of some δδ where (δ) is a factor of α
of maximum rank. In the first case, choose β = (δ)γ(δ′) so that |β̄| 6 |β|. In the second one,
take for β any crucial portion of α2 involving (δ). Then |β̄| 6 2|δ| 6 2|β|, as required.

For an ω-term α of positive rank, we distinguish the innermost, rank-1, parentheses as new
letters J and K. We extend the ordering over the enlarged alphabet X∪{J, K} by letting J< x <K
(x ∈ X). Under this interpretation, we view α as an ω-term over X ∪ {J, K}, denoted α and
called the freeze of α.

Remark 1. The freeze α of an ω-term α satisfies the relations rank[α] = rank[α] − 1, and
µ[α] 6 µ[α]/2. Moreover, if α (respectively, its crucial portions) is in normal form, then so is α
(respectively, so are its crucial portions).

4. A synchronization result

We prove in this section a synchronization result for ω-terms of rank 1.
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Proposition 4.1. Let α = u0(v1)u1 . . . (vr)ur and β = z0(t1)z1 . . . (ts)zs be two ω-terms of
rank 1 in normal form, and let n > max{µ[α], µ[β]}. Let

w = u0v
n1
1 u1 . . . v

nr
r ur = z0t

m1
1 z1 . . . t

ms
s zs ∈ Ln[α] ∩ Ln[β].

Then r = s, and for all i, ui = zi, ni = mi and vi = ti. In particular, α = β.

The remainder of this section is devoted to the proof of Proposition 4.1. For a factorization
w = u0v

n1
1 u1 . . . v

nr
r ur (which will be clear from the context), we denote by w[i] the word

u0v
n1
1 . . . ui−1v

ni
i ; this is empty for i = 0 by convention.

We shall use the following synchronization property: if two powers of Lyndon words have a
large common factor, then the Lyndon words are equal, and the common factor starts in the
same position in both of them.

Lemma 4.2. Let u and v be Lyndon words, and let w be a factor of both a power of u and a
power of v: um = xwy and vn = zwt. If |w| > |u|+ |v|, then u = v, and there is a factorization
w = w1w2 such that xw1, zw1 ∈ u∗.

Proof. The hypothesis implies that w is a prefix of both a power of a conjugate ũ = u2u1

of u = u1u2 and of a power of a conjugate ṽ = v2v1 of v = v1v2. By Fine and Wilf’s theorem
(Proposition 2.1) ũ and ṽ are powers of the same word. Since ũ and ṽ are primitive, they are
equal, hence the Lyndon words in their class, u and v respectively, are also equal.

By symmetry, one may assume that u1 6= 1 and u1 4 v1. Since u2u1 and v2v1 are conjugates
of the same primitive word u1u2 = v1v2, they are of the form rs and sr with r = u−1

1 v1 and
s = v2u1. Since they are equal, we obtain r, s ∈ p∗ for some word p by [19, Proposition 1.3.2],
and since they are primitive, we get r = 1 or s = 1, whence u1 = v1 and u2 = v2. Moreover,
x = uku1 and z = u`v1. Therefore, w1 = u2 = v2 meets the requirements of the lemma.

Remark 2. Let α = u0(v1)u1 . . . (vr)ur be an ω-term of rank 1. Let z be a nonempty word,
and let m > µ[α]. Then, for each i ∈ {1, . . . , r}, we have

|zm| > |ui−1ui|+ |viz|. (4.1)

Indeed, one may assume by symmetry that |ui| > |ui−1|. Let β be (vi)ui(vi+1) if i < r,
or (vr)uru0(v1) if i = r. Since β is a crucial portion of α2, we have m > µ[α] > 2|β| >
2|ui|+ |vi|+ 1 > |ui−1viui|+ 1, so |zm| > |z|ui−1viui|+1| = (|ui−1viui|+ 1)|z| > |ui−1ui|+ |viz|.

We next consider synchronizations with one single ω-power.

Lemma 4.3. Let α = u0(v1)u1 . . . (vr)ur be an ω-term of rank 1, whose crucial portions are
in normal form. Let z be a Lyndon word, and let

w = u0v
n1
1 u1 . . . v

nr
r ur ∈ Ln[α], with n > max{µ[α], |z|+ 1}.

Consider a prefix of w of the form pzm with m > n such that, for some i > 1, the following
inequalities hold:

|w[i− 1]| 6 |p| < |w[i]|.

Then z = vi and:
(a) either there is a factorization ui−1 = qvki such that p = w[i− 1]q;
(b) or there exists k such that p = w[i− 1]ui−1v

k
i .
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Figure 1. Three factorization patterns when pzm1
1 4 w[i].

Proof. Let x = p−1w[i]. We claim that if |x| > |viz|, then zm and vni
i overlap on |viz|

positions. Suppose first that |x| > |zm|. Then zm is a prefix of x, which in turn is a suffix of
ui−1v

ni
i , so indeed zm and vni

i overlap on |zm| − |ui−1| > |viz| positions, by (4.1). Consider
next the case |viz| 6 |x| < |zm|. Since

|vni
i | > |v

n
i | > |v

|z|+1
i | = (|z|+ 1)|vi| > |viz|,

one can consider the suffix u of vni
i of length |viz|. Since x and vni

i are suffixes of the same
word and |x| > |viz|, u is a suffix of x. Since x is a prefix of zm, u is a factor of zm. This proves
the claim, so by Lemma 4.2 applied to vni

i and zm, we conclude that z = vi, and that (a)
or (b) holds, depending on whether or not we have |p| < |w[i− 1]ui−1|.

Finally, assume that |x| < |viz|. From (4.1), we get |zm| > |xui| and so i < r. Hence, using
m > µ[α] > 2|viuivi+1| > |viuivi+1|+ 2,

|zm| − |xui| > |z|viuivi+1|+2| − |xui| > |viuivi+1|+ 2|z| − |xui| > |vi+1z|.

Therefore, zm and v
ni+1

i+1 have a common factor of length at least |vi+1z|. By Lemma 4.2 again,

we have z = vi+1 and pzk = w[i]ui for some k such that 1 6 k < m. Since |p| < |w[i]|, it
follows that ui is a suffix of zk = vki+1, contradicting the hypothesis that vωi uiv

ω
i+1 is a crucial

portion in normal form. This concludes the proof of the lemma.

We now develop the inductive argument in order to prove Proposition 4.1.

Lemma 4.4. Let α = u0(v1)u1 . . . (vr)ur and β = (z1)y(z2) be ω-terms of rank 1 whose
crucial portions are in normal form. Let

w = u0v
n1
1 u1 . . . v

nr
r ur ∈ Ln[α], with n > max{µ[α], µ[β]}.

If there is a prefix of w of the form pzm1
1 yzm2

2 with m1,m2 > n and

|w[i− 1]| 6 |p| < |w[i]|, (4.2)

then z1 = vi, i < r, y = ui, z2 = vi+1, and pzm1
1 = w[i].

Proof. Lemma 4.3 shows that z1 = vi. We first assume that pzm1
1 4 w[i]. If pzm1

1 y 4 w[i]
(case (a) of Figure 1), then y would be a prefix of a power of vi = z1, which is impossible
since β is in normal form. Hence pzm1

1 4 w[i] ≺ pzm1
1 y, so y and ui overlap. Consider the cases

pzm1
1 y 4 w[i]ui and pzm1

1 y � w[i]ui (cases (b) and (c) of Figure 1, in which the references to
vi+1 underneath the straight line are justified below). We claim that i > r and that zm2

2 and
v
ni+1

i+1 overlap on |vi+1z2| positions in w. In case (b), zm2
2 > |ui| by (4.1) applied to z = z2,
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Figure 2. Three factorization patterns when pzm1
1 < w[i].

hence i < r, and (4.1) applied at index i+ 1 instead of i yields |zm2
2 | > |ui|+ |vi+1z2|, so zm2

2

and v
ni+1

i+1 overlap on |vi+1z2| positions in w. In case (c), i > r is clear from the assumption that
pzm1

1 y � w[i]ui. Finally, we obtain |vni+1

i+1 | = ni+1|vi+1| > µ[β]|vi+1| > 2|z1yz2||vi+1|, whence

|vni+1

i+1 |−|y| > |z2vi+1|. Similarly, we have |zm2
2 | > µ[α]|z2| > |z2vi+1|, so zm2

2 and v
ni+1

i+1 overlap
on |vi+1z2| positions.

Therefore z2 = vi+1 by Lemma 4.2 and for some k, ` > 0, we have y = vki x and ui = xv`i+1 in
case (b), where x is the overlap between y and ui, and y = vki uiv

`
i+1 in case (c). We claim that

in either case, k = ` = 0, which proves the statement. In case (b), x is not a prefix of a power
of z1 since, otherwise, so would be y, contradicting the fact that β is in normal form. On the
other hand, x is not a suffix of a power of z2 since, otherwise, so would be ui, contradicting
the fact that (vi)ui(vi+1) is in normal form. Therefore, (vi)x(vi+1) is in normal form. Since
(vi)ui(vi+1) is also in normal form, we deduce in both cases, by condition (d) of the definition
of normal form, that k = ` = 0.

Finally, assume that pzm1
1 < w[i]. The resulting three factorization patterns are depicted in

Figure 2. Note that they are in correspondence with the factorization patterns in Figure 1.
The arguments presented above for the case pzm1

1 4 w[i] therefore apply, mutatis mutandis,
to the current case.

Proof of Proposition 4.1. We have |vn1
1 | > |v1| + n1 − 1 > |v1| + 2|z0t1| − 1 > |z0t1v1|.

Likewise, |tm1
1 | > |u0v1t1|, so vn1

1 and tm1
1 overlap on a factor of length at least |v1t1|.

By Lemma 4.2, v1 = t1 and z0 = u0t
k
1 or u0 = z0v

k
1 for some k. Since α and β are in

normal form, k = 0 by property (d) of normal forms. Hence u0 = z0. Suppose inductively
that for i > 1, we have uk−1 = zk−1, nk−1 = mk−1 and vk = tk for all 1 6 k 6 i. If
i < s, then one can apply Lemma 4.4, since the portion (ti)zi(ti+1) is in normal form and
w[i− 1] 4 z0t

m1
1 z1 . . . t

mi−1

i−1 zi−1 ≺ w[i], where the notation w[·] refers to the first factorization,

so that (4.2) is fulfilled for the word p = z0t
m1
1 z1 . . . t

mi−1
i−1 zi−1. This yields i < r, ui = zi,

ni = mi and vi+1 = ti+1. The case i < r is dual. Finally, if i = r = s, then we obtain ur = zr
by left–right symmetry, so nr = mr.

5. The ω-word problem over A

In this section we reveal how the languages Ln[α] can be used to obtain an alternative proof of
McCammond’s solution of the word problem for ω-terms over A. The fundamental property of
the languages Ln[α], whose proof is presented in the next section, is their star-freeness under
suitable hypotheses.
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Theorem 5.1. Let α be an ω-term in normal form and let n > µ[α]. Then the language
Ln[α] is star-free.

A simpler but also important property is stated in Lemma 5.2 below, which follows from the
synchronization property of Proposition 4.1. For an ω-term α, we set E∗n[α] =

⋃
i>0E

i
n[α].

Lemma 5.2. Let α and β be two ω-terms in normal form with rank[β] > rank[α], and let
n > max{µ[α], µ[β]}. If Ln[α] ∩ Ln[β] 6= ∅, then α ∈ E∗n[β].

Proof. Let w ∈ Ln[α] ∩ Ln[β]. We proceed by induction on rank[α] = i. If i = 0, that

is, α ∈ X+, we have w = α so that α ∈ Ln[β] = E
rank[β]
n [β]. Assume next that i > 1 and

that the result holds for rank[α] < i. By definition of Ln and the choice of w, there exist

α1 ∈ E
rank[α]−1
n [α] and β1 ∈ E

rank[β]−1
n [β] such that w ∈ Ln[α1] ∩ Ln[β1]. By Lemma 3.2,

the ω-terms α1 and β1 are in normal form. Let u0(v1)u1 . . . (vr)ur and z0(t1)z1 . . . (ts)zs be
the normal-form expressions of α1 and β1, respectively. We have n > max{µ[α1], µ[β1]} by
Lemma 3.3. By Proposition 4.1, it follows that α1 = β1, so

Erank[α]−1
n [α] ∩ Erank[β]−1

n [β] 6= ∅. (5.1)

If i = 1, then α1 = α so that α ∈ E
rank[β]−1
n [β]. If i > 1, consider the freezes α and β.

Then Ln[α] ∩ Ln[β] 6= ∅ follows from (5.1), and by Remark 1, α and β are in normal form,
n > max{µ[α], µ[β]}, and rank[β] > rank[α] = i − 1. By the induction hypothesis, we obtain
α ∈ E∗n[β] and, therefore, α ∈ E∗n[β], which completes the induction step and the proof of the
lemma.

By raising the lower bound for n, we obtain a more precise result.

Theorem 5.3. Let α and β be two ω-terms in normal form and let n be an integer such
that n > max{|α|, |β|, µ[α], µ[β]}. If Ln[α] ∩ Ln[β] 6= ∅, then α = β.

Proof. Suppose that rank[α] 6 rank[β], so that, by Lemma 5.2, α ∈ E∗n[β]. If rank[β] >
rank[α], it follows that |α| > n, which contradicts the assumption on n. Hence we must have
rank[β] = rank[α] and so α = β.

Combining Theorems 5.1 and 5.3, we obtain a new proof of uniqueness of McCammond’s
normal form for elements of ΩωXA.

Corollary 5.4 (McCammond’s solution of the ω-word problem over A [22]). Let α and
β be ω-terms in normal form which define the same pseudoword over A, that is, such that
ε[α] = ε[β]. Then α = β.

Proof. Let n > max{|α|, |β|, µ[α], µ[β]}. Since Ln[α] and Ln[β] are star-free languages by
Theorem 5.1, their respective closures clA(Ln[α]) and clA(Ln[β]) in ΩXA are clopen subsets.
Since ε[α] = ε[β] ∈ clA(Ln[α]) ∩ clA(Ln[β]), the nonempty open set clA(Ln[α]) ∩ clA(Ln[β])
contains some elements of the dense set X+, which in turn belong to Ln[α] ∩ Ln[β] since, by
[5, Theorem 3.6], we have clA(Ln[γ])∩X+ = Ln[γ] (γ ∈ {α, β}). Therefore, Ln[α]∩Ln[β] 6= ∅,
whence α = β by Theorem 5.3.

6. Star-freeness of the languages Ln[α]

This section is dedicated to the proof of Theorem 5.1.
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We say that an ω-term α is in circular normal form if the crucial portions of α2 are in normal
form. A consequence of Lemma 3.2 is that the property of being in circular normal form is
preserved by expansions.

Lemma 6.1. Let α be an ω-term in circular normal form and let β ∈ En[α]. Then β is also
in circular normal form.

Proof. If α is a word, then β = α is certainly in circular normal form. Otherwise α and
β are of the form α = γ0(δ1)γ1 . . . (δr)γr and β = γ0δ

n1
1 γ1 . . . δ

nr
r γr with each nk > n. Now

β2 ∈ En[α]2 = En[α2] according to Lemma 3.1(a). By Lemma 3.2, applied to the crucial
portions of α2 which are by hypothesis in normal form, we conclude that all factors δnk

k γkδ
nk+1

k+1 ,
as well as δnr

r γrγ0δ
n1
1 , are in normal form. Since each crucial portion of β2 is a crucial portion

of one of these factors, it is in normal form, hence β is in circular normal form.

Let us now derive a corollary of Proposition 4.1, which applies to ω-terms in circular normal
form (rather than to ω-terms in normal form as in the proposition).

Corollary 6.2 (Proposition 4.1). Let α = (v1)u1 . . . (vr)ur and β = (t1)z1 . . . (ts)zs be two
ω-terms of rank 1 in circular normal form, and let n > max{µ[α], µ[β]}. If Ln[α] ∩ Ln[β] 6= ∅,
then α = β.

Proof. Let w = vn1
1 u1 . . . v

nr
r ur = tm1

1 z1 . . . t
ms
s zs ∈ Ln[α] ∩ Ln[β] and let α′ and β′ be the

normal forms of α and β, respectively. As α is in circular normal form by hypothesis, all its
crucial portions are in normal form. Therefore α′ is obtained from α by simply reducing the final
portion (vr)ur to its normal form. This is done by applying all possible, say k > 0, reductions of
type 4R. That is, α′ = (v1)u1 . . . (vr)u

′
r with ur = vkru

′
r. Analogously, β′ = (t1)z1 . . . (ts)z

′
s with

zs = t`sz
′
s for some ` > 0. Clearly µ[α] > µ[α′] and µ[β] > µ[β′], whence n > max{µ[α′], µ[β′]}.

On the other hand, w = vn1
1 u1 . . . v

nr+k
r u′r = tm1

1 z1 . . . t
ms+`
s z′s belongs to Ln[α′] ∩ Ln[β′].

Hence, α′ = β′ by Proposition 4.1. In particular, v1 = t1, vr = ts and u′r = z′s. The crucial
portions (vr)ur(v1) and (ts)zs(t1) of α2 and β2 respectively are in normal form. Then, as
(vr)ur(v1) = (vr)v

k
ru
′
r(v1) and (ts)zs(t1) = (vr)v

`
ru
′
r(v1), we deduce from property (d) of

normal forms that k = `. This completes the proof that α = β.

The next lemma reflects periodicities of sufficiently large expansions of an ω-term of rank 1
in the term itself, provided it is in circular normal form.

Lemma 6.3. Let α be an ω-term of rank 1 in circular normal form and let n > µ[α]. If
z` ∈ Ln[α], then there exists an ω-term of rank 1 in circular normal form ζ such that α = ζ`

and z ∈ Ln[ζ].

Proof. Let α = u0(v1)u1 . . . (vr)ur. Since z` ∈ Ln[α], either z ≺ u0 ≺ z` or u0 4 z.
In both cases, we reduce the question to the case where u0 is empty, by replacing α
by (v1)u1 . . . (vr)uru0 and z by an appropriate conjugate, z−1

1 zz1, where z = z1z2 and
u0 = (z1z2)kz1 in the first case, or u−1

0 zu0 in the second case. So write α = (v1)u1 . . . (vr)ur,
and let w = z`. Then we have w = vn1

1 u1 . . . v
nr
r ur, with n1, . . . , nr > n. Taking into account

the resulting factorization of w2, we also set vr+i = vi, ur+i = ui, and nr+i = ni for i = 1, . . . , r.
Note also that w2[i+ r] = ww[i] for 1 6 i 6 r.

If ` = 1, then we choose ζ = α. For ` > 2, assume first that |z| 6 |vn1
1 |. Since both z and vn1

1

are prefixes of w, this implies that vk−1
1 ≺ z 4 vk1 for some k > 1. Then t = z−1vk1 is a suffix

of (vk−1
1 )−1vk1 = v1. Further, v1 4 w and t 4 z−1w = z`−1 ≺ z` = w, so t 4 v1. Since t is both

a prefix and a suffix of the Lyndon word v1, t is either empty or equal to v1 by Lemma 2.2,
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hence z = vk1 and w = z` = vk`1 . It follows that u1 4 v
k`−n1
1 , which contradicts the hypothesis

on α. Therefore, we have |vn1
1 | < |z| and vn1

1 ≺ z.
In particular, the equalities |z| > n1 > n > µ[α] > |ur| hold, so that w[1] ≺ z 4 z`−1 ≺ w[r].

Hence r > 2 and there exists i ∈ {1, . . . , r−1} such that w[i] 4 z ≺ w[i+1], which is the same
as w2[i] 4 z ≺ w2[i+ 1]. We prove the following property by induction on k ∈ {1, . . . , r}:{

zw[j] = w2[i+ j] and uj = ui+j for j 6 k,

vj = vi+j for j 6 k + 1.
(H(k))

Observe that zwvn1
1 4 z

`+2 4 z2` = w2. We will apply Lemma 4.4 to α2 several times, choosing
prefixes of zwvn1

1 for the successive values of the prefix p of w2 ∈ Ln[α2] which is considered in
that lemma. First, since w2[i] 4 z ≺ w2[i+ 1] and n > µ[α] = µ[α2], we may apply Lemma 4.4
to α2, with β = (v1)u1(v2) and p = z, to obtain zw[1] = zvn1

1 = w2[i+1], v1 = vi+1, u1 = ui+1,
and v2 = vi+2, which establishes (H(1)). Next, assuming that (H(k − 1)) holds for a certain
k 6 r, we deduce that w2[i + k − 1] 4 zw[k − 1]uk−1 ≺ w2[i + k]. Lemma 4.4 applied to α2

with β = (vk)uk(vk+1) and p = zw[k − 1]uk−1 then yields (H(k)).
In particular, zw[r] = w2[i+ r] = ww[i] and ur = ui+r = ui. It follows that zw = zw[r]ur =

ww[i]ui. Since zw = wz (= z`+1), we deduce that z = w[i]ui = vn1
1 u1 . . . v

ni
i ui. Let ζ =

(v1)u1 . . . (vi)ui. Then z belongs to Ln[ζ] and z` ∈ Ln[ζ`] ∩ Ln[α]. Since each crucial portion
of ζ2 is a crucial portion of α2, we have µ[ζ`] = µ[ζ] 6 µ[α] 6 n. Therefore, α = ζ` by
Corollary 6.2, which completes the proof.

We call primitive an ω-term which is primitive when represented as a parenthesized word.
An immediate consequence of Lemma 6.3 is the following observation.

Corollary 6.4. Let α be an ω-term of rank 1 in circular normal form and let n > µ[α]. If
α is primitive and w ∈ Ln[α], then w is also primitive.

The next result may be regarded as a generalization of Corollary 6.4 to ω-terms of larger
rank.

Corollary 6.5. Let α be an ω-term of rank i > 1 in circular normal form and let n > µ[α].
If α is primitive and β ∈ En[α], then β is also primitive.

Proof. We distinguish two types of parentheses in the ω-term α: write (, ) for the parentheses
corresponding to the ω-powers of rank i, and J, K for the remaining parentheses. Consider the
alphabet Z = X ∪ {J, K}, with the extended ordering J < x < K (x ∈ X). Then β may be
viewed as a word βZ over Z and α as an ω-term αZ , of rank 1, over the same alphabet such
that βZ ∈ Ln[αZ ]. Moreover, µ[αZ ] 6 µ[α] and it is clear by McCammond’s definition of
rank-i normal form that αZ is a primitive ω-term in circular normal form (over Z), whence
αZ and βZ satisfy the hypotheses of Corollary 6.4. To conclude the proof, it suffices to invoke
Corollary 6.4.

Iterating the application of Corollary 6.5, we obtain another extension of Corollary 6.4 to
ω-terms of any rank.

Proposition 6.6. Let α be an ω-term in circular normal form and let n > µ[α]. If α is a
primitive ω-term and w ∈ Ln[α], then w is a primitive word.

Proof. We proceed by induction on rank[α]. The case rank[α] = 1 is given by Corollary 6.4.
Assume that the result holds for ω-terms whose rank is rank[α] − 1 > 1. By definition of
Ln[α], there is an ω-term α′ ∈ En[α] such that w ∈ Ln[α′]. By Corollary 6.5, α′ is primitive.
Moreover, µ[α′] 6 µ[α] by Lemma 3.3, and α′ is in circular normal form by Lemma 6.1. Hence,
by induction hypothesis, w is primitive, which completes the induction step.
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Figure 3. The case where some yM falls within some wj .

The following result generalizes Lemma 6.3 in the case where α is a primitive ω-term.

Lemma 6.7. Let α be a primitive ω-term in circular normal form and let n > µ[α]. If
z` ∈ Ln[α]k then z ∈ Ln[α]m for some m such that 1 6 m 6 k.

Proof. We proceed by induction on rank[α]. If rank[α] = 0, then α is a word, so Ln[α] = {α}
and z` = αk. By [19, Proposition 1.3.1], z and α are powers of the same word, whence z = αm

since α is primitive, and m = k/` 6 k. Assume now that rank[α] > 1 and that the result holds
at lower ranks.

Since Ln[α]k = Ln[αk] by Lemma 3.1(c), we have z` ∈ En[E
rank[α]−1
n [αk]]. Pick an ω-term

β ∈ Erank[α]−1
n [αk] of rank 1 such that z` ∈ En[β] = Ln[β]. Since α is in circular normal form,

so is αk, whence so is β by Lemma 6.1. Since n > µ[α] = µ[αk] > µ[β] by Lemma 3.3, one can
apply Lemma 6.3: there exists an ω-term ζ of rank 1 such that β = ζ` and z ∈ Ln[ζ].

If rank[α] = 1, then ζ` ∈ Erank[α]−1
n [αk] = {αk}. Since α is primitive, it follows that ζ = αm,

for some m 6 k, and z ∈ Ln[ζ] = Ln[α]m, as required. If rank[α] > 1, let us check that we may
apply the induction hypothesis to the freeze α of α and ζ ∈ (X ∪ {J, K})∗. First, ζ` ∈ Ln[αk].

Next, since the crucial portions of α2 are in normal form, so are those of α · α = α · α
by Remark 1, whence α is in circular normal form. Finally, the relations n > µ[α] > µ[α]
and rank[α] = rank[α] − 1 hold, also by Remark 1. By induction, we therefore obtainm such

that 1 6 m 6 k and ζ ∈ Ln[αm]. We deduce that ζ ∈ Erank[α]−1
n [αm], so that z ∈ Ln[ζ] ⊆

E
rank[α]
n [αm] = Ln[αm].

We proceed to establish the following important property of the languages Ln[α] for primitive
ω-terms α. In its proof, we apply in both directions Schützenberger’s theorem [27], stating
that a language is star-free if and only if its syntactic semigroup is finite and satisfies the
pseudoidentity xω+1 = xω.

Lemma 6.8. Let α be a primitive ω-term in circular normal form and let n > µ[α]. If Ln[α]
is a star-free language, then so is Ln[α]∗.

Proof. Let M be an integer such that the syntactic semigroup of Ln[α] satisfies the identity
xM = xM+1 and let K be a positive integer to be identified later. Let N > MK be an integer
and suppose that x, y, z are words such that xyNz ∈ Ln[α]∗. The result follows from the claim
that, for sufficiently large K, depending only on α and n, xyN+1z belongs to Ln[α]∗.

To prove the claim, we start with a factorization xyNz = w1 . . . wm where each wj ∈ Ln[α].
Consider each product of M consecutive ys within the factor yN . If at least one of the factors
appears completely within one of the wj , then we have a factorization wj = x′yMz′ as indicated
in Figure 3. In particular, the word x′yMz′ belongs to the star-free language Ln[α]. By the
choice of M , we deduce that w′j = x′yM+1z′ ∈ Ln[α]. Hence, for p as in Figure 3,

xyN+1z = xyp · yM+1 · yN−M−pz = w1 . . . wj−1w
′
jwj+1 . . . wm

is again a word from Ln[α]m, independently of the value of K > 1.
We may therefore assume that no factor yM appears completely within some factor wj .

Thus, each of the first K < N/M consecutive factors yM , which form a prefix of yN , as well
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Figure 4. The case where each yM overlaps several wj .

as the product yN−KMz, start in a different wj , say in wj1 , . . . , wjK+1
, with j1 < . . . < jK+1.

This determines factorizations

wjs = wjs,1wjs,2, (6.1)

yM = wjs,2xswjs+1,1 (s = 1, . . . ,K), (6.2)

x = x′wj1,1,

yN−KMz = wjK+1,2z
′,

where each xs, x
′, and z′ is a word from Ln[α]∗, as represented in Figure 4.

Consider a finite deterministic automaton recognizing the language Ln[α]. Each pair of words
(wjs,1, wjs,2) determines two consecutive paths leading from the initial state to a final state.
Thus, if K is greater than the number of states, then there exist two indices p, q such that
1 6 p < q 6 K and the words wjp,1 and wjq,1 both lead from the initial state to the same
state. It follows that wjq,1wjp,2 belongs to Ln[α]. Hence the word

wjp+1,1y
M(q−p−2)wjq−1,2xq−1wjq,1 · wjp,2xp = wjp+1,1y

M(q−p−1)wjp,2xp

= (wjp+1,1wjp,2xp)
q−p

belongs to Ln[α]∗ where, for the second equality, we use the factorization (6.2) with s = p for
each yM . Now wjp+1,1wjp,2xp is a conjugate of yM again by (6.2) and, therefore, it is of the
form tM , where t is a conjugate of y. By Lemma 6.7, t belongs to Ln[α]∗. On the other hand,
note that

xyNz = x′wj1x1 . . . wjp−1
xp−1wjpxp · wjp+1

xp+1 . . . wjKxKwjK+1
z′,

xyN+1z = x′wj1x1 . . . wjp−1xp−1wjpxp · t · wjp+1xp+1 . . . wjKxKwjK+1
z′,

where each of the factors separated by the dots belongs to Ln[α]∗. Hence xyN+1z ∈ Ln[α]∗.

We are now in a position to complete the proof of our key result, namely that, for α in
normal form and n > µ[α], the languages Ln[α] are star-free.

Proof of Theorem 5.1. Let i = rank[α]. If i = 0, then Ln[α] = {α} is certainly a star-free
language. We will therefore assume that i > 1. Let α = γ0(δ1)γ1 . . . (δr)γr be the normal-form
expression of α.

We claim that each of the languages Ln[γ0], Ln[δj ] and Ln[δjγj ] (j = 1, . . . , r) is star-
free. Since, by the definition of the normal form, each δj is primitive and in circular normal
form, we deduce by Lemma 6.8 that Ln[δj ]

∗ is star-free. In view of Lemma 3.1(c) and since
the set of star-free languages is closed under concatenation, it follows that each language
Ln[(δj)γj ] = Ln[δj ]

∗Ln[δj ]
n−1Ln[δjγj ] is also star-free. Taking Lemma 3.1(d) also into account,

we conclude that the product

Ln[α] = Ln[γ0]Ln[(δ1)γ1] . . . Ln[(δr)γr]

is star-free, as stated in the theorem.
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To prove the claim, we proceed by induction on i > 1. The case i = 1 is immediate since
then all the γj and δj are words in X∗. Suppose that i > 2 and assume inductively that
the claim holds for ω-terms of rank less than i. Consider the ω-term α′ = γ0δ1δ1γ1 . . . δrδrγr.
By condition (c) of the definition of an ω-term in normal form, α′ is in normal form. By
Lemma 3.3, since α′ ∈ E2[α], we have µ[α] > µ[α′]. Hence n > µ[α′] and we may apply
the induction hypothesis to the ω-term α′ of rank i − 1 > 1. Since α is in normal form and
the ω-terms δj are Lyndon words of positive rank, the first letter of each δj is the opening
parenthesis of an ω-subterm of highest (and positive) rank. Hence, if α′ = u0(v1)u1 . . . (vs)us is
the normal-form expression of α′, then each factor γ0, δj , δjγj (j = 1, . . . , r) must be a product
of some of the factors u0, (vk), (vk)uk (k = 1, . . . , s). By the induction hypothesis, each of the
languages Ln[u0], Ln[vk], and Ln[vkuk] (k = 1, . . . , s) is star-free. By the above argument, it
follows that so are the languages Ln[u0], Ln[(vk)], and Ln[(vk)uk] (k = 1, . . . , s). Finally, by
Lemma 3.1(c), we deduce that each of the languages Ln[γ0], Ln[δj ], Ln[δjγj ] (j = 1, . . . , r) is
star-free, thus proving the induction step. This proves the claim and completes the proof of
Theorem 5.1.

We do not know whether the bound n > µ[α] is optimal but we do know that some bound is
required, that is, that Ln[α] may not be star-free for α in normal form. An example is obtained
by taking α = ((a)ab(b)a2b2), where a and b are letters. Then L1[α]∩ [a2b2]∗ = [a2b2a2b2]+ so
that L1[α] is not star-free since [a2b2]∗ is star-free and [a2b2a2b2]+ is not.

7. Factors of ω-words over A

In this section we present further properties of the languages Ln[α] and derive some
applications. The main result of this section is that every factor of an ω-word over A is also
an ω-word over A.

Recall that, given a pseudovariety V, a finite semigroup T ∈ V satisfies the pseudoidentity
u = v, with u, v ∈ ΩXV, if, for every continuous homomorphism ϕ : ΩXV → T , we have
ϕ(u) = ϕ(v). For a finite semigroup T , let ind(T ) be the smallest ` > 1 such that for some
k > 1 and every s ∈ T , we have s`+k = s`. Equivalently, ind(T ) is the minimum positive
integer ` such that T satisfies the pseudoidentity xω+` = x`. Note that ind(T ) 6 |T |. We begin
by proving that finite aperiodic semigroups do not separate an ω-term from its expansions of
sufficiently large exponent.

Lemma 7.1. Let α ∈ TX be an ω-term and let T ∈ A. If n > ind(T ) and w ∈ Ln[α], then T
satisfies the pseudoidentity ε[α] = w.

Proof. Let ϕ : ΩXA → T be a continuous homomorphism. Since n > ind(T ), for every
m > n, the semigroup T satisfies the identity xm = xn. Hence, for every word w ∈ Ln[α], we
have ϕ(w) = ϕ(u), where u is the word which is obtained from α by replacing all occurrences
of the ω exponent by n.

Recall from § 2.2 that the topological closures cl(L) and clA(L) of a language L in ΩXS and
ΩXA, respectively, are such that pA(cl(L)) = clA(L). The following consequence of Lemma 7.1
will be useful.

Corollary 7.2. If α ∈ TX is an arbitrary ω-term, then

pA

(⋂
n

cl(Ln[α])

)
= {ε[α]} =

⋂
n

pA(cl(Ln[α])).

Proof. Denote by ∂ the unique homomorphism of unary semigroups TX → ΩXS extending
the identity mapping on X so that ε = pA ◦ ∂. First note that, since ∂[α] ∈ cl(Ln[α]) for every
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n, certainly ε[α] ∈ pA(
⋂
n cl(Ln[α])), so

{ε[α]} ⊆ pA
(⋂
n

cl(Ln[α])

)
⊆
⋂
n

pA(cl(Ln[α])).

Let v ∈
⋂
n pA

(
cl(Ln[α])

)
. For a continuous homomorphism ψ : ΩXA → T onto a finite

aperiodic semigroup T , let ϕ = ψ ◦ pA : ΩXS→ T and choose any n > ind(T ). Then

ψ(v) ∈ ϕ(cl(Ln[α])) = ϕ(Ln[α]) = {ϕ(∂[α])}

where the first equality follows from the continuity of ϕ and the finiteness of T , and the
second equality is a consequence of Lemma 7.1. Since ΩXA is residually in A, it follows that
v = ε[α].

We also have the following stronger result for ω-terms in normal form.

Theorem 7.3. Let w ∈ ΩωXA and let α be the normal-form representation of w. Then

p−1
A (w) =

⋂
n

cl(Ln[α]).

Proof. The inclusion
⋂
n cl(Ln[α]) ⊆ p−1

A (w) follows from Corollary 7.2. For the reverse
inclusion, assuming that v ∈ ΩXS is such that pA(v) = w, we have pA(v) ∈ pA(cl(Ln[α])) for
all n. Let (vn)n be a sequence of words converging to v in ΩXS. Then lim vn = w in ΩXA and
so, since by Theorem 5.1 the set pA(cl(Ln[α])) is open and contains w, by taking a suitable
subsequence we may assume that vn ∈ pA(cl(Ln[α])) ∩ X+ = Ln[α]. Since (Ln[α])n is a
decreasing sequence of languages, it follows that v ∈ cl(Ln[α]) for all n.

We now prove the main result of this section which does not apparently follow easily from
McCammond’s results.

Theorem 7.4. If v ∈ ΩωXA and u ∈ ΩXA is a factor of v, then u ∈ ΩωXA.

Proof. By symmetry, it suffices to prove the result when u is a prefix of v, that is, when
there exists w ∈ ΩXA such that uw = v. Let α be the normal-form representation of v. We
proceed by induction on rank[α]. We assume inductively that the result holds for all elements
of ΩωXA with rank strictly smaller than rank[α].

Since Ln[α] is star-free for n > µ[α] by Theorem 5.1, its closure clA(Ln[α]) is an open subset
of ΩXA. Hence, there exist sequences (um)m and (wm)m converging to u and w respectively
such that unwn ∈ Ln[α] for all n > µ[α].

As an ω-term, α admits a unique factorization in the semigroup TX of the form α =
x0x1x2 . . . x2p−1x2p, where each x2i is a finite word and each x2i−1 is an ω-term of the form
x2i−1 = (y2i−1). Note that we include here the case where α is a word, for which p = 0. Since α
is in normal form, each y2i−1 is an ω-term of rank less than rank[α] (although not necessarily
of rank[α] − 1). In view of Lemma 3.1 and each relation unwn ∈ Ln[α], there is a ‘cutting’
index cn ∈ {0, . . . , 2p} and there are factorizations un = u′nu

′′
n and wn = w′nw

′′
n such that

u′n ∈ Ln[x0 . . . xcn−1], u′′nw
′
n ∈ Ln[xcn ], w′′n ∈ Ln[xcn+1 . . . x2p].

Since the number of possible cutting indices depends only on α and not on n, there is a
strictly increasing sequence of indices (nk)k whose corresponding cutting indices are all equal
to a certain fixed c. By compactness of ΩXA, one may further assume that the sequences
(u′nk

)k, (u′′nk
)k, (w′nk

)k, and (w′′nk
)k converge to, say, u′, u′′, w′, w′′ respectively. By continuity
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of multiplication, and since (Ln[β])n is a decreasing sequence of languages for every ω-term β,
it follows that

u′ ∈
⋂
n

clA(Ln[x0 . . . xc−1]),

u′′w′ ∈
⋂
n

clA(Ln[xc]),

w′′ ∈
⋂
n

clA(Ln[xc+1 . . . x2p]).

By Corollary 7.2, the preceding intersections are reduced to the ω-words ε[x0 . . . xc−1], ε[xc],
and ε[xc+1 . . . x2p], respectively. Hence u′, w′′ ∈ ΩωXA and u′′w′ = ε[xc]. If c is even, then u′′ is
a prefix of the word xc and hence u = u′u′′ ∈ ΩωXA, as required. Hence we may as well assume
that α is of the form α = (y).

By Lemma 3.1(e), we have Ln[α] = Ln[yn]Ln[y]∗. Thus, in view of the relation unwn ∈ Ln[α],
there exist factorizations un = u′nu

′′
n and wn = w′nw

′′
n such that u′n ∈ Ln[yrn ], u′′nw

′
n ∈ Ln[y],

and w′′n ∈ Ln[ysn ], with rn + sn + 1 > n. Suppose that there is a strictly increasing sequence
of indices (nk)k such that rnk

= r is constant. We may assume that the sequences (u′nk
)k,

(u′′nk
)k, (w′nk

)k, and (w′′nk
)k converge to, say, u′, u′′, w′, w′′ respectively. As above, it follows

that u′, w′′ ∈ ΩωXA and u′′w′ = ε[y]. Since rank[y] < rank[α], the induction hypothesis then
implies that u′′ is an ω-term and, therefore so is u = u′u′′.

Hence we may assume that rn → ∞ as n → ∞. This implies that yrn → (y) in ΩωXA.
Assuming again that (u′nk

)k, (u′′nk
)k, (w′nk

)k, and (w′′nk
)k converge to u′, u′′, w′, w′′ respectively,

we conclude that u′ = ε[(y)] ∈ ΩωXA and u′′w′ = ε[y]. Invoking once more the induction
hypothesis as above, the induction step is finally achieved, which proves the theorem.

Note that Theorem 5.1 only intervenes in the above proof to show that clA(Ln[α]) is an open
subset of ΩXA, a property which in fact is equivalent to Ln[α] being star-free.

Some applications of Theorem 7.4 can be found in [9]. It plays, in particular, an important
role in establishing the main result of that paper, namely a characterization of pseudowords
over A which are given by ω-terms. Other applications of Theorem 7.4 and of properties of the
languages Ln[α], such as an algorithm to compute the closure clA(L) of a regular language L,
have been published in [8].
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