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Abstract

Objective: To investigate the association of antioxidant intakes from diet and
supplements with elevated blood C-reactive protein (CRP) and homocysteine
(Hcy) concentrations.
Design: A cross-sectional study. The main exposures were vitamins C and E,
carotene, flavonoid and Se intakes from diet and supplements. Elevated blood
CRP and Hcy concentrations were the outcome measures.
Setting: The US population and its subgroups.
Subjects: We included 8335 US adults aged $19 years from the National Health
and Nutrition Examination Survey 1999–2002.
Results: In this US population, the mean serum CRP concentration was 4?14 (95 %
CI 3?91, 4?37) mg/l. Intakes of vitamins C and E and carotene were inversely
associated with the probability of having serum CRP concentrations .3 mg/l in
multivariate logistic regression models. Flavonoid and Se intakes were not asso-
ciated with the odds of elevated serum CRP concentrations. The mean plasma
Hcy concentration was 8?61 (95 % CI 8?48, 8?74) mmol/l. Intakes of vitamins C, E,
carotenes and Se were inversely associated with the odds of plasma Hcy con-
centrations .13 mmol/l after adjusting for covariates. Flavonoid intake was not
associated with the chance of elevated plasma Hcy concentrations.
Conclusions: These results suggest that high antioxidant intake is associated with
lower blood concentrations of CRP and Hcy. These inverse associations may be
among the potential mechanisms for the beneficial effect of antioxidant intake on
CVD risk mediators in observational studies.
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CVD is the leading cause of death in the USA and

worldwide(1). Each day nearly 2300 Americans die of

CVD, which equals an average of one death every 38 s(1).

Elevated serum C-reactive protein (CRP) and plasma

homocysteine (Hcy) concentrations have been identified

as contributing risk factors to CVD(2–5). CRP is produced

by hepatocytes as part of the acute-phase response and

represents a sensitive, non-specific marker of inflamma-

tion(6). A recent meta-analysis of twenty-four cohort

studies identified CRP as an independent risk factor for

CHD after adjusting for the classical Framingham risk

variables(4). Serum CRP concentrations of .3 mg/l were

associated with a 58 % increased risk of CHD compared

with CRP concentrations ,1 mg/l. Hcy is a sulfur-

containing intermediate of methionine metabolism and

has been associated with an increased risk of CVD

and all-cause mortality(3). A meta-analysis of prospective

cohort and retrospective or nested case–control studies

confirmed a positive association of Hcy concentrations

with cerebrovascular disease and CHD(5).

Dietary intakes of antioxidant-rich foods such as fruit

and vegetables, tea and cocoa were associated with

decreased CRP concentrations in several population-

based studies(7–11). A cross-sectional study in Japan found

that a healthy dietary pattern containing fruits, vegetables

and soya products was inversely associated with serum

CRP concentrations(12). Antioxidants present in foods

purportedly have anti-inflammatory properties(13,14),

inhibit lipid peroxidation in vessel walls(15) and stop pro-

atherogenic and pro-thrombotic(16) processes that may be
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relevant for atherosclerosis and CVD. However, results

from interventional trials with selected antioxidant-rich

foods or antioxidant supplementation remain incon-

clusive(15,17–22). Observational studies investigating the

associations of antioxidant intake with CVD markers such

as CRP on the nutrient level are rare and limited to single

antioxidants. These studies favour beneficial effects, but

the findings remain inconsistent(23–26). Most of these pre-

vious studies considered plasma antioxidant concentrations

instead of the amount of antioxidant intake. Previously, a

German study found that high vitamin E intake was asso-

ciated with reduced CRP concentrations(23). That study was

limited to antioxidant intakes from supplements only.

However, in order to investigate the beneficial health

effects of antioxidants on CVD risk factors, antioxidant

intakes from both diet and supplements need to be con-

sidered. As we reported previously, diet as well as sup-

plements are major contributors to total antioxidant intake

in the USA(27). The association of antioxidant intake with

plasma Hcy concentrations in a population-based sample

has not been reported in the literature.

Therefore, the purpose of the present study was to

investigate the association of antioxidant intakes from diet

and diet plus supplements with the possibility of elevated

serum CRP and plasma Hcy concentrations in a cross-

sectional design.

Subjects and methods

Study population

The National Center for Health Statistics (NCHS) conducts

the National Health and Nutrition Examination Survey

(NHANES) on a regular basis to obtain nationally repre-

sentative information on the health and nutritional status

of the US population, including an over-sampling of

people aged $60 years, African Americans and Hispanics

in order to collect a larger number of certain subgroups of

particular public health interest. The NHANES 1999–2002

data sets included a total number of 21 004 participants.

We included US adults aged $19 years only (n 10 853).

Out of this subsample, pregnant and lactating women

were excluded (n 666). Inclusion was also limited to

individuals who completed a 24 h dietary recall (DR) and

an interview on dietary supplement use (n 8809). Finally,

individuals with missing data on serum CRP and plasma

Hcy concentrations were excluded (n 474). Thus, the final

sample included 8335 participants.

The US adult population was grouped by socio-

demographic and lifestyle variables: age (19–30, 31–50,

51–70 and .70 years), gender, ethnicity (white, black,

Hispanic and others), BMI (, 18?5, 18?5–24?9, 25?0–29?9

and $30 kg/m2), current smoking (yes or no to ‘current

smoking’ and ‘smoked cigarettes, cigars or pipes and/or

used chewing tobacco or snuff at least once during

the past 30 d’) and exercise levels (expressed on the

metabolic equivalent score calculated by combining the

intensity level of leisure-time activities reported and

average duration and frequency). Medical condition was

assessed by examination and questionnaire.

Food consumption data

Dietary intakes of vitamins C and E, carotenes, Se and

flavonoids were estimated on the basis of one 24 h DR

(midnight to midnight) of the NHANES 1999–2002(28,29).

DR data contained all foods and beverages consumed by

the respondents, except for plain drinking water. Indivi-

duals with unreliable or incomplete DR records were

excluded from the present study as recommended by the

NCHS(30).

The US Department of Agriculture flavonoid

databases

Details of the data sets used in the present study were

reported in our previous study(31). Briefly, we created one

flavonoid database from two different data sets released

in recent years: the US Department of Agriculture (USDA)

database for the flavonoid content of selected foods (2007

update)(32) and the USDA–Iowa State University database

on the isoflavone content of foods (2008 update)(33). The

combined flavonoid database consisted of twenty-four

flavonoid compounds: flavonols (quercetin, kaempferol,

myricetin, isorhamnetin), flavones (luteolin, apigenin),

flavanones (eriodictyol, hesperetin, naringenin), flavan-

3-ols (catechins, epicatechins, theaflavins, thearubigins),

anthocyanidins (cyanidin, delphinidin, malvidin, pelar-

gonidin, peonidin, petunidin) and isoflavones (daidzein,

genistein, glycitein, biochanin A, formononetin). In order

to improve the coverage of the estimated flavonoid

intake, we expanded the flavonoid database according to

the pre-established protocol that has been described

extensively in a separate publication(31).

Estimation of dietary antioxidant intake

The calculation of dietary antioxidant intake has been

described in detail in our preliminary study(27). In sum-

mary, we matched the NHANES food consumption data

with the USDA flavonoid database following the same

procedure: (i) conversion of food items in NHANES DR to

USDA Standard Reference codes using food recipe books

and food description data files for NHANES food codes;

(ii) weight adjustment using moisture content; (iii) code

modification using the USDA food unit conversion search

program; and (iv) linking food intake data with the

flavonoid database. Daily individual flavonoid intake

from selected foods was determined by multiplying

the content of the individual flavonoids (mg aglycone

equivalent/100 g food) by the daily consumption (g/d)

of the selected food item. Estimated total intake of indi-

vidual flavonoids was the sum of individual flavonoid

intakes from all food sources reported in the 24 h DR.

Total flavonoid intake was determined by the summation
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of total intake of individual flavonoids. Data on individual

participant’s daily dietary intakes of antioxidant vitamins

and Se were available in the NHANES 1999–2002(28,29).

Estimation of antioxidant intake from dietary

supplement use

Participants were questioned about their supplement use

in an interview in NHANES 1999–2002. Five different

dietary supplement data files on supplement counts,

supplement records, supplement information, ingredient

information and blend information were used to calculate

antioxidant intakes from supplements(28,29). In order to

calculate the intakes of antioxidant nutrients from sup-

plements, vitamins C and E, carotenes and Se were

selected from the ingredient information file. Even

though NHANES dietary supplement data provide com-

prehensive information on the nutrient intake status of

the US population from various dietary supplements,

limited information is available on flavonoid composition

in those products. Furthermore, flavonoid intake from

supplements was reported to be ,2 % in US adults(27).

Therefore, flavonoid intake from supplements was not

included in the present study.

The antioxidant composition of supplements was

obtained using the supplement information file. If the

reported serving size units did not match with the labelled

serving size units, they were converted according to the

labelled serving size units. Ingredient units in the sup-

plements were converted to the Dietary Reference Intake

units. Nutrient compounds in the supplements were

converted to elemental nutrients(34). Different nutrient

units in the two NHANES data sets were converted and

adjusted as described previously(27).

Serum C-reactive protein and plasma

homocysteine concentrations

Fasting blood samples were collected from all participants

and prepared and analysed by the University of

Washington Medical Center according to the NHANES

Laboratory/Medical Technologists Procedures Manual(35).

Serum CRP was measured using a Behring nephelometer

(Dade Behring Diagnostics Inc., Somerville, NJ, USA). The

limit of detection of the assay was 0?2 mg/l; the inter-assay

CV ranged from 4 % to 9 %. Total Hcy was measured in

plasma using the Abbott Hcy assay, an automated fluor-

escence polarization immunoassay (Abbott Diagnostics,

Abbott Park, IL, USA). The linear range for this method

was an Hcy concentration of 2–50 mmol/l and the inter-

assay CV was 3–6 %(35).

Statistical analysis

All statistical analyses were performed using the SAS

statistical software package version 8?1 (SAS Institute Inc.,

Cary, NC, USA) and the Survey Data Analysis for multi-

stage sample designs professional software package

(SUDAAN, release 8?0?2, 2003; Research Triangle Institute,

Research Triangle Park, NC, USA). SUDAAN was used to

compute variance estimates and test statistics for a strati-

fied, multistage probability survey design. Sample weights

were applied to all analyses to account for the unequal

probability of selection, non-coverage and non-response

bias resulting from over-sampling of low-income persons,

adolescents, the elderly, African Americans and Mexican

Americans.

Arithmetic means of dietary, total and individual

intakes of antioxidants by subpopulations grouped

according to sociodemographic and lifestyle variables

were calculated. The SE was calculated by the linearization

(Taylor series) variance estimation method for population

parameters by SUDAAN. Means for interval scale vari-

ables were compared using the t test (accounting for the

population variance) and the ANOVA technique. The

t test and ANOVA were used to test for overall differences

in antioxidant intake by sociodemographic and lifestyle

variables such as age, gender and smoking. Serum

CRP and plasma Hcy concentrations were reported as

geometric means after logarithmic transformation was

performed to normalize the right-skewed data distribu-

tion. Because there is no standard definition of a high

total Hcy concentration, to determine associations

between antioxidant intake and hyperhomocysteinaemia,

Hcy values were dichotomized either above or below

13?0 mmol/l. This value has been used in a number of

studies as a recommended cut-off point for moderate

hyperhomocystenaemia(36–38). We also used currently

recommended cut-off points (.3?0 mg/l) for increased

CRP level(39,40). Since there was no interaction with gen-

der, results were combined for both men and women.

Logistic regression analysis was applied to calculate the

odds of elevated serum CRP and plasma Hcy concentra-

tions with antioxidant intake as the independent variable.

Two statistical models were calculated to adjust for pos-

sible confounders: model 1 (for CRP) adjusted for age,

gender, ethnicity, total energy intake and BMI; model 2

(for Hcy) adjusted for age, gender, ethnicity, total energy

and folate intakes. Continuous variables were age, total

energy intake, BMI, exercise level, folate intake, plasma

Hcy and serum CRP concentrations; categorical variables

were gender, ethnicity (white, black, Hispanic and oth-

ers), current smoking (yes/no), use of non-steroidal anti-

inflammatory drugs (NSAID; yes/no) and taking dietary

supplements (yes/no). The level of statistical significance

was set at P , 0?05 for two-tailed tests.

Results

On the basis of the selection criteria a total of 8335 US

adults (49?4 % men) were included in the present study.

Table 1 shows the baseline characteristics of the partici-

pants. The mean age of the participants was 46?1 years,

mean BMI was 27?9 kg/m2 and mean total energy intake
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was 9238 kJ (2208 kcal)/d. Of the participants, 52?1 %

reported taking dietary supplements.

Serum C-reactive protein concentrations

The mean CRP concentrations in fasting serum samples

were 3?38 (95 % CI 3?13, 3?62) mg/l in men and 4?88 (95 %

CI 4?54, 5?22) mg/l in women (Table 2). Serum CRP

increased with age and BMI, elevated ratio of total cho-

lesterol to HDL cholesterol, current smoking status, any

adverse medical condition such as chronic bronchitis,

arthritis, CHD and diabetes, and among those taking

NSAID. A higher level of exercise was associated with a

reduction in serum CRP concentrations.

As shown in Table 3, intake of vitamin C was inversely

associated with the odds of serum CRP . 3 mg/l, com-

paring the highest quintile with the lowest quintile of

intake as a reference and after multivariate adjustment for

age, gender, ethnicity, total energy intake and BMI (model 1;

diet only: OR 5 0?74, 95 % CI 0?62, 0?88; diet plus sup-

plement: OR 5 0?69, 95 % CI 0?56, 0?86). High vitamin E

intake from diet only and also from diet plus supplement

use was related to a similar reduction in the odds of

elevated serum CRP concentrations (diet only: OR 5 0?71,

95 % CI 0?57, 0?89; diet plus supplement: OR 5 0?70, 95 %

CI 0?54, 0?90). High dietary and total carotene intakes were

associated with a reduction in the chance of increased

serum CRP concentrations (dietary intake: 0?70, 95% CI

0?56, 0?87; diet plus supplement: 0?71, 95 % CI 0?58, 0?88).

Neither flavonoid nor Se intake showed a statistically

significant association with the odds of elevated serum

CRP concentrations.

Plasma homocysteine concentrations

The mean Hcy concentrations in fasting plasma samples

were higher in men (9?21 mmol/l; 95% CI 9?04, 9?37 mmol/l)

than in women (8?03 mmol/l; 95% CI 7?86, 8?21 mmol/l;

Table 2). Plasma Hcy concentrations increased with age and

BMI. Current smoking, lower exercise levels and a diagnosis

of arthritis, CHD or diabetes were positively associated with

elevated plasma Hcy concentrations. Dietary supplement

users showed lower plasma Hcy concentrations than did

non-users.

Vitamin C intake was inversely related to the odds

of elevated plasma Hcy concentrations after multivariate

adjustment for age, gender, ethnicity, total energy and

folate intakes according to model 2 and comparing the

highest with the lowest quintile (diet only: OR 5 0?59,

95 % CI 0?36, 0?97; diet plus supplement: OR 5 0?35, 95 %

CI 0?24, 0?51; Table 4). High vitamin E intake was asso-

ciated with a lower chance of elevated plasma Hcy con-

centrations (diet only: OR 5 0?55, 95 % CI 0?36, 0?84; diet

plus supplement: OR 5 0?34, 95% CI 0?25, 0?46). High Se

intakes from diet and diet plus supplement use were also

associated with a reduced chance of elevated plasma Hcy

concentrations (dietary intake: OR 5 0?42, 95% CI 0?25,

0?71; diet plus supplement: OR 5 0?29, 95% CI 0?18, 0?49).

For carotenes, only intake from diet and supplement use

and not intake from diet alone was associated with

reduced odds of elevated plasma Hcy concentrations

(dietary intake: OR 5 0?92, 95% CI 0?63, 1?35, P 5 0?177;

diet plus supplement: OR 5 0?72, 95% CI 0?48, 1?07;

P , 0?05). Flavonoid intake showed no statistically sig-

nificant association with the chance of elevated plasma

Hcy concentrations after multivariate adjustment.

Discussion

In the present cross-sectional study, an inverse associa-

tion of vitamins C, E and carotene intakes with the chance

of elevated serum CRP concentrations was observed.

Furthermore, people with high intakes of vitamins C and

E, Se and carotenes were less likely to have elevated

plasma Hcy concentrations.

In addition to our study, an Italian study found an

inverse association of dietary total antioxidant capacity

with plasma concentrations of CRP(41). A German study

of the MONICA/KORA Augsburg cohort(23) reported an

inverse association of vitamin E intake from supplements

with plasma CRP concentrations but did not find an

association with Se intake. However, the same study was

not in accordance with our findings on vitamin C and

carotene intakes. In agreement with our study, investigators

Table 1 Baseline characteristics and supplement use of 8335 US
adults aged $19 years in NHANES 1999–2002

Mean or n SE or %

Age (years)* 46?1 0?4
Gender (male) 8335 49?4
Ethnicity 8335 –

White – 72?6
Black – 10?1
Hispanic – 6?9
Others – 10?5

BMI (kg/m2; n 8115)* 27?9 0?1
Energy intake (kcal/d; n 8335)*- 2208?3 14?1
Supplement use-

-

8335 52?1
Vitamin C 8335 38?1
Vitamin E 8335 37?6
Carotenes 8335 24?2
Selenium 8335 27?9

Current smokersy 7884 49?8
TC:HDL-C ratio .5 8272 28?3
Arthritis 7891 22?2
CHD 7849 3?6
Diabetes 8213 6?6
Chronic bronchitis 7881 6?6
Taking NSAIDJ 8335 8?7

NHANES, National Health and Nutrition Examination Survey; TC, total choles-
terol; HDL-C, HDL cholesterol; NSAID, non-steroidal anti-inflammatory drugs.
*Data are presented as mean and SE.
-1kcal 5 4?184kJ.
-

-

Supplement use implies taking any dietary supplement including vitamins,
minerals or other dietary supplements at the time of interview.
yCurrent smoking means to have smoked cigarettes, cigars, pipes or to have
used chewing tobacco or snuff at least once during the past 30 d.
JTaking any prescribed NSAID during the past month.
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from the prospective EPIC–Norfolk cohort reported in a

cross-sectional analysis that plasma concentrations of

vitamin C were associated with decreased plasma con-

centrations of CRP(24). Ford et al.(25) found a significantly

inverse association of plasma vitamin C, carotenes

and Se with blood CRP concentrations on analysing

the NHANES 1988–1994 data. The two aforementioned

studies used a different approach by choosing blood

concentrations of antioxidants instead of antioxidant

intake and are therefore not directly comparable to our

study. Comparing blood concentrations of antioxidants

with blood CRP concentrations offers the advantage of

considering bioavailability in human metabolism; how-

ever, it is also a limited approach as Ford et al.(25) report

themselves. Thus, inflammation may depress antioxidant

concentrations in blood and thereby mask the potential

Table 2 Geometric means of serum CRP and plasma tHcy concentrations by sociodemographic and lifestyle factors and medical condition
of 8335 US adults aged $19 years in NHANES 1999–2002

Serum CRP (mg/l) Plasma tHcy (mmol/l)

Mean 95 % CI P value* Mean 95 % CI P value*

Total (n 8335) 4?14 3?91, 4?37 8?61 8?48, 8?74
Gender ,0?001 ,0?001

Male 3?38 3?13, 3?62 9?21 9?04, 9?37
Female 4?88 4?54, 5?22 8?03 7?86, 8?21

Age (years) ,0?001 ,0?001
19–30 3?01 2?56, 3?47 7?49 7?32, 7?65
31–50 3?82 3?51, 4?12 8?05 7?91, 8?20
51–70 4?97 4?52, 5?43 9?14 8?95, 9?34
.70 5?53 4?80, 6?26 11?65 11?04, 12?26

Ethnicity (%) 0?078 ,0?001
White 3?96 3?71, 4?21 8?71 8?56, 8?86
Black 5?48 4?79, 6?18 9?00 8?66, 9?33
Hispanic 4?33 3?61, 5?06 7?59 7?33, 7?85
Others 3?94 3?23, 4?65 8?21 7?84, 8?58

BMI (kg/m2) ,0?001 ,0?001
, 18?5 2?02 1?12, 2?91 8?07 7?63, 8?51
18?5–24?9 2?57 2?33, 2?82 8?37 8?20, 8?54
25?0–29?9 3?80 3?49, 4?11 8?74 8?58, 8?91
$30?0 6?29 5?79, 6?78 8?60 8?35, 8?85

Dietary supplements 0?649 ,0?001
Yes 4?07 3?80, 4?35 8?37 8?17, 8?57
No 4?21 3?84, 4?58 8?87 8?72, 9?02

Current smoking- ,0?001 ,0?001
Yes 4?47 4?17, 4?77 9?02 8?84, 9?20
No 3?90 3?61, 4?18 8?26 8?13, 8?39

Exercise level-

-

,0?001 ,0?001
1 5?02 4?59, 5?45 8?94 8?72, 9?15
2 4?12 3?71, 4?54 8?38 8?19, 8?57
3 3?37 3?08, 3?66 8?33 8?07, 8?60
4 3?02 2?57, 3?46 8?11 7?89, 8?34

TC:HDL-C ratio ,0?001 ,0?001
#5 3?97 3?72, 4?23 8?50 8?35, 8?65
.5 4?56 4?22, 4?90 8?89 8?68, 9?11

Arthritis ,0?001 ,0?001
Yes 5?88 5?37, 6?38 9?68 9?34, 10?01
No 3?70 3?41, 3?99 8?34 8?23, 8?44

CHD ,0?001 ,0?001
Yes 5?79 4?90, 6?67 11?16 10?53, 11?78
No 4?11 3?86, 4?36 8?54 8?41, 8?66

Diabetes ,0?001 ,0?001
Yes 6?49 5?56, 7?43 9?71 9?18, 10?24
No 3?96 3?72, 4?19 8?52 8?39, 8?65

Chronic bronchitis ,0?001 0?903
Yes 6?37 5?11, 7?64 8?67 8?18, 9?15
No 4?03 3?77, 4?29 8?63 8?48, 8?78

Taking NSAIDy ,0?001 ,0?001
Yes 6?05 5?13, 6?96 9?18 8?68, 9?68
No 3?96 3?76, 4?16 8?56 8?44, 8?67

CRP, C-reactive protein; tHcy, total homocysteine; NHANES, National Health and Nutrition Examination Survey; TC, total cholesterol; HDL-C, HDL cholesterol;
NSAID, non-steroidal anti-inflammatory drugs.
*P value for mean difference.
-Current smoking means to have smoked cigarettes, cigars, pipes or used chewing tobacco or snuff at least once during the past 30 d.
-

-

Exercise levels were calculated into the metabolic equivalent score by intensity level of the leisure-time activities reported, as well as mean duration and
frequency.
yTaking any prescribed NSAID during the past month.
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beneficial effect of antioxidants on CRP concentrations.

Nevertheless, these findings are consistent with our results,

except for Se. Se acts through a different mechanism.

In contrast to the other antioxidants, it does not directly

scavenge free radicals or interrupt peroxidation chain

reactions(13,14); instead, it is a cofactor of peroxidases and

detoxifies lipid peroxides(42). Therefore, Se intake and

blood concentrations may differently impact blood CRP

concentrations. Estimation of Se intake from nutritional

databases also involves a limitation. Se content of foods

may differ depending on geographical region, season of

cultivation and also food processing(43). In the USA, for

Table 3 OR and 95 % CI of serum CRP . 3 mg/l according to quintiles of antioxidant intakes from diet and total antioxidant intakes including
supplement use of 8335 US adults aged $19 years in NHANES 1999–2002

Quintile of dietary antioxidant intake*

Median antioxidant intake Q1 Q2 Q3 Q4 Q5 P value-

Flavonoids-

-

Diet only (mg/d) 2?8 16?8 40?4 92?0 504?8
n 1670 1663 1668 1667 1667
Multivariate model 1y 0?212

OR 1?00J 0?86 0?84 0?81 0?89
95 % CI – 0?70, 1?05 0?70, 1?01 0?66, 0?99 0?70, 1?13

Vitamin C
Diet only (mg/d) 11?7 34?1 66?4 115?5 228?1

n 1669 1665 1668 1667 1666
Multivariate model 1y ,0?001

OR 1?00J 0?80 0?75 0?70 0?74
95 % CI – 0?65, 0?99 0?59, 0?96 0?59, 0?84 0?62, 0?88

Diet plus supplement (mg/d) 15?5 49?0 98?8 177?4 521?1
n 1668 1666 1667 1667 1667
Multivariate model 1y ,0?01

OR 1?00J 0?78 0?90 0?77 0?69
95 % CI – 0?64, 0?95 0?70, 1?16 0?64, 0?93 0?56, 0?86

Vitamin E
Diet only (mg ATE/d) 2?2 3?8 5?3 7?5 12?2

n 1672 1658 1674 1666 1665
Multivariate model 1y ,0?01

OR 1?00J 1?00 1?05 0?91 0?71
95 % CI – 0?81, 1?25 0?85, 1?29 0?76, 1?10 0?57, 0?89

Diet plus supplement (mg ATE/d) 2?5 4?6 7?3 11?6 68?5
n 1669 1668 1663 1669 1666
Multivariate model 1y ,0?05

OR 1?00J 0?86 0?87 0?91 0?70
95 % CI – 0?67, 1?09 0?72, 1?05 0?76, 1?10 0?54, 0?90

Carotenes
Diet only (mg RE/d) 29?6 123?0 274?7 538?5 1263?7

n 1667 1667 1667 1667 1667
Multivariate model 1y ,0?05

OR 1?00J 0?81 0?81 0?90 0?70
95 % CI – 0?66, 0?99 0?65, 1?02 0?71, 1?13 0?56, 0?87

Diet plus supplement (mg RE/d) 37?0 141?5 298?5 573?7 1304?2
n 1667 1667 1667 1667 1667
Multivariate model 1y ,0?05

OR 1?00J 0?87 0?86 0?90 0?71
95 % CI – 0?72, 1?04 0?70, 1?05 0?73, 1?12 0?58, 0?88

Selenium
Diet only (mg/d) 43?2 69?5 91?4 119?7 177?4

n 1669 1665 1668 1666 1667
Multivariate model 1y 0?522

OR 1?00J 0?95 0?99 1?04 0?86
95 % CI – 0?78, 1?14 0?83, 1?19 0?81, 1?33 0?67, 1?12

Diet plus supplement (mg/d) 45?9 74?6 99?4 132?0 202?6
n 1667 1668 1666 1668 1666
Multivariate model 1y 0?262

OR 1?00J 0?88 0?93 0?99 0?80
95 % CI – 0?74,1?03 0?78, 1?10 0?80, 1?22 0?62, 1?03

CRP, C-reactive protein; NHANES, National Health and Nutrition Examination Survey; ATE, a-tocopherol equivalents; RE, retinol equivalents.
*All participants who did not consume the specific antioxidant nutrient in one 24 h dietary recall were proposed as group ‘non-consumers’ and included in Q1; all
consumers were divided into quintiles by the amount of consumption. Q1, Q2, Q3, Q4 and Q5 stand for the first, second, third, fourth and fifth quintiles,
respectively.
-P value for linear trend.
-

-

Flavonoid intake from supplement use was ,2 % in US adults. Therefore, only dietary intake was considered for analysis.
yModel 1: adjusted for age, gender, ethnicity, total energy intake and BMI
JReference category.
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example, the Se concentrations in the same crop could be

up to 200 times different depending on the Se concentra-

tion in the soil where the crops were cultivated.

Our results on flavonoid intake and serum CRP con-

centrations are in contrast to our previous findings, in

which we reported an inverse association of flavonoid

intake and serum CRP(26). This is most likely explained

by the fact that, in the previous study, we used non-

consumers as the reference group, whereas in the present

study we included non-consumers into the first quintile of

intake. This observation may suggest that non-consumers

of flavonoids are at higher risk for elevated CRP; however,

Table 4 OR and 95 % CI of plasma tHcy . 13 mmol/l according to quintiles of antioxidant intakes from diet and total antioxidant intakes
including supplement use of 8335 US adults aged $19 years in NHANES 1999–2002

Quintile of dietary antioxidant intake*

Median antioxidant intake Q1 Q2 Q3 Q4 Q5 P-value-

Flavonoids-

-

Diet only (mg/d) 2?8 16?8 40?4 92?0 504?8
n 1670 1663 1668 1667 1667
Multivariate model 2y 0?972

OR 1?00J 0?66 0?73 1?02 0?80
95 % CI – 0?45, 0?95 0?50, 1?06 0?68, 1?53 0?56, 1?14

Vitamin C
Diet only (mg/d) 11?7 34?1 66?4 115?5 228?1

n 1669 1665 1668 1667 1666
Multivariate model 2y ,0?05

OR 1?00 0?84 0?76 0?56 0?59
95 % CI – 0?62, 1?13 0?53, 1?10 0?39, 0?80 0?36, 0?97

Diet plus supplement (mg/d) 15?5 49?0 98?8 177?4 521?1
n 1668 1666 1667 1667 1667
Multivariate model 2y ,0?001

OR 1?00J 0?82 0?61 0?44 0?35
95 % CI – 0?61, 1?09 0?42, 0?89 0?30, 0?65 0?24, 0?51

Vitamin E
Diet only (mg ATE/d) 2?2 3?8 5?3 7?5 12?2

n 1672 1658 1674 1666 1665
Multivariate model 2y ,0?05

OR 1?00 0?78 0?65 0?72 0?55
95 % CI – 0?58, 1?04 0?43, 0?98 0?50, 1?04 0?36, 0?84

Diet plus supplement (mg ATE/d) 2?5 4?6 7?3 11?6 68?5
n 1669 1668 1663 1669 1666
Multivariate model 2y ,0?001

OR 1?00J 0?75 0?65 0?47 0?34
95 % CI – 0?53, 1?07 0?47, 0?89 0?32, 0?69 0?25, 0?46

Carotenes
Diet only (mg RE/d) 29?6 123?0 274?7 538?5 1263?7

n 1667 1667 1667 1667 1667
Multivariate model 2y 0?177

OR 1?00J 0?91 0?67 0?57 0?92
95 % CI – 0?64, 1?29 0?47, 0?96 0?37, 0?87 0?63, 1?35

Diet plus supplement (mg RE/d) 37?0 141?5 298?5 573?7 1304?2
n 1667 1667 1667 1667 1667
Multivariate model 2y ,0?05

OR 1?00 0?72 0?63 0?49 0?72
95 % CI – 0?51, 1?02 0?45, 0?88 0?34, 0?72 0?48, 1?07

Se
Diet only (mg/d) 43?2 69?5 91?4 119?7 177?4

n 1669 1665 1668 1666 1667
Multivariate model 2y ,0?01

OR 1?00J 0?59 0?61 0?54 0?42
95 % CI – 0?44, 0?79 0?46, 0?80 0?38, 0?77 0?25, 0?71

Diet plus supplement (mg/d) 45?9 74?6 99?4 132?0 202?6
n 1667 1668 1666 1668 1666
Multivariate model 2y ,0?001

OR 1?00J 0?65 0?52 0?49 0?29
95 % CI – 0?49, 0?85 0?40, 0?66 0?37, 0?64 0?18, 0?49

tHcy, total homocysteine; NHANES, National Health and Nutrition Examination Survey; ATE, a-tocopherol equivalents; RE, retinol equivalents.
*All participants who did not consume the specific antioxidant nutrient in one 24 h dietary recall were proposed as group ‘non-consumers’ and included in Q1; all
consumers were divided into quintiles by the amount of consumption. Q1, Q2, Q3, Q4 and Q5 stand for the first, second, third, fourth and fifth quintiles,
respectively.
-P value for linear trend.
-

-

Flavonoid intake from supplement use was ,2 % in US adults. Therefore, only dietary intake was considered for analysis.
yModel 2: adjusted for age, gender, ethnicity, total energy intake and folate intake.
JReference category.
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a low amount of consumption may be sufficient to reduce

CRP concentrations. Nevertheless, our results for flavonoid

intake should be interpreted critically. This conceptual

limitation, however, is irrelevant for the other antioxidants,

because none of the participants were classified as non-

consumers.

To our knowledge, no study has ever investigated the

relationship between antioxidant intake and plasma Hcy

concentrations in a multivariate approach. Previous studies

focused on folate and vitamin B intakes only(44,45). One

study that included patients with macular degeneration

identified high intakes of dietary antioxidants as one factor

related to decreased blood Hcy concentrations using

univariate statistics(46). In our study, on the basis of a

sample from the US population, we found an inverse

association of vitamins C and E, total carotene and Se

intakes with the odds of elevated plasma Hcy concentra-

tions independent of multiple covariates. There was no

association for either flavonoid intake or carotene intake

from diet.

A biologically plausible mechanism that links anti-

oxidant intake and blood Hcy concentration exists, as Hcy

promotes oxidant injury to the vascular endothelium(47).

Antioxidants interfere with oxidative processes at the

vessel wall and inhibit pro-atherogenic processes(13,14).

Using a rat model, Joseph et al.(48) showed that an anti-

oxidant supplementation with vitamins C and E attenuated

hyperhomocysteinaemia-induced myocardial oxidative

stress and fibrosis. They concluded that elevated Hcy

concentrations act via oxidative stress to directly promote

myocardial dysfunction and further suggest that anti-

oxidants could be a preventive and therapeutic treatment

for heart failure. In addition, Atamer et al.(49) suggest that

an oxidant–antioxidant imbalance is closely related to

elevated Hcy concentrations in patients with chronic

kidney disease. A Tunisian study that included patients

with CHD found that high concentrations of Hcy were

connected to a low enzyme activity of glutathione perox-

idase (GPx)(50). GPx has the major physiological role to

protect tissues from oxidative stress-mediated lipid per-

oxidation. Interestingly, it is a Se-containing enzyme and

GPx activity depends essentially on the presence of Se.

Lack of the cofactor Se leads to a loss of function of the

enzyme and causes severe oxidative damage(51). This fact

might be one plausible link for the strong inverse asso-

ciation of dietary and total Se intakes with the odds of

elevated plasma Hcy concentrations that we observed.

Another interesting observation of our study was that

for the odds of elevated Hcy concentration: total carotene

intake from diet plus supplement use showed a sig-

nificant inverse association, whereas intake from diet only

did not (Table 4). Considering the other antioxidants,

including vitamins C and E and Se, the inverse association

was stronger (lower OR) when antioxidant intake was

estimated from diet plus supplement use instead of from

diet only. This fact suggests that there is some additional

benefit from antioxidant supplementation on plasma Hcy

concentrations. For CRP concentrations, however, this

was not the case, as both antioxidant intake estimations

based on diet only and diet plus supplement use resulted

in similar OR. It seems as though antioxidant intake from

supplement use may have additional beneficial effects on

plasma Hcy but not on serum CRP concentrations in the

US population. This might not be comparable to the

results from other countries. As we reported previously,

Americans obtain most of their antioxidants from sup-

plements and not from diet(27). Nevertheless, the differ-

ential effect of antioxidant intake from supplement use on

Hcy and CRP requires further investigation.

The strength of our study was that we used a population-

based approach and included a large sample size in

the analysis by combining the NHANES 1999–2000 and

2001–2002 data sets. We also considered several anti-

oxidants, such as antioxidant vitamins, carotenes, flavo-

noids and Se, for intake estimations and quantified dietary

intake and total intake from diet and supplement use.

Our study has several limitations. First, the implementa-

tion of CRP as a biomarker for CVD is being discussed

controversially in the literature(52–56). It is suggested to be a

well-proven clinical marker of increased CVD risk that

shows good reliability(52). It has further been suggested as a

potential target for CVD diagnosis and prevention(53,54).

However, the major limitation of CRP implementation is

its unspecific character as a marker of inflammation(6).

Second, we did not account for the intakes of synthetic

antioxidants such as statins, butylated hydroxyanisole and

butylated hydroxytoluene. Third, dietary antioxidant intake

estimations were based on one 24h DR that is known to

have high within-person variability. Therefore, participants

may have been misclassified into lower or higher anti-

oxidant intake categories, which may have produced false

positives and negatives and biased the results. However,

despite within-person variability, a 24h DR can produce

adequate estimates of mean intake of a group that can be

useful for contrasting the dietary status of the group

with different levels of risk factors for certain diseases(57).

Furthermore, the cross-sectional design of the present study

only allows showing statistical associations and does not

prove causality. Large-scale prospective cohort studies and

interventional trials are needed to further test a causal

relationship between high antioxidant intake and reduction

of blood CRP and Hcy concentrations.

In conclusion, we found an inverse association of

vitamins C and E and carotene intakes with the chance of

elevated serum CRP; further, vitamins C and E, carotene

and Se intakes from diet and supplement use were

inversely related to the odds of elevated plasma Hcy

concentrations. These results support the hypothesis that

CRP and Hcy may be mediators of the observed beneficial

effects of certain antioxidants on CVD risk. Future studies

are warranted to examine whether CRP and Hcy could be

considered as mediators.
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