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Abstract
Since the beginning of the coronavirus (COVID-19) global pandemic, digital contact-tracing applications (apps)
have been at the centre of attention as a digital tool to enable citizens to monitor their social distancing, which appears
to be one of the leading practices for mitigating the spread of airborne infectious diseases. Many countries have been
working towards developing suitable digital contact-tracing apps to allow the measurement of the physical distance
between citizens and to alert them when contact with an infected individual has occurred. However, the adoption of
digital contact-tracing apps has faced several challenges so far, including interoperability between mobile devices
and users’ privacy concerns. There is a need to reach a trade-off between the achievable technical performance
of new technology, false-positive rates, and social and behavioural factors. This paper reviews a wide range of
factors and classifies them into three categories of technical, epidemiological and social ones, and incorporates
these into a compact mathematical model. The paper evaluates the effectiveness of digital contact-tracing apps
based on received signal strength measurements. The results highlight the limitations, potential and challenges of
the adoption of digital contact-tracing apps.

1. Introduction and motivation

In the context of a pandemic, contact tracing is utilised as a mitigation approach to identify individuals
being exposed to an infectious person, i.e. either having developed symptoms or having tested positive.
Contact-tracing solutions have been seen to be highly effective to act as preventive or control measures.
They can alert individuals to take actions such as self-isolation or quarantine, as discussed in Li and
Guo (2020), Hernández-Orallo et al. (2020) and Troncoso et al. (2020). Contact tracing can be either
digital or manual. Manual contact tracing relies on collecting the patient’s contacts, e.g. by authorised
personnel such as nurses, doctors and public safety forces. As manual contact tracing can be subject to
human memory and several behavioural and cultural factors, as stated in Braithwaite et al. (2020) and
Dropkin (2020), this paper focuses on digital contact-tracing solutions.

Although digital contact-tracing solutions are not meant to replace but rather to complement medical
mitigation plans, they have been considered an effective way to stop or minimise the spread of infectious
diseases in many countries. This is a particularly well-spread strategy for COVID-19 due to the high
spread levels and the nature of the disease, i.e. a respiratory disease that can infect individuals who have
been in close contact with an infectious person, according to Salathe et al. (2020) and Ferretti et al.
(2020). With the wide availability and access to the technologies that people use for their daily activities,
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it has been possible to develop digital contact-tracing applications (apps) on the available devices and
technologies. Broadly, consumer hand-held or wearable technology, with several miniaturised embedded
sensors, can help the individuals’ devices either to measure the distance and proximity between them,
and/or to be alerted if they have been in contact with a COVID-19 patient, as described in Hernández-
Orallo et al. (2020), Reichert et al. (2020), Scudellari (2020), Li and Guo (2020), Rodríguez et al.
(2021), Tripathy et al. (2020), Pépin et al. (2020), Stojanović et al. (2020) and Abbas and Michael
(2020). Examples of sensors useful in proximity detection and user-location estimation are: chipsets,
such as Global Navigation Satellite Systems (GNSS), e.g. Global Positioning System (GPS) or Galileo,
Wireless Local Area Network (WLAN or Wi-Fi), Bluetooth and Bluetooth Low Energy (BLE), Ultra
Wide Band (UWB), ultrasound, magnetometers, accelerometers and gyroscopes, as per the studies in
Nguyen et al. (2020a,2020b) and Shubina et al. (2020a).

Owing to the urgency of finding a solution to cope with the current pandemic, the digital contact-
tracing software-based apps should rely on the existing sensors on users’ devices, such as mobile phones,
rather than investing in developing new infrastructure. If a solution relies on existing technologies, it can
also help users to carry and use such devices, with no extra time or effort, which can maximise the app’s
effectiveness. The app should ideally provide a free or very low-cost, scalable, reliable, accurate and
privacy-preserving solution, as explained, for example, in Li and Guo (2020), Troncoso et al. (2020)
and Altuwaiyan et al. (2018).

The main goal of such proximity-detection, user-tracking or digital contact-tracing apps is to evaluate
the probability of being infected, in this case with COVID-19, based on the proximity to and/or physical
contact with a COVID-19-infected person. If the risk passes a certain threshold, then the digital contact-
tracing app can issue an alert and can potentially advise the user to self-isolate, to take tests or to apply
other preventive measures to stop the spread of the disease, as per Hernández-Orallo et al. (2020) and
Li and Guo (2020). However, the adoption and the success of digital contact-tracing apps is subject to
many factors, including social, personal, epidemiological and technical factors.

This paper presents a holistic outline of the existing methods, by using an interdisciplinary approach
to understand the epidemiological, social and technical aspects of the digital contact-tracing solutions.
This allows us to identify the current challenges towards successful future developments. In this paper,
we address the following main research question: ‘How does one model, quantify and evaluate the
usefulness and effectiveness of digital contact-tracing apps holistically, from the technical, social and
epidemiological points of view?’

The primary contributions of this paper are as follows:

1. To offer an overview of some of the widely used wireless technologies embedded in our phones and
existing wireless protocols that can be used for digital contact-tracing apps.

2. To present the technical limitations and identify technical specifications for designing digital
contact-tracing apps.

3. To offer a comprehensive mathematical model based on a proposed effectiveness metric for the
digital contact-tracing apps, defined as an estimation measure to evaluate the benefit towards
disease prevention when using a digital contact-tracing app compared to the scenarios of not using
a digital contact-tracing solution.

4. To discuss future perspectives, the remaining challenges to overcome and possible solutions to
improve the adoption rate of the digital contact-tracing apps.

The rest of the paper is organised as follows. Section 2 reviews the related work on measuring and
evaluating the effectiveness of digital contact-tracing apps. Section 3 describes the main principles of
a digital contact-tracing app, with a particular focus on the typical network architectures and wireless
technology chain, as well as on the decision-making process. Section 4 presents the main contribution of
our work by introducing a multidimensional model to assess the effectiveness of digital contact-tracing
apps. The model incorporates technological, epidemiological and social aspects. Section 5 presents
a measurement-based analysis for digital contact-tracing apps, relying on received signal strength
measurements (as the majority of such apps do), and Section 6 focuses on simulation-based results to
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compare the current state of digital contact-tracing apps across the globe. Section 7 summarises the
challenges still to be tackled towards achieving higher effectiveness of digital contact tracing, as well
as some ideas towards how such challenges can be overcome. Finally, the last section presents the
conclusions and take-away points of our research. The Appendix provides complementary material with
a brief survey of digital contact-tracing protocols and software apps existing at the time of writing this
paper.

2. Related work

Despite the facts that there are numerous protocols developed for digital contact tracing and there are
many wireless proximity-detection solutions that use wireless signals, unified mathematical models of
the effectiveness of a digital contact-tracing solution are still lacking from the current literature.

A study by Hinch et al. (2020) models five scenarios of the potential of digital contact-tracing apps
and states that the approach would only work in conjunction with other preventive measures, such as
quarantine and social distancing.

Concerning the authors’ recent research, the survey by Shubina et al. (2020a) overviews digital
contact-tracing solutions and their underlying technologies. However, this work did not address the
mathematical model allowing us to analyse the effectiveness of the digital contact-tracing solution.
Another recent work by Shubina et al. (2020b) presented a basic mathematical model of the maximum
prevention probability of digital contact-tracing solutions. However, no further detailed models of each
of the influencing factors of the application’s effectiveness were given. In the present paper, we define
a new effectiveness metric to measure the benefit of using a digital contact-tracing app contrasted to
cases where no digital contact-tracing technology is implemented. The effectiveness metric presented
here is related not only to the user adoption rates and infection risk, but also to the models on possible
asymptomatic transmissions, as well as on various technical characteristics of the digital app, such as
the wireless path-loss propagation model, and cloud and software reliability features.

Bonsall and Fraser (2020) discuss the advantages and limitations of contact tracing, recommending
measures for achieving the so-called herd protection of the population. The study also describes another
method used by China, the WeChat app, which aggregates information about their users on a central
server, yet issues colour codes for the population.

Related studies to our work, i.e. the effectiveness of digital contact-tracing apps, can be classified
into three main categories of studies, which discuss or propose one of the following aspects: (i) the
effectiveness metrics from an epidemiological perspective, such as those by Kretzschmar et al. (2020),
Rodríguez et al. (2021), Hellewell et al. (2020), Salathe et al. (2020), Ferretti et al. (2020), Hu (2020)
and Hernández-Orallo et al. (2020); (ii) the effectiveness metrics that are mainly based on social
aspects, including Frimpong and Helleringer (2020), Larsen et al. (2020), Almagor and Picascia (2020),
Sharma et al. (2020) and Nguyen et al. (2020a), which include studies that look at user privacy and
users’ behaviour, as discussed by Ajmal Azad et al. (2020); and (iii) the effectiveness metrics related
to technical aspects, including the wireless signal propagation and path-loss models (Leith and Farrell,
2020b; Nguyen et al., 2020b; Spachos and Plataniotis, 2020).

Regarding the models pertaining to the epidemiological domain, Stojanović et al. (2020) presented a
wearable system with sensors and a mobile phone to measure body temperature, heart rate and respiration
rate in order to identify critical COVID-19 symptoms in time. Another example of digital healthcare
advances was discussed by Oura (2020), where smart rings were emphasised as a promising tool for
identifying early symptoms. However, no mathematical modelling regarding the ring’s effectiveness
was presented by Oura (2020).

From the perspective of social models, the study by Pépin et al. (2020) focused on the role of wearable
devices for activity tracking during the COVID-19 pandemic, including such measures as lockdown.
As a result, the researchers concluded that anonymised activity data are a valuable source of information
to compare the effectiveness of different government policies for countries worldwide, adopting different
levels of lockdown measures: total, partial or none.
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Related research focusing on the technical domain is provided by Adib and Katabi (2013), Zhao
et al. (2020) and Basiri et al. (2017). There are certain qualities that social distancing technologies must
possess. The most critical aspects of a digital contact-tracing app are availability, reliability, accuracy
and privacy. For better services, these apps must operate consistently and seamlessly both indoors and
outdoors. For privacy-preserving purposes, they should compute the relative, rather than the absolute,
position of users. Earlier research, e.g. by Basiri et al. (2017) and Mautz (2012), identified Bluetooth
Low Energy (BLE) as the most apt technology for digital contact-tracing solutions due to its ubiquitous
embedding in mobile phones. BLE can provide proximity-sensing signals that are seamlessly available
indoors and outdoors, for free, with a relatively consistent level of accuracy in their distance-estimation
solutions. Therefore, many contact-tracing apps are built upon BLE, according to Ahmed et al. (2020)
and Leith and Farrell (2020a), as will also be detailed in Section 3.

BLE is used to exchange data over short distances, and this wireless technology standard has become
increasingly popular since the release of the standard Bluetooth 4·0 protocol. Hossain and Soh (2007)
reviewed Bluetooth technology and positioning using Bluetooth technology. The decisive advantage of
BLE over other existing wireless positioning technologies is that it can be deployed in several tags or
beacons in different environments due to its power efficiency and low cost. The short operating range
typically provides better performance than WLAN-based positioning in terms of the estimated dis-
tance/ranging error (Lohan et al., 2015). In modern devices and sensors, the effects of BLE interference
can be reduced by broadcasting on widely spaced radio channels.

Still related to the technological domain, Adib and Katabi (2013) outlined a novel paradigm called
Wi-Vi (also known as Wi-Fi Vision) to provide the authorities with an opportunity to track objects in
specific environments and to detect potentially crowded areas. It would allow a prompt response with
appropriate actions to enable social distancing, e.g. by informing people to avoid potentially crowded
places. The take-away point from such research is that contact-tracing apps alone cannot mitigate the
spread of disease if not followed up by concrete actions such as self-isolation and quarantine.

Other related research in terms of technological models is, for example, the study by Zhao et al. (2020),
focusing on analysing the main factors affecting the received signal strength fluctuations. The authors
claimed that configurations for the signal transmission power and broadcasting intervals varied for
different contact-tracing apps.

Regarding the joint epidemiological and social perspectives, related works to this research can be
found, for example, in Salathe et al. (2020) and Hellewell et al. (2020). Salathe et al. (2020) discussed
the effectiveness of the SwissCovid digital contact-tracing app (used in Switzerland) based on empirical
data. A longitudinal study made in Zurich with 235 participants measured an effectiveness metric
𝜖 � 𝑛/(𝑐𝑃𝑢). The parameters of the model used by Salathe et al. (2020) were drawn from the social and
epidemiological domains: 𝑛 is the number of persons who got a positive result, following their voluntary
tests for COVID-19 (as a consequence of an alert received through the SwissCovid app); 𝑐 is the number
of persons previously confirmed positive via a COVID-19 code; and 𝑃𝑢 is the proportion of the Swiss
population that were actual users of the SwissCovid app. The results of the study by Salathe et al. (2020)
showed an effectiveness metric 𝜖 = 0·24. The intuition behind the ‘effectiveness metric’ defined by
Salathe et al. (2020) is that, under a 100% user adoption rate (i.e. 𝑃𝑢 = 1), the effectiveness metric will
converge to the 𝑛/𝑐 ratio, namely the number of secondary infections with respect to a certain number of
index cases. Nevertheless, as discussed by Hellewell et al. (2020), the effectiveness of a contact-tracing
method should be modelled not only based on the relative number of secondary infections 𝑐/𝑛 and on
the user adoption rate 𝑃𝑢 , but also on the percentage of transmissions that may occur before the onset
of COVID-19 symptoms, as well as on the follow-up procedures such as isolation or self-quarantine.

A broad survey on the effectiveness of social distancing measures and the use of other technological
advances, written by Nguyen et al. (2020a,2020b), highlighted the joint technical and social perspectives
of contact tracing. In the first part, Nguyen et al. (2020a) gave a historical overview and comparison to
other disease outbreaks to classify possible strategies and to divert those lessons into recommendations.
Moreover, the authors stated that localisation systems, such as Wi-Fi, cellular and GNSS, helped in
many scenarios for physical distancing, monitoring of public places, contact tracing and automation.
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Figure 1. Venn diagram on the perspectives from the scope of our study.

A concept of crowd detection in dynamic environments was introduced by Nguyen et al. (2020a) with
the use of fingerprinting, as an approach to deal with non-line-of-sight (NLOS) propagation on the
wireless signals between the user’s equipment (UE) and the anchor node (AN), especially in dynamic
and complicated environments (e.g. shopping mall, airport), where obstacle shadows greatly scatter
the wireless signals. The second part of the survey by Nguyen et al. (2020b) was devoted to potential
application scenarios of artificial intelligence to several social distancing use cases. As an outcome, the
authors concluded that modern next-generation wireless system infrastructures, such as 6G, smart cities
and intelligent transportation systems, could include a pandemic contact-tracing mode as part of their
standard.

To complement the existing research mentioned above and to address the epidemiological, social
and technical perspectives jointly, as illustrated in Figure 1, our paper aims at offering a combined
model, which is done by analysing multidimensional aspects to achieve the best results according to the
‘flattening the curve’ strategy, as explained by Villas-Boas et al. (2020). Our multidimensional approach
incorporates the epidemiological aspects (e.g. the infection risk models), the social aspects (e.g. the
user adoption probabilities) and the technical aspects (e.g. the errors in estimating user proximity
with a particular wireless technology, the possible outages in the cloud connectivity and the software
reliability).

3. Principles of a digital contact-tracing app

The following subsections describe the basic principles of digital contact-tracing solutions, focusing
first on the network architecture and the nodes involved in the process, and describing the technology
chain from user to cloud server and back to the user.

3.1. Network architecture

The basic principle of a digital contact-tracing app relying on wireless signals is as follows. In the
considered scenario, several users are equipped with wearables or other mobile devices distributed
within a particular geographical area, e.g. a university building, a shopping mall, a restaurant, a outdoor
tourist site within a city, etc. Users’ devices can monitor the wireless environment with, for example,
BLE, and exchange beacons between them with a specific sampling interval.

The assumption of wireless data exchange between user devices is reasonable, as many devices,
such as smartphones and smartwatches, operate upon short-range wireless communication technolo-
gies, such as BLE or Wi-Fi (Ding et al., 2020; Ometov et al., 2016). Less common short-range wireless
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communication technologies are ZigBee (Shao et al., 2020), typically used in industrial environments
for workers and devices, and Radio Frequency Identification (RFID), as encountered in hospital envi-
ronments (Ding et al., 2019). Such short-range, low-power wireless communications usually transmit
some beacons with timestamps along with the users’ unique but anonymised identifiers (IDs). There-
fore, any other user device equipped with a wireless receiver in the emitter range and decoding the
emitted signal could sense and store the timestamped IDs of neighbouring devices. Additionally,
received signal strength (RSS) measurements are typically computed and stored at the receiver side.
For example, when a user transmits a BLE or Wi-Fi wireless signal, the mobile devices of the users
in their neighbourhood could estimate the user-to-user distance, based on RSS, time-of-arrival (TOA)
or angle-of-arrival (AOA) measurements, as discussed by Basiri et al. (2017). Once such distance is
estimated, a threshold can be applied. Nowadays, a threshold of 2 m (or about 6 feet) is the ‘safety
threshold’ adopted by many research papers focused on coronavirus infectiousness (Hernández-Orallo
et al., 2020; Jeong et al., 2019; Tripathy et al., 2020). Recent studies have argued about the 2 m value
and found that SARS-CoV-2 can spread to more than 8 m in some industrial environments (Günther
et al., 2020). In our studies, we will denote, without any loss of generality, this threshold distance
as 𝑑𝑡ℎ, and it will be one of the model parameters. Once the receiver establishes that the distance to
a neighbouring device is less than or equal to 𝑑𝑡ℎ, the receiver starts logging the (anonymised) IDs
from the neighbouring user while the corresponding timestamps indicate that the estimated user-to-
user distance is below the 𝑑𝑡ℎ threshold. Consequently, a ledger of nearby nodes could be created per
device.

The user-to-user distance can be estimated, for example, from time measurements via the wireless
signal, in scenarios where available (as distance = time × speed, and the electromagnetic signal speed
is the well-known speed of light), or, more often encountered, from RSS measurements and assuming
a certain path-loss propagation model. Mathematical models based on RSS will be further provided in
Section 4.2. In Section 3.2, we talk about the basic scheme of a contact-tracing app and explain the
stages of data processing.

3.2. Technology chain in a digital contact-tracing app

A wireless or digital contact-tracing chain as illustrated in Figure 2 typically involves the following
conceptual steps, with possible variations regarding when the actual user-to-user distance is computed
and the place (user side or server side) where the computations are performed:

1. A pre-symptomatic or asymptomatic person (e.g. person A infected with SARS-CoV-2) has active
contact-tracing software on his/her mobile device, and this software sends periodic beacons over
the wireless channel, with a granularity defined by the software sampling rate (e.g. every 3 min).
Such beacons contain timestamps and a user-specific ID. Typically the user-specific ID is randomly
generated according to a predefined random number generator in the user device, and therefore it
preserves the user’s anonymity.

2. The mobile devices of all persons in the vicinity (e.g. within a radius 𝑑𝑡ℎ) of the infectious person
A, with the same mobile software enabled, receive the beacons sent by user A and measure the RSS
over a predefined time duration (e.g. 15 min).

3. The software converts the RSS values into user-to-user estimates by applying averaging and
calibration when needed. The RSS-to-distance conversions can take place either directly on the user
device or in a cloud system. In the latter case, all user devices send the RSS measurements together
with the timestamps and ephemeral IDs to a cloud server.

4. If the estimated user-to-user distance is below the threshold distance 𝑑𝑡ℎ, the corresponding user
IDs and timestamps for the nearby users are stored for a predefined time interval (e.g. 2 weeks)
either on the user device (in a decentralised approach, see also Section 3.3) or on the cloud server
(in a centralised approach).
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Figure 2. Illustration of the digital contact-tracing chain.

5. If user A never gets tested, nothing happens with the information mentioned above. However, if user
A gets tested and gets a positive COVID-19 result, the positive-test information is transmitted to the
cloud server, either automatically from the authorised health service provider or with the user’s
help. In the latter case, the user can also choose whether or not to send the information about a
positive result to the server.

6. The cloud server informs all user devices that have the mobile app enabled about the ephemeral IDs
and the timestamps of the user who has tested positive. These IDs and timestamps pertain only to a
certain predefined time window, which is set to be the infectious period window (e.g. from a few
days before the onset of symptoms or before the positive test if no symptoms and until the day of
the positive test).

7. In a centralised approach (see also Section 3.3), the server also sends an exposure notification signal
to all users deemed to have been in the vicinity of the infectious user during the infectious period.

8. In a decentralised approach (see also Section 3.3), each user device computes on its own the
probability to have been infected, based on the pre-stored ephemeral IDs and timestamps.

Clearly, each of these steps has to cope with several sources of errors from the technology point of
view, namely:

• Low granularity of wireless beacons, i.e. no signalling between users within a large time window
due, for example, to the BLE signal being off on the mobile device, the phone battery being
depleted, or wireless connectivity errors;

• Wireless channel impairments, such as large fluctuations in RSS values due to reflections,
refractions, diffractions or scatterings in the waveform path, or obstacles in the signal path, such as
walls, shelves, etc., which affect the accuracy of the user-to-user distance estimates;

• Timing and other synchronisation errors, such as incorrectly stored timestamps, which can affect the
estimates of the exposure duration;

• Cloud connectivity errors, such as the cloud server being down or tampered with or long-range
wireless connectivity unavailable; and

• Other software-related errors.

3.3. Centralised versus decentralised decision-making approaches

As surveyed in our previous study (Shubina et al., 2020b), two concepts describe the main contact-tracing
decision-making approaches:

(i) Centralised approach. This indicates that primary information – i.e. the temporary IDs and
timestamps of active users – is aggregated on a central server. In this scenario, the server holds the
information about the downloads and active devices.
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(ii) Decentralised approach. This means that the information is distributed among the involved entities.
Therefore, the users store relevant information locally on their devices. This information includes
their own temporary IDs, the temporary IDs of the nearby users and timestamps. Devices
communicate with the server solely to state COVID-19 symptoms or to download the temporary
IDs of other users who have registered an infection to juxtapose with the local database.

In centralised decision-making approaches, risk analysis is performed at the server side. Therefore,
after calculating the probability 𝑃𝑖 of a user to become infected, the server notifies each user about the
results. On the contrary, in a decentralised approach, 𝑃𝑖 is calculated by each device. In this case, the
server follows the data minimization principle. It possesses a lower amount of user-related information
than in the centralised approach, and no data about the contacts who crossed their paths need to be
broadcast.

Detailed discussions about the advantages and possible shortcomings of a decentralised decision-
making process versus a centralised one can be found, for example, in Shubina et al. (2020a) and
references therein.

3.4. An example from UK contract-tracing app

After the previous general discussions on network architectures (Section 3.1), the principles of a digital
contact-tracing app (Section 3.2 and the decision-making processes (Section 3.3), this present section
provides a concrete example based on the UK contact-tracing app, called NHSX. NHSX uses BLE
measurements, considered at the app-defined scanning intervals, and decides about the infection risk of
users in close proximity to each other by integrating past and present measurements through an unscented
Kalman smoother (UKS) (Lovett et al., 2020). Compared with the traditional linear interpolation,
UKS is a compromise between computational complexity, mathematical complexity and accuracy. For
example, based on our simulations on the MIT dataset (MIT Matrix Data, 2020), we understand that the
performance accuracy of such an app declines with respect to the scanning interval, namely the interval
at which the BLE scans are performed. The performance metric is defined here as the ability to correctly
classify the infection risk under two different proposed distance thresholds 𝑑𝑡ℎ (either 2 m distance or 1
m). The performance metrics provided as an example in Figure 3 are the receiver operation characteristic
(ROC) area under curve (AUC) and the true positive rates (or detection probability 𝑃𝑑). The ROC is
defined as the detection probability 𝑃𝑑 versus false-alarm rate 𝑃 𝑓 𝑎, and the AUC computes the area
below the 𝑃𝑑 versus 𝑃 𝑓 𝑎 curves (more mathematical details on 𝑃𝑑 and 𝑃 𝑓 𝑎 are given in Section 4). A
higher ROC AUC and a higher 𝑃𝑑 indicate better performance results than with a low ROC AUC and
low true positive rates, respectively.

As shown in Figure 3, UKS strongly outperforms the linear interpolation model at scan intervals
below 10 s; however, this performance improvement is minor at scan intervals of 30 s or higher and
disappears above 60 s scanning. It is far below the scan intervals of an average 3–4 min, which have
been proposed by Google and Apple initially. The scan interval issue has been addressed in the latest
release of the Google and Apple Exposure Notification (GAEN) Application Programming Interface
(API), though. It is also important to emphasise that the higher sampling rate that guarantees the out-
performance of the UKS versus linear interpolation may result in higher power consumption. However,
this performance improvement is minor at scan intervals of 30 s or higher and disappears entirely above
60 s scanning. The 60 s scanning is far below the scan intervals of an average 3–4 min which had been
initially proposed by Google and Apple for a fair tradeoff with battery consumption on the mobile. Leith
and Farrell (2020c) noted that the universal benchmark proposed by Google and Apple only scans each
3·5–5 min. It raises the question of whether advanced integration methods such as the UKS can improve
the contact-tracing system in practice.

In conclusion, there are still several challenges in designing the technical parameters of a contact-
tracing app, such as the BLE scanning interval, the choice of the algorithm to integrate BLE
measurements and take a decision about the infection risk, as well as the safety or risk threshold
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Figure 3. The ROC AUC for both the UKS and linear interpolation models to compare UKS performance
across 4000 random walks with varying scanning interval.

𝑑𝑡ℎ. Some of these parameters, such as the safety or risk threshold 𝑑𝑡ℎ, will also be a part of our
multidimensional model, described next in Section 4, while the others, such as the integration algorithm
and scanning interval, will not be modelled explicitly, but will be a part of the additional noise in the
model explained in Section 4.1. More discussions about the tradeoffs and open challenges in digital
contact-tracing apps are offered in Section 7.

4. Proposed multidimensional modelling

Following the diagram in Figure 4 and our previous work (Shubina et al., 2020b), we propose the
effectiveness metric 𝑃𝑒 to measure the utility of a digital contact-tracing solution, expressed as

𝑃𝑒 � (1 − 𝑃𝑚𝑑 × 𝑑𝑡ℎ) × 𝑃2
𝑐︸����������������������︷︷����������������������︸

technical

× 𝑃𝑖︸︷︷︸
medical

× 𝑃2
𝑢︸︷︷︸

social

, (1)

where

• 𝑃𝑚𝑑 (𝑑𝑡ℎ) is the so-called misdetection probability, meaning the probability to estimate the
user-to-user distance as being above the considered threshold 𝑑𝑡ℎ (above 2 m) based on the observed
RSS values when in fact it was below the threshold (a model for 𝑃𝑚𝑑 (𝑑𝑡ℎ) is derived in Section 4.2);

• 𝑃𝑐 is the probability that the user device is reliably connected to the cloud server, and that the
contact-tracing software is working properly, and therefore it is a measure of the connectivity and
software reliability (it will be further detailed in Section 4.3);

• 𝑃𝑖 is the infection risk, i.e. the tangible probability that user B becomes infected in case they crossed
paths with user A who has tested positive for COVID-19 (𝑃𝑖 will be further detailed in Section 4.4);
and

• 𝑃𝑢 is an average probability that a user utilises the considered digital contact-tracing app, i.e. also
measured as the user adoption rate (it will be further detailed in Section 4.5).

Note that Equation (1) is further explained by the following assumptions:
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Figure 4. Illustration of the basic steps and associated probabilities of a wireless COVID-19 contact-
tracing application.

1. The joint probability of two devices detected to be in close proximity to each other and to use the
same contact-tracing app, assuming independent users, is the product of the individual
probabilities, namely 𝑃2

𝑢 .
2. The threshold distance 𝑑𝑡ℎ currently adopted by most apps is 2 m, and it represents the maximum

distance between an infectious and a non-infectious user, which creates an exposure alert if the two
users under consideration stayed in each other’s proximity for at least 15 min (Jeong et al., 2019;
Hernández-Orallo et al., 2020; Tripathy et al., 2020).

3. The so-called false-alarm probability 𝑃 𝑓 𝑎 (or the false-positive rate), which is not a direct part of
the model in Equation (1), shows the probability of incorrectly estimating the user-to-user distance
as being below the considered safety threshold 𝑑𝑡ℎ. Admittedly, 𝑃 𝑓 𝑎 does not impact the prevention
probability or effectiveness of a digital contact-tracing app, where non-infectious users are
erroneously identified as infectious users. It is a potential research direction to determine whether
𝑃 𝑓 𝑎 affects the population perception of the contact tracing usefulness as a reliable approach.
High levels of 𝑃 𝑓 𝑎 would mean that some non-infectious users would be recommended to
self-isolate without actual need. Therefore, higher levels of 𝑃 𝑓 𝑎 could affect the adoption rate of
contact-tracing solutions (i.e. fewer users would be willing to install an app with high 𝑃 𝑓 𝑎) and
therefore could indirectly influence the 𝑃𝑢 levels.

We remark that the effectiveness probability 𝑃𝑒 shown in Equation (1) is the effectiveness assuming
all users of a digital contact-tracing app cooperate with follow-up regulations obeying the recommended
measures such as a self-quarantine after an exposure alert.

Examples relying on our model and based on simulated data are given in Section 6. The next
subsections will shed more details on modelling the different probabilities in Equation (1).

We will focus on BLE signal models, as BLE is by far the most used wireless signal in contact-tracing
apps nowadays, as shown in Section 5. Nevertheless, except for the numerical values for the parameters
used in BLE path-loss modelling, the proposed models below hold for any wireless signals that can be
used for RSS-based distance estimation, e.g. Wi-Fi, RFID, etc.

4.1. Modelling RSS fluctuations based on BLE measurements on mobile phones

In order to derive a model for the misdetection and false-alarm probabilities, we start first by summarising
the different RSS models for BLE signal propagation. We remark that the misdetection probabilities
are also referred to in the literature as false-negative detection rates (i.e. a user is incorrectly found not
to be exposed), while the false-alarm probabilities are also referred to in the literature as false-positive
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Table 1. RSS path-loss parameters based on measurements with BLE signals.

Model
index Reference Measured scenario 𝑃𝑇 (dBm) 𝑛 (–) 𝜎𝜂 (dB)

M1 Clark et al. (2020),
Leith and Farrell
(2020b)

Indoors, meeting room −62·92 2·32 3·44

M2 Clark et al. (2020),
Leith and Farrell
(2020b)

Indoors, inside a train −60·45 1·36 5·05

M3 Clark et al. (2020),
Leith and Farrell
(2020b)

Outdoors, Dublin city
streets

−75·01 1·79 6·45

M4 Lohan et al. (2015) Indoors, university corridors −71·11 1·33 6·15
M5 Röbesaat et al. (2017) Indoors, office room −76·72 1·63 3·91
M6 Proposed linear-

regression fit on
MIT-Matrix data

Indoors, MIT (MIT
Matrix Data, 2020)

−73·52 0·63 11·41

detection rates (i.e. a user is incorrectly found to be exposed). Both false-negative 𝑃𝑚𝑑 and false-positive
𝑃 𝑓 𝑎 indicators are hurtful to the effectiveness of an app. The 𝑃𝑚𝑑 plays a direct role in Equation (1), as
any undetected user that has been exposed to the virus can spread the virus further and thus diminish
the effectiveness of the contact-tracing app. The false positives reflected in 𝑃 𝑓 𝑎 play an indirect role
by influencing the user adoption rate 𝑃𝑢 , because a high 𝑃 𝑓 𝑎 means that many users, following a false
alert, are sent unnecessarily into quarantine, and therefore, in time, the perceived usefulness of such an
app decreases and users’ adoption rate 𝑃𝑢 decreases.

In what follows, we will denote by 𝑃𝑅 the received signal power/RSS, expressed in dBm (decibels
referenced to 1 mW), by 𝑃𝑇 the transmitted signal (in dBm) at 1 m away from the transmitter, and by 𝑑
the user-to-user distance (i.e. the distance between transmitter and receiver).

Two of the most commonly encountered RSS models in the literature are the Gaussian single-slope
model for RSS values expressed in dBm, as stated by Lohan et al. (2015), Clark et al. (2020) and Leith
and Farrell (2020b), and the log-normal model for RSS values in linear scale, according to Lovett et al.
(2020).

The Gaussian single-slope model shows the dependence of the 𝑃𝑅 on the distance 𝑑 via

𝑃𝑅 (𝑑) = 𝑃𝑇 − 10𝑛 log10(𝑑) + 𝜂, (2)

where 𝑛 is a path-loss coefficient specific to the considered environment (e.g. indoor, train, outdoor,
etc.) and 𝜂 is a Gaussian-distributed random variable of zero mean and 𝜎𝜂 standard deviation. Values
for 𝑃𝑡 , 𝑛 and 𝜎𝜂 have already been studied in various environments, based on BLE measurements for
contact-tracing applications. Six examples can be found in Table 1.

An equivalent, but less-often used, RSS path-loss model is the log-normal model for RSS values
in linear scale 𝑌 (𝑑) (Lovett et al., 2020), where 𝑃𝑅 (𝑑) � − log(𝑌 (𝑑)), and 𝑌 (𝑑) is modelled as a
log-normal distributed variable of mean 𝛼 log(𝑑) + 𝛽 and variance 𝜎2

𝑌 . Lovett et al. (2020) analysed the
MIT-Matrix data provided by MIT Matrix Data (2020) through a gradient boosting regressor and found
the best-fit parameters 𝛼 = 0·91, 𝛽 = 3·92 and 𝜎𝑌 = 0·33.
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4.2. Modelling the misdetection and false-alarm probabilities for RSS-based distance estimators

In this section, we adopt the single-path Gaussian model of Equation (2) and we treat the estimation of
the user-to-user distance 𝑑 as a classical detection theory problem, where the hypotheses H0 and H1
are defined as

H0: 𝑑 > 𝑑𝑡ℎ,

H1: 𝑑 ≤ 𝑑𝑡ℎ .
(3)

It follows that the detection 𝑃𝑑 , misdetection 𝑃𝑚𝑑 and false-alarm 𝑃 𝑓 𝑎 probabilities are defined as

𝑃𝑑 = 𝑃(𝑑 ≤ 𝑑𝑡ℎ | ∀ 𝑑 ∈ H1), (4)
𝑃𝑚𝑑 = 𝑃(𝑑 ≤ 𝑑𝑡ℎ | ∀ 𝑑 ∈ H0) = 1 − 𝑃𝑑 , (5)
𝑃 𝑓 𝑎 = 𝑃(𝑑 ≤ 𝑑𝑡ℎ | ∀ 𝑑 ∈ H0), (6)

where 𝑃(·) stands for conditional probability.
In what follows, we will focus only on 𝑃𝑚𝑑 and 𝑃 𝑓 𝑎, as the threshold choice (in terms of RSS

observations) is a tradeoff between 𝑃𝑚𝑑 and 𝑃 𝑓 𝑎, and as these two parameters reflect the false negatives
and false positives in estimating the user-to-user distance below the safety threshold 𝑑𝑡ℎ.

By applying Bayes rules and using the RSS observations 𝑃𝑅 (𝑑), we arrive at

𝑃𝑚𝑑 =
𝑃(𝑃𝑅 (𝑑) > 𝛾 | ∀ 𝑑 ∈ H0)𝑃(𝑑 ≤ 𝑑𝑡ℎ)

𝑃(𝑃𝑅 (𝑑) > 𝛾 | ∀ 𝑑) , (7)

𝑃 𝑓 𝑎 =
𝑃(𝑃𝑅 (𝑑) > 𝛾 | ∀ 𝑑 ∈ H1)𝑃(𝑑 ≤ 𝑑𝑡ℎ)

𝑃(𝑃𝑅 (𝑑) > 𝛾 | ∀ 𝑑) , (8)

where 𝛾 is the RSS threshold used to determine whether or not the user-to-user distance is below 𝑑𝑡ℎ.
For example, if the receiver device measures from a BLE device in range an RSS higher than 𝛾 (e.g. −75
dBm), the receiver can conclude that the user-to-user distance is below the safety distance (e.g. below
2 m).

Under the further assumption of users equally distributed in the considered space and assuming the
path-loss model from Equation (2), we obtain after straightforward derivations that

𝑃𝑚𝑑 =

∫ 𝑑𝑡ℎ

0

(
1 −𝑄

(
𝛾−𝑃𝑇 +10𝑛 log10 𝜉

𝜎𝑛

))
d𝜉

∫ ∞
0

(
1 −𝑄

(
𝛾−𝑃𝑇 +10𝑛 log10 𝜉

𝜎𝑛

))
d𝜉

, (9)

𝑃 𝑓 𝑎 =

∫ ∞

𝑑𝑡ℎ

(
𝑄

(
𝛾 − 𝑃𝑇 + 10𝑛 log10 𝜉

𝜎𝑛

))
d𝜉∫ ∞

0

(
𝑄

(
𝛾 − 𝑃𝑇 + 10𝑛 log10 𝜉

𝜎𝑛

))
d𝜉

, (10)

where

𝑄(𝜉) = (1/
√

2𝜋)
∫ ∞

𝜉

exp(−𝑥2/2𝜎2
𝑛) d𝑥

is the well-known tail of a Gaussian distribution of zero mean and 𝜎2
𝑛 variance, i.e. the 𝑄-function.

It should be noted that usually the RSS threshold 𝛾 is set in such a way as to reach a certain target 𝑃 𝑓 𝑎

probability (e.g. 10−2 or 10−3). Examples of 𝑃𝑑 for different 𝑃 𝑓 𝑎 and path-loss models are provided in
Section 5.3.
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4.3. Modelling the connectivity and software reliability

Models for the probability for 𝑃𝑐 from Equation (1) depend on multiple parameters, such as the network,
cloud and software reliability.

The network reliability, measured here as the probability 𝑃net to have a wireless connection, depends
on the wireless connectivity type used on the mobile device (e.g. cellular, low-power Internet of Things
(IoT), Wi-Fi, etc.), as well as on the underlying physical layer of a certain connectivity solution, e.g. multi-
carrier versus spread-spectrum, narrowband versus wideband, low-order versus high-order modulation,
beam-forming versus no-beam-forming, etc.

The cloud reliability, measured here as the probability 𝑃𝑐𝑙 to communicate with the cloud server
without errors, depends on the type of the network approach (e.g. centralised versus decentralised,
opportunistic versus infrastructure-based, etc.) and possibly on the delay jitters and other synchronisation
errors between the servers of a distributed cloud.

The software reliability, denoted here as 𝑃𝑠𝑤 and representing the probability that the software app
does not malfunction during a specific target duration, is a parameter dependent on the software creator,
and various software-reliability models exist in the literature, such as the non-homogeneous Poisson
process, Musa basic model, Musa–Okumoto model, Moranda model (Boland and Singh, 2003, see).

The probability 𝑃𝑐 from Equation (1) can thus be written as

𝑃𝑐 = 𝑃net𝑃𝑐𝑙𝑃𝑠𝑤 . (11)

With the present wide spread of broadband connectivity in many countries and high-performance
cloud services (e.g. Google Cloud, Amazon Web Services, Apple iCloud, etc.), it is fair to consider
𝑃net = 𝑃𝑐𝑙 = 1. Therefore, 𝑃𝑐 can be approximated by the software reliability 𝑃𝑠𝑤 . In what follows, we
adopt the software reliability model of Boland and Singh (2003), which computes 𝑃𝑠𝑤 as a function
of two modelling parameters: 𝜄, the rate of appearance of a fault per hour, and 𝜅, the probability of
not fixing a fault within an hour. Besides these, 𝑃𝑠𝑤 depends on the time interval of 𝑇exp, expressed in
hours, and during which the app should be on and functioning correctly. For example, if an exposure
notification will be triggered when a person stays in close proximity to an infectious person for at least
15 min, then 𝑇exp = 15/60 = 0·25 h.

According to Boland and Singh (2003), 𝑃𝑠𝑤 can be computed as

𝑃𝑠𝑤 =
∞∑

𝑚=0
(−1)𝑚 (𝜄𝑇exp)𝑚

𝑚!

∞∑
𝑛=0

𝜅𝑚𝑛𝑃𝑛 (𝑇exp), (12)

where 𝑃𝑛 (𝑇exp) is the probability to have exactly 𝑛 failures during the time interval 𝑇exp, which is
expressed as

𝑃𝑛 (𝑇exp) = 𝜅𝑛(𝑛−1)/2 (𝜄𝑇exp)𝑛
𝑛!

+
∞∑
𝑗=1

(−1) 𝑗 (𝜄𝑇exp) 𝑗+𝑛
( 𝑗 + 𝑛)! . (13)

4.4. Modelling the infection risk

4.4.1. Infection risk model without face masks
The infection risk model adopted here follows the epidemiological models by Buonanno et al.
(2020a,2020b), where 𝑃𝑖 , the probability of becoming infected after coming into contact with a person
carrying SARS-CoV-2 virus, is modelled via

𝑃𝑖 = 1 − exp
(
𝐼𝑅 +

∫ 𝑇

0
𝜖 (𝑡) d𝑡

)
, (14)
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where 𝐼𝑅 is the inhalation rate of the considered user, measured in m3/h, 𝜖 (𝑡) is the virus concentration
(also called quanta) in an indoor environment at time 𝑡, and 𝑇 is the duration of exposure (measured in
hours). Quanta concentration 𝜖 (𝑡), measured in quanta per volume (i.e. quanta/m3) is given by

𝜖 (𝑡) = 𝐸𝑅𝑞
𝑁𝐼

𝐴𝑒𝑟𝑉
+
(
𝜖0 +

𝐸𝑅𝑞
𝑁𝐼

𝐴𝑒𝑟

)
e−𝐴𝑒𝑟 𝑡

𝑉
, (15)

where 𝐸𝑅𝑞
is the quanta emission rate of the infected person (measured in quanta/h), 𝐴𝑒𝑟 is the air

exchange rate (in h−1) inside the considered space or volume, 𝑉 is the considered (indoor) volume, 𝜖0 is
a constant representing the quanta per volume at time 0 (in our simulations, we assume without loss of
generality that 𝜖0 = 0), 𝑁𝐼 is the number of infectious persons in the considered volume, and 𝑡 is the
time. Examples of quanta emission rates are shown in Table 2, following the model by Buonanno et al.
(2020a,2020b).

Equation (14) seems to be accurate for indoor spaces with limited ventilation. However, one can
extrapolate this model to some extent and use it for certain outdoor areas. Of course, the extrapolation
for outdoors, where quite a high level of ventilation is possible, may have some uncertainties associated
with the results.

Table 2. Examples of quanta emission rates 𝐸𝑅𝑞
(quanta/h) for an infected subject with a viral load in

the mouth 𝑐𝑣 of 107 copies per millilitre.

𝐸𝑅𝑞
(quanta/h) Resting Standing Light exercise

Silent/breathing 1·05 1·57 3·38
Voiced counting 1·21 1·81 3·90
Speaking 31·99 47·98 103·08

If we assume that the virus is spread while breathing (and talking, shouting or singing) by spherical
droplets of diameter 𝐷𝑖 , then the volume of each droplet is given by (𝜋𝐷3

𝑖 )/6 and the quanta emission
rate 𝐸𝑅𝑞

can be modelled as (Buonanno et al., 2020a)

𝐸𝑅𝑞
= 𝑐𝑣 𝐼𝑅

𝑁modes∑
𝑖=1

𝑁𝑖

𝜋𝐷3
𝑖

6
, (16)

where 𝑐𝑣 is the viral load in the sputum of the infectious person, measured in the number of ribonucleic
acid (RNA) copies per millilitre of blood plasma, 𝑁𝑖 is the droplet concentration of the infected person
(in particles per cm3) and 𝑁modes is the number of distribution channels during each expiratory activity
by the infected person. Buonanno et al. (2020a) presented a model with 𝑁modes = 4, corresponding to
four diameters of droplets, namely 𝐷1 = 0·8 𝜇m, 𝐷2 = 1·8 𝜇m, 𝐷3 = 3·5 𝜇m and 𝐷4 = 5·5 𝜇m,
respectively. They also tabulated the average droplet concentration value 𝑁𝑖 per mode, based on the
work by Adams (1993). The inhalation rates 𝐼𝑅 have also been modelled on average by Adams (1993)
and Buonanno et al. (2020a,2020b) as a function of the activity of the infected person, namely in a
resting position, in a static standing position or doing light exercise.

4.4.2. Infection risk model with face masks
The infection probability in the presence of face masks can thus be theoretically modelled via Equation
(17), by starting from Equation (14) with an additional factor 𝜉 𝑓 𝑚 ∈ [0, 1] modelling the efficiency of
the face-mask use. Thus, 𝜉 𝑓 𝑚 can range between the ideal 0 level (i.e. no additional protection through
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Table 3. Statistics on the user adoption rates of the launched contact-tracing apps per country.

Name of app

Target
geographical

region
Month of launch

(in 2020)

Approximate adoption rate
𝑃𝑢 , in target region, as of

February 2021

Apturi Covid Latvia May N/A
Corona-Warn-App Germany June 22%
CovidTracker Ireland July 26%
Immuni Italy June 14·2%
Koronavilkku Finland September 40%
NHS Covid19 United Kingdom (UK) September 31·9%
ProtectScotland Scotland/UK September 18·5%
TousAntiCovid France October (relaunched) 14·9%
SwissCovid Switzerland May 18·9%
TraceTogether Singapore March 20%

the use of face masks) to 1 level (i.e. perfect protection ensured)

𝑃𝑖 = (1 − 𝜉 𝑓 𝑚)
(
1 − exp

(
𝐼𝑅 +

∫ 𝑇

0
𝜖 (𝑡) d𝑡

))
. (17)

According to Liang et al. (2020) and based on a meta-analysis of 21 studies, 𝜉 𝑓 𝑚 was found to range
between 0·2 and 0·53, according to the type of face mask (e.g. surgical, FFP2, etc.), location (Western
countries versus Eastern countries), scenario (healthcare versus non-healthcare workers) and face-mask
adoption rate. Epidemiological mathematical modelling by Eikenberry et al. (2020) predicted a 𝜉 𝑓 𝑚

between 0·02 and 0·65 with moderately effective face masks and assuming up to 80% adoption of face
masks within a population.

4.5. Modelling the user adoption rates

The user adoption rate 𝑃𝑢 may depend on several parameters, including the perception of trustworthiness
of the technology, the popularity of and adoption within the circle of social networks, the users’ digital
and technological literacy and awareness, communication, and the transparency of the technology in
terms of privacy, data management, authorities and access. A full list of the adopted applications
worldwide may be found online (Tableau Public, 2020). Table 3 reflects the situation in February 2021
of ten selected contact-tracing apps worldwide, as examples of user adoption rates (implemented or
forecast) since their launch on the market. We have calculated user adoption rates in relation to the
whole population. However, some research shows that the adoption rate percentage could be estimated
for specific population groups, such as tech-savvy or particular age categories.

In order to assess the popularity of the apps among users, we selected five apps/countries and
compared their download rates – as number of users expressed in millions (mln), as seen in Figure 5
– on Google Play: SwissCovid (Switzerland), Koronavilkku (Finland), Immuni (Italy), NHS Covid19
(United Kingdom) and Corona-Warn-App (Germany). The data as of September 2020 are published by
Martin et al. (2020), and the data as of January 2021 are available, according to the authors’ searches.
The values available on Google Play are only available as intervals (e.g. between 1 and 5 mln users), and
not in absolute values. In addition, a parameter such as adoption rate depends entirely on such factors
as the population level in the country and the number of active users (not only those who download
an app). These relationships will be examined in more detail in Section 6.3, but, due to the different
methods of how a user adoption probability can be computed, an exact comparison of the results in
Figure 12 (Section 6.3) with those shown in Figure 5 here is hard to make.
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Figure 5. Statistics that indicate ranges on the app downloads, Google Play (in mln).

Formulae to forecast the user adoption rates in the near future are hard to find in the current literature
due to the multi-fold factors that may influence user adoption, such as governmental recommendations,
the cost of an application (including the additional equipment cost if certain devices only support an
app), the user trust in the service provider of a specific application, etc.

However, research on the minimum needed user adoption rates can be found. For example, in the
study by Lambert (2020), a mathematical model was proposed to model the minimum adoption rate of
a digital contact-tracing app necessary to curb an infection with epidemic reproduction number 𝑅0, in
such a way that 𝑅0 is brought below 1 after a certain period of using of the digital contact-tracing app
by the population.

Let us denote by 𝑃𝑢min this minimum user adoption rate as per the Lambert (2020) model. It is
assumed by Lambert (2020) that, if 𝑅0 < 1, the epidemic curbs down (and disappears in time), by itself,
without any additional digital contact-tracing methods. However, when the initial 𝑅0 ≥ 1, the 𝑃𝑢min

needed to curb the epidemic through a digital contact-tracing app was derived as

𝑃𝑢min =

𝑅0 − 1 +
√
(𝑅0 − 1)

(
𝑅0

(
1 + 4

𝑓𝑐 (1 − 𝑓𝑎)𝑅𝑖

)
− 1

)
2𝑅0

, (18)

where 𝑓𝑎 is the fraction of asymptomatic persons among the considered population, 𝑅𝑖 is the average
number of secondary infections from symptomatic persons (given in number of persons) and 𝑓𝑐 is the
probability that a user cooperates and obeys the prevention orders, e.g. by following the recommended
self-quarantine. Numerical examples of this minimum user adoption rate are further given in Section 6.

Forecasting models of user adoption rates of digital contact-tracing apps are still hard to find in the
current literature. However, various diffusion models in the literature have been able to offer dynamic
models of user adoption rates of various technologies (Orbach, 2016; Kapur et al., 2019; Liu et al.,
2018). One of the most used technology-adoption diffusion models is the Bass model, according to
Orbach (2016) and Kapur et al. (2019), describing the user adoption rate 𝑃𝑢 in time as

𝑃𝑢 (𝑡𝑚) = 1 − e−(𝑝+𝑞)𝑡𝑚
1 + (𝑞/𝑝)e−(𝑝+𝑞)𝑡𝑚 , (19)

where 𝑡𝑚 is the time expressed in months, and 𝑝 and 𝑞 are two parameters of the model, defined as the
fraction of early adopters 𝑝 within a population, and the fraction of imitators or followers 𝑞 within a
population. Clearly, 𝑝 + 𝑞 ≤ 1, since some additional fraction 1 − (𝑝 + 𝑞) of the population can belong
to another category of ‘indifferent adopters’. The meaning of an ‘early adopter’ in the above model is a
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person that adopts a new technology or software product very fast, and is not influenced by the number
of persons that have already adopted such a product. An ‘imitator’ or ‘follower’ is a person that follows
the trends and will adopt such technology only after such product/technology has been adopted by a
high enough number of other persons, e.g. within their own circle of friends, family, colleagues, or
social circle, etc.

In Section 6 (see Figure 12), a few examples will be given with varying 𝑝 and 𝑞 parameters that
currently match the data from Table 3. While the Bass model is far from perfect in the context of a
digital contact-tracing app, as it assumes that, once a technology or a product is adopted, it will remain
on the market and there will be no drops in its usage, we believe that it can fairly predict short-term user
adoption rates.

5. Measurement-based results for BLE RSS modelling

The following section provides an overview of RSS signal results by modelling the relation of the
misdetection probability and the distance extracted from available measurements (the considered
threshold for our assumptions stands at 2 m).

5.1. BLE calibration errors

Different mobile devices may report varying RSS ranges, according to Ma et al. (2017) and OpenTrace
Calibration (2020), leading to errors if no calibration is performed. To perform calibration, offline
measurements from various devices typically need to be collected beforehand at constant distances
between transmitter and receiver. An open dataset for such calibration purposes was provided by
OpenTrace Calibration (2020), based on measurements performed on 20 different Android and iPhone
devices with 2 m distance between transmitter and receiver and BLE signals. Our analysis of the data by
OpenTrace Calibration (2020) shows that the RSS mean over the considered devices at 2 m is −60·43
dBm, and its standard deviation over the considered devices is 5·40 dB. This means that, in the absence
of prior information about the device model and its calibrating parameters, the noise standard deviation
of the path-loss modelling can increase by up to 5·40 dB.

5.2. Example of a BLE path-loss model derived from measurements

Figure 6 shows an example of RSS fluctuations with distance, based on the BLE measurements done by
Lohan et al. (2015) inside a four-floor university building that corresponds to model M4 from Table 1.
The purple dots in Figure 6 show the instantaneous measurements, while the continuous blue line
represents the average RSS based on the Gaussian single-slope model, and the shaded area stands for
the 1𝜎 value. It should be recalled that, in a contact-tracing app, the measured instantaneous RSS is
averaged over several minutes (e.g. the exposure duration is set to 15 min typically). The averaged RSS
over the exposure duration will converge to the average RSS value, even if instantaneous values have
a wide spread, as seen in Figure 6. For clarity, we also provide the RSS 3𝜎 values as dashed lines in
Figure 6.

5.3. Misdetection probabilities versus the safety distance threshold

Figure 7 illustrates the misdetection probabilities 𝑃𝑚𝑑 versus the chosen threshold distance 𝑑𝑡ℎ for six
RSS channel models, namely M1–M6 from Table 1. Two fixed false-alarm levels (𝑃 𝑓 𝑎 = 10−3 and
𝑃 𝑓 𝑎 = 10−2) were used to compute the RSS threshold corresponding to a 𝑑𝑡ℎ safety distance. Users
were assumed to be uniformly distributed within a circle of maximum radius of 1 km, with a granularity
of 0·05 m. Results were obtained based on the theoretical models in Equations (9) and (10).

According to Figure 7, the RSS-based distance estimates can give misdetections with probabilities
between 𝑃𝑚𝑑 = 8·7 × 10−6 (model M1) and 𝑃𝑚𝑑 = 0·16 (model M5) for a typical 𝑑𝑡ℎ = 2 m distance,
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Figure 6. RSS versus distance according to the M4 indoor path-loss model from Table 1 with an example
of 𝑑𝑡ℎ = 2 m safety distance threshold.

Figure 7. Misdetection probability versus threshold distance 𝑑𝑡ℎ for six BLE path-loss models shown
in Table 1 and derived from measurements.

depending on the wireless channel propagation. Most of the considered models from Table 1 have
misdetection probabilities larger than 10−2 at 2 m threshold distance. As expected, the higher the RSS
fluctuations are, i.e. the higher the shadowing variance 𝜎2

𝜂 of the wireless channel is, the higher the
misdetection probabilities are. As seen in Figure 7, increasing the safety distance threshold 𝑑𝑡ℎ also
increases the mid-detection probabilities. It means, for example, that, if the safety distance below which
users can become infected if in contact with an infectious person increases to 8 m, as shown for example
in some recent studies by Bourouiba (2020), the digital contact-tracing app will have an increased
number of misdetections and therefore lower effectiveness.
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Figure 8. Large shopping mall. Left: Average infection risk 𝑃𝑖 versus exposure times, 𝐴𝑒𝑟 = 9·6/h
(mechanical ventilation). Right: Average infection risk versus exposure times, 𝐴𝑒𝑟 = 0·2/h (natural
ventilation).

Figure 9. Small lecture room. Left: Average infection risk 𝑃𝑖 versus exposure times, 𝐴𝑒𝑟 = 9·6/h
(mechanical ventilation). Right: Average infection risk versus exposure times, 𝐴𝑒𝑟 = 0·2/h (natural
ventilation).

6. Simulation-based results based on our multidimensional modelling

The following section introduces the examples of the infection risk, software reliability and user adoption
probabilities based on current rates. This section discusses the effectiveness of digital contact-tracing
apps based on the two scenarios of wearing and not wearing face masks.

6.1. Illustrative examples of the infection risk

Figures 8 and 9 follow the model in Equation (14) and show the probability to become infected versus
the exposure duration, when in the vicinity of one or two infectious persons, in two scenarios: a large
shopping mall/centre, of 100 × 100 m2 surface and 6 m height; and a small lecture room, of 8 × 10 m2

surface and 5 m height. For illustrative purposes, a scenario with manual ventilation and an air exchange
rate 𝐴𝑒𝑟 = 9·6/h is shown on the left, and a scenario with natural ventilation and an air exchange rate
𝐴𝑒𝑟 = 0·2/h is shown on the right (𝐴𝑒𝑟 rates taken from Buonanno et al. (2020a)). Both silent and
speaking cases of the infectious persons are considered, according to Table 2. The assumed viral load
𝑐𝑣 was moderate (108 number of RNA viral copies per ml of blood, according to Buonanno et al.
(2020a)). An inhalation rate 𝐼𝑅 = 0·54 h−1 corresponding to a standing person was used according to
values reported by Buonanno et al. (2020b).
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Figure 10. Software reliability 𝑃𝑠𝑤 versus the exposure time with the app being active, assuming two
software models: a high-reliability software (type 1, with a low rate of failures and fast failure fixing
rates) and a lower-reliability software (type 2, with a higher rate of failures and lower failure fixing
rates than type 1).

It is to be remarked that the duration of exposure in the infection risk model of Equation (14)
represents the amount of time spent in the same space (e.g. small office room or large shopping mall)
with an infectious person, and it does not take into account the safety distance 𝑑𝑡ℎ in the model. One
can extrapolate that the model relying on Equation (14) and resulting in Figures 8 and 9 is thus more
accurate for small-scale spaces than for large-scale spaces.

As seen in Figures 8 and 9, the infection risk increases as the exposure duration increases, when the
number of infectious persons sharing the same physical space increases and when the size of the shared
room decreases.

According to the adopted infection risk model given in Equation (14) as little as a few minutes in
the vicinity of two infectious persons simultaneously speaking loudly in a small room can bring on a
100% infection probability, while a 15 min exposure to two infectious persons simultaneously speaking
loudly in a large shopping small with good manual ventilation brings in only about 55·18% infection
risk. Owing to the fact that parameters such as the immunity system aspects were not parametrized in
Equation (14), one can infer that estimated infection probabilities, as shown in Figures 8 and 9 are upper
bounds or worst-case scenarios rather than average probabilities for assumptions from the scope of our
study on multidimensional modelling on how to tackle the spread of the disease more efficiently.

6.2. Illustrative example of the reliability of mobile contact-tracing apps

In this subsection, we discuss the circumstances that might affect the reliability of mobile contact-tracing
apps and model this metric via high-reliability software and lower-reliability software assumptions and
illustrate these via two examples. The results are shown in Figure 10. Clearly, the higher-reliability
software (i.e. low rate of failures and fast failure fixing rates) has much higher 𝑃𝑠𝑤 (close to 100% than
the lower-reliability software (i.e. with a high rate of failures and low failure fixing rates). The ratio
between the rate of failures and the rate of fixing them thus influences the overall reliability 𝑃𝑠𝑤 of the
app. Finding realistic values for the rate of failures and failure fixing rate is not a trivial task and may
depend on each software provider, as well as on each mobile device.
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Figure 11. Minimum required user adoption rate for an effective digital contact-tracing app, according
to the model by Lambert (2020).

6.3. Illustrative examples of user adoption probabilities

Figure 11 shows the minimum required user adoption probability for a digital contact-tracing app,
according to the model by Lambert (2020) and Equation (18). We assumed a 99% user cooperation
probability (i.e. 𝑓𝑐 = 0·99), two levels of the percentage of asymptomatics within a population (namely
20% and 50%), and two levels of the average number of secondary infections from symptomatics
(namely 𝑅𝑖 = 1 and 𝑅𝑖 = 4).

According to Figure 11, a higher user adoption threshold is clearly needed when 𝑅𝑖 decreases, when
𝑓𝑎 increases and when 𝑅0 increases. It is to be recalled that the 𝑃𝑢min threshold was optimised with
respect to no action relying on digital contact tracing; therefore, if the number of secondary infections
𝑅𝑖 is small, the utility of a contact-tracing app comes only from wide adoption. Otherwise, there would
not be many benefits over no digital action. Similarly, when the reproduction rate 𝑅0 increases, a higher
user adoption rate is needed to curb the curve of infections. Figure 11 also shows that it is impossible to
give an absolute number for the needed minimal user adoption rate: under certain assumptions, even a
20% user adoption rate can bring in effective benefits compared to a no-digital-action approach; while
under another set of assumptions (such as high 𝑅0, small 𝑅𝑖 and high 𝑓𝑎), not even an 80% adoption
rate may prove sufficient.

Figure 12 shows the prediction of user adoption rates in time (expressed in months counted from the
launch of an app), according to the Bass diffusion model, according to Orbach (2016) and Kapur et al.
(2019). The realised user adoption rates, as reported in Table 3, are also plotted via the corresponding
country flag for comparison purposes.

The percentages of early adopters and followers within a population shown in Figure 12 were drawn
as illustrative examples to match some of the current user adoption figures. For example, assuming 1%
early adopters and 10% followers within a population (i.e. with the remaining 89% being indifferent to
that particular app), one would get the lower-bound curve in Figure 12, which would match the current
adoption rate in Italy and Switzerland (see Table 3). Also, assuming 10% early adopters and 20%
followers within a population, one would get the upper-bound curve in Figure 12, which would match
the current adoption rate in Finland (see Table 3). The Bass diffusion model has its limitations when
one uses it in the context of contact-tracing apps, as it assumes a continuous increase of the adoption
rate in time and it does not model the end of a pandemic (and thus the end of the app’s usefulness), or
the users stopping the use of an app. Nevertheless, we believe that the Bass model is valuable to offer
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Figure 12. The variation of the contact-tracing apps user adoption rates per country (status as of
February 2021) and the comparison with the Bass diffusion model under various parametric assumptions
regarding the percentages of early adopters and followers within a population.

a coarse prediction of the short-term behaviour (e.g. within a few months to one year) regarding the
adoption rates of a digital contact-tracing app.

It is to be noted that, according to Briers et al. (2021) and based on the recently released data on the
UK contact-tracing app adoption rate, their analysis showed that for every 1% increase in the number
of users of the app, the number of infections can be reduced by 0·8% (from modelling) and by 2·3%
(from statistical analysis). Our results based on the presented model (and shown later in Figures 13 and
14) predict that, on average over all possible infection probabilities, or every 1% increase in the number
of users of the app, the number of infections can be reduced by 0·55% (i.e. slightly more pessimistic
estimate than the one discussed in Briers et al. (2021)). If infection probabilities 𝑃𝑖 are assumed to be
above 60%, our model in Equation (1) also predicts a decrease of 0·8% in the infections for every 1%
increase in the number of users of the app.

6.4. Illustrative examples of the effectiveness of digital contact-tracing apps

Figure 13 shows the effectiveness metric 𝑃𝑒 in percentages, according to various levels of infectiousness
probability 𝑃𝑖 and user adoption rates 𝑃𝑢 at two levels of a misdetection probabilities (a high one 0·166
in the left-hand plot and a very low one of 8·7 × 10−6 in the right-hand plot). Colours towards the
red end of the spectrum show high effectiveness, while colours towards the blue end of the spectrum
show low effectiveness compared to cases without digital contact-tracing solutions in use. One of the
take-away messages from Figure 13 is that, while digital contact tracing is a promising disease control
method and can significantly help in disease prevention under some assumptions (such as large 𝑃𝑖 and
large 𝑃𝑢), it is by no means able to mitigate the spread of the disease in a stand-alone mode completely
and needs to be complemented by other preventive measures, such as physical distancing, good indoor
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Figure 13. The effectiveness metric for a digital contact-tracing app at various 𝑃𝑖 and 𝑃𝑢 levels.
Left: High misdetection probability 𝑃𝑚𝑑 (e.g. corresponding to model M5 of Figure 7). Right: Low
misdetection probability 𝑃𝑚𝑑 (e.g. corresponding to model M1 of Figure 7).

Figure 14. The effectiveness metric for a digital contact-tracing app under the assumption of 15 min
exposure to two infectious persons in a large shopping mall.

ventilation, proper use of face masks, good hand hygiene, regular surface cleaning, fast testing and
isolation procedures, etc.

Figure 14 provides examples of effectiveness metrics for a digital contact-tracing app versus its user
adoption rate for low and high misdetection probabilities of the proximity detection algorithm. As seen
in Figure 14, with a low user adoption rate of the digital app, there is very little difference between low-
and high-misdetection-probability cases. With higher 𝑃𝑢 rates, a digital app with a very good proximity
detection algorithm (i.e. low 𝑃𝑚𝑑) can be 5–8% more effective than a digital app with coarse proximity
detection estimates.

Table 4 specifies parameters used for modelling the two scenarios and provides the comparison for
two different premises with multiple epidemiological assumptions.

Finally, Figure 15 outlines the holistic model and shows examples of a digital contact-tracing app
under two scenarios, with parameters listed in Table 4, and assuming both use of face masks and no use
of face masks within the population. When face masks are used, a linear dependence on the user adoption
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Table 4. Estimation parameters for considered scenarios.

Parameter Scenario 1 Scenario 2

Voice type Silent/breathing Whispered counting
Activity type Standing Standing
Face-mask efficiency factor, 𝜉 𝑓 𝑚 0·4 0·4
Indoor space type Shopping mall Lecture room
Indoor space volume (m3) 30,000 500
Number of infected persons 4 1
Exposure duration (min) 15 15
Fraction of adopters, 𝑝 0·2 0·2
Fraction of followers, 𝑞 0·6 0·6
Viral load, 𝑐𝑣 (RNA copies/ml) 1010 108

Ventilation rate, 𝐴𝑒𝑟 6 9
Rate of appearance of software fault, 𝜄 0·01 0·02
Probability of not fixing software fault, 𝜅 0·01 0·02
Misdetection probability, 𝑃𝑚𝑑 10−3 10−3

rate 𝑃𝑢 is assumed, with a face-mask efficiency coefficient 𝜉 𝑓 𝑚 (0·2) = 2% at up to 20% user adoption
rate and a face-mask efficiency coefficient 𝜉 𝑓 𝑚 (1) = 65% at 100% user adoption rate (following the
model in Equation (17) and the parameters described by Eikenberry et al. (2020)). The user adoption
rate 𝑃𝑢 is assumed to increase in time, according to the Bass model from Equation (19), and the
cloud and software reliability factors are also time-dependent. The infectious rate is computed based
on parameters shown in Table 4, assuming 15 min exposures, either in a large shopping mall with four
infectious persons or in a small lecture room with one infectious person. The maximum levels of 𝑃𝑒

are highly dependent on the assumed scenarios, but the shape of the four curves shown in Figure 15
remains the same for all scenarios. Basically, the trend is that 𝑃𝑒 is constantly increasing until it reaches
a saturation region, where 100% users are using the digital contact-tracing app. When face masks are
used within a population, the infectious rate 𝑃𝑖 decreases, according to the model in Equation (17), and
thus the effectiveness rate also decreases compared to the case where no face masks are in use.

According to University of Zurich (2021), the effectiveness of SwissCovid, estimated as the number
of correctly notified persons that were in contact with an infectious person and additionally were tested
positive after an application alert, was computed as one in ten, namely around 10%, at seven months
of the post-SwissCovid app launch. This estimate of approximately 10% effectiveness also matches our
current models, e.g. as clearly seen in the lower curve of Figure 15 and blue areas of Figure 13.

7. A glance towards future perspectives and open challenges

For the purpose of illustrating the multidimensional dependences between the different design parameters
in a digital contact-tracing app, we provide Figure 16, presented as a talent–chord diagram. We consider
the following characteristics to be interconnected and influenced by each other.

7.1. User privacy

As discussed in the survey by Shubina et al. (2020a), there are two decision-making approaches that allow
digital contact tracing to be performed. Generally, the more the tasks are distributed within the system
(i.e. no node having full information), the more privacy-preserving a solution is. Therefore, intuitively
speaking, decentralised approaches should be able to provide better protection of the user’s privacy
than centralised approaches. However, to the best of the authors’ knowledge, there are currently no
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Figure 15. Predicted effectiveness of digital contact-tracing apps in time, under the two scenarios in
Table 4 and derived from measurements.

Figure 16. Design challenges and their interdependence towards wide adoption of a digital contact-
tracing app.

comprehensive studies available on whether centralised or decentralised approaches for contact tracing
can preserve privacy better, and both approaches have similar vulnerabilities, as stated by Vaudenay
(2020). According to Martin et al. (2020), each application has its own privacy policy on data processing,
and this information is provided on the webpages of digital contact-tracing apps. Gvili (2020) provided
a thorough security analysis that could shed some light on privacy tradeoffs in the GAEN approach.
The study by Wen et al. (2020) evaluated privacy levels of different contact-tracing apps. The analysis of
the extracted BLE property data with their semantics shows that several apps store invariable identifiers
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that allow tracing paths of a specific user. Therefore, one could conclude that privacy issues affect the
user adoption rate of the application directly and indirectly.

7.2. Power consumption

Some mobile device features, such as the display components, processor and network connectivity, can be
considered power-hungry, depending on the frequency and the device in use. In scenarios where citizens
use a digital contact-tracing app continuously, power consumption appears to be a serious concern.
Power consumption on the user’s device is highly correlated with the frequency of scanning or scanning
intervals. Leith and Farrell (2020a) showed that a widely considered GAEN protocol implementation
only scans the nearby beacons every 3·5–5 min as a tradeoff between accuracy and power consumption.
However, such a large scanning interval may be insufficient to attain accurate detection probabilities
and low false-alarm rates. Therefore, finding the appropriate balance between battery consumption and
frequency of measurements remains a critical research subject. Moreover, as per Ahmed et al. (2020),
data fusion for improving proximity accuracy, technologies such as BLE, UWB, and other sensor data
potentially available on smartphones, e.g. GPS, gyroscopes, accelerometers and magnetometers, could
increase battery consumption even more on the user’s device.

7.3. Usability and user experience

Usability as a characteristic includes ease of use and user trust in the app. The study by Simko et al.
(2020) focuses on investigating the values and concerns of society regarding apps for digital contact
tracing. The survey results indicated that at least 72% of participants would probably download an app
which would protect their data and would not disclose such data to third parties.

7.4. Active geo-tracking engine

Continuously active positioning techniques on mobile devices might possibly cause battery drainage,
depending on the technical characteristics of the device. However, this feature is an essential component
for enabling location-based services, according to Basiri et al. (2017). There are a number of wireless
technologies that can be used for positioning, such as Wi-Fi, BLE, RFID and UWB, among others.

7.5. User equipment costs

The devices, applications and connectivity might vary significantly on different devices. Moreover, not
all users possess mobile phones with a stable connection to the cloud. Therefore, in order to perform
efficient digital contact tracing, users might need to have a device or a tag provided by third parties.

7.6. Technological reliability

The accuracy of estimates is highly dependent on cloud reliability and the exposure notification system’s
reliability. As seen so far, the use of BLE for social distancing has gained a great deal of attention in the
context of digital contact-tracing apps; however, there remain several technical limitations that need to
be addressed in order to increase the reliability and accuracy of proximity sensing for such a sensitive
application, i.e. social distancing at the time of COVID-19. According to findings by Basiri (2020),
particular limitations still to overcome include the following:

(i) Sensitivity and high noise of BLE signals. Owing to their design properties, RSS is sensitive to
wireless signal fluctuations, as for any RSS-based technology, due to the body and hand-grip
orientation, presence of obstacles in the signal path, and other channel and environment dynamics.

(ii) High false-positive cases in the detection of transmission. Obstacles, such as thin obstructions,
may not significantly affect RSS to claim a high detection rate. Some barriers can stop the spread
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of the virus even though the distance is below the 2 m threshold, known as an epidemically safe
distance. Nevertheless, to achieve high efficiency, a digital contact-tracing solution should perform
obstacle detection: whether another person or a wall appears to be between two devices, within
different proximity distances, such as 1 or 2 or 3 m.

Research groups from many countries are working on developing software based on existing examples.
In particular, DP-3T serves as a framework for an entirely scalable application. There is currently no
single solution for tackling the spread of COVID-19, for several reasons (the number of active users,
privacy issues, energy consumption constraints, among others), and the restrictions mentioned earlier in
the simulation. Another vital characteristic of the discussion is the method of obtaining users’ locations.
In centralised approaches, multiple third parties are involved. Moreover, some applications use precise
GPS coordinates, which raises significant ethical concerns.

The vast majority of the existing digital contact-tracing solutions have confirmed their effectiveness
as a complementary step along with other precautionary activities that aim to tackle the spread of the
virus. As can be seen, scientists may apply their efforts worldwide to solve a multidimensional issue to
obtain better results in contact tracing, control and reduction of the spread of the contagious virus to
stop the ongoing pandemic.

8. Conclusions

This work has evaluated digital contact-tracing effectiveness, used on mobile devices for tackling the
spread of COVID-19, by assessing several aspects. By estimating the maximum prevention probability,
we have obtained an upper bound of the effectiveness of a digital contact-tracing solution. This effec-
tiveness parameter conveys the extent to which a digital contact-tracing app could help compared with
the opposite situation. Particular factors, such as the type of wireless technology used for identifying
the proximity between users, the availability of cloud connectivity and exposure duration, influence the
efficacy of digital contact-tracing solutions.

An open research direction lies within the study of different proximity-detection approaches based
on positioning techniques other than BLE, such as Wi-Fi, UWB or hybrid approaches, as this would
enable better coverage and obtain better effects in digital contact tracing.

Besides the above-mentioned issues, ethical and privacy-related features play a vital role in the broad
implementation of contact-tracing apps; therefore, these could be potential directions for future research.
Multiple ethical constraints are currently related to the type of approaches chosen for contact tracing,
including other medical and political matters.
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A. APPENDIX: Overview of digital contact-tracing apps

This appendix aims to provide a brief outline of existing technological solutions developed for tackling
the spread of COVID-19 worldwide since the beginning of 2020. We conducted the comparison among
the selected 11 contact-tracing apps and protocols in Table A1). The main characteristics are the IoT
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connectivity type, proximity detection methods and the standard of approach. Furthermore, we analysed
qualitative preferences concerning their energy efficiency, accuracy and privacy levels, according to
literature reports. The current prevalence of these 11 apps in technical repositories and their variability
in the contact-tracing methods deployed is also considered. To ensure that a broad review of reasonable
digital solutions is presented, we note that nowadays there are at least 70 mobile applications in at least
50 countries worldwide (Tableau Public, 2020), in addition to the applications overviewed in Table A1.
At the first step, the vast majority of mobile apps for contact tracing approved by governments had
proprietary features and relied on centralised data processing. However, with technological advances,
most solutions rely on the GAEN framework, which assumes a decentralised approach for data collection
and processing. The most popular technology is BLE and RSS measurements, which claim to be a
practical choice due to their wide spread.

The solutions are presented in Tables A1 and A2. The first one in Table A1, namely the Decentralised
Privacy-Preserving Proximity Tracing or DP-3T (Troncoso et al., 2020), is a BLE-based decentralised
protocol for contact tracing, currently available on the Swiss market and in a few other EU countries.
The DP-3T protocol also served as an example for the Google/Apple (GAEN) protocol, and it contends
to be one of the protocols preserving best the user’s privacy when a contact-tracing app is used. Here, the
proximity estimates between two devices rely on RSS; therefore, they are susceptible to wireless signal
fluctuations, as any RSS-based technology, due to the body and hand-grip orientation, the presence of
obstacles in the signal path, and other channel and environment dynamics.

The TCN Protocol (TCN Protocol, 2020) is a solution used for proximity detection, also based on
BLE RSS distance estimates to detect nearby users.

Another RSS-based solution, this time with a centralised server storing encrypted user information
and computing a score matching calculation to detect if users have possibly been infected by a close
COVID-19 positive contact, is the EPIC protocol, as described by Altuwaiyan et al. (2018).

The Google/Apple (GAEN) protocol, as discussed by Michael and Abbas (2020), also relies on BLE
RSS-based distance measurements between devices and a decentralised approach similar to DP-3T. No
location information needs to be stored about the users; however, Google location services activate
both BLE and GPS engines. The main difference with DP-3T is that the DP-3T is a fully open-source
protocol, while some parts in the Google/Apple app will remain proprietary.

The Pan-European Privacy-Preserving protocol, PEPP-PT (PEPP-PT, 2020), is a centralised
proximity-tracing application that relies on measuring BLE radio signals. According to the specification,
the protocol logs the beacons’ encrypted history in proximity in scenarios where two devices are located
closer than the ‘safe’ distance for a reasonable time. The user devices store each other’s anonymous
identifiers exclusively. Consequently, no sensitive personal information, such as geographic location, is
collected. More past events are deleted after some time to follow the data minimisation principle.

Arguing that there is no fully decentralised approach available today, Cunche et al. (2020) proposed
a ROBust and privacy-presERving proximity Tracing (ROBERT) protocol, which is built on federated
server infrastructure and uses temporary anonymous identifiers.

While Table A1 focused on more established and already deployed protocols and apps, Table A2
summarises some more experimental solutions, in order to offer a broad view of potential technologies
and solutions for contact tracing.

The MIT (2020) SafePath application from Table A2 is another open-source protocol with a decen-
tralised decision-making process, which combines BLE RSS-based distance estimates between users
with GPS-based own location trails. The fact that user GPS locations are also stored on their own mobile
devices and sent to the cloud server in case infection occurs makes this solution less private than the
DP-3T approach.

The solution described by Nguyen et al. (2020c) relies on multiple sensors available on a smartphone,
such as BLE, Wi-Fi, magnetometers and sound sensors, and, through multi-sensor hybridisation, it could
offer high protection against the wireless signal variability at the expense of a higher computational cost
of integrating heterogeneous measurements from multiple sensors.
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Table A1. Qualitative comparison of existing COVID-19 contact-tracing protocols in use.

Protocol/ Wireless Proximity Detection Energy Main advantages (A)
reference technology detection Architecture accuracy efficiency Privacy Specifics (S) App examples (E)

DP-3T/Troncoso
et al. (2020)

BLE RSS DC A: Privacy-by-design preserved; open-source protocol;
no user location is stored in any parts of the tracing
chain. S: High variability of BLE RSS measurements
make precise distance estimates difficult; to fully
preserve privacy, it also requires manual and timely
user feedback. E: SwissCovid

TCN/TCN
Protocol
(2020)

BLE RSS DC A: A decentralised protocol that provides interoperability
to contact-tracing apps. S: Also high variability of
BLE RSS; claims to function without the healthcare
service provider involved. E: Covid Watch, CoEpi

EPIC/Altuwaiyan
et al. (2018)

BLE and
Wi-Fi

RSS C A: Encryption offers certain privacy protection to the
centralised approach; combined Wi-Fi/BLE decreases
the misdetection probability. S: Central server may be
prone to malevolent attacks; RSS results reported by
heterogeneous devices need to be calibrated.

GAEN/Michael
and Abbas
(2020)

BLE RSS DC A: Privacy-by-design preserved; might become a default
option; bigger market share than for other apps.
S: High variability of BLE RSS measurements make
precise distance estimates/exposure detection
estimates challenging. E: More than 20 apps already
deployed worldwide

PEPP-PT/PEPP-
PT (2020)

BLE RSS C A: Centralised solutions are more scalable than
decentralised ones. S: Lower privacy than in
decentralised approaches might hinder mass adoption.

ROBERT/Cunche
et al. (2020)

BLE RSS DC A: Open-source protocol, highly scalable. S: It has some
restrictions due to minimum requirements of the
operational system of the device. E: StopCovid
(France)
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Table A2. Qualitative comparison of existing COVID-19 contact-tracing solutions in incipient or research stage.

Application IoT Proximity Detection Energy Main advantages (A)
reference solution detection Architecture accuracy efficiency Privacy Specifics (S)

MIT
SafePaths/MIT
(2020)

BLE, GPS RSS, AOA and
TOA

DC A: Privacy-by-design; the use of GPS decreases the
misdetection and false-alarm probabilities. S: Privacy
might be adversely affected as some parties (e.g.
health unit) may get access to GPS tracks.

Research Work/
Nguyen et al.
(2020c)

BLE and Wi-Fi RSS, magnetic
field/sound
intensities

C A: May cope better with wireless signal variability than
BLE alone, as multiple sensors are hybridized. S: User
privacy hard to preserve; devices need to be equipped
with many sensors; high energy consumption.

MokoSmart/
MokoSmart
(2020)

BLE, LoRa RSS C A: Already tested with wearable devices; can provide
proximity alerts if the distance 𝑑𝑡ℎ is less than 2 m.
S: Centralised servers are prone to privacy breaches/
malevolent attacks.

LocalSense/Tsingoal/
Tsingoal
(2021)

UWB RTT C A: Very accurate distance estimates; channel variability
(such as shadowing) has low impact. S: Need for
additional infrastructure (e.g. UWB gateways);
low-to-medium energy efficiency.

TraceTogether/Abbas
and Michael
(2020)

BLE RSS C A: The app and physical tokens as parts of a systematic
approach are already adopted by the Singapore
government. S: Server robustness must be at the high
level.

C – centralised approach DC – decentralised approach

– low – medium
– high – very high
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MokoSmart (MokoSmart, 2020) is a wearable device developed by a Chinese company for COVID-19
contact tracing and integrates BLE and LoRa technologies in a centralised approach. Another well-
defined wireless connectivity approach is offered by the Tsingoal company (Tsingoal, 2021), through
their LocalSense system. The LocalSense approach is distinct from most other contact-tracing solutions
in being based on UWB and round-trip time (RTT) measurements. The enhanced accuracy of the
distance estimates between users is the principal advantage of such a system. Generally, UWB RTT
measurements are known to offer down to 0·1 m accuracy, particularly up to ten times more accuracy
than BLE RSS solutions. The main drawbacks are the requirement for embedded UWB chipsets (at the
user side), infrastructure and the potential privacy breaches due to centralised data storage.

TraceTogether is a different case of a proximity-tracing solution that relies on BLE signals (Abbas
and Michael, 2020). As a plausible limitation, this application should be running in the mobile phone
background continuously. This requirement might cause the battery drain of the device. Through
encrypting the user ID, anonymous identifiers are generated with a private key and are shared solely
with governmental-approved organisations.

Available COVID-19 digital contact-tracing solutions, applications and/or protocols can be charac-
terised with diverse metrics, among which the following three are very important in the authors’ opinion:
the detection accuracy at different levels of user-to-user proximity, energy efficiency and privacy. These
three performance metrics are compared qualitatively among the 11 solutions from Tables A1 and A2.

Typically, there is a tradeoff between the accuracy level (in relation to proximity detection) and the
level of achievable privacy (high accuracy levels can be typically achieved with a decreased user data
privacy and vice versa). Following this flow of thought, a pattern is shown regarding decentralised appli-
cations that typically fare better than centralised solutions in the context of privacy (due to distributed
data processing), but may be limited in terms of achievable accuracy bounds.

Cite this article: Shubina V, Ometov A, Basiri A, Lohan ES (2021). Effectiveness modelling of digital contact-tracing solutions for tackling the
COVID-19 pandemic. The Journal of Navigation 74: 4, 853–886. https://doi.org/10.1017/S0373463321000175
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