Transformations and Colorings of Groups

Yevhen Zelenyuk and Yuliya Zelenyuk

Abstract. Let *G* be a compact topological group and let $f: G \to G$ be a continuous transformation of *G*. Define $f^*: G \to G$ by $f^*(x) = f(x^{-1})x$ and let $\mu = \mu_G$ be Haar measure on *G*. Assume that $H = \text{Im } f^*$ is a subgroup of *G* and for every measurable $C \subseteq H$, $\mu_G((f^*)^{-1}(C)) = \mu_H(C)$. Then for every measurable $C \subseteq G$, there exist $S \subseteq C$ and $g \in G$ such that $f(Sg^{-1}) \subseteq Cg^{-1}$ and $\mu(S) \ge (\mu(C))^2$.

A subset *S* of a group *G* is called *symmetric* if there exists $g \in G$ such that $gS^{-1}g = S$. This notion was introduced in [6] and turned out to be fruitful enough, especially from the point of view of Ramsey theory (see [1, 2, 5]).

Let *G* be a compact topological group, let μ be Haar measure on *G*, and let $r \in \mathbb{N}$. Denote by $s_r(G)$ the least upper bound of real $\varepsilon > 0$ such that for every measurable *r*-coloring of *G*, there exists a monochrome symmetric subset $S \subseteq G$ with $\mu(S) \ge \varepsilon$. In [2] it was proved that if *G* is Abelian, then $s_r(G) \ge 1/r^2$. (For finite Abelian groups this inequality was proved earlier in [4].) Actually, it has been shown that for every measurable $C \subseteq G$, there exists a measurable symmetric $S \subseteq C$ with $\mu(S) \ge (\mu(C))^2$. The estimate $s_r(G) \ge 1/r^2$ is optimal. For example, for the circle group \mathbb{T} , $s_r(\mathbb{T}) = 1/r^2$. In the non-Abelian case the estimate fails: for the quaternion group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$, we have $s_2(Q) = 1/8 = 1/(2 \cdot 2^2)$. But this was the only known counter-example.

The aim of this note is to prove the following three theorems.

Given a group *G* and $f: G \to G$, define the dual mapping $f^*: G \to G$ by $f^*(x) = f(x^{-1})x$. Notice that $(f^*)^* = f$ and that if *G* is Abelian and *f* is an endomorphism, then f^* is also an endomorphism.

Theorem 1 Let G be a compact topological group and let $f: G \to G$ be a continuous transformation of G such that $H = \text{Im } f^*$ is a subgroup of G and for every measurable $C \subseteq H$, $\mu_G((f^*)^{-1}(C)) = \mu_H(C)$. Then for every measurable $C \subseteq G$, there exist $S \subseteq C$ and $g \in G$ such that $f(Sg^{-1}) \subseteq Cg^{-1}$ and $\mu(S) \ge (\mu(C))^2$.

The class of continuous transformations $f: G \to G$ satisfying the required condition in Theorem 1 is big enough. In the finite case, it consists of mappings dual to the mappings of the form $h: G \to G$ where H = Im h is a subgroup of G and $|h^{-1}(x)| = |G:H|$ for all $x \in H$. In the Abelian case, it contains all continuous endomorphisms of G, in particular, the inversion. In the last case, Theorem 1

Received by the editors June 3, 2005; revised October 31, 2005.

The authors acknowledge support received from The John Knopfmacher Centre for Applicable Analysis and Number Theory.

AMS subject classification: 05D10, 20D60, 22A10.

Keywords: compact topological group, continuous transformation, endomorphism, inversion, Ramsey theory.

[©]Canadian Mathematical Society 2007.

Transformations and Colorings of Groups

gives the result from [2] cited above. Indeed, $g(S \cup gS^{-1}g)^{-1}g = gS^{-1}g \cup S$ and $gS^{-1}g = (Sg^{-1})^{-1}g \subseteq C$.

Notice also that the inclusion $f(Sg^{-1}) \subseteq Cg^{-1}$ is equivalent to $f(Sg^{-1})g \subseteq C$, and if $f: G \to G$ is a homomorphism, $f(Sg^{-1})g = f(S)f^*(g)$.

The second theorem gives a general enough construction of compact topological groups *G* with $s_r(G) < 1/r^2$.

Theorem 2 Let A be a compact topological Abelian group, let f be the inversion of A, and let $G = A \\ > \\ \mathbb{C}_4$ be the semidirect product with respect to the homomorphism $\\ \mathbb{C}_4 \\ \ni \\ j \\ \mapsto \\ f^j \\ \in \\ \operatorname{Aut}(A)$. Then for every $r \\ \ge 2$, $1/2r^2 \\ \le s_r(G) \\ \le 1/2s_r(A)$. In particular, if $s_r(A) = 1/r^2$, then $s_r(G) = 1/2r^2$.

We do not know whether there is a compact topological group *G* with $s_r(G) < 1/2r^2$ for some *r*.

The third theorem is concerned with arbitrary infinite Abelian groups and their endomorphisms.

Theorem 3 Under the generalized continuum hypothesis, for every infinite Abelian group G, an endomorphism $f: G \to G$ and a finite coloring of G, there exist $S \subseteq G$ of arbitrarily large cardinality $\langle |G|$ and $g \in G$ such that $S \cup (f(S) + f^*(g))$ is monochrome.

The proof of Theorem 1 is based on the following lemma.

Lemma 4 Let G be a compact topological group and let $f: G \to G$ be a measurable transformation of G. Then for every measurable $C \subseteq G$ there exist $S \subseteq C$ and $g \in G$ such that $f(Sg^{-1}) \subseteq Cg^{-1}$ and

$$\mu(S) \geq \int_G \chi_C(x) \int_G \chi_C(f^*(y)x) \, dy dx,$$

where $\chi_C(x)$ is the characteristic function of $C \subseteq G$.

Proof For every $y \in G$, denote $S(y) = C \cap f^{-1}(Cy^{-1})y$. Then

$$S(y) \subseteq C$$
, $f(S(y)y^{-1}) \subseteq Cy^{-1}$, $\mu(S(y)) = \int_G \chi_{S(y)}(x) dx$.

It is easy to check that

$$\chi_{C\cap D}(x) = \chi_C(x)\chi_D(x), \quad \chi_{Cy}(x) = \chi_C(xy^{-1}), \quad \chi_{h^{-1}(C)}(x) = \chi_C(h(x)).$$

Consequently, $\chi_{S(y)}(x) = \chi_C(x)\chi_C(f(xy^{-1})y)$ and

$$\mu(S(y)) = \int_G \chi_C(x)\chi_C(f(xy^{-1})y)\,dx.$$

Integrating this equation, we obtain

$$\int_{G} \mu(S(y)) \, dy = \int_{G} \int_{G} \chi_{C}(x) \chi_{C}(f(xy^{-1})y) \, dxdy$$
$$= \int_{G} \chi_{C}(x) \int_{G} \chi_{C}(f(xy^{-1})y) \, dydx$$
$$= \int_{G} \chi_{C}(x) \int_{G} \chi_{C}(f(y^{-1})yx) \, dydx$$
$$= \int_{G} \chi_{C}(x) \int_{G} \chi_{C}(f^{*}(y)x) \, dydx.$$

By the theorem of the mean, there exists $g \in G$ such that

$$\mu(S(g)) \ge \int_G \chi_C(x) \int_G \chi_C(f^*(y)x) \, dy \, dx.$$

Put S = S(g).

Proof of Theorem 1 By Lemma 4, it suffices to prove that

$$\int_G \chi_C(x) \int_G \chi_C(x+y-f(y)) \, dy dx \ge (\mu(C))^2.$$

Denote H = Im(1 - f) and F = G/H. Then

$$\int_{G} \chi_{C}(x) \int_{G} \chi_{C}(x+y-f(y)) \, dy dx = \int_{G} \chi_{C}(x) \int_{H} \chi_{C}(x+z) \, dz dx$$

$$= \int_{F} \int_{H} \chi_{C}(x+y) \int_{H} \chi_{C}(x+y+z) \, dz dy d\dot{x}$$

$$= \int_{F} \int_{H} \chi_{C}(x+y) \int_{H} \chi_{C}(x+z) \, dz dy d\dot{x}$$

$$= \int_{F} \left(\int_{H} \chi_{C}(x+y) \, dy \right)^{2} d\dot{x}$$

$$\geq \left(\int_{F} \int_{H} \chi_{C}(x+y) \, dy d\dot{x} \right)^{2}$$

$$= \left(\int_{G} \chi_{C}(x) \, dx \right)^{2}$$

$$= (\mu(C))^{2}.$$

634

Proof of Theorem 2 Since *G* contains an Abelian subgroup $H = A \times \mathbb{C}_2$, the first inequality follows from Theorem 1. To prove the second one, calculate

$$(a, f^{i})(a, f^{j})^{-1}(a, f^{i}) = \begin{cases} (2a - x, f^{j}) & \text{if } i \equiv j \equiv 0 \mod (2), \\ (2a - x, f^{j}) & \text{if } i \equiv j \equiv 1 \mod (2), \\ (x, f^{j+2}) & \text{if } i \equiv 0 \mod (2) \text{ and } j \equiv 1 \mod (2), \\ (x, f^{j+2}) & \text{if } i \equiv 1 \mod (2) \text{ and } j \equiv 0 \mod (2) \end{cases}$$
$$= \begin{cases} (2a - x, f^{j}) & \text{if } i - j \equiv 0 \mod (2), \\ (x, f^{j+2}) & \text{if } i - j \equiv 1 \mod (2). \end{cases}$$

Given any *r*-coloring $\varphi \colon A \to \mathbb{Z}_r$, define the extension $\overline{\varphi} \colon G \to \mathbb{Z}_r$ by

$$\overline{\varphi}(x, f^j) = \begin{cases} \varphi(x) & \text{if } j = 0, 1, \\ \varphi(x) + 1 & \text{if } j = 2, 3. \end{cases}$$

Let $S \subseteq G$ be monochrome (with respect to $\overline{\varphi}$) and let $(a, f^i)S^{-1}(a, f^i) = S$. Then either $S \subseteq H$ or $S \subseteq G \setminus H$. If $S \subseteq G \setminus H$, then $S_H = S \cdot (0, f) \subseteq H$ is also monochrome and $(a, 0)S_H^{-1}(a, 0) = S_H$. So we may assume that $S \subseteq H$. Put $P = S \cap A$, $Q = S \cap (H \setminus A)$, $Q_A = Q \cdot (0, f^2)$. Then $P, Q_A \subseteq A$ are monochrome (with respect to φ) and symmetric with respect to (a, 0) and $\mu(S) = \mu(P) + \mu(Q_A) = \frac{1}{4}(\mu_A(P) + \mu_A(Q_A))$. It follows from this that $s_r(G) \leq \frac{1}{2}s_r(A)$.

Proof of Theorem 3 Consider the subgroup $H = \text{Im } f^*$ of G. If |H| < |G|, then $|\text{Ker } f^*| = |G|$, and since $\text{Ker } f^* = \{x \in G : f(x) = x\}$, there is nothing to prove. So we may assume that |H| = |G|. Enumerate H as $\{z_\alpha : \alpha < |G|\}$. Observe that $f(H) \subseteq H$. Indeed, f(f(-x) + x) = f(-f(x)) + f(x). Next, fix any $\kappa < |G|$. By the Erdős–Rado theorem (see [3]), there exists a $(\kappa + 1)$ -subsequence $(x_\lambda)_{\lambda < \kappa + 1}$ in $(z_\alpha)_{\alpha < |G|}$ such that $\{f(x_\lambda) + x_\mu : \lambda < \mu < \kappa + 1\}$ is monochrome. Put

$$S = \{f(x_0) + x_\lambda : 0 < \lambda < \kappa\}.$$

Then define $z \in H$ by the simultaneous equations

$$f(f(x_0) + x_{\lambda}) + z = f(x_{\lambda}) + x_{\kappa}, \quad 0 < \lambda < \kappa,$$

which are equivalent to the one equation $f^2(x_0)+z = x_{\kappa}$, and take any $g \in (f^*)^{-1}(z)$.

Notice that in the case $|G| \leq \omega_1$, Theorem 3 holds in ZFC.

References

[1] T. Banakh, and I. Protasov, *Symmetry and colorings: some results and open problems*. Voprosy Algebry 4 (17) (Gomel, 2001), 3–12.

Y. Zelenyuk and Y. Zelenyuk

- [2] T. Banakh, O. Verbitsky, and Y. Vorobets, *Ramsey-type problems for spaces with symmetries*. Izv. Math. **64**(2000), 1091–1127.
- [3] P. Erdős, A. Hajnal, A. Máté, and R. Rado, *Combinatorial set theory: partition relations for cardinals*. Studies in Logic and the Foundations of Mathematics 106. North-Holland Publishing, Amsterdam, 1984.
- [4] Y. Gryshko, Symmetric subsets and colorings of finite Abelian groups. Visn. Kiv. Univ. Ser. Fiz.-Mat. Nauki 1999, no. 3, 200–202 (Ukrainian).
- [5] _____, Monochrome symmetric subsets in 2-colorings of groups. Electron. J. Comb. 10(2003), no. 28.
- [6] I. Protasov, Asymmetrically resolvable abelian groups. Math. Notes 59(1996), no. 3-4, 336–338.

School of Mathematics University of the Witwatersrand Private Bag 3 Wits 2050 South Africa e-mail: Yehven.Zelenyuk@wits.ac.za grishko@i.com.ua

636