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Transformations and Colorings of Groups

Yevhen Zelenyuk and Yuliya Zelenyuk

Abstract. Let G be a compact topological group and let f : G → G be a continuous transformation

of G. Define f ∗ : G → G by f ∗(x) = f (x−1)x and let µ = µG be Haar measure on G. Assume

that H = Im f ∗ is a subgroup of G and for every measurable C ⊆ H, µG(( f ∗)−1(C)) = µH (C).

Then for every measurable C ⊆ G, there exist S ⊆ C and g ∈ G such that f (Sg−1) ⊆ Cg−1 and

µ(S) ≥ (µ(C))2 .

A subset S of a group G is called symmetric if there exists g ∈ G such that gS−1g =

S. This notion was introduced in [6] and turned out to be fruitful enough, especially

from the point of view of Ramsey theory (see [1, 2, 5]).

Let G be a compact topological group, let µ be Haar measure on G, and let r ∈ N.

Denote by sr(G) the least upper bound of real ε > 0 such that for every measurable

r-coloring of G, there exists a monochrome symmetric subset S ⊆ G with µ(S) ≥ ε.

In [2] it was proved that if G is Abelian, then sr(G) ≥ 1/r2. (For finite Abelian

groups this inequality was proved earlier in [4].) Actually, it has been shown that for

every measurable C ⊆ G, there exists a measurable symmetric S ⊆ C with µ(S) ≥
(µ(C))2. The estimate sr(G) ≥ 1/r2 is optimal. For example, for the circle group T,

sr(T) = 1/r2. In the non-Abelian case the estimate fails: for the quaternion group

Q = {±1,±i,± j,±k}, we have s2(Q) = 1/8 = 1/(2 · 22). But this was the only

known counter-example.

The aim of this note is to prove the following three theorems.

Given a group G and f : G → G, define the dual mapping f ∗ : G → G by f ∗(x) =

f (x−1)x. Notice that ( f ∗)∗ = f and that if G is Abelian and f is an endomorphism,

then f ∗ is also an endomorphism.

Theorem 1 Let G be a compact topological group and let f : G → G be a continuous

transformation of G such that H = Im f ∗ is a subgroup of G and for every measurable

C ⊆ H, µG(( f ∗)−1(C)) = µH(C). Then for every measurable C ⊆ G, there exist

S ⊆ C and g ∈ G such that f (Sg−1) ⊆ Cg−1 and µ(S) ≥ (µ(C))2.

The class of continuous transformations f : G → G satisfying the required con-

dition in Theorem 1 is big enough. In the finite case, it consists of mappings dual

to the mappings of the form h : G → G where H = Im h is a subgroup of G and

|h−1(x)| = |G : H| for all x ∈ H. In the Abelian case, it contains all continu-

ous endomorphisms of G, in particular, the inversion. In the last case, Theorem 1
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gives the result from [2] cited above. Indeed, g(S ∪ gS−1g)−1g = gS−1g ∪ S and

gS−1g = (Sg−1)−1g ⊆ C .

Notice also that the inclusion f (Sg−1) ⊆ Cg−1 is equivalent to f (Sg−1)g ⊆ C ,

and if f : G → G is a homomorphism, f (Sg−1)g = f (S) f ∗(g).

The second theorem gives a general enough construction of compact topological

groups G with sr(G) < 1/r2.

Theorem 2 Let A be a compact topological Abelian group, let f be the inversion of

A, and let G = A ⋋ C4 be the semidirect product with respect to the homomorphism

C4 ∋ j 7→ f j ∈ Aut(A). Then for every r ≥ 2, 1/2r2 ≤ sr(G) ≤ 1/2sr(A). In

particular, if sr(A) = 1/r2, then sr(G) = 1/2r2.

We do not know whether there is a compact topological group G with sr(G) <
1/2r2 for some r.

The third theorem is concerned with arbitrary infinite Abelian groups and their

endomorphisms.

Theorem 3 Under the generalized continuum hypothesis, for every infinite Abelian

group G, an endomorphism f : G → G and a finite coloring of G, there exist S ⊆
G of arbitrarily large cardinality < |G| and g ∈ G such that S ∪ ( f (S) + f ∗(g)) is

monochrome.

The proof of Theorem 1 is based on the following lemma.

Lemma 4 Let G be a compact topological group and let f : G → G be a measurable

transformation of G. Then for every measurable C ⊆ G there exist S ⊆ C and g ∈ G

such that f (Sg−1) ⊆ Cg−1 and

µ(S) ≥

∫

G

χC (x)

∫

G

χC ( f ∗(y)x) dydx,

where χC (x) is the characteristic function of C ⊆ G.

Proof For every y ∈ G, denote S(y) = C ∩ f −1(C y−1)y. Then

S(y) ⊆ C, f (S(y)y−1) ⊆ C y−1, µ(S(y)) =

∫

G

χS(y)(x) dx.

It is easy to check that

χC∩D(x) = χC (x)χD(x), χC y(x) = χC (xy−1), χh−1(C)(x) = χC (h(x)).

Consequently, χS(y)(x) = χC (x)χC ( f (xy−1)y) and

µ(S(y)) =

∫

G

χC (x)χC ( f (xy−1)y) dx.
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Integrating this equation, we obtain

∫

G

µ(S(y)) dy =

∫

G

∫

G

χC (x)χC ( f (xy−1)y) dxdy

=

∫

G

χC (x)

∫

G

χC ( f (xy−1)y) dydx

=

∫

G

χC (x)

∫

G

χC ( f (y−1)yx) dydx

=

∫

G

χC (x)

∫

G

χC ( f ∗(y)x) dydx.

By the theorem of the mean, there exists g ∈ G such that

µ(S(g)) ≥

∫

G

χC (x)

∫

G

χC ( f ∗(y)x) dydx.

Put S = S(g).

Proof of Theorem 1 By Lemma 4, it suffices to prove that

∫

G

χC (x)

∫

G

χC (x + y − f (y)) dydx ≥ (µ(C))2.

Denote H = Im(1 − f ) and F = G/H. Then

∫

G

χC (x)

∫

G

χC (x + y − f (y)) dydx =

∫

G

χC (x)

∫

H

χC (x + z) dzdx

=

∫

F

∫

H

χC (x + y)

∫

H

χC (x + y + z) dzdydẋ

=

∫

F

∫

H

χC (x + y)

∫

H

χC (x + z) dzdydẋ

=

∫

F

(

∫

H

χC (x + y) dy
) 2

dẋ

≥

(
∫

F

∫

H

χC (x + y)dydẋ

)2

=

(

∫

G

χC (x) dx
) 2

= (µ(C))2.
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Proof of Theorem 2 Since G contains an Abelian subgroup H = A × C2, the first

inequality follows from Theorem 1. To prove the second one, calculate

(a, f i)(a, f j)−1(a, f i) =



















(2a − x, f j) if i ≡ j ≡ 0 mod (2),

(2a − x, f j) if i ≡ j ≡ 1 mod (2),

(x, f j+2) if i ≡ 0 mod (2) and j ≡ 1 mod (2),

(x, f j+2) if i ≡ 1 mod (2) and j ≡ 0 mod (2)

=

{

(2a − x, f j) if i − j ≡ 0 mod (2),

(x, f j+2) if i − j ≡ 1 mod (2).

Given any r-coloring ϕ : A → Zr , define the extension ϕ : G → Zr by

ϕ(x, f j) =

{

ϕ(x) if j = 0, 1,

ϕ(x) + 1 if j = 2, 3.

Let S ⊆ G be monochrome (with respect to ϕ) and let (a, f i)S−1(a, f i) = S. Then

either S ⊆ H or S ⊆ G\H. If S ⊆ G\H, then SH = S·(0, f ) ⊆ H is also monochrome

and (a, 0)S−1
H (a, 0) = SH . So we may assume that S ⊆ H. Put P = S ∩ A, Q =

S ∩ (H \ A), QA = Q · (0, f 2). Then P, QA ⊆ A are monochrome (with respect to ϕ)

and symmetric with respect to (a, 0) and µ(S) = µ(P)+µ(QA) =
1
4
(µA(P)+µA(QA)).

It follows from this that sr(G) ≤ 1
2
sr(A).

Proof of Theorem 3 Consider the subgroup H = Im f ∗ of G. If |H| < |G|, then

|Ker f ∗| = |G|, and since Ker f ∗ = {x ∈ G : f (x) = x}, there is nothing to prove.

So we may assume that |H| = |G|. Enumerate H as {zα : α < |G|}. Observe that

f (H) ⊆ H. Indeed, f ( f (−x) + x) = f (− f (x)) + f (x). Next, fix any κ < |G|. By

the Erdős–Rado theorem (see [3]), there exists a (κ + 1)-subsequence (xλ)λ<κ+1 in

(zα)α<|G| such that { f (xλ) + xµ : λ < µ < κ + 1} is monochrome. Put

S = { f (x0) + xλ : 0 < λ < κ}.

Then define z ∈ H by the simultaneous equations

f ( f (x0) + xλ) + z = f (xλ) + xκ, 0 < λ < κ,

which are equivalent to the one equation f 2(x0)+z = xκ, and take any g ∈ ( f ∗)−1(z).

Notice that in the case |G| ≤ ω1, Theorem 3 holds in ZFC.
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