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Multidimensional forced-choice (MFC) tests are increasing in popularity but their construction is
complex. The Thurstonian item response model (Thurstonian IRT model) is most often used to score MFC
tests that contain dominance items. Currently, in a frequentist framework, information about the latent traits
in the Thurstonian IRT model is computed for binary outcomes of pairwise comparisons, but this approach
neglects stochastic dependencies. In this manuscript, it is shown how to estimate Fisher information on
the block level. A simulation study showed that the observed and expected standard errors based on the
block information were similarly accurate. When local dependencies for block sizes > 2 were neglected,
the standard errors were underestimated, except with the maximum a posteriori estimator. It is shown how
the multidimensional block information can be summarized for test construction. A simulation study and
an empirical application showed small differences between the block information summaries depending
on the outcome considered. Thus, block information can aid the construction of reliable MFC tests.

Key words: multidimensional forced-choice, Thurstonian IRT model, information, standard errors,
automated test assembly.

Test constructors aim to develop tests that provide reliable and valid measurement of their
constructs of interest.Most personality tests employ rating scales (e.g., strongly disagree, disagree,
etc.) for this purpose, but responses to rating scales are potentially biased, for example, by response
styles (Henninger & Meiser 2020; Krosnick 1999; Wetzel et al. 2016). As an alternative, the
multidimensional forced-choice (MFC) format has been increasing in popularity. In the MFC
format, several items measuring different attributes are presented simultaneously in blocks. The
respondent’s task is then to rank the items (see Fig. 1 for an example) or select the ones that they
prefer the most and/or the least. This research is concerned with the former, which is called full
ranking.1

In comparison with rating scales, the MFC format has the advantage to avoid or reduce
several response biases. For example, overall faking is reduced (Cao & Drasgow 2019; Wetzel et
al. 2021), and uniform response biases, such as halo effects, are avoided (Brown et al. 2017); for
an overview, see Brown & Maydeu-Olivares (2018a).
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Figure 1.
Example of the multidimensional forced-choice format from the Big Five Triplet (Wetzel & Frick 2020). The first item
assesses neuroticism (reverse-coded), the second extraversion, and the third openness.

As interest in the MFC format increases, it is important for test constructors to know how to
construct such tests. However, test construction is more complicated than with rating scales since
the combination of items into blocks can affect the item properties. This is because in the MFC
format, the test taker does not evaluate the items in a block independently but instead must weigh
them against each other when deciding how to respond. In other words, the responses given are
relative instead of absolute, such as in a rating scale or true–false response format. In line with
this, research has found that the measured constructs change slightly when the same items are
presented in an MFC format versus a rating scale format (Guenole et al. 2018; Wetzel & Frick
2020). Further, item desirability is evaluated differently in the context of MFC blocks than it is for
single-stimulus items (Feldman&Corah 1960; Hofstee 1970). More specifically, item parameters
from item response theory (IRT) models were found to differ depending on which items were
combined into blocks (Lin & Brown 2017). Thus, item properties are dependent on the specific
combination of items that form a block. Re-assembling items to form new blocks bears the danger
that the item properties change and the test does not work as expected.

Therefore, MFC blocks should be treated as fixed units during test construction and not be
re-assembled. The test construction process then becomes a process of selecting blocks instead of
items. To quantify how each block contributes tomeasurement precision, information on the block
level (henceforth termed block information) comes as a natural metric, because it summarizes all
the item parameters within a block.

For MFC tests with ideal-point items—that is, where the preference for an item is highest
at a certain trait level and decreases as the distance from it increases—block information can
be calculated on the basis of the generalized graded unfolding model for rank responses (Joo et
al. 2018). It has been shown that this approach can be used to construct computerized adaptive
tests (Joo et al. 2020). However, most tests employ dominance items, where the preference for an
item increases or decreases monotonically as trait levels increase. For MFC tests with dominance
items, block information can be derived analytically when a logit link is used as in the multi-
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unidimensional pairwise preference 2PL model (Kreitchmann et al. 2023; Morillo et al. 2016).
This has been used in computerized adaptive testing (Kreitchmann et al. 2023).

The Thurstonian IRTmodel (Brown &Maydeu-Olivares 2011) has become the most popular
and widely applicable IRT model for MFC data. The Thurstonian IRT model can incorporate
different block sizes and different response instructions, such as ranking all items in a block or
picking one of them. In the Thurstonian IRTmodel, for block size two (pairs of items), information
can be analytically derived (e.g., Brown & Maydeu-Olivares 2018b; Bürkner 2022). For block
sizes larger than two, block informationmust be numerically approximated (Yousfi 2018) because
the integrals involved are not analytically tractable (Genz & Bretz 2002, 2009). Since there is
no formula for Thurstonian IRT block information, it can also not be linearly approximated as
is often done with multidimensional information (van der Linden 2005). More precisely, both
obtaining the response probability (Eq.3) and obtaining its Hessian (Eq.7) involve numerical
approximation. Thus, block information is essentially an estimate. Therefore, in order to evaluate
whether block information can be used for test construction, it is crucial to examine the accuracy
of its estimation.

The aims of this paper are to evaluate howwell the numerical approximation of block informa-
tionworks (a) on the test level and (b) on the block level in simulation studies and to showcase how
to use block information for test construction. On the block level, there is no clear reference point
for what constitutes accurate information. Therefore, the first simulation examines the accuracy
of standard errors, that is, the inverse of test information (i.e., the sum of the block information).
The second simulation simulates the test construction process based on block information. In
addition, two aspects relevant for the Thurstonian IRT model motivate the research questions and
the design of the simulation studies, namely computational time and multidimensionality.

In the first part, I investigate the accuracy of information on the test level by investigating the
accuracy of standard errors. Computing Thurstonian IRT block information is computationally
intensive, because it involves two steps of numerical approximation and is not yet easily imple-
mented in standard software. Instead, the latent traits are usually estimated via a pseudo-likelihood
that neglects local dependencies (Brown & Maydeu-Olivares 2011). This is both faster and easy
to implement. Yousfi (2018, 2020) showed that this procedure does not affect point estimates
for Thurstonian IRT traits but their standard errors. However, Yousfi’s (2018; 2020) examination
was only theoretical. I extend Yousfi’s theoretical examination by varied trait levels, realistic item
parameters, and different estimators. Therefore, the first research question investigated is:

RQ1: Does neglecting local dependencies in the computation of standard errors affect their
precision?

Typically, in IRT, standard errors are obtained via taking the expectation over all possible
response patterns. However, in practice, standard errors are often obtained based on the observed
response pattern only. The latter saves computational time and effort which might be especially
worthwhile for the Thurstonian IRT model where information estimation is computationally
intensive. Therefore, the second research question is:

RQ2: How accurate are observed versus expected standard errors?

In the second part, it is investigated whether block information is sufficiently accurate to be
used in test construction. For this purpose, I simulate the test construction process based on block
information and provide an empirical application. Since block information is multidimensional,
it can be summarized into a scalar in different ways. I compare different information summaries
and algorithms that can be used to assemble MFC tests from fixed block compositions. Therefore,
the research question for the second part is:

RQ3: How well do different information summaries perform for selecting blocks in test
construction?
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In the following, before presenting the simulation studies, I first introduce the Thurstonian
IRT model more formally and present formulas (as far as they are available) for calculating block
information when considering and neglecting local dependencies.

An R package implementing the block information estimation, the information summaries
and the automated test assembly algorithms is available at GitHub: https://github.com/susanne-
frick/MFCblockInfo. The R-code for running and analyzing the simulations and the simulation
results are available from the same GitHub repository.

1. The Thurstonian IRT Model

In the Thurstonian IRTmodel, for each item, there is a latent response tendency called utility.
The utility t for person j on item i is a linear function of a latent trait θ j :

t j i = μi + λiθ j + ε j i (1)

where μi denotes the item intercept, λi the item loading, and ε j i the error term. In the following,
vectors and matrices are indicated by boldface notation. The latent traits are assumed to be mul-
tivariate normally distributed: � ∼ N (Mθ , �), and the vectors of item errors are independently
normally distributed: εi ∼ N (0, ψ2

i ).
According to Thurstone’s law of comparative judgment (Thurstone 1927, 1931), participants

order the items within each block according to the magnitude of their utilities.

1.1. Genuine Likelihood

To express this mathematically, first, let t�j i denote the systematic utilities t�j i = μi + λiθ j ,
that is, without the error term. Second, within each block indexed by k, for block size B, vectors of
utilities t�jk = (t�j1 . . . t�j B)′ and error variancesψ2

k = (ψ2
1 . . . ψ2

B)′ are sorted in descending order,
according to the selected rank order. The possible rank orders (i.e., the R = B! permutations of
the B items) are indexed by r . Hence, the ordered utilities are denoted as t�jkr . Third, differences
between consecutive utilities At�jkr are obtained by employing a comparison matrix A of size
(B − 1) × B. For example, if block size B = 3:

AB=3 =
(
1 −1 0
0 1 −1

)
. (2)

With the utilities sorted in a descending order, each difference between two consecutive utilities
is positive. Therefore, the probability of selecting rank order r is the area under the multivariate
normal density of utilities where this applies (Yousfi 2020):

P(X jk = r |θ j ) =
∫ ∞

0
NAt�jkr ,Adiag(ψ2

kr )A
′ (ζ ) dζ (3)

Hence, there are B−1 nested integrals, one for each consecutive comparison. There is no analytical
solution to this multiple integral but it can be numerically approximated (Genz & Bretz 2002;
Genz 2004). As shown in Eq.3, the probability of selecting a certain rank order depends on all
the latent traits assessed in the block.
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1.2. Independence Likelihood

The original implementation of the Thurstonian IRT model (Brown & Maydeu-Olivares
2011, 2012) is based on the binary outcomes of all pairwise item comparisons within a block. For
example, in a block of size B = 3, there are B(B − 1)/2 = 3 pairwise comparisons, between
items 1 and 2, 1 and 3, and 2 and 3. In this way, each rank order can be equivalently written as a set
of binary (0,1) outcomes coding which item in the pair was preferred. For example, the rank order
2–1–3 would be recoded into the binary outcomes 0–1–1 for the pairwise comparisons between
items 1 and 2, 1 and 3, and 2 and 3. Assuming items i and l measure traits 1 and 2, respectively,
the probability that item i is preferred over item l is a normal ogive function:

P(Y jil = 1|θ j ) = �

⎛
⎝−γil + λiθ j1 − λlθ j2√

ψ2
i + ψ2

l

⎞
⎠ (4)

where �(x) denotes the cumulative standard normal distribution function evaluated at x and γil
denotes the intercept for the pairwise comparison.

Let Sk denote the set of item indices belonging to block k. Let o denote the observed binary
outcome with o ∈ {0, 1} and P(Y jil = 0) = 1 − P(Y jil = 1). Under the assumption of local
independence of the binary outcomes within each block, the probability of selecting rank order r
is:

P Independence(X jk = r |θ j ) =
∏

i,l∈Sk ;i<l

P(Y jil = o|θ j ) (5)

The assumption of local independence is incorrect for block size B > 2. Under the original
implementation, the item parameters and trait correlations are estimated via least squares so that
the estimation does not rely on the (possibly) incorrect likelihood.

Note that with item parameter estimates from the standard Thurstonian IRT implementation,
Eq.3 does not yield a correct probability measure. That is, across the R possible rank orders, the
probabilities do not add up to one (

∑R
r=1 P(X jk = r |θ j ) �= 1). This is because the restriction on

the pairwise comparison intercepts γil = μi − μl is not imposed. Therefore, to work with Eq.3,
the standard Thurstonian IRT implementation has to be slightly modified. For example, for block
size B = 3 the set of restrictions on the intercepts of the block containing items 1,2, and 3 is:

γ12 = μ1 − μ2

γ13 = μ1 − μ3

γ23 = μ2 − μ3 (6)

Because of linear dependencies, the set of equations in 6 can be reduced, in the case of B = 3, to
one equation involving all three intercepts, for example, γ12 = γ13 − γ23

2.

2For an example of how to estimate the thresholds with this restriction, see the Mplus (Muthén & Muthén 1998)
script in MFCblockInfo (Frick 2022).
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1.3. Block and Test Information

1.3.1. Block Information Based on the Genuine Likelihood The information for a block and
a single rank order r is the negative of the Hessian of the logarithmized response probability for
the latent traits, where H( f ) denotes the Hessian of function f .

I jkr = −H
(
log P(X jk = r)

)
(7)

Obtaining the Hessian for a multidimensional response probability involves differentiating twice
for each pair of traits in both orders. Hence, for F latent traits, I jkr is an F × F matrix. For
example, to obtain the entry in the second row and first column, I jkr (1, 2), the response probability
P(X jk = r) is first differentiated for Trait 1 and then for Trait 2. As for the response probability,
there is no analytical solution for the Hessian, but numerical approximation is feasible. Here, the
implementation in the R function optim() with the argument hessian set to TRUEwas used. Fisher
information—or likewise expected block information I jk—is calculated as the expectation across
all R = B! possible rank orders:

I jk =
R∑

r=1

I jkr P(X jk = r) (8)

In the following, the term block information is used for expected block information if not
explicitly indicated otherwise.

1.3.2. Block Information Based on the Independence Likelihood For information based on the
independence likelihood, the analytical formula can be given. Assuming items i and l measure
the traits indexed with 1 and 2, respectively, the information for the observed binary outcome o
is given by:

I j ilo = (
log(P(Y jil = o))

)′′ = P ′′(Y jil = o)

P(Y jil = o)
−

(
P ′(Y jil = o)

P(Y jil = o)

)2

(9)

with P ′(Y jil = 1) being the first derivate of P(Y jil = 1) given in Eq.4:

P ′(Y jil = 1) = 1√
ψ2
i + ψ2

l

(
λi

−λl

)′
φ

⎛
⎝−γil + λiθ j1 − λlθ j2√

ψ2
i + ψ2

l

⎞
⎠ (10)

where φ(x) denotes the standard normal probability density function evaluated at x , P ′(Y jil =
0) = −P ′(Y jil = 1), and P ′′(Y jil = 1) denotes the second derivate of P(Y jil = 1):

P ′′(Y jil = 1) =
⎛
⎜⎝

γil−λi θ j+λlθ j√
ψ2
i +ψ2

l
γil−λi θ j+λlθ j√

ψ2
i +ψ2

l

⎞
⎟⎠ P ′(Y jil = 1) (11)
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Fisher information—or likewise the expected information based on the independence like-
lihood I j il—is calculated as the expectation over the possible outcomes o ∈ {0, 1} (Brown &
Maydeu-Olivares 2018b):

I j il =
∑

o∈{0,1}
I j ilo P(Y jil = o)

= 1

ψ2
i + ψ2

l

⎛
⎜⎜⎜⎝

λ2i −λiλl · · · 0
−λiλl λ2l · · · 0

...
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎟⎠

P ′(Y jil = 1)2

P(Y jil = 1)
(
1 − P(Y jil = 1)

) (12)

Block information based on the independence likelihood is obtained by summing over all
pairwise item comparisons in a block. Let Sk denote the set of item indices belonging to block k.

IIndependencejk =
∑

i,l∈Sk ;i<l

I�j il (13)

where I�j il can denote either observed information I j ilo (Eq. 9) or Fisher information I j il (Eq. 12).
Note that the pairwise outcomes do not contribute independent information when block size
B > 2. Specifically, of the B! pairwise comparisons in each block, B(B − 1)(B − 2)/6 are
redundant (Brown & Maydeu-Olivares 2011). Thus, information based on the independence
likelihood is higher than that based on the genuine likelihood.

1.3.3. Test Information When each item is presented in only one block, as is typically done
in MFC tests, test information is obtained by summing block information across all blocks in the
test:

I jT =
K∑

k=1

I�jk (14)

Here, I�jk can denote the four block information estimators described above: For the genuine
likelihood, the observed information I jkr or the Fisher information I jk , and for the independence
likelihood, IIndependencejk based on observed information I j ilo or on Fisher information I j il .

Posterior information is obtained by adding prior information for the latent traits, for example,
for a multivariate normal prior with covariance matrix �, IposteriorjT = I jT + �−1. Then, the
estimation variances for a trait vector are obtained as the diagonal of the inverse of expected or
observed test information:

σ 2
jT = diag

(
I−1
jT

)
(15)

Standard errors are obtained by then taking the square root:

σ jT =
√

σ 2
jT (16)

The IRT-based computation of SEs typically uses Fisher information for I jT . However, in stan-
dard software programs, the SEs are derived numerically by default. That is, they are based on
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the negative Hessian of the log-likelihood at the trait estimate. This is equivalent to substituting
observed test information for I jT . For block size B > 2, the standard errors based on the inde-
pendence likelihood are smaller than those based on the genuine likelihood (Yousfi 2020). That
is, they have a negative bias. Based on their simulations, Brown &Maydeu-Olivares (2011) judge
that the resulting overestimation of reliability is negligible.

2. Simulation Study 1: Simulation on Standard Error Accuracy

In this simulation, I investigate the accuracyofSEs basedondifferent formulations ofThursto-
nian IRTblock and test information. Specifically, first, I investigatewhetherSE accuracy is affected
by using the independence likelihood (Eq.4) instead of the genuine likelihood (Eq.3; RQ1). The
difference between the two formulations is that block information can account for local dependen-
cies that occur for block sizes B > 2. Thus, there should be no difference in accuracy between the
two formulations for block size B = 2. For block sizes B > 2, the difference should increase with
the block size. Second, I compare the accuracy of expected versus observed SEs (RQ2). Since
obtaining expected SEs under the Thurstonian IRT model and the genuine likelihood is compu-
tationally intensive, it is worth investigating whether the computationally cheaper observed SEs
are comparable in terms of precision.

The accuracy of the SEs was examined under various test design conditions that influence the
amount of information and for two types of estimators—maximum likelihood (ML) andmaximum
a posteriori (MAP). The MAP estimator is most often used for Thurstonian IRT models (e.g.,
Brown & Maydeu-Olivares 2011; Wetzel & Frick 2020).

2.1. Method

MFC responses were simulated for five traits, a test with a block size of three and half of the
pairwise item comparisons across the test involving items keyed in different directions (i.e., one
positive, one negative factor loading). Item keying was chosen so that the accuracy of the SEs
would not be confoundedwith ipsativity. Ipsativity with all positively keyed itemswas observed in
simulations (e.g., Bürkner et al. 2019; Frick et al. 2023). The design matrix showing which items
loaded on which traits can be found on GitHub: https://github.com/susanne-frick/MFCblockInfo.
Item intercepts μi were drawn from U (−1, 1). Item uniquenesses ψ2

i were calculated as 1 − λ2i
(i.e., standardized itemutilitieswere simulated). Errorswere drawn from N (0, ψ2

i ). For the second
trait, the trait levels varied from −2 to +2 in steps of 0.5. The other traits were fixed to 0. This
yielded nine trait vectors. Traits were estimated with box constraints to be within the range of
[−3, 3]. Otherwise unreasonably large estimates were obtained in some cases. This is because
precision is typically lower for extreme trait values.Note that box constraints are typically imposed
for estimating traits in IRT models. For example, under the two-parameter logistic model, the ML
estimate for a response vector with all zeros or ones is infinite. The MAP estimator can alleviate
this issue by pulling estimates toward the mean.

Six factors were varied and completely crossed: first, the likelihood used for estimating the
traits and their SEs was either the genuine likelihood or the independence likelihood. Second, the
type of SEs: Both observed and expected SEs were computed. Besides these two factors that were
of main interest for the research questions, the trait estimator and the test design were varied:
Third, the type of estimator was either ML or MAP. For the MAP estimator, a multivariate normal
prior with a mean vector of zero and correlations based on meta-analytic correlations between
the Big Five (van der Linden et al. 2010) were used. The correlations are shown in Table 1.
Fourth, the size of the factor loadings: High factor loadings were drawn fromU (.65, .95) and low
factor loadings were drawn from U (.45, .75). Fifth, the test length was either short (60 pairwise
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Table 1.
Correlations used in the simulation studies.

Trait E O A C

N −.36 −.17 −.36 −.43
E .43 .26 .29
O .21 .20
A .43

N = neuroticism, E = extraversion, O = openness, A = agreeableness, C = conscientiousness. These are
meta-analytic correlations between the Big Five as reported by van der Linden et al. (2010).

comparisons) or long (120 pairwise comparisons). Sixth, the block size was either two, three, or
four. The number of pairwise comparisons, and with it the approximate amount of information,
was kept constant across block sizes. This constancy implies that the number of items varied. Thus,
for block sizes two, three, and four, the short version comprised 60, 20, and 10 blocks, made out
of 120, 60, and 40 items, respectively. For the long version, the test design was duplicated. In
this setting, information decreases with increasing block size due to the local dependencies. In
contrast, information would increase with block size if the amount of items was kept constant.

To operationalize SE accuracy, I examined the extent to which the SE estimates correspond
with empirical SEs. The empirical SEs were defined as the standard deviation of trait estimates
across M responses based on the same trait vector j to test q (cf., Ippel & Magis 2020; Paek &
Cai 2014):

SEq
(
θ j

) =
∑M

m=1

(
θ̂ jm − ¯̂

θ j

)2
M − 1

(17)

Hence, for each unique trait vector j and each test q, M response vectors are simulated. The
traits θ jm are then estimated for each of the m = 1 . . . M response vectors. Empirical SEs are the
standard deviation of these M trait estimates.

All SEs are computed at the true trait value to not confound SE accuracy with the accuracy of
the trait estimate. However, since in practice SEs can only be computed at the trait estimate, the
results for this case can be found in the appendix. The four types of SEs (expected vs. observed
× genuine vs. independence likelihood) are obtained by substituting the corresponding block
information estimator into the equation for test information (Eq.14) and then computing the SEs
based on this test information estimate (Eq. 16).

2.1.1. Simulation Procedure All data generation and analysis were carried out in R (R Core
Team 2020), using the R packages doMPI (Weston 2017), mvtnorm (Genz et al. 2020), numDeriv
(Gilbert & Varadhan 2019), psych (Revelle 2019), gridExtra (Auguie 2017), and ggplot2 (Wick-
ham 2016). For each combination of test design, estimator, likelihood, and trait level, 200 tests
were simulated, yielding a total of 2 × 2 × 2 × 3 × 2 × 9 × 200 = 86, 400 tests. For each
test, item parameters were drawn according to the test design, and M = 500 response vectors
were simulated. Traits were estimated for each response vector, either based on the genuine or on
the independence likelihood, depending on the condition. Then, the two types of SEs (expected
and observed) were computed at the trait estimate. That is, both types of SEs were computed in
each condition. Trait recovery and the accuracy of the SEs for the second trait were assessed by
computing the mean bias (MB) and root mean square error (RMSE) with the following formulas,
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where ξ denotes the true parameter and ξ̂m its estimate for response m:

MB(ξ) =
∑M

m=1

(
ξ̂m − ξ

)
M

(18)

RMSE(ξ) =

√√√√∑M
m=1

(
ξ̂m − ξ

)2
M

(19)

The MB and RMSE were computed for the latent traits θ and their observed SEs. In addition, for
the SEs, the mean ratio (MR) between estimated and true SEs was computed to get a sense of the
proportional size of over- or underestimation:

MR(ξ) =
∑M

m=1 ξ̂m

Mξ
(20)

For the SEs, the empirical SE computed with Eq.17 served as the true parameter. The expected
SEs do not differ across the M response vectors. Thus, for the expected SEs, MB and RMSE are
equal and simplify to the bias: ξ̂ − ξ . Similarly, the MR simplifies to a ratio: ξ̂ /ξ . The MB and
RMSE of the SEs were summarized with means and SDs by condition, and the amount of variance
explained by the contrasts between the conditions was calculated in an ANOVA framework.

2.2. Results

In reporting the results, in line with RQs 1 and 2, I focus on the bias of the SEs depending
on the type of likelihood and the type of SEs and on their interaction with test design factors and
the type of estimator. The results for the bias of the trait estimates and the size of empirical SEs
are reported in supplementary online material.

2.2.1. RQ1: Bias of SEs Based on the Genuine Versus the Independence Likelihood For the
MB and the MR, the type of likelihood interacted with the block size (Table 2). Interactions with
the other factors (estimator, test length and size of loadings) were negligible. For the genuine
likelihood, the SE estimates had a small positive bias (mean MB = 0.02, Table 3). For the inde-
pendence likelihood, as expected, the SE estimates had a negative bias for block sizes B > 2
and this bias increased with block size (mean MB = −0.03 and −0.07 for block sizes 3 and 4,
respectively). This bias was smaller for theMAP estimator (meanMB = 0.01 and−0.02 for block
sizes 3 and 4, respectively). This was probably because the positive bias in the estimator and the
negative bias in the likelihood counteract.

To quantify the size of the bias, the ratio between true and estimated SEs (MR)was computed.
For mean trait levels (θ = 0), the MR was acceptable and ranged between 0.76 and 1.31 for the
genuine likelihood and between 0.63 and 1.21 for the independence likelihood (Figs. 2 and 3).
With the MAP estimator, it was unacceptably high for extreme trait levels (θ = ±2) with maxima
of 3.88 and 3.46 for the genuine and the independence likelihood, respectively.

For the RMSE, the type of likelihood interacted with the type of estimator and with the block
size. Overall, the effects were similar to theMB andMR. TheML estimator with the independence
likelihood had the largest RMSE (mean RMSE = 0.08). Remarkably, this was even higher for
medium than for extreme trait levels (Fig. 2) which might be attributable to the box constraints.
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2.2.2. RQ2: Bias of Observed Versus Expected SEs TheMB of the SE estimates was generally
low (mean = −0.01, SD = 0.07, Table 3). The difference in the MB of the observed and expected
SEs was negligible, explaining 0% of the variance across trait levels (Table 2, Figs. 2 and 3). The
same results were found for the MR.

2.3. Discussion

Regarding the comparison between the genuine and the independence likelihood, especially
when information was low (i.e., because the loadings were low or the test was short), the inde-
pendence likelihood for block size B > 2 resulted in a bias of the SE estimates that was not
negligible in relation to the scale of the traits and their empirical SEs. Interestingly, for the MAP
estimator, the independence likelihood resulted in a smaller bias, because the negative bias in the
likelihood probably counteracted the positive bias in the estimator.

Regarding the comparison between observed and expected SEs, the results showed that the
observed SEs were as accurate as the expected ones. Thus, when only the test level information
is of interest, researchers can rely on the observed information at the trait estimate, thus saving
computational time and resources.

In this simulation, I focused on test design factors that are relevant for the level of information,
keeping other design factors constant, such as the number of traits, the trait correlations, and
the number of comparisons between mixed keyed items. Future studies varying these test design
factorsmight yieldmorepronounceddifferences between the types of theSEs andof the likelihood.

3. Assembling MFC Tests Based on Block Information

Standard errors are only partially informative about the accuracy of block information because
their computation involves summing across blocks. The second part focuses on whether block

Table 2.
Variance in bias for information-based standard errors explained in % by the manipulated factors in simulation study 1 on
standard error accuracy.

Factor MB MR RMSE

Blocksize 5 4 7
Estimator 37 35 –
Estimator×blocksize 1 0 4
Estimator×length 5 3 –
Estimator×likelihood 0 0 7
Estimator×likelihood×blocksize 0 0 4
Length 0 1 14
Likelihood 9 8 1
Likelihood×blocksize 6 5 1
Loadings 0 0 2
Loadings×estimator 1 0 0
Loadings×estimator×likelihood 0 0 1
Loadings×estimator×likelihood×blocksize 0 0 1
Loadings×likelihood 1 0 –
Loadings×likelihood×blocksize 1 0 –

Residuals 34 43 55

MB = mean bias, MR = mean ratio, RMSE = root mean squared error. For the expected SEs, the bias and
the ratio are shown. The RMSE was only computed for observed SEs.
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information is sufficiently accurate to be used in test construction. Since block information is
multidimensional, the first step is to summarize it into a scalar. Therefore, in the following sec-
tion, I first present possibilities to summarize the multidimensional block information into one
scalar or a scalar for each trait, called information summaries. The second step is to simulate the
test construction process based on block information. Since manual test construction cannot be
simulated, automated test assembly (ATA) is simulated instead. Before, I give some details on
ATA algorithms and how they can be combined with block information summaries.

3.1. Information Summaries

3.1.1. Information Summaries from Optimal Design Several information summaries originate
from the optimal design literature and have been used in multidimensional computerized adaptive
testing (CAT) and sometimes in multidimensional ATA (Debeer et al. 2020). In MFC tests, the
investigator is usually interested in all the traits. Therefore, I focus on the summaries that weigh
all the traits equally.

Table 3.
Means of bias for information-based standard errors by condition in simulation study 1 on standard error accuracy.

Method Blocksize Likelihood Estimator MB MR RMSE

Expected 2 Genuine ML −0.02 (0.03) 0.94 (0.05)
MAP 0.05 (0.05) 1.16 (0.15)

Independence ML −0.02 (0.03) 0.94 (0.06)
MAP 0.05 (0.05) 1.16 (0.15)

3 Genuine ML −0.03 (0.04) 0.94 (0.06)
MAP 0.06 (0.05) 1.18 (0.18)

Independence ML −0.07 (0.04) 0.84 (0.06)
MAP 0.01 (0.05) 1.04 (0.16)

4 Genuine ML −0.04 (0.05) 0.93 (0.08)
MAP 0.07 (0.06) 1.20 (0.20)

Independence ML −0.12 (0.06) 0.77 (0.07)
MAP −0.02 (0.05) 0.95 (0.18)

Observed 2 Genuine ML −0.02 (0.03) 0.95 (0.05) 0.03 (0.02)
MAP 0.05 (0.05) 1.16 (0.16) 0.05 (0.04)

Independence ML −0.02 (0.03) 0.95 (0.06) 0.03 (0.02)
MAP 0.05 (0.05) 1.16 (0.15) 0.05 (0.04)

3 Genuine ML −0.03 (0.04) 0.94 (0.06) 0.04 (0.03)
MAP 0.06 (0.05) 1.18 (0.18) 0.06 (0.05)

Independence ML −0.07 (0.04) 0.85 (0.06) 0.07 (0.04)
MAP 0.01 (0.05) 1.04 (0.16) 0.04 (0.04)

4 Genuine ML −0.03 (0.05) 0.94 (0.08) 0.05 (0.03)
MAP 0.07 (0.06) 1.20 (0.20) 0.07 (0.06)

Independence ML −0.12 (0.06) 0.77 (0.07) 0.12 (0.05)
MAP −0.02 (0.06) 0.96 (0.18) 0.05 (0.03)

MB = mean bias, MR = mean ratio, RMSE = root mean squared error, ML = maximum likelihood, MAP =
maximum a posteriori. Standard deviations are given in parentheses.
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Figure 3.
Bias for the expected standard errors in Simulation Study 1 on standard error accuracy. The top row shows results for the
short test (20 blocks) and the bottom row shows results for the long test (40 blocks). Shaded areas show ±1SD around
the mean (line). MB = mean bias, ML = maximum likelihood, MAP = maximum a posteriori.

Out of them, the sum of the sampling variances and the determinant of the information matrix
performed best in an MFC CAT simulation (Lin 2020). Minimizing the sum of the sampling
variances across the test (Eq.15), based on expected test information, is called A-optimality.
Maximizing the determinant of the test information matrix (Eq.14) is called D-optimality. Hence,
optimizing the sumof the sampling variances or the determinant depends on the informationmatrix
beingnon-singular. Inmost cases, the informationmatrix for a single block is not invertible because
the latent trait space is identified only when there are several blocks and no linear dependencies
between factor loadings λ, that is, when the pairwise comparison matrix of factor loadings  has
full rank (for details, see Brown 2016). In the special case in which each block measures all F
traits, the information matrix may be invertible. Therefore, forMFC tests, the sum of the sampling
variances or the determinant can usually only be optimized for several blocks at once (i.e., for test
information). Alternatively, non-singularity can be achieved by adding a prior for the distribution
of the latent traits to the block information matrix.

By contrast, maximizing the trace of the information matrix, called T-optimality, does not
depend on a positive-definite matrix (Eq.8). However, it ignores the impact of trait correlations
(Lin 2020). Maximizing T-optimality performed worst in an MFC CAT simulation (Lin 2020).
However, it has the advantages that it is additive across blocks and that it can be calculated for a
single block without a prior.
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3.1.2. Block R2 There are some situations, where the information summaries from the optimal
design literature cannot be used or might at least show suboptimal properties. First, a test con-
structor might want to assess the blocks of a fixed test instead of constructing a new one. Second,
some test construction steps might be difficult to formalize into a test assembly problem. Third,
some test constructors might prefer to visually inspect block properties in conjunction with the
item content.

In these situations, the full information matrix is difficult to interpret. The posterior sampling
variances (or their sum) could be used, but for a single block, the prior might be too influential
(see the following simulation studies). The same applies to the determinant of the posterior
block information matrix. The diagonal entries of the block information (or their sum) have the
disadvantage to ignore the contribution from correlated traits.

Therefore, for manually inspecting the blocks of a fixed test, I propose a new information
summary, which I will call block R2. Block R2 quantifies the proportional reduction in the
sampling variances of the traits that is achieved by including this block. To compute block R2,
first, test information I jT (Eq. 14) based on the Fisher information (Eq. 8) must be calculated for
two sets of blocks: for a set T , which includes the respective block k, and for a set T \ k, which
excludes it. Second, sampling variances are calculated for both sets by applying Eq.15. Third,
block R2 is obtained such that higher values indicate a larger reduction in the sampling variances:

R2
jk = 1 − σ 2

jT

σ 2
jT \k

(21)

Thus, for F latent traits, block R2 is a vector of length F . It follows from this procedure that block
R2 is relative to the set T of reference blocks. However, this also applies to the item parameters
in general since their estimation depends on the whole test and the sample. In most practical
applications, the set of reference blocks will be all blocks that are being assessed. Alternatively,
it can be a subset of blocks that form a test that should be extended.

3.2. Automated Test Assembly

In this manuscript, automated test assembly (ATA) first serves as a vehicle to simulate the
test construction process. However, beyond that, it might be particularly promising for MFC
tests. This is because constructing MFC tests can be a combinatorial challenge, because it might
involve not only informationmaximization, but also the balancing of item keying and the numbers
of items per trait as well as social desirability matching (e.g., Brown & Maydeu-Olivares 2011;
Wetzel & Frick 2020). Please note that in here the focus is on selecting blocks from fixed item
compositions, not on assembling new blocks from possible item comparisons. The latter bears
the danger to elicit unknown item interactions.

In ATA, items are selected from a pool so that a criterion is maximized (or minimized) and
certain restrictions are fulfilled (van der Linden 2005). For example, information is maximized
while holding the number of items per trait equal. Practical applications of ATA include con-
structing parallel test forms with similar information curves or a test with peaked information at a
certain trait level for selection purposes. For example, employers might be interested in selecting
all applicants who score two standard deviations above the mean. By contrast, in CAT, a unique
test is assembled for each individual respondent so that information is maximized at her/his trait
level. For an introduction to ATA, see van der Linden (2005).

3.2.1. Mixed Integer Programming With a Maximin Criterion Mixed integer programming
(MIP) algorithms are the first choice for ATA because they can find the optimal solution if it exists.
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Moreover, they can incorporate amaximin criterion, which has good properties and is particularly
suited to IRT (van der Linden 2005). In IRT, information varies across trait levels. Only a single
value can be maximized, that is, information at one trait level. Here, the maximin criterion comes
into play: Information at a reference trait level is maximized, while constraints keep the (relative)
distance to a test information curve minimal. When the information at the reference trait level
increases, the information at all other trait levels increases proportionally. In this way, the test
information curve can have a specified shape and be maximized at the same time. The desired
shape of test information is often called a target information curve. An alternative approach is
a weighted criterion. Here, a weighted average of information across trait levels is maximized.
This has the disadvantages that low information for some trait levels can be compensated by high
information for others and the shape of the test information curve cannot be controlled. In order
to apply MIP, a test assembly problem has to be framed as a (constrained) linear optimization
problem. Next, I describe how assembling an MFC test from a block pool can be framed for
MIP with a block information summary as a relative maximin criterion. To better illustrate the
procedure, a toy example with five blocks, two grid points, and two constraints is given in Table 4.

First, g = 1, . . . ,G trait levels are defined for which information is to be computed. In the
multidimensional case, typically, a grid of trait levels is selected, for example, all combinations
of −1, 0, and 1 across five traits (e.g., Debeer et al. 2020; Veldkamp 2002). In the example (Table
4), two grid points are defined. Then, for each grid point vector θ g and each block k, a scalar
information summary sk(θ g) is calculated, for example, the trace of the test information matrix.
In Table 4, the information summaries for each block are displayed in the columns labeled s(θ1)
and s(θ2).

Whether block k is included in the test is encoded in a decision vector x = (x1, . . . , xK )′,
taking on a value of 1 if the block is included and 0 otherwise. Then, the task is to find the values
of x for which the summary y = ∑K

k=1 sk(θ1)xk at an arbitrary reference point vector θ1 is
maximized. That is, y is the sum of the information summary sk for all blocks included in the test
at the reference point vector θ1.

To obtain a relative criterion, first, weights are computed for each grid point vector θ g: The
information summary s is summed across all K blocks and weighted by this sum for the reference
point vector θ1 to obtain a weight wg:

wg =
∑K

k=1 sk(θ g)∑K
k=1 sk(θ1)

(22)

Table 4.
Miniature example for an automated test assembly problem.

k s(θ1) s(θ2) C ·1 C ·2 x

1 5 3 1 1 1
2 3 1 1 0 0
3 2 3 1 1 1
4 6 2 1 0 1
5 4 1 1 1 0∑

K 20 10 5 3∑
k∈x 12 5 3 2

Solution for d1 = 3, d2 = 2 and weights w1 = 1, w2 = 0.5.
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In the toy example given in Table 4, the sums of the information summaries across all blocks are∑K
k=1 sk(θ1) = 20 and

∑K
k=1 sk(θ2) = 10. Setting θ1 as the reference point vector (i.e., w1 = 1)

results in a weight of w2 = 10/20 = 0.5 for the second grid point vector.
Next, the maximin criterion can be formulated: Maximize the information summary at the

reference point vector θ1, while constraints ensure that the summary at the other points is close
to proportional to their value in the block pool:

maximize y (23)

subject to

K∑
k=1

(
sk(θg)xk

) − wg y ≥ 0 for all g (24)

In the example, the criterion value of the solution, which is the sum of the information summary
across the selected blocks for θ1, is y = 12. Then, for θ2 the sum is 5 ≤ 0.5 ∗ 12.

Additional constraints can be added to the ATA problem. The blocks’ values on the n =
1, . . . , N constrained attributes are encoded in a K × N matrix C, and the minimum,3 values for
the constraints are encoded in a vector d = (d1, . . . dN )′.

K∑
k=1

cknxk ≥ dn for all n (25)

In the example, the first constraint encoded in column C·1 is test length. The value on this
constraint is 1 for each block. The final test length should be three, that is, d1 = 3. The second
constraint could be that the test should include at least 2 blocks measuring Trait 1, that is, d2 = 2.
This is encoded in the second column C·2 that takes on a value of 1 for all blocks measuring
Trait 1 and 0 otherwise. In the final solution, there are three blocks (1, 3, and 4) out of which two
measure Trait 1 (1 and 3).

MIP methods are applicable only to information summaries that are linear across items
(or blocks). In the multidimensional case, linear approximations to item information can be
used (e.g., Debeer et al. 2020; Veldkamp 2002), but linear approximation is not possible with
MFC block information because there is no closed-form expression for it. Of the information
summaries derived from the optimal design literature, only the trace of the information matrix
can be used to construct MFC tests with MIP because the trace is the only one that is additive
(and correspondingly linear) across blocks.

3.2.2. Heuristics Because the trace performed worst in MFC CAT simulations (Lin 2020), I
also investigated ATA algorithms that can be used with the sum of the sampling variances and
the determinant, both of which performed well in previous simulations (Brown 2012; Lin 2020;
Mulder & van der Linden 2009). These algorithms are heuristics that can be combined with all the
criteria described above. In contrast to MIP methods, heuristics are guaranteed to find a solution,
but the solution is not guaranteed to be optimal (van der Linden 2005).

The simplest heuristics are constructive heuristics, which sequentially select a locally optimal
item (or block). For example, Veldkamp (2002) compared the performance of a greedy heuris-
tic for ATA with multidimensional items to that of MIP (with a linear approximation of item

3It is also possible to include equality constraints (i.e.,
∑K

k=1 cknxk = dn ). However, for quantitative attributes,
they may often lead to infeasible solutions (van der Linden 2005) which is why I chose the formulation with inequality
constraints here.
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information). More sophisticated heuristics are local search heuristics that introduce randomness
into the selection process to prevent the search from being trapped in a suboptimal space, often
inspired by natural processes. For example, Olaru et al. (2015) compared, among others, a genetic
algorithm and ant colony optimization for the assembly of a short scale. However, local search
heuristics are more specifically tailored to a certain problem than MIP.

4. Simulation Study on Test Construction

In this simulation, I compare the performance of different information summaries for test
construction (RQ3). Expected information is computed based on the genuine likelihood. Both the
genuine likelihood and expected information potentially provide more accurate information. This
might matter on the block level where precision is lower than on the test level. In addition, using
expected information is consistent with the typical definition of item information in IRT and its
use in test assembly algorithms. The simulation is designed to obtain a first impression of the
performance of the criteria and algorithms in a simple setting. Therefore, the composition of the
block pool was ideal with respect to the balancing of traits and item keying. That is, all possible
combinations of traits to blocks occurred equally often and half of the pairwise comparisons
were between differently keyed items. Simulations with all the items keyed equally are given
in supplementary online material. I investigate three different targets. The first two focus on the
assembly of a test for a general population. The third focuses on the assembly of a test that is to
be used as a screening instrument with highest information at a cut-off point. Moreover, posterior
information is computed. This is because with posterior information, the information matrix is
invertible even for a small number of blocks which is necessary for optimizing the variances
and the determinant. In preliminary simulations, the results for an ML estimator did not differ
qualitatively.

Given that local search heuristics are specifically tailored to certain problems, in this sim-
ulation, I use a simple greedy heuristic instead. Developing a sophisticated greedy algorithm or
local search heuristic is beyond the scope of this manuscript (for examples of such algorithms,
see, Kreitchmann et al. 2021; Luecht 1998; Olaru et al. 2015). This greedy heuristic sequentially
selects the block with the smallest variances or highest determinant, respectively, weighted across
trait levels. The results can serve as a benchmark of whatmight be achievedwith these information
summaries and a more elaborate local search heuristic.

The performance of the information summaries from the optimal design literature in con-
junction with ATA algorithms is compared with that of mean block R2, mean posterior variances
(calculated for each block separately), mean absolute loadings within blocks, and random block
selection. The mean of the absolute loadings within blocks serves as an approximation of the
practice of selecting items based (primarily) on the size of their loadings. Block R2 is calculated
by using the whole block pool as the reference set T , which makes block R2 independent of the
previously selected items. In this setting, the optimal solution for mean block R2, mean vari-
ances, and mean loadings is the one with the highest values on the respective criterion. Random
block selection serves as a benchmark. Any algorithm should perform better than random block
selection in order to be worth using.

4.1. Methods

In this simulation, an initial pool of blocks, yielding 240 pairwise comparisons, is reduced
to one fourth (i.e., to 60 pairwise comparisons). The tests each measured five traits. Across the
block pool, half of the pairwise item comparisons involved items that were keyed in different
directions (i.e., one positive, one negative factor loading). I replicated the simulation study with
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all positively keyed items. Since the properties of ipsative trait estimates are quite different, the
results were analyzed separately. Item intercepts μi were drawn fromU (−2, 2). Item loadings λi
were drawn fromU (.45, .95). Item uniquenesses ψ2

i were calculated as 1−λ2i (i.e., standardized
item utilitieswere simulated). Errorswere drawn from N (0, ψ2

i ). The ranges of the item parameter
distributions were larger than in Simulation Study 1 on SE accuracy so that the algorithms could
improve trait recovery in comparison with random block selection. Information was calculated
over a grid of points. Trait levels were set to −1, 0, and 1 and fully crossed for the five traits, thus
yielding 35 = 243 grid points. The only constraint was test length. A multivariate normal prior
was used, with the covariances based on meta-analytic correlations between the Big Five (van der
Linden et al. 2010, Table 1).

Three factors of the ATA problem were varied: First, the target information curve was either
weighted, equal or a single point. For the weighted target, the target information was proportional
to that of the block pool. For the equal target, all trait levels were weighted equally (i.e., the target
surface was flat). The weighted and equal targets simulate the construction of a test for a general
population (called population test). For the single target, the target was a single grid point, namely
the vector of ones. The single target simulates the construction of a screening test with a cut-off
point at the level of one for each trait (called screening test). Second, the intercepts were either
ordered or random. For the ordered intercepts, the intercepts were first ordered by quartiles and
then assigned to blocks so that within each block, the intercepts were from the same quartile of the
intercepts distribution. The design was balanced so that each combination of traits had the same
amount of blocks in each quartile. The ordered intercepts lead to a higher variance of information
across blocks. For the random intercepts, the intercepts were randomly assigned to blocks. Third,
block size was either two, three, or four. The number of pairwise comparisons was kept equal
across block sizes. In the initial pool, there were 240 pairwise comparisons. Thus, for block sizes
two, three, and four, the initial pool comprised 240, 80, and 40 blocks, respectively. The final tests
each comprised one fourth of this, that is, 60, 20, and 10 blocks, respectively.

4.1.1. Algorithms

MIP based on trace For MIP based on the trace, a maximin criterion was chosen to select
the combination of blocks so that the trace of the test information matrix was maximal, whereas,
across grid points, it was close to proportional to the target trace. The MIP solver I used was
lpSolve with the R package lpSolveAPI (lp_solve, Konis & Schwendiger 2020) as an interface
(see Diao & van der Linden 2011, for an illustration of how to use lpSolveAPI for MIP with
single-stimulus items).

Greedy algorithm based on variances For the greedy algorithm based on variances, for each
block that was not in the current test, the sum of the sampling variances that was achieved by
adding this block to the current test was calculated for each grid point. For the weighted target,
the sum of the variances was weighted by the sum of the variances in the block pool for this grid
point. The weighted or unweighted sum of the variances was then averaged across grid points,
yielding the mean sum of the variances. The block with the lowest mean sum of the variances was
added to the current test. This procedure was repeated until the final test length of one quarter of
the block pool was reached.

Greedy algorithm based on determinant The greedy algorithm based on the determinant was
identical to that based on the variances, except that the determinant of the test information matrix
was used instead.
Block R2
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To obtain one value per block, block R2 was averaged across traits. For the weighted target,
instead of using a maximin criterion, block R2 was weighted across grid points by the sum of the
sampling variances in the block pool. The quarter of the blocks with the highest weighted mean
block R2 were selected.

Mean variances The posterior sampling variances were calculated for each block separately
and averaged across traits. That is, the prior was added to block information (Eq. 8): Iposteriorjk =
I jk + �−1. For the weighted target, the mean variances were weighted across grid points by the
sum of themean variances in the block pool. The blocks with the highest weightedmean variances
were selected.

Mean loadings For mean loadings, the blocks with the highest mean absolute loadings were
selected.

Random block selection For random block selection, the blocks were selected randomly.

4.1.2. Procedure Two hundred replications were conducted. All data simulation and analysis
were implemented in R, using the same R packages as in Simulation Study 1 on SE accuracy, in
addition to lpSolveAPI. First, item parameters were drawn. Second, information was estimated
for the grid points. For the weighted and equal targets, the grid points were obtained by fully
crossing the levels of −1, 0, and 1 for the five traits. For the single target, the grid point was the
vector of ones. Third, a test was assembled involving each of the six algorithms. Fourth, trait and
response vectors were drawn to later evaluate estimation accuracy. For the weighted and the single
target, the trait vectors were drawn from a multivariate normal distribution with a mean vector of
0 and covariances that were based on meta-analytic correlations between the Big Five (Table 1)
for 500 respondents. For the equal target, the grid points served as trait levels. There were 243 grid
points. To achieve a sample size that was comparable to the weighted target, each grid point was
duplicated, yielding 486 respondents. Responses for these respondents on the block pool were
simulated. Fifth, the trait levels were estimated as MAP estimates for each of the four assembled
tests on the basis of the true item parameters and the Big Five correlations.

Last, outcome measures were computed: To assess how well the test information target
was approximated, the three optimization criteria were computed based on the assembled test.
In addition, a measure of the difference between test information in the block pool versus the
assembled test was computed. The details on these outcome measures are given in supplementary
online material.

To assess trait recovery in the population test (weighted and equal targets), three outcome
measures were calculated across the n = 1, . . . , N respondents within each condition and repli-
cation: the correlation between the true and estimated traits r(θ, θ̂ ), the RMSE (Equation 19, with
ξ = θ and m = n), and the mean absolute bias (MAB):

MAB(θ) =
∑N

n=1 |θ̂n − θn|
N

. (26)

To assess the screening test (single target), instead of trait recovery, sensitivity and specificity
were calculated. Sensitivity was defined as the proportion of respondents correctly classified as
having a trait level > 1. Likewise, specificitywas defined as the proportion of respondents correctly
classified as having a trait level < 1.

All outcome measures were summarized via means and SDs by condition, and the explained
variance for the contrasts between conditions was calculated in an ANOVA framework. For the
ANOVA, r(θ, θ̂ ) was Fisher-Z-transformed.
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Table 5.
Mean trait recovery by condition in simulation study 2 on test construction for the equal and weighted targets (population
test).

Intercepts Target Algorithm r(θ, θ̂) r(θ, θ̂)2 MAB RMSE

Random Weighted Greedy Variances 0.92 (0.01) 0.85 (0.03) 0.30 (0.03) 0.15 (0.03)
Greedy Determinant 0.92 (0.02) 0.85 (0.03) 0.31 (0.03) 0.15 (0.03)
MIP trace 0.92 (0.02) 0.85 (0.04) 0.31 (0.04) 0.16 (0.04)
Block R2 0.92 (0.02) 0.85 (0.03) 0.31 (0.03) 0.15 (0.03)
Mean variances 0.90 (0.02) 0.82 (0.04) 0.33 (0.03) 0.19 (0.04)
Mean loadings 0.91 (0.02) 0.84 (0.04) 0.32 (0.03) 0.17 (0.04)
Random 0.88 (0.03) 0.78 (0.05) 0.37 (0.04) 0.22 (0.04)

Equal Greedy variances 0.89 (0.02) 0.80 (0.04) 0.29 (0.03) 0.13 (0.03)
Greedy determinant 0.89 (0.02) 0.80 (0.04) 0.29 (0.03) 0.13 (0.03)
MIP trace 0.89 (0.03) 0.79 (0.05) 0.30 (0.04) 0.14 (0.04)
Block R2 0.89 (0.03) 0.80 (0.04) 0.29 (0.03) 0.14 (0.03)
Mean Variances 0.87 (0.03) 0.76 (0.05) 0.31 (0.03) 0.16 (0.03)
Mean loadings 0.88 (0.03) 0.77 (0.05) 0.31 (0.04) 0.15 (0.03)
Random 0.83 (0.04) 0.69 (0.06) 0.36 (0.04) 0.21 (0.04)

Ordered Weighted Greedy variances 0.93 (0.01) 0.87 (0.02) 0.29 (0.02) 0.14 (0.02)
Greedy determinant 0.93 (0.01) 0.86 (0.02) 0.29 (0.02) 0.14 (0.02)
MIP Trace 0.93 (0.01) 0.87 (0.03) 0.29 (0.03) 0.14 (0.03)
Block R2 0.93 (0.01) 0.86 (0.03) 0.29 (0.03) 0.14 (0.03)
Mean variances 0.90 (0.04) 0.82 (0.06) 0.32 (0.04) 0.18 (0.06)
Mean loadings 0.93 (0.02) 0.86 (0.03) 0.29 (0.03) 0.14 (0.03)
Random 0.91 (0.02) 0.83 (0.04) 0.33 (0.03) 0.18 (0.04)

Equal Greedy variances 0.92 (0.01) 0.84 (0.03) 0.26 (0.02) 0.11 (0.02)
Greedy determinant 0.91 (0.02) 0.84 (0.03) 0.26 (0.02) 0.11 (0.02)
MIP trace 0.91 (0.02) 0.84 (0.04) 0.26 (0.03) 0.11 (0.02)
Block R2 0.91 (0.02) 0.83 (0.03) 0.26 (0.03) 0.11 (0.02)
Mean variances 0.90 (0.03) 0.80 (0.05) 0.28 (0.03) 0.13 (0.03)
Mean loadings 0.91 (0.02) 0.83 (0.03) 0.26 (0.03) 0.11 (0.02)
Random 0.88 (0.03) 0.77 (0.05) 0.31 (0.04) 0.15 (0.04)

MAB = mean absolute bias, RMSE = root mean squared error, MIP = mixed integer programming.
Standard deviations are given in parentheses.

4.2. Results

Three MIP models did not converge for a block size of two. In presenting the results, in line
with RQ3, I focus on the differences between the algorithms and their interactions with the other
design factors.

4.2.1. Trait Recovery of the Population Test Trait recovery was examined for the weighted
and equal targets only (i.e., for the population test). Trait recovery was worse for random block
selection (e.g., mean MAB = 0.34) than for the other algorithms together (mean MAB = 0.29,
Table 5, Fig. 4), explaining 13% to 18% of the total variance (Table 6). Recovery was slightly
worse for the algorithms based on means, that is, mean variances, mean block R2, and mean
loadings (e.g., mean MAB = 0.30) than for MIP based on the trace and the greedy algorithms
based on the variances and on the determinant (meanMAB=0.29).Moreover, recoverywasworse
for mean variances (e.g., mean MAB =.31) than for mean block R2 (mean MAB =.29). However,
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Table 6.
Variance in trait recovery explained in % by algorithm, target and intercepts in simulation study 2 on test construction for
the equal and weighted targets (population test).

Factor r(θ, θ̂) MAB RMSE

Algorithm versus Random 13 18 15
Optimality versus Means 2 2 2
R2 versus Mean Variances 3 3 4
Intercepts 10 12 8
Target 18 6 9
2 versus 3 and 4 1 5 1
3 versus 4 4 4 4
Algorithm versus Random × Intercepts 0 1 1
Target × Intercepts 1 1 1
Algorithm versus Random × 2 versus 3 and 4 0 0 1
Optimality versus Means × 2 versus 3 and 4 1 1 2
R2 versus Mean Variances × 2 versus 3 and 4 2 2 2
2 versus 3 and 4 × Intercepts 1 1 2
2 versus 3 and 4 × Target 1 0 1

Residuals 40 42 46

MAB = mean absolute bias, RMSE = root mean squared error.
r(θ, θ̂) was Fisher Z transformed.

these difference explained only 2% to 4% of the variance. These differences were higher for block
size 2 than for block sizes 3 and 4, explaining between 1% and 2% of the variances, except for the
difference between random block selection and the other algorithms. Descriptively, the variance
in recovery was highest for mean variances, followed by MIP for the trace, and mean loadings
(Fig. 4). Mean block R2 performed most similar to the greedy algorithms based on the variances
and on the determinant. The difference between random block selection and the other algorithms
was slightly higher for the random intercepts.

4.2.2. Sensitivity and Specificity of the ScreeningTest Sensitivity and specificitywere examined
only for the single target (i.e., the screening test). Specificity was high and did not differ across
the algorithms and conditions (mean =.97, SD =.01, Fig. 5, Table 7). Sensitivity was lower (mean
=.68) and varied slightly across conditions. For the random intercepts, sensitivity was lower for
random block selection (mean =.61), followed bymean variances andmean loadings (mean =.67),
followed by the other algorithms (mean =.69). For the ordered intercepts, the differences between
the algorithms were smaller. Here, sensitivity was lowest for random block selection (mean =.66),
followed by the trace and mean variances (mean =.68) and the other algorithms (mean =.70).

4.2.3. Optimization Criteria The detailed results for the optimization criteria are given in sup-
plementary onlinematerial. In sum, block R2 performed second best or best across all optimization
criteria, together with the greedy algorithms based on the variances and on the determinant (Figure
S4). In addition, descriptively, there were some interactions with the screening versus population
test: MIP based on the trace performed worse than expected in the population test. The mean
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Table 7.
Variance in sensitivity and specificity explained in % by algorithm, intercepts and block size in simulation study 2 on test
construction for the single target (screening test).

Factor Sens. Spec.

Algorithm versus random 7 1
Block R2 versus mean variances 1 1
2 versus 3 and 4 3 2
3 versus 4 2 0
Intercepts 1 1
Algorithm versus random × Intercepts 1 0
2 versus 3 and 4 × Intercepts 1 0

Residuals 81 93

Sens = sensitivity, Spec = specificity.

variances performed worse for the screening test than for the population test (Table S5, Figure
S4).

4.2.4. Simulation Results with All Positively Keyed Items The results of the simulation with
all positively keyed items are shown in Tables S2–S7 and Figures S2–S5. In sum, with respect to
the optimization criteria, the differences between the algorithms were similar (Tables S2 and S3).
However, block R2 performed clearly worse than the other algorithms (Table S3, Figure S2). The
differences were more pronounced for block size two and for the random intercepts. With respect
to recovery, for block size B = 2, block R2 performed much better than the other algorithms
(Figure S4). In this condition, mean loadings and mean variances did not perform better than
random block selection. For block sizes two and three, block R2 showed higher variance than the
other algorithms (Figure S3). With respect to sensitivity and specificity, the differences between
the algorithms were even less pronounced than with mixed keyed items.

4.3. Discussion

4.3.1. Performance of the Algorithms The results of this simulation showed that the algorithms
and information summaries performedbetter than randomblock selection and are thusworth using.
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Figure 5.
Sensitivity and specificity by algorithm, for a block size of three, the ordered intercepts, and the single target (screening
test), in Simulation Study 2 on test construction. The bulge indicates the density, obtained by kernel density estimation.
M = Mean.
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However, with respect to most outcome measures, the differences between the performance of
the algorithms were small.

The mean variances performed worst across several outcome measures. Therefore, they are
not recommended. Probably, for a single block, the prior is too influential.

The mean loadings turned out to be a good alternative when the distribution of the item
difficulties was around the population mean (i.e., for the population test). When the goal was to
select items measuring a higher trait level than the mean of the item distribution (i.e., for the
screening test), the mean loadings performed worse with respect to the optimization criteria. This
is because they ignore the information in the intercepts. Thus, using the mean loadings as a proxy
to block information can only be recommended when the items in the pool are (evenly) distributed
around the target. The mean loadings have the advantage that they do not require any considerable
computational effort (besides model fitting, which is needed for any method).

Block R2 performed second best with respect to most outcome measures. Therefore, it is a
good all-rounder that can be used for several purposes. Note that in this simulation, the balancing
of items across traits was ideal. Using mean block R2 across traits with unbalanced numbers of
items per trait might result in primarily selecting blocks that include the less represented traits
thus increasing the measurement precision for these traits. If this is not desired, it can be alleviated
by constraining the numbers of items per trait or by weighing block R2 across traits by the trait
reliability.

The sum of the sampling variances and the determinant of the test information matrix per-
formed quite well despite they were combined with a simple greedy algorithm. The performance
of a greedy algorithm provides a lower bound estimate to that of a more elaborate heuristic. Thus,
the variances and the determinant are promising information summaries for the development of
a local search heuristic or a more elaborate constructive heuristic. With respect to most outcome
measures, the determinant slightly outperformed the variances. In addition, computing the deter-
minant is computationally less intensive than computing the variances because it does not involve
matrix inversion.

The trace showed higher variance and performed worse in approximating the optimization
criteria. This might be because it ignores the contribution from correlated traits. Although the
maximin criterion implemented in the MIP algorithm should generally outperform the weighted
criterion in the other algorithms (van der Linden 2005), this advantage was not visible in this
simulation.

4.3.2. Sequential Versus Non-sequential Algorithms In general, non-sequential algorithms,
such as MIP algorithms, are preferred over sequential ones, such a greedy algorithms (van der
Linden 2005). This is because they can find the optimal solution if it exists. Sequential algorithms
can only find locally optimal solutions. There is no guarantee that consecutive locally optimal
solutions lead to the final optimal solution. Interestingly, in this simulation, this advantage was
not found. Rather, the sequential (greedy) algorithms outperformed the non-sequential (MIP)
algorithm. Most likely, this was because the criteria used in the greedy algorithms (variances
and determinant) outperformed the one used in MIP (trace). This is especially remarkable since
the sequential algorithm used in this simulation was the simplest one, namely a greedy one.
More sophisticated heuristics have been successfully used for other test construction problems
(e.g., Kreitchmann et al. 2021; Olaru et al. 2015). In terms of formulating the test construction
problem, MIP algorithms have the advantage to be most flexible, whereas local search heuristics
are specifically tailored to a certain problem (van der Linden 2005).

4.3.3. Limitations The composition of the block pool was rather ideal with all combinations of
three out of the five traits occurring equally often and half of the pairwise comparisons between
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mixed keyed items. Varying the block pool or constraining the ATA problem should have simi-
lar effects on the performance of the algorithms. In previous simulations, both constrained and
unconstrained ATA problems were simulated. This did not result in differences with respect to
the performance of the algorithms. However, with even more variance in the block pool, which
might be observed in empirical studies, constraints might be more effective.

This simulation examined only a limited set of conditions. Specifically, only five traits were
simulated, and the correlations between the traitswere not varied.Although these settingsmight be
representative of some applied tests (e.g., Brown&Maydeu-Olivares 2011;Wetzel & Frick 2020),
more research is needed on how well the methods examined perform under different test designs
and for more complex ATA problems. Increasing the number of traits comes with computational
challenges: Estimating block information for a single person with a block size of three and 15
traits took between 3.5 and 5.5 hr on the high-performance computing clusters I had access to.
Thus, the run times are currently too high for a simulation. Nevertheless, block information for
an empirical sample could be computed even for a large number of traits.

With all positively keyed items, the results were quite different for the optimization criteria
and trait recovery. Therefore, more research is needed to investigate what drives the performance
of the information summaries and ATA algorithms in these settings.

4.3.4. Recommendations for the Use of Block Information in Test Construction When a test
constructor does not want to compute information at all, the mean absolute loadings are a good
proxybut only as long as the item intercepts are evenly distributed around the target’smean.Whena
test constructorwants to visually examine the blocks of a fixed test, block R2 is recommended since
it performed well with respect to most outcome measures. When the test construction problem
includes constraints, only the trace with an MIP algorithm and block R2 can be used so far since
the simple greedy heuristic presented here does not allow to include constraints. When a greedy
heuristic is sufficient, the determinant performed slightly better than the variances. For test designs
with all positively keyed items, no clear recommendation can be given at the moment since the
performance of the information summaries differed qualitatively between the optimization criteria
and trait recovery. In addition, if certain traits are more relevant to the assessment, it can be worth
applying several algorithms and choosing the solution that best maximizes reliability and validity
for the more relevant traits (see Empirical Application).

5. Empirical Application

To illustrate the use of block information with empirical data, the algorithms for automated
test assembly were applied to develop short versions of the Big Five Inventory 2 (BFI-2; Soto
& John 2017) in the MFC format. In addition, this application illustrates how to use constraints
in addition to test length, for example, on the number of items per trait, in an ATA problem for
MFC test construction. In order to include constraints, I omitted the greedy algorithm. In this
case, including a prior on the trait covariances was not necessary and was therefore also omitted.

5.1. Methods

5.1.1. Sample and Procedure This is a secondary analysis of a data set that was collected for
another study (Kupffer et al. 2022). Data were collected in an online survey via Prolific Academic
https://www.prolific.co. One hundred and twenty-two participants were excluded because they
failed an instructed response block and 16 participants were excluded because they responded 2
SD faster than the mean. The final sample consisted of 1,031 participants. The mean age was 36
years (SD = 12). Sixty-seven percent were female, and 0.5% were transgender. The participants
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responded to six MFC questionnaires with a block size of three, out of which the ones in the
present analyses were presented first, second, and fourth.

5.1.2. Measures The BFI-2 was originally a rating scale questionnaire for measuring the Big
Five personality traits: neuroticism, extraversion, openness, agreeableness, and conscientiousness.
Each trait is assessed with 12 items. For the purpose of the study for which the data were collected,
an MFC version with a block size of three was constructed. This version is henceforth referred to
as the full version. In the full version, all 10 combinations of three out of five traits occur twice.
When neuroticism is recoded to emotionality, six (out of 20) blocks are mixed keyed (i.e., they
contain one negatively keyed and two positively keyed items or two negatively keyed and one
positively keyed item). The BFI-2 items and the composition of the MFC version are shown in
Table S5 in supplementary online material.

The Big Five Triplets (Wetzel & Frick 2020) make up an MFC questionnaire measuring the
Big Five personality traits with a block size of three. The number of items per trait ranges from
seven to sixteen. The HEXACO-60 (Ashton & Lee 2009) is originally a rating scale questionnaire
measuring the HEXACO personality traits: honesty–humility, emotionality, extraversion, agree-
ableness, conscientiousness, and openness. Each trait is assessed with 10 items. TheHEXACO-60
was administered in an MFC version with a block size of three.

5.1.3. Automated Test Assembly Short versions of 10 blocks were constructed with constraints
such that the numbers of items per trait were equal, at least half of the pairwise comparisons
across the test were between differently keyed items (i.e., at least eight mixed keyed blocks), and
there was at least one negatively keyed item per trait. The target information was proportional
to the information in the full version. Three short versions were assembled using MIP with the
trace, mean block R2, and mean loadings. For the mean loadings, the estimated loadings were first
standardized by dividing them by the variance of the item utilities: λstdi = λi/(λ

2
i ∗Var(�)+ψ2

i ),
where Var(�) = 1.

5.1.4. Analysis The Thurstonian IRTmodel was fit to the full test inMplus (Muthén &Muthén
1998). The model fit was good according to the RMSEA (.033) and close to acceptable according
to the SRMR (.085). Based on the estimated parameters, the block information was computed
for a grid of points, obtained by fully crossing the trait levels −1, 0, and 1 for the five traits.
The item parameter estimates and block information summaries are shown in Table S5. Then,
the short versions were assembled. For each short version, the MAP estimates for the empirical
sample were obtained with the estimated trait correlations from the full test as a prior. Empirical
reliabilities were calculated for all versions, using the following formula with observed SEs:

Relemp = Var(θ)

Var(θ) + Mean(SE2
θ )

. (27)

Then, the square roots of the empirical reliabilities were Fisher-Z-transformed, and the dif-
ferences in the reliabilities were compared between the full version and the three short versions.
In addition, MAP estimates were obtained for the Big Five Triplets and the HEXACO. Corre-
lations were calculated between the MAP estimates for the BFI-2 versions on the one hand and
the Big Five Triplets and the HEXACO on the other hand. The differences between the Fisher-
Z-transformed correlations were compared between the full version and the three short versions.
I focused on the correlations between the same traits assessed with the BFI-2 and the Big Five
Triplets, between similar traits assessed with the BFI-2 and the HEXACO, and between BFI-2
agreeableness and HEXACO honesty–humility. For these, medium to large correlations were
expected on the basis of the literature (Thielmann et al. 2022).
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Table 8.
Empirical reliabilities and correlations with the full version for MAP estimates from the reduced versions of the Big Five
Inventory 2.

Algorithm Empirical reliability Correlation with Full
N E O A C N E O A C

MIP trace 0.69 0.67 0.49 0.58 0.63 0.93 0.96 0.9 0.9 0.93
Block R2 0.7 0.64 0.53 0.59 0.61 0.93 0.94 0.9 0.92 0.93
Mean loadings 0.7 0.61 0.44 0.53 0.62 0.93 0.92 0.79 0.88 0.92
Full 0.81 0.73 0.68 0.72 0.74

N = neuroticism, E = extraversion, O = openness, A = agreeableness, C = conscientiousness, MIP = mixed
integer programming, Full = full version.

5.2. Results

5.2.1. BlockCompositions All threeMIPmodels converged. Table S5 showswhich blockswere
selected in which version. Three blocks were selected in all three short versions. The versions
based on block R2 and the mean loadings had one and two blocks that were unique to this
version, respectively. The versions based on the trace and on block R2 contained eight out of
10 combinations of traits. Thus, in these version, two trait combinations occurred twice. In the
version based on mean loadings, all 10 trait combinations occurred. All three short versions had
eight mixed keyed blocks. That is, the lower limit of the mixed keyed blocks was selected in all
three short versions. Usually, three or four (out of six) items per trait were negatively keyed. The
short version based on block R2 had only two negatively keyed extraversion and openness items
and the version based on mean loadings had only one negatively keyed extraversion item.

5.2.2. Empirical Reliabilities The empirical reliabilities for all versions and the correlations
with the full version are shown in Table 8. The decreases in reliability compared with the full
version were mostly small effects according to Cohen (1992,.10< |difference in Fisher Z| <.30).
With MIP based on the trace, the decrease in the empirical reliability of openness was on the
border of a medium effect (0.30). With mean loadings, the decreases in the empirical reliabili-
ties of openness and agreeableness were medium effects (0.37 and 0.32, respectively). Overall,
the decreases were slightly larger with mean loadings than with MIP based on the trace and
block R2.

Table 9.
Convergent validities of MAP estimates for the versions of the Big Five Inventory 2.

Algorithm Big Five Triplets HEXACO
N E O A C Emo Ext Ope Agr Con A-HH

MIP trace 0.62 0.63 0.45 0.25 0.24 0.49 0.5 0.58 0.42 0.54 0.48
Block R2 0.64 0.62 0.45 0.29 0.19 0.5 0.5 0.59 0.44 0.52 0.48
Mean loadings 0.61 0.58 0.46 0.25 0.21 0.48 0.51 0.43 0.5 0.53 0.49
Full 0.69 0.65 0.5 0.35 0.34 0.59 0.53 0.62 0.53 0.56 0.49

N = neuroticism, E = extraversion, O = openness, A = agreeableness, C = conscientiousness, Emo = emo-
tionality, Ext = extraversion, Ope = openness, Agr = agreeableness, Con = conscientiousness, HH = honesty–
humility, MIP = mixed integer programming, Full = full version.
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5.2.3. Construct Validities The correlations between the same or similar traits assessed with
the BFI-2 versions in comparison with the Big Five Triplets and the HEXACO are shown in
Table 9. For the same traits assessed with the BFI-2 and the Big Five Triplets, there were small
decreases in the correlations for neuroticism, agreeableness, and conscientiousness when MIP
based on the trace was applied. With mean block R2, there was a small decrease in the correlation
for conscientiousness. With mean loadings, there were small decreases in all the correlations
besides the one for openness. For similar traits assessed with the BFI-2 and the HEXACO, there
were small decreases in the correlations for neuroticism and agreeableness when MIP based on
the trace and mean block R2 were used. With mean loadings, there were small decreases in the
correlations for neuroticism and openness.

5.3. Discussion

To illustrate the applicationof block information, three short versions of theBigFive Inventory
2 were constructed. All three versions were fairly balanced regarding trait combinations and item
keying, although the versions based on the trace and on block R2 were less balanced than the
full questionnaire, as to be expected. The reliabilities decreased slightly, which is to be expected
with half the number of items. The decreases were largest for mean loadings. For the validities,
however, most of the decreases were marginal. Again, the decreases in the validities did not vary
systematically between the algorithms. Tentatively, for the Big Five Triplets, the decreases in the
validities were largest for mean loadings. The differences in the validities between the algorithms
can probably be attributed to the differences in the reliabilities of the trait estimates. Recall that
the validities were based on observed correlations of the trait estimates and were therefore not
corrected for measurement error. Overall, mean loadings performed slightly worse but the trace
and block R2 performed on a par with each other. Thus, the decision of which short version to
choose should be based on which traits are most relevant to the assessment. For example, in the
current application, when the focus is on agreeableness, the short version based on block R2 would
be preferred because it showed the highest reliabilities and validities for this trait. Likewise, when
the assessment focus is on conscientiousness, the version based on the trace should be preferred.
Thus, when the computational effort allows it, several short versions could be constructed and the
one that best assesses the most relevant traits could be chosen. Alternatively, the target could be
adapted to weigh the traits by their relevance.

6. General Discussion

In this manuscript, I investigated the accuracy of Fisher information in Thurstonian IRT
models and how it can be used for test construction. In the first part, I focused on the accuracy on
the test level. A simulation study showed that the observed and expected standard errors based on
the block information were similarly accurate. The independence likelihood underestimated the
standard errors when local dependencies were present with block sizes > 2.

In the second part, I focused on the accuracy on the block level by simulating test construc-
tion based on block information. Because Fisher information for a block is multidimensional,
I proposed to use several indices to summarize block information into a scalar: block R2, the
determinant and the trace of the information matrix, and the sum of the sampling variances. In
a simulation study, the information summaries in conjunction with different test assembly algo-
rithms showed small differences depending on the outcome considered, but they performed overall
on a par with each other. Finally, an empirical application illustrated how the block information
summaries can be used to automatically construct a short version of the Big Five Inventory 2 in
the MFC format. In the following, I outline possible applications of block information in research
and practice.
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6.1. Statistical Improvements

With Fisher information on the block level, unbiased expected and observed SEs can be
obtained for block sizes > 2 (Yousfi 2020). Although the overestimation of reliability based on
information for binary outcomes of pairwise comparisons is small (Brown & Maydeu-Olivares
2011; Frick et al. 2023), it increases as block size increases. Block information allows users to
calculate unbiased information summaries that can be used in test construction.

Future research could investigate other definitions of information, such as Kullback–Leibler
information. Kullback–Leibler information is a scalar regardless of the number of traits assessed
in the test. Therefore, it can be used to avoid the complications coming from a non-invertible
matrix. It has been used successfully both in computerized adaptive testing (e.g., Mulder & van
der Linden 2009) and in automated test assembly (e.g., Debeer et al. 2020). However, obtaining
Kullback–Leibler information is computationally more demanding because it involves at least
one more step of integration and still needs to be made estimable for Thurstonian IRT models
(Lin 2020).

Admittedly, computing block information is computationally intensive. Current computing
capacities prevented me from including simulations with a large number of traits, although MFC
tests with, for example, 15 traits are quite prevalent (e.g., Drasgow et al. 2012; Holdsworth 2006;
Peterson et al. 1999). Computing block information with a large number of traits is still possible
for empirical samples. However, the accuracy of the estimation and of test assembly algorithms
in this setting currently cannot be verified in simulation studies.

6.2. Focus on the Block Level

In this manuscript, I propose to estimate Fisher information in the Thurstonian IRT model
on the block level and examine its performance. This is in contrast to previous approaches on
estimating information about the latent traits that focus on pairwise item comparisons. Similarly,
the test assembly algorithms investigated here focus on selecting blocks as fixed units in contrast
to those algorithms that re-assemble possible item comparisons (Kreitchmann et al. 2021, 2023;
Lin 2020). There are several reasons for focusing on the block level and treating blocks as fixed
units: First, a focus on the block level in comparison with the item level better reflects the response
options available to participants and thus captures the relative nature of MFC responses.

Second, relatedly, MFC tests have an inseparable design. Thus, all traits measured in a block
mutually interact to influence ranking preferences and, correspondingly, Fisher information. As
illustrated in the section on block R2 plots, calculating information summaries on the block level
can account for and visualize those mutual influences.

Third, if items within a block interact, blocks should be treated as fixed in test construction.
The estimation of Thurstonian IRT models became possible when rank orders were recoded
as binary outcomes whose dependencies could be modeled in a structural equation framework
(Brown & Maydeu-Olivares 2011; Maydeu-Olivares 1999; Maydeu-Olivares & Brown 2010).
This might tempt test constructors to treat item pairs as the unit of analysis. However, items
in MFC blocks have sometimes been observed to function differently between different block
compositions (Lin & Brown 2017) or response contexts, for example, simulated low- and high-
stakes contexts (Lee & Joo 2021). Block information accounts for all item parameters in a block
simultaneously. At least as long as the extent of item interactions and item parameter invariance
between different compositions of items to blocks is unclear, a focus on the block level appears
to be a useful supplement.

6.3. Investigating the MFC Format

Block-level Fisher information can yield further insights into how item content and statistical
peculiarities of the MFC format influence the precision of trait estimates.
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An example for this is item keying. In simulations with MFC tests comprised of all positively
keyed items, trait recovery was decreased (Bürkner et al. 2019; Schulte et al. 2021) and the
trait estimates showed ipsative properties in almost all cases (Brown & Maydeu-Olivares 2011;
Bürkner et al. 2019; Frick et al. 2023). Ipsative trait estimates cannot be compared between
persons, and they bias correlation-based analyses such as factor structures or validity coefficients
(Brown & Maydeu-Olivares 2013; Clemans 1966; Hicks 1970). In practice, MFC tests with all
positively keyed items are still used, although they cannot be recommended on the basis of their
statistical properties. One reason for their use might be that researchers have argued that blocks
with mixed keyed items are more fakable because the items that are positively keyed toward
desirable traits stick out (Bürkner et al. 2019). To date, there is little research comparing the
fakability of mixed versus equally keyed blocks. One study showed that an MFC test in which the
item blocks were matched for social desirability was less fakable than a rating scale version of the
same test although the blocks were mixed keyed (Wetzel et al. 2021). In addition, recent research
showed that matched undesirable blocks weremore prone to faking thanmatched desirable blocks
(Fuechtenhans & Brown 2022). Thus, a closer look into item desirability beyond item keying
might be worthwhile. Comparing block information between mixed and equally keyed blocks
might yield further insights into how item keying contributes to the recovery of normative trait
levels.

Moreover, differences in item social desirability might lead to certain rank orders being
more frequent. For example, it has been reported that agreement about which rank order should
be preferred increased the more the items within the blocks differed in their social desirability
(Hughes et al. 2021). If certain rank orders are more frequent due to socially desirable responding,
thewhole blockmight be less informativewith respect to the content traits. Future empirical studies
could investigate the effect of item matching on the magnitude of block information.

6.4. Benefits for MFC Test Assembly

The information summaries investigated here can be used to assemble MFC tests that max-
imize the precision of trait estimation. For manual test assembly, block information is easier to
interpret and incorporate than standardized item loadings, which may differ by binary outcomes
(e.g., Wetzel & Frick 2020).

Further, the current simulations showed that block information can be used for the automated
assembly of fixed tests and illustrated how to do so. Considering the complexity of assembling
MFC tests, including the balancing of traits, item keying, and item desirability, automated test
assembly might prove particularly valuable. Examining minimal restrictions for test composition,
the current simulations serve as a proof of concept that shows that the block information summaries
can be used for ATA. The full advantages might be observed with more complex restrictions and
test information goals, and more sophisticated heuristics.

Lastly, the block information summaries can be used in computerized adaptive testing, where
tests are assembled for each participant, on the basis of their answers. In later stages of computer-
ized adaptive testing, the sum of the sampling variances and the determinant of the test information
matrix can be used and might be preferable. These information summaries performed best in a
simulation on computerized adaptive testing where MFC blocks were assembled from separate
items (Lin 2020).

A drawback of using information for blocks instead of items is that whole blocks have to be
removed from the item pool. The selection of whole blocks requires more items and therewith
more time for participants and more research funds than newly assembling blocks from separate
items. Future research and applications will show how practicable and necessary this procedure
is.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 14:55:34, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


SUSANNE FRICK 1587

In this manuscript, I propose to estimate Fisher information for multidimensional forced-
choice blocks that are modeled with the Thurstonian IRT model on the block level. I investigated
the effect of neglecting local dependencies on standard errors and presented and evaluated several
ways to summarize the information matrix for test construction. I hope this manuscript will
improve the construction of MFC tests and encourage further investigation of their properties.
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