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Abstract

The pth (p ≥ 1) moment exponential stability, almost surely exponential stability and
stability in distribution for stochastic McKean–Vlasov equation are derived based on
some distribution-dependent Lyapunov function techniques.
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1. Introduction

McKean–Vlasov stochastic differential equations (SDEs), originating from the semi-
nal works [15, 18], are also known as mean-field SDEs or distribution-dependent SDEs
which are used to study the interacting particle system and mean-field games. There
are numerous works on the well-posedness, ergodicity and large deviations [10, 13,
17, 19]. Moreover, there are also several works on the stability of the McKean–Vlasov
SDEs. Recently, Ding and Qiao [5] considered the stability for the McKean–Vlasov
SDEs with non-Lipschitz coefficients

dX(t) = b(X(t),L(X(t))) dt + σ(X(t),L(X(t))) dW(t),
X(0) = x0, (1.1)

where L(X(t)) is the distribution of X(t), W· = (W1
· , W2

· , . . . , Wl
· ) is a Ft-adapted

standard Brownian motion and the coefficients b : Rd ×Mλ2 (Rd)→ Rd and
σ : Rd ×Mλ2 (Rd)→ Rd × Rl are Borel measurable functions. The definition of
Mλ2 (Rd) is defined in the next section. Sufficient conditions are given for the
exponential stability of the second moments for their solutions in terms of a Lyapunov
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2 C. Shi and W. Wang [2]

function [12]. Furthermore, the almost surely (a.s.) asymptotic stability of their
solutions is also discussed. Lv and Shan [14] considered the long time behaviour
of stochastic McKean–Vlasov equations, and the exponential and logarithmic decay
are discussed. Bahlali et al. [1] discussed the existence and uniqueness of solutions
under a non-Lipschitz condition and derived various stability properties with respect
to initial data, coefficients and driving processes. Wu et al. [20] studied the stability of
solutions of McKean–Vlasov SDEs via feedback control based on discrete-time state
observation and derived the H∞ stability, asymptotic stability and exponential stability
in mean square for the controlled systems.

In this paper, we first provide a sufficient condition for the pth moment exponential
stability and a.s. exponential stability for (1.1) (Theorem 3.2) by using the classical
Lyapunov function method. Furthermore, asymptotic stability in distribution is derived
by introducing a distribution-dependent operator, together with a similar discussion as
that for SDE with Markovian switching [21].

There are many recent works on the stability in distribution for stochastic differ-
ential equations with distribution-independent coefficients. Yuan et al. [22] discussed
the stochastic differential equations with Markovian switching and investigated the
stability in distribution of the equations. Further, Du et al. [6] improved the result of
Yuan et al. [22] by giving a new sufficient condition for stability in distribution. Bao
et al. [2] considered a neutral stochastic differential delay equation with Markovian
switching and obtained sufficient conditions for stability in distribution. Fei et al. [8]
considered the stability in distribution for a highly nonlinear stochastic differential
equation driven by G-Brownian motion [16].

The rest of the paper is organized as follows. In Section 2, we recall some
preliminary knowledge. The pth moment exponential stability and a.s. exponential
stability is presented in Section 3.1. The stability in distribution is established in
Section 3.2.

2. Preliminary and main result

Let C(Rd) be the collection of continuous functions on Rd. For convenience, we
denote the norm of vectors and matrices by | · | and ‖ · ‖, respectively. Furthermore,
let 〈·, ·〉 denote the scalar product in Rd. Let B(Rd) be the Borel σ-algebra on Rd and
P(Rd) denote the space of all probability measures defined onB(Rd) with the topology
of weak convergence.

For λ(x) = 1 + |x|, x ∈ Rd, define the Banach space

Cλ(Rd) =
{
φ ∈ C(Rd)

∣∣∣∣∣‖φ‖Cλ(Rd) = sup
x∈Rd

|φ(x)|
λ2(x)

+ sup
x�y

|φ(x) − φ(y)|
|x − y| < ∞

}
.

LetMs
λp (Rd) be the space of signed measures m on B(Rd) satisfying

‖m‖pλp =

∫
Rd
λp(x)|m|(dx) < ∞, p ≥ 2,
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[3] Stability analysis for stochastic McKean–Vlasov equation 3

where |m| = m+ + m−, and m = m+ − m− is the Jordan decomposition of m. Let
Mλp (Rd) =Ms

λp (Rd) ∩ P(Rd) be the set of probability measures on B(Rd) with finite
pth moments equipped with the metric,

ρ(μ, ν) � sup
‖φ‖Cλ(Rd )≤1

∣∣∣∣∣
∫
Rd
φ(x)μ(dx) −

∫
Rd
φ(x)ν(dx)

∣∣∣∣∣.

Then, (Mλp (Rd), ρ) is a complete metric space.
Given a complete filtered probability space (Ω,F , {Ft}t∈[0,∞), P), we recall the

definition of the derivative for a function with respect to a probability measure [4].
A function f :Ms

λp (Rd)→ R is differential at μ ∈ Ms
λp (Rd) if for f̃ (ξ) � f (Pξ),

ξ ∈ Lp(Ω;Rd), there exists some ζ ∈ Lp(Ω;Rd) with Pζ = μ such that f̃ is the
Fréchet differential at ζ, that is, there exists a linear continuous mapping
Df̃ (ζ) : Lp(Ω;Rd)→ R such that for all η ∈ Lp(Ω;Rd),

f̃ (ζ + η) − f̃ (ζ) = Df̃ (ζ)(η) + o(|η|Lp ), |η|Lp → 0.

Since Df̃ (ζ) ∈ L(Lp(Ω;Rd),R), by the Riesz representation theorem [3], there exists a
P-a.s. unique random variable θ ∈ Lp(Ω;Rd) such that for η ∈ Lp(Ω;Rd),

Df̃ (ζ)(η) = (θ, η)Lp = E[θ · η].

Thus, there exists a Borel measurable function h : Rd → Rd which depends on the
distribution Pζ rather than ζ itself such that θ = h(ζ), and for ξ ∈ L2(Ω;Rd),

f (Pξ) − f (Pζ) = E[h(ζ)(ξ − ζ)] + o(|ξ − ζ |L2 ).

We call ∂μf (Pζ)(y) � h(y), y ∈ Rd as the derivative of f :Mλp (Rd)→ R at Pζ ,
ζ ∈ Lp(Ω;Rd).

DEFINITION 2.1. Function f is said to be in C1(Mλp (Rd)) if for each ξ ∈ L2(Ω;Rd),
there exists a Pξ-modification of ∂μf (Pζ)(·) which is denoted by ∂μf (Pζ)(·) again, such
that ∂μf :Mλp (Rd) × Rd → Rd is continuous and we identify the function ∂μf with the
derivative of f.

DEFINITION 2.2. A function f belongs to C1,1
b (Mλp (Rd)) if f ∈ C1(Mλp (Rd)), and ∂μf

is bounded and Lipschitz continuous, that is there exists a real number C > 0 such that:

(i) ∂μf (μ)(x)| ≤ C, μ ∈ Mλp (Rd);
(ii) ∂μf (μ)(x) − ∂μf (ν)(y)| ≤ C(ρ(μ, ν) + |x − y|), μ, ν ∈ Mλp (Rd)

for x, y ∈ Rd.

DEFINITION 2.3. The function f is said to be in C2(Mλp (Rd)) if for every
μ ∈ Mλp (Rd), f ∈ C1(Mλp (Rd)) and ∂μf (Pξ)(·) is differentiable and its derivative
∂y∂μf :Mλp (Rd) × Rd → Rd × Rd is continuous.

DEFINITION 2.4. The function f is said to be in C2,1
b (Mλp (Rd)) if f ∈ C2(Mλp (Rd)) ∩

C1,1
b (Mλp (Rd)) and its derivative ∂y∂μf is bounded and continuous.
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DEFINITION 2.5. The function Φ ∈ C2,2,1
b (Mλp (Rd) × Rd) if:

(i) Φ is bi-continuous with respect to (x, μ);
(ii) for any x, Φ(x, ·) ∈ C2,1

b (Mλp (Rd)) and for any μ ∈ Mλp (Rd), Φ(·, μ) ∈ C2(Rd).

If Φ ∈ C2,2,1
b (Mλp (Rd × Rd)) and Φ ≥ 0, then we say Φ ∈ C2,2,1

b+ (Rd ×Mλp (Rd)).

DEFINITION 2.6. The functionΦ ∈ C(Rd ×Mλp (Rd)), ifΦ ∈ C2,2(Rd ×Mλp (Rd)) and
for every compact set K ⊆ Rd ×Mλp (Rd),

sup
(x,μ)∈K

∫
Rd

(‖∂y∂μΦ(x, μ)(y)‖2 + |∂μΦ(x, μ)(y)|2)μ(dy) < ∞.

If Φ ∈ C(Rd ×Mλp (Rd)) and Φ ≥ 0, then we say that Φ ∈ C+(Rd ×Mλp (Rd)).

For (1.1), we make the following assumptions.

ASSUMPTION 2.7. Functions b,σ are continuous with respect to (x, μ)∈Rd ×Mλ2 (Rd),
and there is a constant L1 > 0 such that

|b(x, μ)|2 + ‖σ(x, μ)‖2 ≤ L1(1 + |x|2 + ‖μ‖2
λ2 ).

ASSUMPTION 2.8. There is a constant L2 > 0 such that

2〈x − y, b(x, μ) − b(y, μ)〉 + ‖σ(x, μ) − σ(y, ν)‖2 ≤ L2(|x − y|2 + ρ(μ, ν)2).

ASSUMPTION 2.9. There exists a function v(·, ·) : Rd ×Mλp (Rd)→ R such that:

(i) v ∈ C+(Rd ×Mλ2 (Rd));
(ii)
∫
Rd (Lμv(x, μ) + γv(x, μ))μ(dx) ≤ 0;

(iii) for some p ≥ 1, a1
∫
Rd |x|pμ(dx) ≤

∫
Rd v(x, μ)μ(dx) ≤ a2

∫
Rd |x|pμ(dx).

By the classical result of Wang [19], under Assumptions 2.7–2.9, there
exists a unique strong solution Xx0

t , with initial value x0, to (1.1), and for
p ≥ 2, E sup0≤t≤T |X

x0
t |p < ∞. Let C2(Rd ×Mλ2 (Rd);R+) denote the space of

nonnegative functions which are continuous and twice differentiable. For
V ∈ C2(Rd ×Mλ2 (Rd);R+), we have the following generator of (1.1):

LμV(x, μ) = (bi∂xi )(x, μ) +
1
2

((σσ∗)ij∂2
xixj

)(x, μ) +
∫
Rd

bi(y, μ)(∂μV)i(x, μ)(y)μ(dy)

+
1
2

∫
Rd

(σσ∗)ij(y, μ)∂yi (∂μV)j(y)μ(dy) .

REMARK 2.10. In fact, the strong solution to (1.1) defines a Markov process [19]. Let
p(t, x0, dz) be the transition probability distribution to process Xx0

t and p(t, x0, Γ) be the
probability for the event {Xx0

t ∈ Γ} with the initial value x0, that is,

p(t, x0, Γ) =
∫
Γ

p(t, x0, dz), Γ ∈ B(Rd).
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DEFINITION 2.11. The process Xx0
t with initial value x0 is called stable in distribution

if there exists a probability measure Π(·) such that for any initial value x0, its transition
probability p(t, x0, dz) weakly converges to Π(·), as t → ∞. Equation (1.1) is said to be
stable in distribution if Xx0

t is stable in distribution.

To study the stability in distribution, we need the following assumption. First, for a
given function U ∈ C2(Rd;R), we define the operator

L(x, y, μ, ν)U(x − y) = [b(x, μ) − b(y, ν)]Ux(x − y)

+ 1
2 Tr[(σ(x, μ) − σ(y, ν))∗Uxx(x − y)(σ(x, μ) − σ(y, ν))].

ASSUMPTION 2.12. There exist a function U ∈ C2(Rd;R+) and a constant K > 0, such
that for any two solutions (Xx0

t )t≥0 and (Xy0
t )t≥0 with its distributions L(Xx0

t ) = μt and
L(Xy0

t ) = νt, and for all couplings π ∈ Π(μt, νt),
∫
Rd×Rd

L(x, y, μt, νt)U(x − y)π(dx, dy) ≤ −K
∫
Rd×Rd

U(x − y)π(dx, dy).

3. Stability analysis

3.1. Exponential stability This section gives the exponential stability in the pth
moment and in a.s. sense.

DEFINITION 3.1. Let p ≥ 1. The solution Xx0
t of (1.1) is said to be pth moment

exponentially stable if there is a pair of constants γ > 0 and C > 0 such that

E|Xx0
t |p ≤ C|x0|pe−γt, t ≥ 0.

Further, it is said to be a.s. exponentially stable if

lim sup
t→∞

log|Xx0
t |

t
≤ −γ, a.s.

For this, we further assume that for some constant N > 0 and p ≥ 1,

|b(x, μ)|p + ‖σ(x, μ)‖p ≤ N
(
|x|p +

∫
Rd
|x|pμ(dx)

)
. (3.1)

THEOREM 3.2. Assume that Assumptions 2.7–2.9 hold. For every x0 ∈ Rd, Xx0
t is pth

moment exponentially stable and a.s. exponentially stable. Furthermore, for every
ε > 0, there exists an R > 0 such that for all t ≥ 0, P{|Xx0

t | ≥ R} < ε.

PROOF. For x0 ∈ Rd, let Xx0
t be the solution of (1.1), for positive integer k, define the

stopping times

ρk = inf{t > 0 | |Xx0
t | ≥ k},
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then obviously, ρk → ∞, a.s. as k → ∞. Then for the stopped processes (Xx0
t∧ρk

)t≥0,
function v and distribution processes L(Xx0

t )t≥0, by Itô’s formula [9],

eγ(t∧ρk)v(Xx0
t∧ρk

, L(Xx0
t )) − v(x0, δx0 )

=

∫ t

0
γeγ(s∧ρk)v(Xx0

s∧ρk
,L(Xx0

s )) ds

+

∫ t

0
eγ(s∧ρk)(bi∂xi v)(Xx0

s∧ρk
,L(Xx0

s )) ds

+
1
2

∫ t

0
eγ(s∧ρk)((σσ∗)ij∂2

xixj
v)(Xx0

s∧ρk
,L(Xx0

s )) ds

+

∫ t

0
eγ(s∧ρk)(∂xi vσ

ij)(Xx0
s∧ρk

,L(Xx0
s )) dWj

s

+

∫ t

0

∫
Rd

eγ(s∧ρk)((bi∂xi v)(Xx0
s∧ρk

,L(Xx0
s ))(y)L(Xx0

s )(dy) ds

+
1
2

∫ t

0

∫
Rd

eγ(s∧ρk)(σσ∗)ij(Xx0
s∧ρk

,L(Xx0
s ))(y)L(Xx0

s )(dy) ds.

Then taking expectation, by Assumption 2.9,

E[eγ(t∧ρk)v(Xx0
t∧ρk

,L(Xx0
t ))] − v(x0, δx0 ) ≤ 0.

Let k → ∞ and together with the Fatou lemma [7],

E[eγtv(Xt,L(Xx0
t ))] ≤ v(x0, δx0 ) ≤ 0.

Furthermore, by Assumption 2.7,

a1E|Xx0
t |p ≤ Ev(Xt,L(Xx0

t )) ≤ e−γtv(x0, δx0 ) ≤ a2e−γt |x0|p.

Thus,

E|Xx0
t |p ≤

a2

a1
e−γt |x0|p.

Then by Chebyshev’s inequality [7], for R > 0,

P{|Xx0
t | ≥ R} ≤

E|Xx0
t |p

Rp .

Noticing that from (1.1),

Xx0
t+s = Xx0

t +

∫ t+s

t
b(Xx0

u ,L(Xx0
u )) du +

∫ t+s

t
σ(Xx0

u ,L(Xx0
u )) dWu,

and for p ≥ 1, τ > 0, by (3.1),
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[7] Stability analysis for stochastic McKean–Vlasov equation 7

E sup
0≤s≤τ

|Xx0
t+s|p ≤ CpE|Xx0

t |p + CpE sup
0≤s≤τ

∣∣∣∣
∫ t+s

t
b(Xx0

u ,L(Xx0
u )) du

∣∣∣∣p

+ CpE sup
0≤s≤τ

∣∣∣∣
∫ t+s

t
σ(Xx0

u ,L(Xx0
u )) dWu

∣∣∣∣p

≤ CpE|Xx0
t |p + Cp,τE

∫ t+τ

t
|b(Xx0

u ,L(Xx0
u ))|p du

+ CpE

∫ t+τ

t
|σ(Xx0

u ,L(Xx0
u ))|p du

≤ CpE|Xx0
t |p + Cp,τ,NE

∫ t+τ

t

(
|Xx0

u |p +
∫
Rd
|x|pL(Xx0

u )(dx)
)

du

≤ CpE|Xx0
t |p + Cp,τ,N

∫ t+τ

t
E|Xx0

u |p du

≤ Cp,x0 e−γt + Cp,τ,x0,N

∫ t+τ

t
e−γu du ≤ Cp,τ,x0,γ,Ne−γt.

Then for n = 1, 2, . . . ,

E sup
nτ≤t≤(n+1)τ

|Xx0
t |p ≤ Cp,τ,x0,γ,Ne−γnτ,

thus, for ε ∈ (0, γ) and n ∈ N, by Chebychev’s inequality,

P

(
ω : sup

nτ≤t≤(n+1)τ
|Xx0

t |p > e−(γ−ε)nτ
)
≤ Cp,τ,x0,γ,Ne−εnτ.

By the Borel–Cantelli lemma [11], there exists a random constant n0(ω) such that for
almost all ω ∈ Ω, for n > n0(ω),

sup
nτ≤t≤(n+1)τ

|Xx0
t |p ≤ Cp,τ,x0,γ,Ne−(γ−ε)nτ, a.s.

Thus, for any nτ ≤ t ≤ (n + 1)τ,

log|Xx0
t |

t
=

log|Xx0
t |p

pt
≤

log supnτ≤t≤(n+1)τ |X
x0
t |p

pnτ
≤ −γ − ε

p
, a.s.,

and

lim sup
t→∞

log|Xx0
t |

t
≤ −γ − ε

p
, a.s.

Now letting ε → 0, the proof is complete. �

REMARK 3.3. From Theorem 3.2, the transition probability family {p(t, x0, dz) | t ≥ 0}
is tight, that is, for ε > 0, there exists a compact set K = K(x0, ε) such that

P(t, x0,K) ≥ 1 − ε.
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8 C. Shi and W. Wang [8]

3.2. Stability in distribution Next, we consider the stability in distribution. For
this, we need to consider the difference between two solutions with different initial
values, that is,

Xx0
t − Xy0

t = x0 − y0 +

∫ t

0
[b(Xx0

s ,L(Xx0
s )) − b(Xy0

s ,L(Xy0
s ))] ds

+

∫ t

0
[σ(Xx0

s ,L(Xx0
s )) − σ(Xy0

s ,L(Xy0
s ))] dWs.

We need two more notation. LetH be the set consisting of nondecreasing functions
K : R+ → R+ such that K(0) = 0, and H∞ be the set of functions K ∈ H such that
K(x)→ ∞ as x→ ∞.

LEMMA 3.4. If there exists a function U ∈ C2(Rd;R+) satisfying U(0) = 0 and a
function α1 ∈ H∞ such that

α1(|x|) ≤ U(x) for x ∈ Rd,

then for every ε > 0 and compact set K on Rd, there exists T = T(K , ε) > 0 such that

P{‖Xx0
t − Xy0

t ‖ > ε} < 1 − ε, t ≥ T , x0, y0 ∈ K .

For the convenience of presentation in the following, we rewrite (1.1) as

Xx0
t = x0 +

∫ t

0
b̃(u, Xx0

u ) du +
∫ t

0
σ̃(u, Xx0

u ) dWu, t ≥ 0, (3.2)

where b̃(u, Xx0
u ) = b(Xx0

u ,L(Xx0
u )) and σ̃(u, Xx0

u ) = σ(Xx0
u ,L(Xx0

u )). Since (1.1) has a
unique strong solution (Xx0

t )t≥0 with the initial distribution δx0 , the distribution of
process (Xx0

t )t≥0 is known, and (3.2) is a classic SDE. Then, the solution of (3.2) is
a strong Markov process [5, Lemma 5.3].

PROOF OF LEMMA 3.4. For ε > 0, by the continuity of function U with U(0) = 0, we
choose α ∈ (0, ε) small enough such that

sup|x|≤αU(x)

μ1(ε)
<
ε

2
.

Let K be a compact set on Rd and for fixed x0, y0 ∈ K and β > α, we define two
stopping times

τα = inf{t ≥ 0 | |Xx0
t − Xy0

t | ≤ α},

τβ = inf{t ≥ 0 | |Xx0
t − Xy0

t | ≥ β}.

By Itô’s formula for the stopped process U(Xx0
τβ∧t − Xy0

τβ∧t) and Assumption 2.12,
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[9] Stability analysis for stochastic McKean–Vlasov equation 9

EU(Xx0
τβ∧t − Xy0

τβ∧t) ≤ U(x0 − y0) − K
∫ τβ∧t

0
U(Xx0

s − Xy0
s ) ds

+ E

∫ τβ∧t

0
Ux(Xx0

s − Xy0
s )(σ̃(s, Xx0

s ) − σ̃(u, Xy0
s )) dWs

= U(x0 − y0) − K
∫ τβ∧t

0
U(Xx0

s − Xy0
s ) ds.

Then,

α1(β)P{τβ ≤ t} ≤ U(x0 − y0),

that is,

P{τβ ≤ t} ≤ U(x0 − y0)
α1(β)

.

Notice that for all x0, y0 ∈ K and U(x0 − y0) bounded, there exists β = β(K , ε) > 0 such
that

P{τβ < ∞} ≤
ε

4
.

Fix the β and let tα = τα ∧ τβ ∧ t, then similar discussion yields

EU(Xx0
tα − Xy0

tα ) ≤ U(x0 − y0) − KE
∫ tα

0
U(Xx0

s − Xy0
s ) ds

≤ U(x0 − y0) − KE
∫ tα

0
α1(|Xx0

s − Xy0
s |) ds

≤ U(x0 − y0) − Kα1(α)E(τα ∧ τβ ∧ t),

which implies that

P{τα ∧ τβ ≥ t} ≤ U(x0 − y0)
Kα1(α)t

.

Moreover, this implies that for a given ε ∈ (0, 1), there exists T = T(K , ε) > 0 such that

P{τα ∧ τβ ≤ T} > 1 − ε
4

.

Thus,

1 − ε
4
< P{τα ∧ τβ ≤ T} ≤ P{τα ≤ T} + P(τβ ≤ T)

≤ P{τα ≤ T} + P(τβ ≤ ∞)

≤ P{τα ≤ T} + ε
4

and

P{τα ≤ T} ≥ 1 − ε
2

.

https://doi.org/10.1017/S1446181124000208 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000208


10 C. Shi and W. Wang [10]

Now we define the stopping time

σ = inf{t ≥ τα ∧ T | |Xx0
t − Xy0

t | ≥ ε}.

Let t > T , then

P(τα ≤ T ∩ σ ≤ t)μ1(ε) ≤ E(Iτα≤T ,σ≤tU(Xx0
t∧σ − Xy0

t∧σ))

≤ E(Iτα≤TU(Xx0
t∧τα − Xy0

t∧τα))

≤ E(Iτα≤TU(Xx0
τα
− Xy0

τα)) ≤ P(τα ≤ T) sup
|x|≤α

U(x).

Thus,

P({τα ≤ T} ∩ {σ ≤ t}) ≤ ε
2

and

P{σ ≤ t} ≤ P({τα ≤ T} ∩ {σ ≤ t}) + P{τα>T } < ε.

Let t → ∞, then

P{σ < ∞} ≤ ε.

This indicates that for all x0, y0 ∈ K , t ≥ T ,

P{|Xx0
t − Xy0

t | < ε} ≥ 1 − ε.

This completes the proof. �

LEMMA 3.5. For every compact set K ,

lim
t→∞
ρ(p(t, x0, ·), p(t, y0, ·)) = 0, x0, y0 ∈ K .

PROOF. We only need to show that there exists T > 0, such that for all ε > 0 and x0,
y0 ∈ K ,

ρ(p(t, x0, ·), p(t, y0, ·)) ≤ ε, t ≥ T .

It is equivalent to show that

sup
φ∈Cλ(Rd)

|Eφ(Xx0
t ) − Eφ(Xy0

t )| ≤ ε, t ≥ T .

However, notice that for every φ ∈ Cλ(Rd),

|Eφ(Xx0
t ) − Eφ(Xy0

t )| ≤ E[2 ∧ |Xx0
t − Xy0

t |].

By Lemma 3.4, there exists a T1 > 0 such that

E[2 ∧ |Xx0
t − Xy0

t |] < ε, t ≥ T1.
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Due to the arbitrariness of φ ∈ Cλ(Rd),

sup
φ∈Cλ(Rd)

|Eφ(Xx0
t ) − Eφ(Xy0

t )| ≤ ε, t ≥ T1.

The proof is now complete. �

LEMMA 3.6. Under the assumptions of Theorem 3.2 and Lemma 3.4, for x0 ∈ Rd,
{p(t, x0, ·) , t ≥ 0} is a Cauchy sequence.

PROOF. We need to show that for every x0 ∈ Rd and ε > 0, there exists T > 0 such that
for t ≥ T and s > 0,

ρ(p(t + s, x0, ·), p(t, x0, ·)) ≤ ε ,

which is equivalent that for every φ ∈ Cλ(Rd),

sup
φ∈Cλ(Rd)

|Eφ(Xx0
t+s) − Eφ(X

x0
t )| ≤ ε, t ≥ T , s > 0.

By Lemma 3.2, there exists a compact set K on Rd such that for ε > 0,

p(t, x0,K) > 1 − ε
8

.

Furthermore, by the strong Markov property of Xx0
t , for φ ∈ Cλ(Rd) and t, s > 0,

|Eφ(Xx0
t+s) − Eφ(X

x0
t )| = |E[E(φ(Xx0

t+s)|Fs)] − Eφ(Xx0
t )|

= |E[Eφ(Xs,Xx0
s

t )] − Eφ(Xx0
t )|

=
∣∣∣∣
∫
Rd
Eφ(Xz

t )p(s, x0, dz) − Eφ(Xx0
t )
∣∣∣∣

≤
∫
Rd
E|φ(Xz

t ) − φ(Xx0
t )|p(s, x0, dz)

=

∫
K
E|φ(Xz

t ) − φ(Xx0
t )|p(s, x0, dz)

+

∫
Rd−K

E|φ(Xz
t ) − φ(Xx0

t )|p(s, x0, dz)

≤
∫
K
E|φ(Xz

t ) − φ(Xx0
t )|p(s, x0, dz) +

ε

4
.

By Lemma 3.4, there exists T > 0 such that for every ε > 0,

E|φ(Xz
t ) − φ(Xx0

t )| ≤ E[2 ∧ |Xz
t − Xx0

t |] ≤
3ε
4

, t ≥ T .

Thus,

|Eφ(Xx0
t+s) − Eφ(X

x0
t )| ≤ ε, t ≥ T , s > 0,

which completes the proof. �
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THEOREM 3.7. Under assumptions of Theorem 3.2 and Lemma 3.4, (1.1) is stable in
distribution.

PROOF. By Definition 2.11, we need to show that there exists a probability measure
π(·) such that for every x0 ∈ Rd, the transition probability family {p(t, x0, ·) : t ≥ 0}
weakly converges to π(·). In fact, we show that for every x ∈ Rd,

lim
t→∞
ρ(p(t, x0, ·), π(·)) = 0.

By Lemma 3.6, {p(t, 0, ·) : t ≥ 0} is a Cauchy sequence in P(Rd) with the metric ρ.
SinceP(Rd) is a complete metric space, there exists a probability measure π(·) ∈ P(Rd)
such that

lim
t→∞
ρ(p(t, x, ·), π(·)) = 0.

By a triangle inequality,

lim
t→∞
ρ(p(t, x, ·), π(·)) ≤ lim

t→∞
ρ(p(t, x, ·), p(t, 0, ·)) + lim

t→∞
ρ(p(t, 0, ·), π(·))

= 0.

The proof is complete. �

4. Conclusions

In the study, we first prove the pth moment exponential stability and a.s. exponential
stability of the solution of (1.1) by using the distribution-dependent Itô’s formula,
and then obtain the tightness of the transition probability family corresponding to the
solution of (1.1). Based on this, we introduce a distribution-dependent operator, that
is, Assumption 2.12, and combined with the method of Yuan and Mao [21], we get
that when the time is long enough, the transition probability family tends to a unique
probability measure, that is, the solution of (1.1) is asymptotically stable in distribution.
It would be valuable to use a similar method to analyse the long time behaviour of (1.1)
with jump noise.
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