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Executive Summary

This chapter assesses changes in weather and climate extremes
on regional and global scales, including observed changes and
their attribution, as well as projected changes. The extremes
considered include temperature extremes, heavy precipitation
and pluvial floods, river floods, droughts, storms (including
tropical cyclones), as well as compound events (multivariate and
concurrent extremes). The assessment focuses on land regions
excluding Antarctica. Changes in marine extremes are addressed
in Chapter 9 and Cross-Chapter Box 9.1. Assessments of past
changes and their drivers are from 1950 onward, unless indicated
otherwise. Projections for changes in extremes are presented for
different levels of global warming, supplemented with information
for the conversion to emissions scenario-based projections (Cross-
Chapter Box 11.1 and Table 4.2). Since the IPCC Fifth Assessment
Report (AR5), there have been important new developments and
knowledge advances on changes in weather and climate extremes, in
particular regarding human influence on individual extreme events,
on changes in droughts, tropical cyclones, and compound events, and
on projections at different global warming levels (1.5°C-4°C). These,
together with new evidence at regional scales, provide a stronger
basis and more regional information for the AR6 assessment on
weather and climate extremes.

It is an established fact that human-induced greenhouse gas
emissions have led to an increased frequency and/or intensity
of some weather and climate extremes since pre-industrial
time, in particular for temperature extremes. Evidence of
observed changes in extremes and their attribution to human
influence (including greenhouse gas and aerosol emissions and land-
use changes) has strengthened since AR5, in particular for extreme
precipitation, droughts, tropical cyclones and compound extremes
(including dry/hot events and fire weather). Some recent hot extreme
events would have been extremely unlikely to occur without human
influence on the climate system. {11.2, 11.3,11.4, 11.6, 11.7, 11.8}

Regional changes in the intensity and frequency of climate
extremes generally scale with global warming. New evidence
strengthens the conclusion from the IPCC Special Report on
Global Warming of 1.5°C (SR1.5) that even relatively small
incremental increases in global warming (+0.5°C) cause
statistically significant changes in extremes on the global scale
and for large regions (high confidence). In particular, this is the
case for temperature extremes (very likely), the intensification
of heavy precipitation (high confidence) including that
associated with tropical cyclones (medium confidence), and
the worsening of droughts in some regions (high confidence).
The occurrence of extreme events unprecedented in the observed
record will rise with increasing global warming, even at 1.5°C of

Chapter 11

global warming. Projected percentage changes in frequency are
higher for the rarer extreme events (high confidence). {11.1, 11.2,
11.3,11.4,11.6, 11.9, Cross-Chapter Box 11.1}

Methods and Data for Extremes

Since AR5, the confidence about past and future changes
in weather and climate extremes has increased due to
better physical understanding of processes, an increasing
proportion of the scientific literature combining different
lines of evidence, and improved accessibility to different
types of climate models (high confidence). There have
been improvements in some observation-based datasets,
including reanalysis data (high confidence). Climate models
can reproduce the sign (direction) of changes in temperature
extremes observed globally and in most regions, although the
magnitude of the trends may differ (high confidence). Models
are able to capture the large-scale spatial distribution of precipitation
extremes over land (high confidence). The intensity and frequency of
extreme precipitation simulated by Coupled Model Intercomparison
Project Phase 6 (CMIP6) models are similar to those simulated by
CMIP5 models (high confidence). Higher horizontal model resolution
improves the spatial representation of some extreme events
(e.g., heavy precipitation events), in particular in regions with highly
varying topography (high confidence). {11.2, 11.3, 11.4}

Temperature Extremes

The frequency and intensity of hot extremes (including
heatwaves) have increased, and those of cold extremes have
decreased on the global scale since 1950 (virtually certain).
This also applies at regional scale, with more than 80% of AR6
regions’ showing similar changes assessed to be at least likely.
In a few regions, limited evidence (data or literature) prevents the
reliable estimation of trends. {11.3, 11.9}

Human-induced greenhouse gas forcing is the main driver
of the observed changes in hot and cold extremes on the
global scale (virtually certain) and on most continents (very
likely). The effect of enhanced greenhouse gas concentrations on
extreme temperatures is moderated or amplified at the regional
scale by regional processes such as soil moisture or snow/ice-albedo
feedbacks, by regional forcing from land-use and land-cover changes,
or aerosol concentrations, and decadal and multi-decadal natural
variability. Changes in anthropogenic aerosol concentrations have
likely affected trends in hot extremes in some regions. Irrigation and
crop expansion have attenuated increases in summer hot extremes
in some regions, such as the Midwestern USA (medium confidence).

1 See Figure 1.18 for definition of AR6 regions. Acronyms for inhabited regions: ARP: Arabian Peninsula; CAF: Central Africa; CAR: Caribbean; CAU: Central Australia; CNA: Central North America;
EAS: East Asia; EAU: Eastern Australia; ECA: East Central Asia; EEU: Eastern Europe; ENA: Eastern North America; ESAF: East Southern Africa; ESB: East Siberia; GIC: Greenland/Iceland; MDG:
Madagascar; MED: Mediterranean; NAU: Northern Australia; NCA: Northern Central America; NEAF: North Eastern Africa; NEN: North-Eastern North America; NES: North-Eastern South America;
NEU: Northern Europe; NSA: Northern South America; NWN: North-Western North America; NWS: North-Western South America; NZ: New Zealand; RAR: Russian Arctic; RFE: Russian Far East;
SAH: Sahara; SAM: South American Monsoon; SAS: South Asia; SAU: Southern Australia; SCA: Southern Central America; SEA: Southeast Asia; SEAF: South Eastern Africa; SES: South-Eastern South
America; SSA: Southern South America; SWS: South-Western South America; TIB: Tibetan Plateau; WAF: Western Africa; WCA: West Central Asia; WCE: Western and Central Europe; WNA: Western

North America; WSAF: West Southern Africa; WSB: West Siberia.
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Urbanization has likely exacerbated changes in temperature extremes
in cities, in particular for nighttime extremes. {11.1, 11.2, 11.3}

The frequency and intensity of hot extremes will continue to
increase and those of cold extremes will continue to decrease,
at global and continental scales and in nearly all inhabited
regions' with increasing global warming levels. This will be the
case even if global warming is stabilized at 1.5°C. Relative to present-
day conditions, changes in the intensity of extremes would be at least
double at 2°C, and quadruple at 3°C of global warming, compared
to changes at 1.5°C of global warming. The number of hot days and
hot nights and the length, frequency, and/or intensity of warm spells
or heatwaves will increase over most land areas (virtually certain). In
most regions, future changes in the intensity of temperature extremes
will very likely be proportional to changes in global warming, and up
to two to three times larger (high confidence). The highest increase
of temperature of hottest days is projected in some mid-latitude and
semi-arid regions and in the South American Monsoon region, at
about 1.5 times to twice the rate of global warming (high confidence).
The highest increase of temperature of coldest days is projected
in Arctic regions, at about three times the rate of global warming
(high confidence). The frequency of hot temperature extreme events
will very likely increase nonlinearly with increasing global warming,
with larger percentage increases for rarer events. {11.2, 11.3, 11.9;
Table 11.1; Figure 11.3}

Heavy Precipitation and Pluvial Floods

The frequency and intensity of heavy precipitation events have
likely increased at the global scale over a majority of land
regions with good observational coverage. Heavy precipitation
has likely increased on the continental scale over three
continents: North America, Europe, and Asia. Regional increases
in the frequency and/or intensity of heavy precipitation have been
observed with at least medium confidence for nearly half of AR6
regions, including WSAF, ESAF, WSB, SAS, ESB, RFE, WCA, ECA, TIB,
EAS, SEA, NAU, NEU, EEU, GIC, WCE, SES, CNA, and ENA. {11.4, 11.9}

Human influence, in particular greenhouse gas emissions,
is likely the main driver of the observed global-scale
intensification of heavy precipitation over land regions. It is
likely that human-induced climate change has contributed to the
observed intensification of heavy precipitation at the continental
scale in North America, Europe and Asia. Evidence of a human
influence on heavy precipitation has emerged in some regions (high
confidence).{11.4, 11.9, Table 11.1}

Heavy precipitation will generally become more frequent and
more intense with additional global warming. At a global
warming level of 4°C relative to the pre-industrial level, very
rare (e.g., one in 10 or more years) heavy precipitation events
would become more frequent and more intense than in the
recent past, on the global scale (virtually certain) and in all
continents and AR6 regions. The increase in frequency and
intensity is extremely likely for most continents and very likely
for most ARG6 regions. At the global scale, the intensification of
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heavy precipitation will follow the rate of increase in the maximum
amount of moisture that the atmosphere can hold as it warms (high
confidence), of about 7% per 1°C of global warming. The increase in
the frequency of heavy precipitation events will be non-linear with
more warming and will be higher for rarer events (high confidence),
with a likely doubling and tripling in the frequency of 10-year and
50-year events, respectively, compared to the recent past at 4°C of
global warming. Increases in the intensity of extreme precipitation
at regional scales will vary, depending on the amount of regional
warming, changes in atmospheric circulation and storm dynamics
(high confidence). {11.4, Box 11.1}

The projected increase in the intensity of extreme precipitation
translates to an increase in the frequency and magnitude
of pluvial floods — surface water and flash floods — (high
confidence), as pluvial flooding results from precipitation
intensity exceeding the capacity of natural and artificial
drainage systems. {11.4}

River Floods

Significant trends in peak streamflow have been observed
in some regions over the past decades (high confidence).
The seasonality of river floods has changed in cold regions where
snow-melt is involved, with an earlier occurrence of peak streamflow
(high confidence). {11.5}

Global hydrological models project a larger fraction of land
areas to be affected by an increase in river floods than by
a decrease in river floods (medium confidence). Regional
changes in river floods are more uncertain than changes in pluvial
floods because complex hydrological processes and forcings,
including land cover change and human water management, are
involved. {11.5}

Droughts

Different drought types exist, and they are associated with
different impacts and respond differently to increasing
greenhouse gas concentrations. Precipitation deficits and changes
in evapotranspiration govern net water availability. A lack of sufficient
soil moisture, sometimes amplified by increased atmospheric
evaporative demand, results in agricultural and ecological drought.
Lack of runoff and surface water result in hydrological drought. {11.6}

Human-induced climate change has contributed to increases
in agricultural and ecological droughts in some regions due to
evapotranspiration increases (medium confidence). Increases
in evapotranspiration have been driven by increases in atmospheric
evaporative demand induced by increased temperature, decreased
relative humidity and increased net radiation (high confidence).
Trends in precipitation are not a main driver in affecting global-scale
trends in drought (medium confidence), but have induced increases in
meteorological droughts in a few ARG regions (NES: high confidence;
WAF, CAF, ESAF, SAM, SWS, SSA, SAS: medium confidence). Increasing
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trends in agricultural and ecological droughts have been observed
on all continents (WAF, CAF, WSAF, ESAF, WCA, ECA, EAS, SAU, MED,
WCE, WNA, NES: medium confidence), but decreases only in one AR6
region (NAU: medium confidence). Increasing trends in hydrological
droughts have been observed in a few AR6 regions (MED: high
confidence; WAF, EAS, SAU: medium confidence). Regional-
scale attribution shows that human-induced climate change has
contributed to increased agricultural and ecological droughts (MED,
WNA), and increased hydrological drought (MED) in some regions
(medium confidence). {11.6, 11.9}

More regions are affected by increases in agricultural and
ecological droughts with increasing global warming (high
confidence). Several regions will be affected by more severe
agricultural and ecological droughts even if global warming
is stabilised at 2°C, including MED, WSAF, SAM and SSA (high
confidence), and ESAF, MDG, EAU, SAU, SCA, CAR, NSA, NES, SWS,
WCE, NCA, WNA and CNA (medium confidence). Some regions
are also projected to be affected by more severe agricultural and
ecological droughts at 1.5°C (MED, WSAF, ESAF, SAU, NSA, SAM,
SSA, CNA, medium confidence). At 4°C of global warming, about
50% of all inhabited AR6 regions would be affected by increases
in agricultural and ecological droughts (WCE, MED, CAU, EAU, SAU,
WCA, EAS, SCA, CAR, NSA, NES, SAM, SWS, SSA, NCA, CNA, ENA,
WNA, WSAF, ESAF, MDG: medium confidence or higher), and only two
regions (NEAF, SAS) would experience decreases in agricultural and
ecological drought (medium confidence). There is high confidence
that the projected increases in agricultural and ecological droughts
are strongly affected by evapotranspiration increases associated with
enhanced atmospheric evaporative demand. Several regions are
projected to be more strongly affected by hydrological droughts with
increasing global warming (at 4°C of global warming: NEU, WCE,
EEU, MED, SAU, WCA, SCA, NSA, SAM, SWS, SSA, WNA, WSAF, ESAF,
MDG: medium confidence or higher). There is low confidence that
effects of enhanced atmospheric carbon dioxide (CO,) concentrations
on plant water-use efficiency alleviate extreme agricultural and
ecological droughts in conditions characterized by limited soil
moisture and enhanced atmospheric evaporative demand. There is
also low confidence that these effects will substantially reduce global
plant transpiration and the severity of hydrological droughts. There is
high confidence that the land carbon sink will become less efficient
due to soil moisture limitations and associated drought conditions
in some regions in higher-emissions scenarios, in particular under
global warming levels above 4°C.{11.6, 11.9, Cross-Chapter Box 5.1}

Extreme Storms, Including Tropical Cyclones

The average and maximum rain rates associated with tropical
cyclones (TCs), extratropical cyclones and atmospheric rivers
across the globe, and severe convective storms in some
regions, increase in a warming world (high confidence).
Available event attribution studies of observed strong TCs provide
medium confidence for a human contribution to extreme TC rainfall.
Peak TC rain rates increase with local warming at least at the rate

2 Six-hourly intensity estimates during the lifetime of each TC.
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of mean water vapour increase over oceans (about 7% per 1°C of
warming) and in some cases exceeding this rate due to increased
low-level moisture convergence caused by increases in TC wind
intensity (medium confidence). {11.7, 11.4, Box 11.1}

It is likely that the global proportion of Category 3-5 tropical
cyclone instances? has increased over the past four decades.
The average location where TCs reach their peak wind intensity
has very likely migrated poleward in the western North Pacific
Ocean since the 1940s, and TC translation speed has likely slowed
over the conterminous USA since 1900. Evidence of similar trends
in other regions is not robust. The global frequency of TC rapid
intensification events has likely increased over the past four decades.
None of these changes can be explained by natural variability alone
(medium confidence).

The proportion of intense TCs, average peak TC wind speeds,
and peak wind speeds of the most intense TCs will increase
on the global scale with increasing global warming (high
confidence). The total global frequency of TC formation will
decrease or remain unchanged with increasing global warming
(medium confidence). {11.7.1}

There is low confidence in past changes of maximum
wind speeds and other measures of dynamical intensity of
extratropical cyclones. Future wind speed changes are expected
to be small, although poleward shifts in the storm tracks
could lead to substantial changes in extreme wind speeds in
some regions (medium confidence). There is low confidence in
past trends in characteristics of severe convective storms, such as
hail and severe winds, beyond an increase in precipitation rates. The
frequency of spring severe convective storms is projected to increase
in the USA, leading to a lengthening of the severe convective storm
season (medium confidence); evidence in other regions is limited.
{11.7.2,11.7.3}.

Compound Events, Including Dry/Hot Events, Fire Weather,
Compound Flooding, and Concurrent Extremes

The probability of compound events has likely increased in
the past due to human-induced climate change and will likely
continue to increase with further global warming. Concurrent
heatwaves and droughts have become more frequent, and this
trend will continue with higher global warming (high confidence).
Fire weather conditions (compound hot, dry and windy events)
have become more probable in some regions (medium confidence)
and there is high confidence that they will become more frequent
in some regions at higher levels of global warming. The probability
of compound flooding (storm surge, extreme rainfall and/or river
flow) has increased in some locations (medium confidence), and will
continue to increase due to sea level rise and increases in heavy
precipitation, including changes in precipitation intensity associated
with tropical cyclones (high confidence). The land area affected by
concurrent extremes has increased (high confidence). Concurrent
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extreme events at different locations, but possibly affecting similar
sectors (e.g., critical crop-producing areas for global food supply)
in different regions, will become more frequent with increasing
global warming, in particular above 2°C of global warming (high
confidence). {11.8, Box 11.2, Box 11.4}.

Low-likelihood, High-impact Events Associated
With Climate Extremes

The future occurrence of low-likelihood, high-impact
events linked to climate extremes is generally associated
with low confidence, but cannot be excluded, especially at
global warming levels above 4°C. Compound events, including
concurrent extremes, are a factor increasing the probability of low-
likelihood, high-impact events (high confidence). With increasing
global warming, some compound events with low likelihood in
past and current climates will become more frequent, and there is
a higher chance of occurrence of historically unprecedented events
and surprises (high confidence). However, even extreme events that
do not have a particularly low probability in the present climate (at
more than 1°C of global warming) can be perceived as surprises
because of the pace of global warming (high confidence). {Box 11.2}

1520

Downloaded from https://www.cambridge.org/core. IP address: 18.118.254.2, on 15 Jan 2025 at 14:30:23, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/9781009157896.013


https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Weather and Climate Extreme Events in a Changing Climate

11.1  Introduction

11.1.1  Scope of the Chapter

This chapter provides assessments of changes in weather and climate
extremes (collectively referred to as extremes) framed in terms of
the relevance to the Working Group Il (WGII) assessment. It assesses
observed changes in extremes, their attribution to causes, and future
projections, at three global warming levels: 1.5°C, 2°C, and 4°C. This
chapter is also one of the four ‘regional chapters’ of the WGI Report
(along with Chapters 10 and 12 and the Atlas). Consequently, while
it encompasses assessments of changes in extremes at global and
continental scales to provide a large-scale context, it also addresses
changes in extremes at regional scales.

Extremes are climatic impact-drivers (Annex VII: Glossary, see
Chapter 12 for a comprehensive assessment). The IPCC risk
framework (Chapter 1) articulates clearly that the exposure and
vulnerability to climatic impact-drivers, such as extremes, modulate
the risk of adverse impacts of these drivers, and that adaptation
which reduces exposure and vulnerability will increase resilience,
resulting in a reduction in impacts. Nonetheless, changes in extremes
lead to changes in impacts as a direct consequence of changes in
their magnitude and frequency, and also through their influence on
exposure and resilience.

The Special Report on Managing the Risks of Extreme Events and
Disasters to Advance Climate Change Adaptation (referred as the
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SREX report, IPCC, 2012) provided a comprehensive assessment on
changes in extremes and how exposure and vulnerability to extremes
determine the impacts and likelihood of disasters. Chapter 3 of
that report (Seneviratne et al., 2012, hereafter also referred to as
SREX Chapter 3) assessed physical aspects of extremes, and laid
a foundation for the follow-up IPCC assessments. Several chapters
of the IPCC Fifth Assessment Report (AR5) (IPCC, 2013) addressed
climate extremes with respect to observed changes (Hartmann et al.,
2013), model evaluation (Flato et al., 2013), attribution (Bindoff
et al,, 2013), and projected long-term changes (Collins et al., 2013).
Assessments were also provided in the IPCC Special Report on Global
Warming of 1.5°C (SR1.5) (IPCC, 2018; Hoegh-Guldberg et al., 2018),
on climate change and land (SRCCL; (IPCC, 2019a), and on oceans
and the cryosphere (SROCGC; IPCC, 2019b). These assessments are the
starting point for the present assessment.

This chapter is structured as follows (Figure 11.1): This section
(11.1) provides the general framing and introduction to the chapter,
highlighting key aspects that underlie the confidence and uncertainty
in the assessment of changes in extremes, and introducing some main
elements of the chapter. To provide readers with a quick overview
of past and future changes in extremes, a synthesis of global-scale
assessments for different types of extremes is included at the end
of this section (Tables 11.1 and 11.2). Section 11.2 introduces
methodological aspects of research on climate extremes. Sections
11.3 to 11.7 assess past changes and their attribution to causes,
and projected future changes in extremes, for different types of
extremes, including temperature extremes, heavy precipitation and

Chapter 11: Weather and climate extremes Chapter 11: Quick guide

Chapter 11 assesses observed changes in weather and climate extremes, their
attribution to human influence, and future projections at +1.5°C, +2°C and +4°C.

Key topics and corresponding sub-sections
Regional information distributed within Sections 11.3-11.8
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Table 11.13 | Table 11.14 | Table 11.15

Europe
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pluvial floods, river floods, droughts, and storms, in separate sections.
Section 11.8 addresses compound events. Section 11.9 summarizes
regional assessments of changes in temperature extremes, in
precipitation extremes and in droughts by continents in tables. The
chapter also includes several boxes and FAQs on more specific topics.

11.1.2  What Are Extreme Events and How are Their

Changes Studied?

Building on the SREX report and AR5, this Report defines an extreme
weather event as ‘an event that is rare at a particular place and
time of year’, and an extreme climate event as ‘a pattern of extreme
weather that persists for some time, such as a season’ (see Glossary).
The definitions of 'rare’ are wide ranging, depending on applications.
Some studies consider an event as an extreme if it is unprecedented;
other studies consider events that occur several times a year as
moderate extreme events. Rarity of an event with a fixed magnitude
also changes under human-induced climate change, making events
that are unprecedented so far rather probable under present
conditions, but unique in the observational record — and thus often
considered as ‘surprises’ (see Box 11.2).

Various approaches are used to define extremes. These are generally
based on the determination of relative (e.g., 90th percentile) or
absolute (e.g., 35°C for a hot day) thresholds above which conditions
are considered extremes. Changes in extremes can be examined from
two perspectives, either focusing on changes in frequency of given
extremes, or on changes in their intensity. These considerations in the
definition of extremes are further addressed in Section 11.2.1.

11.1.3  Types of Extremes Assessed in this Chapter

The types of extremes assessed in this chapter include temperature
extremes, heavy precipitation and pluvial floods, river floods, droughts,
and storms. The drought assessment addresses meteorological
droughts, agricultural and ecological droughts, and hydrological
droughts (see Glossary). The storms assessment addresses tropical
cyclones, extratropical cyclones, and severe convective storms.
This chapter also assesses changes in compound events — that
is, multivariate or concurrent extreme events — because of their
relevance to impacts as well as the emergence of new literature on
the subject. Most of the considered extremes were also assessed in
SREX and AR5. Compound events were not assessed in depth in past
IPCC reports (SREX Chapter 3; Section 11.8 of this Report). Marine-
related extremes such as marine heatwaves and extreme sea level,
are assessed in Section 9.6.4 and Box 9.2 of this Report.

Extremes and related phenomena are of various spatial and
temporal scales. Tornadoes have a spatial scale as small as less
than 100 metres and a temporal scale as short as a few minutes.
In contrast, a drought can last for multiple years, affecting vast
regions. The level of complexity of the involved processes differs from
one type of extreme to another, affecting our capability to detect,
attribute and project changes in weather and climate extremes.
Temperature and precipitation extremes studied in the literature are

1522

Weather and Climate Extreme Events in a Changing Climate

often based on extremes derived from daily values. Studies of events
on longer time scales for temperature or precipitation, or on sub-
daily extremes, are scarcer, which generally limits the assessment for
such events. Nevertheless, extremes on time scales different from
daily are assessed for temperature extremes and heavy precipitation,
when possible (Sections 11.3 and 11.4). Droughts and tropical
cyclones are treated as phenomena in general in the assessment,
not limited by their extreme forms, because these phenomena are
relevant to impacts (Sections 11.6 and 11.7). Both precipitation and
wind extremes associated with storms are considered.

Multiple concomitant extremes can lead to stronger impacts than
those resulting from the same extremes had they happened in
isolation. For this reason, the occurrence of multiple extremes that
are multivariate and/or concurrent and/or happening in succession,
also called ‘compound events' (SREX Chapter 3), are assessed in this
chapter based on emerging literature on this topic (Section 11.8).
Box 11.2 also provides an assessment on low-likelihood, high-impact
scenarios associated with extremes.

The assessment of projected future changes in extremes is presented
as function of different global warming levels (Section 11.2.4 and
Cross-Chapter Box 11.1). This provides traceability and comparison
to the SR1.5 assessment (Hoegh-Guldberg et al, 2018, hereafter
referred to as SR1.5 Chapter 3). Also, this is useful for decision makers
as actionable information, as much of the mitigation policy discussion
and adaptation planning can be tied to the level of global warming.
For example, regional changes in extremes, and thus their impacts, can
be linked to global mitigation efforts. There is also the advantage of
separating uncertainty in future projections due to regional responses
as a function of global warming levels from other factors such as
differences in global climate sensitivity and emissions scenarios (Cross-
Chapter Box 11.1). Information is also provided on the translation
between information provided at global warming levels and for single
emissions scenarios (Cross-Chapter Box 11.1). This facilitates easier
comparison with the AR5 assessment and with some analyses provided
in other chapters as function of emissions scenarios.

A global-scale synthesis of this chapter's assessments is provided in
Section 11.1.7. In particular, Tables 11.1 and 11.2 provide a synthesis
for observed and attributed changes, and projected changes in
extremes, respectively, at different global warming levels (1.5°C,
2°C, and 4°C). Tables on regional-scale assessments for changes
in temperature extremes, heavy precipitation and droughts, are
provided in Section 11.9.

Effects of Greenhouse Gas and Other External
Forcings on Extremes

11.1.4

The SREX, AR5, and SR1.5 assessed that there is evidence from
observations that some extremes have changed since the mid-
20th century, that some of the changes are a result of anthropogenic
influences, and that some observed changes are projected to continue
into the future. Additionally, other changes are projected to emerge
from natural climate variability under enhanced global warming
(SREX Chapter 3; AR5 Chapter 10).
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At the global scale, and also at the regional scale to some extent,
many of the changes in extremes are a direct consequence of
enhanced radiative forcing, and the associated global warming and/
or resultant increase in the water-holding capacity of the atmosphere,
as well as changes in vertical stability and meridional temperature
gradients that affect climate dynamics (see Box 11.1). Widespread
observed and projected increases in the intensity and frequency of
hot extremes, together with decreases in the intensity and frequency
of cold extremes, are consistent with global and regional warming
(Section 11.3 and Figure 11.2). Extreme temperatures on land tend
to increase more than the global mean temperature (Figure 11.2),
due in large part to the land—sea warming contrast, and additionally
to regional feedbacks in some regions (Section 11.1.6). Increases in
the intensity of temperature extremes scale robustly, and in general
linearly, with global warming across different geographical regions
in projections up to 2100, with minimal dependence on emissions
scenarios (Section 11.2.4, Figure 11.3, and Cross-Chapter Box 11.1;
Seneviratne et al., 2016; Wartenburger et al., 2017; Kharin et al,,
2018). The frequency of hot temperature extremes (see Figure 11.6),
the number of heatwave days and the length of heatwave seasons
in various regions also scale well, but nonlinearly (because of
threshold effects, Section 11.2.1), with global mean temperatures
(Wartenburger et al., 2017; Y. Sun et al., 2018a).

Changes in annual maximum one-day precipitation (Rx1day) are
proportional to mean global surface temperature changes, at about
7% increase per 1°C of warming, that is, following the Clausius—
Clapeyron relation (Box 11.1), both in observations (Westra et al.,
2013) and in future projections (Kharin et al., 2013) at the global
scale. Extreme short-duration precipitation in North America also
scales with global surface temperature (Prein et al., 2016b; C. Li et al.,
2019a). At the local and regional scales, changes in extremes are also
strongly modulated and controlled by regional forcings and feedback
mechanisms (Section 11.1.6), whereby some regional forcings, for

Observed changes in temperature
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example, associated with changes in land cover and land use or
aerosol emissions, can have non-local or some (non-homogeneous)
global-scale effects. In general, there is high confidence in changes in
extremes due to global-scale thermodynamic processes (i.e., global
warming, mean moistening of the air) as the processes are well
understood, while the confidence in those related to dynamic
processes or regional and local forcing, including regional and local
thermodynamic processes, is much lower due to multiple factors (see
the following subsection and Box 11.1).

Since AR5, the attribution of extreme weather events, or the
investigation of changes in the frequency and/or magnitude of
individual and local- and regional-scale extreme weather events due
to various drivers (Section 11.2.3 and Cross-Working Group Box 1.1)
has provided evidence that greenhouse gases and other external
forcings have affected individual extreme weather events. The events
that have been studied are geographically uneven. For example,
extreme rainfall events in the UK (Schaller et al., 2016; Vautard et al.,
2016; Otto et al., 2018b) or heatwaves in Australia (King et al., 2014;
Perkins-Kirkpatrick et al., 2016; Lewis et al., 2017b) have spurred more
studies than other events. Many highly impactful extreme weather
events have not been studied in the event attribution framework.
Studies in the developing world are also generally lacking. This is due
to various reasons (Section 11.2) including lack of observational data,
lack of reliable climate models and other problems (Otto et al., 2020).
While the events that have been studied are not representative of all
extreme events that occurred, and results from these studies may also
be subject to selection bias, the large number of event attribution
studies provide evidence that changes in the properties of these
local and individual events are in line with expected consequences
of human influence on the climate and can be attributed to external
drivers (Section 11.9). Figure 11.4 summarizes assessments of
observed changes in temperature extremes, in heavy precipitation
and in droughts, and their attribution in a map form.

Annual coldest temperature (TNn)

Land mean temperature
Annual hottest temperature (TXx)

Global mean temperature

1850 1875 1900 1925

1950

1975 2000 2025

Figure 11.2 | Time series of observed temperature anomalies for global average annual mean temperature (black), land average annual mean temperature
(green), land average annual hottest daily maximum temperature (TXx, purple), and land average annual coldest daily minimum temperature (TNn, blue).
Global and land mean temperature anomalies are relative to their 1850—-1900 means and are based on the multi-product mean annual time series assessed in Section 2.3.1.1.3
(see text for references). TXx and TNn anomalies are relative to their respective 19611990 means and are based on the HadEX3 dataset (Dunn et al., 2020) using values for
grid boxes with at least 90% temporal completeness over 1961-2018. Further details on data sources and processing are available in the chapter data table (Table 11.5M.9).

1523

Downloaded from https://www.cambridge.org/core. IP address: 18.118.254.2, on 15 Jan 2025 at 14:30:23, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/9781009157896.013



https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Chapter 11 Weather and Climate Extreme Events in a Changing Climate

Scaling of regional annual maximum temperature (TXx)
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Figure 11.3 | Regional mean changes in annual hottest daily maximum temperature (TXx) for AR6 land regions and the global land area (except
Antarctica), against changes in global mean surface air temperature (GSAT) as simulated by Coupled Model Intercomparison Project Phase 6 (CMIP6)
models under different Shared Socio-economic Pathway (SSP) forcing scenarios, SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Changes in TXx and
GSAT are relative to the 1850—1900 baseline, and changes in GSAT are expressed as global warming level. (a) Individual models from the CMIP6 ensemble (grey), the multi-
model median under three selected SSPs (colours), and the multi-model median (black); (b) to (I) Multi-model median for the pooled data for individual AR6 regions. Numbers
in parentheses indicate the linear scaling between regional TXx and GSAT. The black line indicates the 1:1 reference scaling between TXx and GSAT. See Atlas.1.3.2 for the
definition of regions. Changes in TXx are also displayed in the Interactive Atlas. For details on the methods, see Supplementary Material 11.SM.2.
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Figure 11.4 | Overview of observed changes for cold, hot, and wet extremes and their potential human contribution. Shown are the direction of change and the confidence in: 1) the observed changes in cold and hot as well
as wet extremes across the world; and 2) whether human-induced climate change contributed to causing these changes (attribution). In each region changes in extremes are indicated by colour (orange — increase in the type of extreme; blue —
decrease; both colours — changes of opposing direction within the region, with the signal depending on the exact event definition; grey — there are no changes observed; and no fill — the data/evidence is too sparse to make an assessment).
The squares and dots next to the symbol indicate the level of confidence for observing the trend and the human contribution, respectively. The more black dots/squares, the higher the level of confidence. The information on this figure is based
on regional assessment of the literature on observed trends, detection and attribution and event attribution in Section 11.9.
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Box 11.1 | Thermodynamic and Dynamic Changes in Extremes Across Scales

Changes in weather and climate extremes are determined by local exchanges in heat, moisture, and other related quantities
(thermodynamic changes) and those associated with atmospheric and oceanic motions (dynamic changes). While thermodynamic and
dynamic processes are interconnected, considering them separately helps to disentangle the roles of different processes contributing
to changes in climate extremes (e.g., Shepherd, 2014).

Temperature extremes

An increase in the concentration of greenhouse gases in the atmosphere leads to the warming of tropospheric air and the Earth'’s
surface. This direct thermodynamic effect leads to warmer temperatures everywhere, with an increase in the frequency and intensity
of warm extremes, and a decrease in the frequency and intensity of cold extremes. The initial increase in temperature leads to other
thermodynamic responses and feedbacks affecting the atmosphere and the surface. These include an increase in the water vapour
content of the atmosphere (water vapour feedback, see Section 7.4.2.2) and a change in the vertical profile of temperature (lapse rate
feedback, see Section 7.4.2.2). While the water vapour feedback always amplifies the initial temperature increases (positive feedback),
the lapse rate feedback amplifies near-surface temperature increases (positive feedback) in mid- and high latitudes but reduces
temperature increases (negative feedback) in tropical regions (Pithan and Mauritsen, 2014).

Thermodynamic responses and feedbacks also occur through surface processes. For instance, observations and model simulations
show that temperature increases, including extreme temperatures, are amplified in areas where seasonal snow cover is reduced due
to decreases in surface albedo (see Section 11.3.1). In some mid-latitude areas, temperature increases are amplified by the higher
atmospheric evaporative demand (Fu and Feng, 2014; Vicente-Serrano et al., 2020a) that results in a drying of soils in some regions
(Section 11.6), leading to increased sensible heat fluxes (soil-moisture—temperature feedback, see Sections 11.1.6 and 11.3.1 for
more background). Other thermodynamic feedback processes include changes in the water-use efficiency of plants under enhanced
atmospheric carbon dioxide (CO,) concentrations that can reduce the overall transpiration, and thus also enhance temperature in
projections (Sections 8.2.3.3, 11.1.6, 11.3 and 11.6).

Changes in the spatial distribution of temperatures can also affect temperature extremes by modifying the characteristics of weather
patterns (e.g., Suarez-Gutierrez et al., 2020a). For example, a robust thermodynamic effect of polar amplification is a weakened
north-south temperature gradient, which amplifies the warming of cold extremes in the Northern Hemisphere mid- and high latitudes
because of the reduction of cold air advection (Holmes et al., 2015; Schneider et al., 2015; Gross et al., 2020). Much less robust is the
dynamic effect of polar amplification (Section 7.4.4.1) and the reduced low-altitude meridional temperature gradient that has been
linked to an increase in the persistence of weather patterns (e.g., heatwaves) and subsequent increases in temperature extremes
(Cross-Chapter Box 10.1; Francis and Vavrus, 2012; Coumou et al., 2015, 2018; Mann et al., 2017).

Precipitation extremes

Changes in temperature also control changes in water vapour through increases in evaporation and in the water-holding capacity of
the atmosphere (Section 8.2.1). At the global scale, column-integrated water vapour content increases roughly following the Clausius—
Clapeyron (C-C) relation, with an increase of approximately 7% per 1°C of global-mean surface warming (Section 8.2.1). Nonetheless,
at regional scales, water vapour increases differ from this C-C rate due to several reasons (Section 8.2.2), including a change in
weather regimes and limitations in moisture transport from the ocean, which warms more slowly than land (Byrne and O'Gorman,
2018). Observational studies (Fischer and Knutti, 2016; Sun et al., 2021) have shown that the observed rate of increased precipitation
extremes is similar to the C-C rate at the global scale. Climate model projections show that the increase in water vapour leads to
robust increases in precipitation extremes everywhere, with a magnitude that varies between 4% and 8% per 1°C of surface warming
(thermodynamic contribution, Box 11.1, Figure 1b). At regional scales, climate models show that the dynamic contribution (Box 11.1,
Figure 1¢) can be substantial and strongly modify the projected rate of change of extreme precipitation (Box 11.1, Figure 1a) with large
regions in the subtropics showing robust reductions and other areas (e.g., equatorial Pacific) showing robust amplifications (Box 11.1,
Figure 1c). However, the dynamic contributions show large differences across models and are more uncertain than thermodynamic
contributions (Box 11.1, Figure 1¢; Shepherd, 2014; Trenberth et al., 2015; Pfahl et al., 2017).

Dynamic contributions can occur in response to changes in the vertical and horizontal distribution of temperature (thermodynamics)
and can affect the frequency and intensity of synoptic and subsynoptic phenomena, including tropical cyclones, extratropical cyclones,
fronts, mesoscale-convective systems and thunderstorms. For example, the poleward shift and strengthening of the Southern
Hemisphere mid-latitude storm tracks (Section 4.5.1) can modify the frequency or intensity of extreme precipitation. However, the
precise way in which dynamic changes will affect precipitation extremes is unclear due to several competing effects (Shaw et al., 2016;
Allan et al., 2020).
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Box 11.1 (continued)

Change in annual maximum daily precipitation
(a) Total change (b) Thermodynamic contribution (c) Dynamic contribution

[Colour] High model agreement < EENEE IO
] Low model agreement 1512 9 6 3 1 1 3 6 9 1215

Change per °C global warming (% °C")

Box 11.1, Figure 1: Multi-model Coupled Model Intercomparison Project Phase 5 (CMIP5) mean fractional changes (in % per degree of warming).
(a) changes in annual maximum precipitation (Rx1day); (b) changes in Rx1day due to the thermodynamic contribution; and (c) changes in Rx1day due to the dynamic
contribution estimated as the difference between the total changes and the thermodynamic contribution. Changes were derived from a linear regression for the period
1950-2100. Uncertainty is represented using the simple approach: no overlay indicates regions with high model agreement, where =80% of models (n=22) agree
on the sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on the sign of change. For more information on the
simple approach, please refer to the Cross-Chapter Box Atlas 1. A detailed description of the estimation of dynamic and thermodynamic contributions is given in Pfahl
et al. (2017). Figure adapted from Pfahl et al. (2017), originally published in Nature Climate Change/Springer Nature. Further details on data sources and processing
are available in the chapter data table (Table 11.SM.9).

Extreme precipitation can also be enhanced by dynamic responses and feedbacks occurring within storms that result from the extra
latent heat released from the thermodynamic increases in moisture (Lackmann, 2013; Willison et al., 2013; Marciano et al., 2015;
Nie et al., 2018; Mizuta and Endo, 2020). The extra latent heat released within storms has been shown to increase precipitation
extremes by strengthening convective updrafts and the intensity of the cyclonic circulation (e.g., Molnar et al., 2015; Nie et al., 2018),
although weakening effects have also been found in mid-latitude cyclones (e.g., Kirshbaum et al., 2017). Additionally, the increase
in latent heat can also suppress convection at larger scales due to atmospheric stabilization (Nie et al., 2018; Tandon et al., 2018;
Kendon et al.,, 2019). As these dynamic effects result from feedback processes within storms where convective processes are crucial,
their proper representation might require improving the horizontal/vertical resolution, the formulation of parametrizations, or both,
in current climate models (i.e., Kendon et al., 2014; Westra et al., 2014; Ban et al., 2015; Meredith et al., 2015; Prein et al., 2015;
Nie et al., 2018).

Droughts

Droughts are also affected by thermodynamic and dynamic processes (Sections 8.2.3.3 and 11.6). Thermodynamic processes affect
droughts by increasing atmospheric evaporative demand (Martin, 2018; Gebremeskel Haile et al., 2020; Vicente-Serrano et al.,
2020a) through changes in air temperature, radiation, wind speed, and relative humidity. Dynamic processes affect droughts through
changes in the occurrence, duration and intensity of weather anomalies, which are related to precipitation and the amount of sunlight
(Section 11.6). While atmospheric evaporative demand increases with warming, regional changes in aridity are affected by increasing
land—ocean warming contrast, vegetation feedbacks and responses to rising CO, concentrations, and dynamic shifts in the location of
the wet and dry parts of the atmospheric circulation in response to climate change, as well as internal variability (Byrne and O'Gorman,
2015; Kumar et al.,, 2015; Allan et al., 2020).

In summary, both thermodynamic and dynamic processes are involved in the changes of extremes in response to warming.
Anthropogenic forcing (e.g., increases in greenhouse gas concentrations) directly affects thermodynamic variables, including overall
increases in high temperatures and atmospheric evaporative demand, and regional changes in atmospheric moisture, which intensify
heatwaves, droughts and heavy precipitation events when they occur (high confidence). Dynamic processes are often indirect responses
to thermodynamic changes, are strongly affected by internal climate variability, and are also less well understood. As such, there is fow
confidence in how dynamic changes affect the location and magnitude of extreme events in a warming climate.
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Chapter 11

11.1.5 Effects of Large-scale Circulation
on Changes in Extremes
Atmospheric  large-scale circulation patterns and  associated

atmospheric dynamics are important determinants of the regional
climate (Chapter 10).As a result, they are also important to the magnitude,
frequency, and duration of extremes (Box 11.4). Aspects of changes in
large-scale circulation patterns are assessed in Chapters 2, 3, 4 and 8,
and representative atmospheric and oceanic modes are described in
Annex V. This subsection provides some general concepts, through
a couple of examples, on why the uncertainty in the response of large-
scale circulation patterns to external forcing can cascade to uncertainty
in the response of extremes to external forcings. Details for specific
types of extremes are covered in the relevant subsections. For example,
the occurrence of the El Nifio—Southern Oscillation (ENSO) influences
precipitation regimes in many areas, favouring droughts in some regions
and heavy rains in others (Box 11.4).The extent and strength of the Hadley
circulation influences regions where tropical and extratropical cyclones
occur, with important consequences for the characteristics of extreme
precipitation, drought, and winds (Section 11.7). Changes in circulation
patterns associated with land—ocean heat contrast, which affect the
monsoon circulations (Section 8.4.2.4), lead to heavy precipitation along
the coastal regions in East Asia (Freychet et al.,, 2015). As a result, changes
in the spatial and/or temporal variability of the atmospheric circulation in
response to warming affect characteristics of weather systems such
as tropical cyclones (Sharmila and Walsh, 2018), storm tracks (Shaw
et al, 2016), and atmospheric rivers (Section 11.7; Waliser and Guan,
2017). Changes in weather systems come with changes in the frequency
and intensity of extreme winds, extreme temperatures, and extreme
precipitation, on the backdrop of thermodynamic responses of extremes
to warming (Box 11.1). Floods are also affected by large-scale circulation
modes, including ENSO, the North Atlantic Oscillation (NAO), the Atlantic
Multi-decadal Variability (AMV), and the Pacific Decadal Variability (PDV)
(Kundzewicz et al., 2018; Annex IV). Aerosol forcing, through changes
in patterns of sea surface temperatures (SSTs), also affects circulation
patterns and tropical cyclone activities (Takahashi et al., 2017).

In general, changes in atmospheric large-scale circulation due to
external forcing are uncertain, but there are some robust changes
(Sections 2.3.1.4 and 8.2.2.2). Among them, there has been a very likely
widening of the Hadley circulation since the 1980s and the extratropical
jets and cyclone tracks have likely been shifting poleward since the
1980s (Section 2.3.1.4). The poleward expansion affects drought
occurrence in some regions (Section 11.6), and results in poleward
shifts of tropical cyclones and storm tracks (Sections 11.7.1 and
11.7.2). Although it is very likely that the amplitude of ENSO variability
will not robustly change over the 21st century (Section 4.3.3.2), the
frequency of extreme ENSO events (Box 11.4), defined by precipitation
threshold, is projected to increase with global warming (Section 6.5
of SROCC). This would have implications for projected changes in
extreme events affected by ENSO, including droughts over wide areas
(Section 11.6; Box 11.4) and tropical cyclones (Section 11.7.1). A case
study is provided for extreme ENSO events in 20152016 in Box 11.4
to highlight the influence of ENSO on extremes.

In summary, large-scale atmospheric circulation patterns are
important drivers for local and regional extremes. There is overall Jow

confidence about future changes in the magnitude, frequency, and
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spatial distribution of these patterns, which contributes to uncertainty
in projected responses of extremes, especially in the near term.

11.1.6  Effects of Regional-scale Processes and Forcings

and Feedbacks on Changes in Extremes

At the local and regional scales, changes in extremes are strongly
modulated by local and regional feedbacks (SRCCL, Jia et al., 2019;
Seneviratne et al., 2013; Miralles et al., 2014a; Lorenz et al., 2016;
Vogel et al, 2017), changes in large-scale circulation patterns
(Section 11.1.5), and regional forcings such as changes in land use
or aerosol concentrations (Chapters 3 and 7; Findell et al., 2017;
Hirsch et al., 2017, 2018; Thiery et al., 2017; Z. Wang et al., 2017b).
In some cases, such responses may also include non-local effects
(e.g., de Vrese et al., 2016; Persad and Caldeira, 2018; Miralles et al.,
2019; Schumacher et al., 2019). Regional-scale forcing and feedbacks
often affect temperature distributions asymmetrically, with generally
higher effects for the hottest percentiles (Section 11.3).

Land use can affect regional extremes, in particular hot extremes,
in several ways (high confidence). This includes effects of land
management (e.g., cropland intensification, irrigation, double
cropping) as well as of land cover changes (deforestation; Sections
11.3.2 and 11.6). Some of these processes are not well represented
(e.g., effects of forest cover on diurnal temperature cycle) or not
integrated (e.g., irrigation) in climate models (Sections 11.3.2 and
11.3.3). Overall, the effects of land-use forcing may be particularly
relevant in the context of low-emissions scenarios, which include
large land-use modifications, for instance those associated with the
expansion of biofuels, bioenergy with carbon capture and storage,
or re-/afforestation to ensure negative emissions, as well as with the
expansion of food production (e.g., SR1.5, Chapter 3; Cross-Chapter
Box 5.1 in this Report; van Vuuren et al., 2011; Hirsch et al., 2018).
There are also effects on the water cycle through freshwater use
(Section 11.6 and Cross-Chapter Box 5.1).

Aerosol forcing also has a strong regional footprint associated with
regional emissions, which affects temperature and precipitation
extremes (high confidence) (Sections 11.3 and 11.4). From around the
1950s to 1980s, enhanced aerosol loadings led to regional cooling
due to decreased global solar radiation (‘global dimming’) which
was followed by a phase of ‘global brightening’ due to a reduction
in aerosol loadings (Chapters 3 and 7; Wild et al., 2005). King et al.
(2016b) show that aerosol-induced cooling delayed the timing of
a significant human contribution to record-breaking heat extremes in
some regions. However, the decreased aerosol loading since the 1990s
has led to an accelerated warming of hot extremes in some regions.
Based on Earth system model (ESM) simulations, Dong et al. (2017)
suggest that a substantial fraction of the warming of the annual
hottest days in Western Europe since the mid-1990s has been due to
decreases in aerosol concentrations in the region. Dong et al. (2016b)
also identify non-local effects of decreases in aerosol concentrations
in Western Europe, which they estimate played a dominant role in
the warming of the hottest daytime temperatures in north-east Asia
since the mid-1990s, via induced coupled atmosphere—land surface
and cloud feedbacks, rather than a direct impact of anthropogenic
aerosol changes on cloud condensation nuclei.
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In addition to regional forcings, regional feedback mechanisms can
also substantially affect extremes (high confidence) (Sections 11.3,
11.4 and 11.6). In particular, soil moisture feedbacks play an important
role for extremes in several mid-latitude regions, leading to a marked
additional warming of hot extremes compared to mean global warming
(Seneviratne et al., 2016; Bathiany et al., 2018; Miralles et al., 2019),
which is superimposed on the known land—sea contrast in mean
warming (Vogel et al., 2017). Soil moisture—atmosphere feedbacks
also affect drought development (Section 11.6). Additionally, effects of
land surface conditions on circulation patterns have also been reported
(Kosteretal.,2016; Sato and Nakamura, 2019).These regional feedbacks
are also associated with substantial spread in models (Section 11.3),
and contribute to the identified higher spread of regional projections of
temperature extremes as a function of global warming, compared with
the spread resulting from the differences in projected global warming
(global transient climate responses) in climate models (Seneviratne
and Hauser, 2020). In addition, there are also feedbacks between soil
moisture content and precipitation occurrence, generally characterized
by negative spatial feedbacks and positive local feedbacks (Taylor
et al,, 2012; Guillod et al., 2015). Climate model projections suggest
that these feedbacks are relevant for projected changes in heavy
precipitation (Seneviratne et al., 2013). However, there is evidence that
climate models do not capture the correct sign of the soil moisture—
precipitation feedbacks in several regions, in particular spatially, and/
or in some cases also temporally (Taylor et al., 2012; Moon et al., 2019).
In the Northern Hemisphere high latitudes, the snow- and ice-albedo
feedback, along with other factors, is projected to largely amplify
temperature increases (e.g., Pithan and Mauritsen, 2014), although the
effect on temperature extremes is still unclear. It also remains unclear
whether snow-albedo feedbacks in mountainous regions might have
an effect on temperature and precipitation extremes (e.g., Gobiet et al.,
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2014). However, these feedbacks play an important role in projected
changes in high-latitude warming (Hall and Qu, 2006), and, in
particular, in changes in cold extremes in these regions (Section 11.3).

Finally, extreme events may also regionally amplify one another.
For example, this is the case for heatwaves and droughts, with high
temperatures and stronger radiative forcing leading to drying tendencies
on land due to increased evapotranspiration (Section 11.6), and drier
soils then inducing decreased evapotranspiration and higher sensible
heat flux and hot temperatures (Box 11.1, Section 11.8; Seneviratne
et al,, 2013; Miralles et al., 2014a; Vogel et al., 2017; Zscheischler and
Seneviratne, 2017; S. Zhou et al., 2019; Kong et al., 2020).

In summary, regional forcings and feedbacks — in particular those
associated with land use and aerosol forcings — and soil-moisture—
temperature, soil moisture—precipitation, and snow/ice—albedo—
temperature feedbacks, play an important role in modulating
regional changes in extremes. These can also lead to a higher
warming of extreme temperatures compared to mean temperature
(high confidence), and possibly cooling in some regions (medium
confidence). However, there is only medium confidence in the
representation of the associated processes in state-of-the-art ESMs.

11.1.7  Global-scale Synthesis

Tables 11.1 and 11.2 provide a synthesis for observed and attributed
changes in extremes, and projected changes in extremes, respectively,
at different levels of global warming. This synthesis assessment
focuses on the assessed range of observed and projected changes.
In this chapter, the assessed likely range in a projection typically
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Figure 11.5 | Confidence and likelihood of past changes and projected future changes at 2°C of global warming on the global scale. The information in this

figure is based on Tables 11.1 and 11.2.
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Figure 11.6 | Projected changes in the frequency of extreme temperature events under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative to the 1850-1900 baseline. Extreme temperatures are defined as
the maximum daily temperatures that were exceeded on average once during a 10-year period (10-year event, blue) and once during a 50-year period (50-year event, orange) during the 1850—1900 base period. Results are shown for the
global land area and the ARG regions. For each box plot, the horizontal line and the box represent the median and central 66% uncertainty range, respectively, of the frequency changes across the multi-model ensemble, and the ‘whiskers’
extend to the 90% uncertainty range. The dotted line indicates no change in frequency. The results are based on the multi-model ensemble from simulations of global climate models contributing to the Coupled Model Intercomparison Project
Phase 6 (CMIP6) under different Shared Socio-economic Pathway forcing scenarios. Adapted from Li et al. (2021). Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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Figure 11.7 | Projected changes in the frequency of extreme precipitation events under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative to the 1850-1900 baseline. Extreme precipitation is defined
as the annual maximum daily precipitation (Rx1day) that was exceeded on average once during a 10-year period (10-year event, blue) and once during a 50-year period (50-year event, orange) during the 1850—1900 base period. Results
are shown for the global land area and the ARG regions. For each box plot, the horizontal line and the box represent the median and central 66% uncertainty range, respectively, of the frequency changes across the multi-model ensemble,
and the ‘whiskers" extend to the 90% uncertainty range. The dotted line indicates no change in frequency. The results are based on the multi-model ensemble from simulations of global climate models contributing to the Coupled Model
Intercomparison Project Phase 6 (CMIP6) under different Shared Socio-economic Pathway forcing scenarios. Adapted from Li et al. (2021). Further details on data sources and processing are available in the chapter data table (Table 11.5M.9).
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corresponds to the 90% range of the multi-model ensemble spread  Building on the assessments from Tables 11.1 and 11.2, Figure 11.5
to take into account other sources of uncertainty, unless stated provides a synthesis on the level of confidence in the attribution and
otherwise. Some low-likelihood, high-impact scenarios that can be of  projection of changes in extremes. In the case where the signal in
high relevance are addressed in Box 11.2. the observations is still relatively weak but the physical processes
underlying the changes in extremes in response to human forcing
are well understood, confidence in the projections would be higher
than in the attribution because of strengthening in the signal with
warming. But, when the observed signal is already strong and when
observational evidence is consistent with model simulated responses,

Table 11.1 | Synthesis table on observed changes in extremes and contribution by human influence. Note that observed changes in marine extremes are assessed
in Cross-Chapter Box 9.1.

Phenomenon and Direction Observed/Detected Trends Since 1950 Human Contribution to the Observed Trends Since

of Trend (for +0.5°C global warming or higher) 1950 (for +0.5°C global warming or higher)

Warmer and/or more frequent hot days
and nights over most land areas

Virtually certain on global scale {11.3} Extremely likely main contributor on global scale {11.3}
Warmer and/or fewer cold days and nights . . . .

Continental-scale evidence: Continental-scale evidence:
over most land areas ; ) . . ) o .

Asia, Australasia, Europe, North America: Very likely North America, Europe, Australasia, Asia: Very likely
Warm spells/heatwaves: increases in Central and South America: High confidence Central and South America: High confidence
frequency or intensity over most land areas | Africa: Medium confidence Africa: Medium confidence

{11.3,11.9} {11.3,11.9}

Cold spells/cold waves: decreases in
frequency or intensity over most land areas

Likely main contributor to the observed intensification of heavy

Likel lobal scale, jority of land regi ith good )
kely on global scale, over majority of land regions with goo precipitation in land regions on global scale.

observational coverage {11.3}

Heavy precipitation events: increase in ) . {11.3}
the frequency, intensity, and/or amount Co.ntmental-scale evnde.nce:. @il el
of heavy precipitation Asia, Europe, North America: Likely Asia, Europe, North America: Likely
Africa, Australasia, Central and South America: Low confidence » L . ,
Africa, Australasia, Central and South America: Low confidence
{11.3,11.9}
{11.3,11.9}
Medium confidence some regions {11.6, 11.9}
Increases in agricultural and ecological Increasing trends in agricultural and ecological droughts Medium confidence some regions
drought events have been observed in AR6 regions on all continents {11.6,11.9}
(medium confidence) {11.6, 11.9}
Increase in precipitation associated Medium confidence High confidence
with tropical cyclones (TCs) {11.7} {11.7}
Increase in likelihood that a TC will Likely Medium confidence
be at major TC intensity (Cat. 3-5) 1.7 {11.7}
Changes in frequency of rapidly Likely Medium confidence
intensifying tropical cyclones 1.7 {11.7}
Poleward migration of tropical cyclones Medium confidence Medium confidence
in the western Pacific {11.7} {11.7}
. X Itis likely that TC translation speed has slowed over It is more likely than not that the slowdown of TC translation
Decrease in TC forward motion . o K .
the USA since 1900. speed over the USA has contributions from anthropogenic forcing.
over the USA
{11.7} {11.7}
Severe convective storms (tornadoes, hail, Low confidence in past trends in hail and winds and tornado Low confidence
rainfall, wind, lightning) activity due to short length of high-quality data records. {11.7} 1.7
Likely increase in the probability of compound events. Likely that human-induced climate change has increased the

. ) robability of compound events.
High confidence that concurrent heatwaves and droughts are P Yy P

becoming more frequent under enhanced greenhouse gas forcing High confidence that human influence has increased the frequency

at global scale. of concurrent heatwaves and droughts.
Increase in compound events Medium confidence that fire weather, i.e. compound hot, dry Medium confidence that human influence has increased fire
and windy events, have become more frequent in some regions. weather occurrence in some regions.
Medium confidence that compound flooding risk has increased Low confidence that human influence has contributed to changes
in some locations. in compound events leading to flooding.
{11.8} {11.8}
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confidence in the projection may be lower than that in attribution if
certain physical processes could be expected to behave differently
in @ much warmer world and under much higher greenhouse gas
forcing, and in particular if such a behaviour is poorly understood.

Chapter 11

Further synthesis for regional assessments are provided in
Figure 11.4 (event attribution), Figure 11.6 (projected change
in hot temperature extremes) and Figure 11.7 (projected changes in

precipitation extremes). A synthesis on regional assessments for
observed, attributed and projected changes in extremes is provided
in Section 11.9 for all AR6 reference regions (see Section 1.4.5 and
Figures 1.18 and Atlas.2 for definitions of ARG regions).

Table 11.2 | Synthesis table on projected changes in extremes. Note that projected changes in marine extremes are assessed in Chapter 9 and Cross-Chapter Box 9.1
(marine heatwaves). Assessments are provided compared to pre-industrial conditions.

Phenomenon and

Direction of Trend

Projected Changes at

Projected Changes at

Projected Changes at

land areas

most land areas

most land areas

Warmer and/or more frequent
hot days and nights over most

Warmer and/or fewer cold days
and nights over most land areas

Warm spells/heatwaves; increases
in frequency or intensity over

Cold spells/cold waves: decreases
in frequency or intensity over

+1.5°C Global Warming
Virtually certain on global scale
Extremely likely on all continents

Highest increase of temperature of hottest
days is projected in some mid-latitude and
semi-arid regions, and the South American
Monsoon region, at about 1.5 times to twice
the rate of global warming (high confidence)
{11.3, Figure 11.3}

Highest increase of temperature of coldest
days is projected in Arctic regions, at about
three times the rate of global warming
(high confidence)

{11.3}

Continental-scale projections:
Extremely likely: Africa, Asia, Australasia,
Central and South America, Europe,
North America

{11.3,11.9}

+2°C Global Warming
Virtually certain on global scale
Virtually certain on all continents

Highest increase of temperature of hottest
days is projected in some mid-latitude and
semi-arid regions, and the South American
Monsoon region, at about 1.5 times to twice
the rate of global warming (high confidence)
{11.3, Figure 11.3}

Highest increase of temperature of coldest
days is projected in Arctic regions, at about
three times the rate of global warming
(high confidence)

{11.3}

Continental-scale projections:
Virtually certain: Africa, Asia, Australasia,
Central and South America, Europe,
North America

{11.3,11.9}

+4°C Global Warming
Virtually certain on global scale
Virtually certain on all continents

Highest increase of temperature of hottest
days is projected in some mid-latitude and
semi-arid regions, and the South American
Monsoon region, at about 1.5 times to twice
the rate of global warming (high confidence)
{11.3, Figure 11.3}

Highest increase of temperature of coldest
days is projected in Arctic regions, at about
three times the rate of global warming
(high confidence)

{11.3}

Continental-scale projections:
Virtually certain: Africa, Asia, Australasia,
Central and South America, Europe,
North America

{11.3,11.9}

intensity, and/or amount
of heavy precipitation

Heavy precipitation events:
increase in the frequency,

High confidence that increases take place
in most land regions
{11.4}

Very likely: Asia, North America

Likely: Africa, Europe

High confidence: Central and South America
Medium confidence: Australasia
{11.4,11.9}

Likely that increases take place in most
land regions
{11.4}

Extremely likely: Asia, North America

Very likely: Africa, Europe

Likely: Australasia, Central and South America
{11.4,11.9}

Very likely that increases take place in most
land regions
{11.4}

Virtually certain: Africa, Asia, North America
Extremely likely: Central and South America,
Europe

Very likely Australasia

{11.4,11.9}

Agricultural and ecological
droughts: increases in intensity
and/or duration of drought events

More regions affected by increases in
agricultural and ecological droughts
compared to observed changes

(high confidence). {11.6, 11.9}

Decreased precipitation is going to increase
the severity of drought in some regions;
atmospheric evaporative demand will
continue to increase compared to pre-
industrial conditions and lead to further
increases in agricultural and ecological
droughts due to increased evapotranspiration
in some regions. (high confidence)
{11.6,11.9}

More regions affected by increases in
agricultural and ecological droughts than at
1.5°C of global warming (high confidence).
{11.6,11.9}

Decreased precipitation is going to increase
the severity of drought in some regions;
atmospheric evaporative demand will
continue to increase compared to pre-
industrial conditions and lead to further
increases in agricultural and ecological
droughts due to increased evapotranspiration
in some regions. (high confidence)
{11.6,11.9}

More regions affected by increases in
agricultural and ecological droughts than
at 2°C of global warming (very likely).
{11.6,11.9}

Decreased precipitation is going to increase
the severity of drought in several regions;
atmospheric evaporative demand will
continue to increase compared to pre-
industrial conditions and lead to further
increases in agricultural and ecological
droughts due to increased evapotranspiration
in several regions. (high confidence)
{11.6,11.9}

Increase in precipitation
associated with tropical
cyclones (TCs)

High confidence in a projected increase of TC
rain rates at the global scale with a median
projected increase due to human emissions
of about 11%. {11.7}

Medium confidence that rain rates will
increase in every basin. {11.7}

High confidence in a projected increase of TC
rain rates at the global scale with a median
projected increase due to human emissions
of about 14%. {11.7}

Medium confidence that rain rates will
increase in every basin. {11.7}

High confidence in a projected increase of TC
rain rates at the global scale with a median
projected increase due to human emissions
of about 28%. {11.7}

Medium confidence that rain rates will
increase in every basin. {11.7}

Increase in mean TC lifetime-
maximum wind speed (intensity)

Medium confidence
1.7

High confidence
(1.7}

High confidence
{1.7}
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Phenomenon and Projected Changes at Projected Changes at Projected Changes at
Direction of Trend +1.5°C Global Warming +2°C Global Warming +4°C Global Warming
High confidence for an increase in the High confidence for an increase in the High confidence for an increase in the
Increase in likelihood that a TC proportion of TCs that reach the strongest proportion of TCs that reach the strongest proportion of TCs that reach the strongest
will reach major TC intensity (Category 4-5) levels. The median projected (Category 4-5) levels. The median projected (Category 4-5) levels. The median projected
(Category 4-5) increase in this proportion is about 10%. increase in this proportion is about 13%. increase in this proportion is about 20%.
{11.7} {11.7} (1.7}

High confidence that the average and maximum rain rates associated with severe convective storms increase in some regions, including the

USA. High confidence that convective available potential energy (CAPE) increases in response to global warming in the tropics and subtropics,
suggesting more favourable environments for severe convective storms. Medium confidence that the frequency of spring severe convective storms
is projected to increase in the USA, leading to a lengthening of the severe convective storm season. {11.7}

Severe convective storms

Likely that probability of compound events will continue to increase with global warming.

High confidence that concurrent heatwaves and droughts will continue to increase under higher levels of global warming, with higher frequency/
Increase in compound events intensity with every additional 0.5°C of global warming.

(frequency, intensity) High confidence that fire weather, (i.e. compound hot, dry and windy events), will become more frequent in some regions at higher levels
of global warming.

High confidence that compound flooding at the coastal zone will increase under higher levels of global warming. {11.8}

Box 11.2 | Changes in Low-likelihood, High-impact Extremes

The SREX (Chapter 3) assigned low confidence to changes in low-likelihood, high-impact (LLHI) events (termed ‘low-probability high-
impact scenarios’). Such events are often not anticipated and thus sometimes referred to as ‘surprises’. There are several types of LLHI
events. Abrupt changes in mean climate are addressed in Chapter 4. Unanticipated LLHI events can either result from tipping points
in the climate system (Section 1.4.4.3), such as the shutdown of the Atlantic thermohaline circulation (SROCC Chapter 6; Collins
et al., 2019) or the drydown of the Amazonian rainforest (SR1.5 Chapter 3, Hoegh-Guldberg et al., 2018; Drijthout et al., 2015), or
from uncertainties in climate processes, including climate feedbacks, that may enhance or damp extremes either related to global or
regional climate responses (Seneviratne et al., 2018a; Sutton, 2018). The low confidence does not by itself exclude the possibility of
such events occuring, rather it indicates a poor state of knowledge. Such outcomes, while improbable, could be associated with very
high impacts, and are thus highly relevant from a risk perspective (see Section 1.4.3 and Box 11.4; Sutton, 2018, 2019). Alternatively,
high impacts can occur when different extremes occur at the same time, or in short succession at the same location, or in several
regions with shared vulnerability (e.g., food-basket regions Gaupp et al., 2019). These ‘compound events' are assessed in Section 11.8,
and Box 11.4 provides a case study example.

Difficulties persist in determining the likelihood of occurrence and time frame of potential tipping points and LLHI events. However,
new literature has emerged on unanticipated and LLHI events. There are some events that are sufficiently rare that they have not been
observed in meteorological records, but whose occurrence is nonetheless plausible within the current state of the climate system —
see examples below and in McCollum et al. (2020). The rare nature of such events and the limited availability of relevant data makes
it difficult to estimate their occurrence probability and thus gives little evidence on whether to include such hypothetical events in
planning decisions and risk assessments. The estimation of such potential surprises is often limited to events that have historical
analogues (including before the instrumental records began, Wetter et al., 2014), albeit the magnitude of the event may differ.
Additionally, there is also a limitation of available resources to exhaust all plausible trajectories of the climate system. As a result, there
will still be events that cannot be anticipated. These events can be surprises to many in that the events have not been experienced,
although their occurrence could be inferred by statistical means or physical modelling approaches (Chen et al., 2017; van Oldenborgh
et al., 2017; Harrington and Otto, 2018a). Another approach focusing on the estimation of low-probability events and of events
whose likelihood of occurrence is unknown consists in using physical climate models to create a physically self-consistent storyline of
plausible extreme events and assessing their impacts and driving factors in past (Section 11.2.3) or future conditions (Section 11.2.4)
(Hazeleger et al., 2015; Shepherd, 2016; Zappa and Shepherd, 2017; Cheng et al.,, 2018; Shepherd et al., 2018; Sutton, 2018; Schaller
et al., 2020; Wehrli et al., 2020).

In many parts of the world, observational data are limited to 5060 years. This means that the chance to observe an extreme event
at a particular location that occurs once in several hundred or more years is small. Thus, when a very extreme event occurs, it becomes
a surprise to many (Bao et al., 2017; McCollum et al., 2020), and very rare events are often associated with high impacts (van
Oldenborgh et al., 2017; Philip et al., 2018b; Tozer et al., 2020). Attributing and projecting very rare events in a particular location by
assessing their likelihood of occurrence within the same larger region and climate thus provides another way to make quantitative
assessments regarding events that are extremely rare locally. Some examples of such events include:
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Box 11.2 (continued)

e Hurricane Harvey, that made landfall in Houston, TX in August 2017 (Section 11.7.1.4.)

e The 2010-2011 extreme floods in Queensland, Australia (Christidis et al., 2013a)

e The 2018 concurrent heatwaves across the Northern Hemisphere (Box 11.4)

¢ Tropical Cyclone Idai in Mozambique (Cross-Chapter Box: Disaster in WGII AR6 Chapter 4)
e The California fires in 2018 and 2019

e The 2019-2020 Australia fires (Cross-Chapter Box: Disaster in WGII AR6 Chapter 4)

One factor making such events hard to anticipate is the fact that we now live in a non-stationary climate, and that the framework of
reference for adaptation is continuously moving. As an example, the concurrent heatwaves that occurred across the Northern Hemisphere
in the summer of 2018 were considered very unusual and were unprecedented given the total area that was concurrently affected (Drouard
et al., 2019; Kornhuber et al., 2019; Toreti et al., 2019; Vogel et al., 2019); however, the probability of this event under 1°C global warming
was found to be about 16% (Vogel et al., 2019), which is not particularly low. Similarly, the 2013 summer temperature over eastern
China was the hottest on record at the time, but it had an estimated recurrence interval of about four years in the climate of 2013
(Sun et al., 2014). Furthermore, when other aspects of the risk, vulnerability, and exposure are historically high or have recently increased
(see WGII, Chapter 16, Section 16.4), relatively moderate extremes can have very high impacts (Otto et al., 2015b; Philip et al., 2018b).
As warming continues, the climate moves further away from its historical state we are familiar with, resulting in an increased likelihood of
unprecedented events and surprises. This is particularly the case under high global warming levels — for example, the climate of the late
21st century under high-emissions scenarios, above 4°C of global warming (Cross-Chapter Box 11.1).

Another factor highlighted in Section 11.8 and Box 11.4 making events high-impact and difficult to anticipate is that several locations
under moderate warming levels could be affected simultaneously, or very repeatedly by different types of extremes (Mora et al., 2018;
Gaupp et al,, 2019; Vogel et al., 2019). Box 11.4 shows that concurrent events at different locations, which can lead to major impacts
across the world, can also result from the combination of anomalous circulation or natural variability (e.g., El Nino—Southern Oscillation)

Box 11.2, Table 1 | Examples of changes in low-likelihood, high-impact extreme conditions (single extremes, compound events) at different

global warming levels.

Risk ratio for annual hottest daytime temperature (TXx)
with 1% of probability under present-day warming
(+1°C) (Kharin et al., 2018): Global land

+1°C (Present-day)

+1.5°C

3.3 (e, 230%
higher probability)

+2°C

8.2 (i.e, 720%
higher probability)

+3°C and Higher

Not assessed

Risk ratio for heavy precipitation events (Rx1day) with
1% of probability under present-day warming (+1°C)
(Kharin et al., 2018): Global land

1.2 (ie, 20%
higher probability)

1.5 (ie, 50%
higher probability)

Not assessed

Number of 1-5 day duration extreme floods with 1%
of probability under present-day warming (+1°C) (H. Ali
et al,, 2019) Indian subcontinent

Upto3in
individual locations

Upto5in
individual locations

2-6 in most locations

Up to 12 in individual
locations (4°C)

Probability of ‘extreme extremes’ hot days with 1/1000
probability at the end of the 20th century (Vogel et al.,
2020a): Global land

About 20 days
over 20 years
in most locations

About 50 days
in 20 years in
most locations

About 150 days
in 20 years in
most locations

About 500 days
in 20 years in most
locations (3°C)

Probability of co-occurrence in the same week of hot
days with 1/1000 probability and dry days with 1/1000

0% probability

About one week

About 4 to 5 weeks

More than 9 weeks

Increase in days exposed to dangerous extreme heat —

global land

measured in Health Heat Index (HHI) (Q. Sun et al., 2019)

Not assessed, baseline
is 1981-2000

1.6 times higher risk of
experiencing heat >40.6

2.3 times higher risk of
experiencing heat >40.6

probability at the end of the 20th century (Vogel et al., in 20 years in 20 years in 20 years (3°C)
2020a): Amazon
e el e e AT e 41 days (+46% 58 days (+107% 71 days (+154% 125 days (+346%
(Samanieqo et al, 2018): Mediterranean region compared to the late compared to the late compared to the late compared to the late
g N ’ g 20th century) 20th century) 20th century) 20th century) (3°C)
Around 80% of

land area exposed to
dangerous heat, tropical
regions 1/3 of the year
(4°Q)

Increase in regional mean fire season length
(Q. Sun et al., 2019; Xu et al., 2020) global land

Not assessed, baseline
is 1981-2000

6.2 days

9.5 days

About 50 days (4°C)
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Box 11.2 (continued)

patterns with amplification of resulting responses to human-induced global warming. Also multivariate extremes at single locations
pose specific challenges to anticipation (Section 11.8), with low likelihoods in the current climate but the probability of occurrence of
such compound events strongly increasing with increasing global warming levels (Vogel et al., 2020a). Therefore, in order to estimate
whether, and at what level of global warming, very high impacts arising from extremes would occur, the spatial extent of extremes
and the potential of compounding extremes need to be assessed. Sections 11.3, 11.4, 11.7 and 11.8 highlight increasing evidence that
temperature extremes, higher intensity precipitation accompanying tropical cyclones, and compound events such as dry/hot conditions
conducive to wildfire or storm surges resulting from sea level rise and heavy precipitation events, pose widespread threats to societies
already at relatively low warming levels. Studies have already shown that the probability for some recent extreme events is so small in
the undisturbed world that these events were extremely unlikely to occur without human influence (Section 11.2.4). Box 11.2, Table 1,
provides examples of projected changes in LLHI extremes (single extremes, compound events) of potential relevance for impact and
adaptation assessments showing that today's very rare events can become commonplace in a warmer future.

In summary, the future occurrence of LLHI events linked to climate extremes is generally associated with low confidence, but cannot
be excluded, especially at global warming levels above 4°C. Compound events, including concurrent extremes, are a factor increasing
the probability of LLHI events (high confidence). With increasing global warming, some compound events with low likelihood in past
and current climate will become more frequent, and there is a higher chance of historically unprecedented events and surprises (high
confidence). However, even extreme events that do not have a particularly low probability in the present climate (at more than 1°C of

global warming) can be perceived as surprises because of the pace of global warming (high confidence).

11.2  Data and Methods

This section provides an assessment of observational data and
methods used in the analysis and attribution of climate change
specific to weather and climate extremes. It also introduces some
concepts used in presenting future projections of extremes. Later
sections (Sections 11.3-11.8) also provide additional assessments
on relevant observational datasets and model validation specific to
the type of extremes to be assessed. General background on climate
modelling is provided in Chapters 4 and 10.

11.2.1  Definition of Extremes

In the literature, an event is generally considered extreme if the value
of a variable exceeds (or lies below) a threshold. The thresholds have
been defined in different ways, leading to differences in the meaning
of extremes that may share the same name. For example, two sets
of metrics for the frequency of hot/'warm days have been used in
the literature. One set counts the number of days when maximum
daily temperature is above a relative threshold defined as the 90th or
higher percentile of maximum daily temperature for the calendar day
over a base period. An event based on such a definition can occur at
any time of the year, and the impact of such an event would differ
depending on the season. The other set counts the number of days
in which maximum daily temperature is above an absolute threshold
such as 35°C, because exceeding this temperature can sometimes
cause health impacts (however, these impacts may depend on
location and whether ecosystems and the population are adapted
to such temperatures). While both types of hot extreme indices
have been used to analyse changes in the frequency of hot/warm
events, they represent different events that occur at different times
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of the year, possibly affected by different types of processes and
mechanisms, and possibly also associated with different impacts.

Changes in extremes have also been examined from two
perspectives: changes in the frequency for a given magnitude of
extremes; or changes in the magnitude for a particular return period
(frequency). Changes in the probability of extremes (e.g., temperature
extremes) depend on the rarity of the extreme event that is assessed,
with a larger change in probability associated with a rarer event
(e.g., Kharin et al, 2018). However, changes in the magnitude
represented by the return levels of the extreme events may not be
as sensitive to the rarity of the event. While the answers to the two
different questions are related, their relevance may differ for distinct
audiences. Conclusions regarding the respective contribution of
greenhouse gas forcing to changes in magnitude versus frequency
of extremes may also differ (Otto et al., 2012). Correspondingly, the
sensitivity of changes in extremes to increasing global warming is
also dependent on the definition of the considered extremes. In the
case of temperature extremes, changes in magnitude have been
shown to often depend linearly on global surface temperature
(Seneviratne et al., 2016; Wartenburger et al., 2017), while changes in
frequency tend to be nonlinear and can, for example, be exponential
for increasing global warming levels (Fischer and Knutti, 2015; Kharin
et al., 2018). When similar damage occurs once a fixed threshold
is exceeded, it is more important to ask a question regarding
changes in the frequency. But when the exceedance of this fixed
threshold becomes a normal occurrence in the future, this can lead
to a saturation in the change of probability (Harrington and Otto,
2018a). Also, if the impact of an event increases with the intensity
of the event, it would be more relevant to examine changes in the
magnitude. Finally, adaptation to climate change might change
the relevant thresholds over time, although such aspects are still
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rarely integrated in the assessment of projected changes in extremes.
Framing is considered when forming the assessments of this Chapter,
including how extremes are defined and how the questions are asked
in the literature.

11.2.2 Data

Studies of past and future changes in weather and climate extremes,
and in the mean state of the climate, use the same original sources
of weather and climate observations, including in situ observations,
remotely sensed data, and derived data products such as reanalyses.
Sections 2.3 and 10.2 assess various aspects of these data sources
and data products from the perspective of their general use, and in
the analysis of changes in the mean state of the climate in particular.
Building on these previous chapters, this subsection highlights
particular aspects that are related to extremes and are most relevant
to the assessment of this Chapter. The SREX (Chapter 3, Seneviratne
et al,, 2012) and AR5 (Chapter 2, Hartmann et al.,, 2013) addressed
critical issues regarding the quality and availability of observed data
and their relevance for the assessment of changes in extremes.

Extreme weather and climate events occur on time scales of
hours (e.g., convective storms that produce heavy precipitation)
to days (e.g., tropical cyclones, heatwaves), to seasons and years
(e.g., droughts). A robust determination of long-term changes in these
events can have different requirements for the spatial and temporal
scales and sample size of the data. In general, it is more difficult
to determine long-term changes for events of fairly large temporal
duration, such as ‘megadroughts’ that last several years or longer
(e.g., Ault et al., 2014), because of the limitations of the observational
sample size. Literature that studies changes in extreme precipitation
and temperature often uses indices representing specifics of extremes
that are derived from daily precipitation and temperature values.
Station-based indices would have the same issues as those for the
mean climate regarding the quality, availability, and homogeneity of
the data. For the purpose of constructing regional information and/
or for comparison with model outputs, such as model evaluation,
and detection and attribution, these station-based indices are often
interpolated onto regular grids. Two different approaches, involving
two different orders of operation, have been used in producing such
gridded datasets.

In some cases, such as for the HadEX3 dataset (Dunn et al., 2020),
indices of extremes are computed using time series directly derived
from stations first, and are then gridded over the space. As the indices
are computed at the station level, the gridded data products represent
point estimates of the indices averaged over the spatial scale of the
grid box. In other instances, daily values of station observations are
first gridded (e.g., Contractor et al., 2020a), and the interpolated
values can then be used to compute various indices. Depending on the
station density, values for extremes computed from data gridded this
way represent extremes of spatial scales anywhere from the size of
the grid box to a point. In regions with high station density (e.g., North
America, Europe), the gridded values are closer to extremes of area
means and are thus more appropriate for comparisons with extremes
estimated from climate model output, which is often considered

Chapter 11

to represent areal means (Chen and Knutson, 2008; Gervais et al.,
2014; Avila et al., 2015; Di Luca et al., 2020b). In regions with very
limited station density (e.g., Africa), the gridded values are closer to
point estimates of extremes. The difference in spatial scales among
observational data products and model simulations needs to be
carefully accounted for when interpreting the comparison among
different data products. For example, the average annual maximum
daily maximum temperature (TXx) over land computed from the
original ERA-Interim reanalysis (at 0.75° resolution) is about 0.4°C
warmer than that computed when the ERA-Interim dataset is
upscaled to the resolution of 2.5° x 3.75° (Di Luca et al., 2020).

Extreme indices computed from various reanalysis data products have
been used in some studies, but reanalysis extreme statistics have not
been rigorously compared to observations (Donat et al., 2016a).

In general, changes in temperature extremes from various reanalyses
were most consistent with gridded observations after about 1980,
but larger differences were found during the pre-satellite era (Donat
et al,, 2014b). Overall, lower agreement across reanalysis datasets
was found for extreme precipitation changes, although temporal
and spatial correlations against observations were found to be still
significant. In regions with sparse observations (e.g., Africa and parts
of South America), there is generally less agreement for extreme
precipitation between different reanalysis products, indicating
a consequence of the lack of an observational constraint in these
regions (Donat et al., 2014b, 2016a). More recent reanalyses, such as
ERA5 (Hersbach et al., 2020), seem to have improved over previous
products, at least over some regions (e.g., Mahto and Mishra, 2019;
Gleixner et al., 2020; Sheridan et al., 2020). Caution is needed when
reanalysis data products are used to provide additional information
about past changes in these extremes in regions where observations
are generally lacking.

Satellite remote sensing data have been used to provide information
about precipitation extremes because several products provide
data at sub-daily resolution for precipitation, for example, Tropical
Rainfall Measuring Mission (TRMM; Maggioni et al., 2016) and
clouds, for example, Himawari (Bessho et al., 2016; Chen et al,,
2019). However, satellites do not observe the primary atmospheric
state variables directly and polar orbiting satellites do not observe
any given place at all times. Hence, their utility as a substitute for
high-frequency (i.e., daily) ground-based observations is limited. For
instance, Timmermans et al. (2019) found little relationship between
the timing of extreme daily and five-day precipitation in satellite and
gridded station data products over the USA.
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Box 11.3 | Extremes in Paleoclimate Archives Compared to Instrumental Records

Examining extremes in pre-instrumental information can help to put events occurring in the instrumental record (referred to as
‘observed’) in a longer-term context. This box focuses on extremes in the Common Era (CE, the last 2000 years), because there is
generally higher confidence in pre-instrumental information gathered from the more recent archives from the Common Era than from
earlier evidence. It addresses evidence of extreme events in paleoreconstructions, documentary evidence (such as grape harvest data,
religious documents, newspapers, and logbooks) and model-based analyses, and whether observed extremes have or have not been
exceeded in the Common Era. This box provides overviews of: (i) AR5 assessments; (ii) types of evidence assessed here; evidence of:
(iii) droughts; (iv) temperature extremes; (v) paleofloods; and (vi) paleotempests; and (vii) a summary.

Chapter 5 of AR5 (Masson-Delmotte et al., 2013) concluded with high confidence that droughts of greater magnitude and of longer
duration than those observed in the instrumental period occurred in many regions during the preceding millennium. There was high
confidence in evidence that floods during the past five centuries in northern and Central Europe, the western Mediterranean region,
and eastern Asia were of a greater magnitude than those observed instrumentally, and medium confidence in evidence that floods
in the Near East, India and Central North America were comparable to modern observed floods. While AR5 assessed 20th century
summer temperatures compared to those reconstructed in the Common Era, it did not assess shorter duration temperature extremes.

Many factors affect confidence in information on pre-instrumental extremes. First, the geographical coverage of paleoclimate
reconstructions of extremes is not spatially uniform (Smerdon and Pollack, 2016) and depends on both the availability of archives and
records, which are environmentally dependent, and also the differing attention and focus from the scientific community. In Australia,
for example, the paleoclimate network is sparser than for other regions, such as Asia, Europe and North America, and synthesized
products rely on remote proxies and assumptions about the spatial coherence of precipitation between remote climates (Cook et al.,
2016¢; Freund et al., 2017). Second, pre-instrumental evidence of extremes may be focused on understanding archetypal extreme
events, such as the climatic consequences of the 1815 eruption of Mount Tambora, Indonesia (Veale and Endfield, 2016). These studies
provide narrow evidence of extremes in response to specific forcings (M. Li et al., 2017) for specific epochs. Third, natural archives may
provide information about extremes in one season only and may not represent all extremes of the same types.

Evidence of shorter duration extreme event types, such as floods and tropical storms, is further restricted by the comparatively low
chronological controls and temporal resolution (e.g., monthly, seasonal, yearly, multiple years) of most archives compared to the
events (e.g., minutes to days). Natural archives may be sensitive only to intense environmental disturbances, and so only sporadically
record short-duration or small spatial-scale extremes. Interpreting sedimentary records as evidence of past short-duration extremes is
also complex and requires a clear understanding of natural processes (Wilhelm et al., 2019). For example, paleoflood reconstructions
of flood recurrence and intensity produced from geological evidence (e.g., river and lake sediments), speleothems (Denniston and
Luetscher, 2017), botanical evidence (e.g., flood damage to trees, or tree ring reconstructions), and floral and faunal evidence
(e.g., diatom fossil assemblages) require understanding of sediment sources and flood mechanisms. Pre-instrumental records of
tropical storm intensity and frequency (also called paleotempest records) derived from overwash deposits of coastal lake and marsh
sediments are difficult to interpret. Many factors have an impact on whether disturbances are deposited in archives (Muller et al.,
2017) and deposits may provide sporadic and incomplete preservation histories (e.g., Tamura et al., 2018).

Overall, the most complete pre-instrumental evidence of extremes occurs for long-duration, large spatial-scale extremes, such as for
multi-year meteorological droughts or seasonal- and regional-scale temperature extremes. Additionally, more precise insights into
recent extremes emerge where multiple studies have been undertaken, compared to the confidence in extremes reported at single sites
or in single studies, which may not necessarily be representative of large-scale changes, or for reconstructions that synthesize multiple
proxies over large areas (e.g., drought atlases). Multiproxy synthesis products combine paleoclimate temperature reconstructions
and cover sub-continental- to hemispheric-scale regions to provide continuous records of the Common Era (e.g., Ahmed et al., 2013;
Neukom et al., 2014 for temperature).

There is high confidence in the occurrence of long-duration and severe drought events during the Common Era for many locations,
although their severity compared to recent drought events differs between locations and the lengths of reconstruction provided.
Recent observed drought extremes in some regions — such as the eastern Mediterranean Levant (Cook et al., 2016a), California in the
USA (Cook et al., 2014b; Griffin and Anchukaitis, 2014), and in the Andes (Garreaud et al., 2017; Dominguez-Castro et al., 2018) — do
not have precedents within the multi-century periods reconstructed in these studies, in terms of duration and/or severity. In some
regions (in south-western North America (Asmerom et al., 2013; Cook et al., 2015), the Great Plains region (Cook et al., 2004), the
Middle East (Kaniewski et al., 2012), and China (Gou et al,, 2015)), recent drought extremes may have been exceeded in the Common
Era. In further locations, there is conflicting evidence for the severity of pre-instrumental droughts compared to observed extremes,
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Box 11.3 (continued)

depending on the length of the reconstruction and the seasonal perspective provided (see Cook et al., 2016¢; Freund et al., 2017 for
Australia). There can also be differing conclusions for the severity, or even the occurrence, of specific individual pre-instrumental
droughts when different evidence is compared (e.g., Wetter et al., 2014; Biintgen et al., 2015).

There is medium confidence that the magnitudes of large-scale, seasonal-scale extreme high temperatures in observed records exceed
those reconstructed over the Common Era in some locations, such as Central Europe. In one example, multiple studies have examined
the unusualness of present-day European summer temperature records in a long-term context, particularly in comparison to the
exceptionally warm year of 1540 CE in Central Europe. Several studies indicate that recent extreme summers (2003 and 2010) in
Europe have been unusually warm in the context of the last 500 years (Barriopedro et al., 2011; Wetter and Pfister, 2013; Wetter et al.,
2014; Orth et al., 2016b), or longer (Luterbacher et al., 2016). Others studies show that summer temperatures in Central Europe in
1540 were warmer than the present-day (1966—-2015) mean, but note that it is difficult to assess whether or not the 1540 summer
was warmer than observed record extreme temperatures (Orth et al., 2016b).

There is high confidence that the magnitude of floods over the Common Era exceeded observed records in some locations, including
Central Europe and eastern Asia. Recent literature supports the AR5 assessments of floods (Masson-Delmotte et al., 2013). For example,
high temporally resolved records provide evidence of Common Era floods exceeding the probable maximum flood levels in the Upper
Colorado River, USA (Greenbaum et al., 2014) and peak discharges that are double gauge levels along the middle Yellow River, China
(Liu et al., 2014). Further studies demonstrate pre-instrumental or early instrumental differences in flood frequency compared to
the instrumental period, including reconstructions of high and low flood frequency in the European Alps (e.g., Swierczynski et al.,
2013; Amann et al,, 2015) and Himalayas (Ballesteros Canovas et al., 2017). The combination of extreme historical flood episodes
determined from documentary evidence also increases confidence in the determination of flood frequency and magnitude, compared
to using geomorphological archives alone (Kjeldsen et al., 2014). In regions, such as Europe and China, that have rich historical flood
documents, there is strong evidence of high-magnitude flood events over pre-instrumental periods (Kjeldsen et al., 2014; Benito et al.,
2015; Macdonald and Sangster, 2017). A key feature of paleoflood records is variability in flood recurrence at centennial timescales
(Wilhelm et al.,, 2019), although constraining climate-flood relationships remains challenging. Pre-instrumental floods often occurred
in considerably different contexts in terms of land use, irrigation, and infrastructure, and may not provide direct insight into modern
river systems, which further prevents long-term assessments of flood changes being made based on these sources.

There is medium confidence that periods of both more and less tropical cyclone activity (frequency or intensity) than observed
occurred over the Common Era in many regions. Paleotempest studies cover a limited number of locations that are predominantly
coastal, and hence provide information on specific locations that cannot be extrapolated basin-wide (see Muller et al., 2017). In
some locations, such as the Gulf of Mexico and the New England, USA, coast, similarly intense storms to those observed recently
have occurred multiple times over centennial timescales (Donnelly et al., 2001; Bregy et al., 2018). Further research focused on the
frequency of tropical storm activity. Extreme storms occurred considerably more frequently in particular periods of the Common Era,
compared to the instrumental period in north-east Queensland, Australia (Nott et al., 2009; Haig et al., 2014), and the Gulf Coast
(e.g., Brandon et al., 2013; Lin et al.,, 2014).

The probability of finding an unprecedented extreme event increases with a longer length of past record-keeping, in the absence
of longer-term trends. Thus, as a record is extended to the past based on paleoreconstruction, there is a higher chance of very rare
extreme events having occurred at some time prior to instrumental records. Such an occurrence is not, in itself, evidence of a change,
or lack of a change, in the magnitude or the likelihood of extremes in the past or in the instrumental period at regional and local scales.
Yet, the systematic collection of paleoclimate records over wide areas may provide evidence of changes in extremes. In one study,
extended evidence of the last millennium from observational data and paleoclimate reconstructions using tree rings indicates that
human activities affected the worldwide occurrence of droughts as early as the beginning of the 20th century (Marvel et al., 2019).

In summary, there is low confidence in overall changes in extremes derived from paleo-archives. There is high confidence that long-
duration and severe drought events occurred at many locations during the last 2000 years. There is also high confidence that high-
magnitude flood events occurred at some locations during the last 2000 years, but overall changes in infrastructure and human water
management make the comparison with present-day records difficult. But these isolated paleo-drought and paleo-flood events are
not evidence of a change, or lack of a change, in the magnitude or the likelihood of relevant extremes.
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11.2.3  Attribution of Extremes

Attribution science concerns the identification of causes for changes
in characteristics of the climate system (e.g., trends, single extreme
events). A general overview and summary of methods of attribution
science is provided in the Cross-Working Group Box 1.1. Trend
detection using optimal fingerprinting methods is a well-established
field, and has been assessed in AR5 (Chapter 10, Bindoff et al., 2013),
and Section 3.2.1 of this Report. There are specific challenges when
applying optimal fingerprinting to the detection and attribution of
trends in extremes and on regional scales where the lower signal-
to-noise ratio is a challenge. In particular, the method generally
requires the data to follow a Normal (Gaussian) distribution, which
is often not the case for extremes. However, recent studies showed
that extremes can be transformed to a Gaussian distribution, for
example, by averaging over space, so that optimal fingerprinting
techniques can still be used (Wen et al., 2013; Zhang et al., 2013;
Wan et al., 2019). Non-stationary extreme value distributions, which
allow for the detailed detection and attribution of regional trends in
temperature extremes, have also been used (Z. Wang et al.,, 2017a).

Apart from the detection and attribution of trends in extremes, new
approaches have been developed to answer the question of whether,
and to what extent, external drivers have altered the probability and
intensity of an individual extreme event (NASEM, 2016). In AR5, there
was an emerging consensus that the role of external drivers of climate
change in specific extreme weather events could be estimated and
quantified in principle, but related assessments were still confined
to particular case studies, often using a single model, and typically
focusing on high-impact events with a clear attributable signal.

However, since AR5, the attribution of extreme weather events has
emerged as a growing field of climate research with an increasing
body of literature (see series of supplements to the annual State
of the Climate report (Peterson et al., 2012, 2013a; Herring et al.,
2014, 2015, 2016, 2018), including the number of approaches to
examining extreme events (described in Easterling et al., 2016;
Otto, 2017; Stott et al., 2016)). A commonly used approach — often
called the risk-based approach in the literature, and referred to
here as the ‘probability-based approach’ — produces statements
such as "anthropogenic climate change made this event type twice
as likely or ‘anthropogenic climate change made this event 15%
more intense’. This is done by estimating probability distributions of
the index characterizing the event in today’s climate, as well as in
a counterfactual climate, and either comparing intensities for a given
occurrence probability (e.g., 1-in-100-year event) or probabilities
for a given magnitude (see FAQ 11.3). There are a number of
different analytical methods encompassed in the probability-based
approach, building on observations and statistical analyses (e.g., van
Oldenborgh et al., 2012), optimal fingerprint methods (Sun et al,,
2014), regional climate and weather forecast models (e.g., Schaller
et al,, 2016), global climate models (GCMs) (e.g., Lewis and Karoly,
2013), and large ensembles of atmosphere-only GCMs (e.g., Lott
et al., 2013). A key component in any event attribution analysis is
the level of conditioning on the state of the climate system. In the
least conditional approach, the combined effect of the overall
warming and changes in the large-scale atmospheric circulation
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are considered and often utilize fully coupled climate models (Sun
et al., 2014). Other more conditional approaches involve prescribing
certain aspects of the climate system. These range from prescribing
the pattern of the surface ocean change at the time of the event
(e.g., Hoerling et al., 2013, 2014), often using Atmospheric Model
Intercomparison Project (AMIP) style global models, where the
choice of sea surface temperature and ice patterns influences the
attribution results (Sparrow et al., 2018), to prescribing the large-
scale circulation of the atmosphere and using weather forecasting
models or methods (e.g., Pall et al., 2017; Patricola and Wehner, 2018;
Wehner et al., 2018a). These highly conditional approaches have also
been called ‘storylines’ (Cross-Working Group Box 1.1; Shepherd,
2016) and can be useful when applied to extreme events that are
too rare to otherwise analyse, or where the specific atmospheric
conditions were central to the impact. These methods are also used
to enable the use of very high-resolution simulations in cases were
lower-resolution models do not simulate the regional atmospheric
dynamics well (Shepherd, 2016; Shepherd et al., 2018). However, the
imposed conditions limit an overall assessment of the anthropogenic
influence on an event, as the fixed aspects of the analysis may also
have been affected by climate change. For instance, the specified
initial conditions in the highly conditional hindcast attribution
approach often applied to tropical cyclones (e.g., Takayabu
et al., 2015; Patricola and Wehner, 2018) permit only a conditional
statement about the magnitude of the storm if similar large-scale
meteorological patterns could have occurred in a world without
climate change, thus precluding any attribution statement about
the change in frequency if used in isolation. Combining conditional
assessments of changes in the intensity with a multi-model approach
does allow for the latter as well (Shepherd, 2016).

The outcome of event attribution is dependent on the definition of
the event (Leach et al., 2020), as well as the framing (Otto et al.,
2016; Christidis et al., 2018; Jézéquel et al., 2018) and uncertainties
in observations and modelling. Observational uncertainties arise in
estimating the magnitude of an event as well as its rarity (Angélil
et al., 2017). Results of attribution studies can also be very sensitive
to the choice of climate variables (Sippel and Otto, 2014; Wehner
et al., 2016). Attribution statements are also dependent on the spatial
(Uhe et al., 2016; Cattiaux and Ribes, 2018; Kirchmeier-Young et al.,
2019) and temporal (Harrington, 2017; Leach et al.,, 2020) extent
of event definitions, as events of different scales involve different
processes (W. Zhang et al., 2020) and large-scale averages generally
yield higher attributable changes in magnitude or probability due
to the smoothing out of noise. In general, confidence in attribution
statements for large-scale heat and lengthy extreme precipitation
events have higher confidence than shorter and more localized events,
such as extreme storms, an aspect also relevant for determining the
emergence of signals in extremes or the confidence in projections
(see also Cross-Chapter Box Atlas.1).

The reliability of the representation of the event in question in the
climate models used in a study is essential (Angélil et al., 2016;
Herger et al., 2018). Extreme events characterized by atmospheric
dynamics that stretch the capabilities of current-generation models
(Section 10.3.3.4; Shepherd, 2014; Woollings et al., 2018) limit the
applicability of the probability-based approach of event attribution.
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The lack of model evaluation, in particular in early event attribution
studies, has led to criticism of the emerging field of attribution science
as a whole (Trenberth et al., 2015) and of individual studies (Angélil
et al.,, 2017). In this regard, the storyline approach (Shepherd, 2016)
provides an alternative option that does not depend on the model's
ability to represent the circulation reliably. In addition, several ways
of quantifying statistical uncertainty (Paciorek et al., 2018) and model
evaluation (Lott and Stott, 2016; Philip et al., 2018b, 2020) have been
employed to evaluate the robustness of event attribution results.
For the unconditional probability-based approach, multi-model and
multi-approach (e.g., combining observational analyses and model
experiments) methods have been used to improve the robustness of
event attribution (Hauser et al., 2017; Otto et al., 2018a; Philip et al.,
2018b, 2019, 2020; van Oldenborgh et al., 2018; Kew et al., 2019).

In the regional tables provided in Section 11.9, the different lines
of evidence from event attribution studies and trend attributions
are assessed alongside one another to provide an assessment
of the human contribution to observed changes in extremes in
all ARG regions.

11.2.4  Projecting Changes in Extremes as a Function

of Global Warming Levels

The most important quantity used to characterize past and future
climate change is global warming relative to its pre-industrial
level. Changes in global warming are linked quasi-linearly to
global cumulative carbon dioxide (CO,) emissions (IPCC, 2013),
and for their part, changes in regional climate, including many
types of extremes, scale quasi-linearly with changes in global
warming, often independently of the underlying emissions scenarios
(SR1.5 Chapter 3; Seneviratne et al., 2016; Matthews et al., 2017;
Wartenburger et al., 2017; Kharin et al., 2018; Y. Sun et al.,, 20183;
Tebaldi and Knutti, 2018; Beusch et al., 2020; Li et al., 2021).
In addition, the use of global warming levels in the context of global
policy documents — in particular the 2015 Paris Agreement (UNFCCC,
2016) implies that information on changes in the climate system,
and specifically extremes, as a function of global warming are of
particular policy relevance. Cross-Chapter Box 11.1 provides an
overview on the translation between information at global warming
levels (GWLs) and scenarios.

The assessment of projections of future changes in extremes as
function of GWL has an advantage in separating uncertainty
associated with the global warming response (see Chapter 4) from
the uncertainty resulting from the regional climate response as
a function of GWLs (Seneviratne and Hauser, 2020). If the interest is
in the projection of regional changes at certain GWLs, such as those
defined by the Paris Agreement, projections based on time periods
and emissions scenarios have unnecessarily larger uncertainty due
to differences in model global transient climate responses. To take
advantage of this feature and to provide easy comparison with
SR1.5, assessments of projected changes in this chapter are largely
provided in relation to future GWLs, with a focus on changes at
+1.5°C, +2°C, and +4°C of global warming above pre-industrial
levels (e.g., Tables 11.1 and 11.2 and regional tables in Section 11.9).

Chapter 11

These encompass a scenario compatible with the lowest limit of the
Paris Agreement (+1.5°C), a scenario slightly overshooting the aims
of the Paris Agreement (+2°C), and a ‘worst-case’ scenario with no
mitigation (+4°C). Cross-Chapter Box 11.1 provides a background
on the GWL sampling approach used in ARG, for the computation
of GWL projections from climate models contributing to Phase 6 of
the Coupled Model Intercomparison Project (CMIP6) as well as for
the mapping of existing scenario-based literature for CMIP6 and the
CMIP Phase 5 (CMIP5) to assessments as function of GWLs (see also
Section 11.9. and Table 11.3 for an example).

While regional changes in many types of extremes do scale robustly
with global surface temperature, generally irrespective of emissions
scenarios (Section 11.1.4, Figures 11.3, 11.6 and 11.7 and Cross-
Chapter Box 11.1), effects of local forcing can distort this relation.
For example, emissions scenarios with the same radiative forcing
can have different regional extreme precipitation responses resulting
from different aerosol forcing (Z. Wang et al, 2017b). Another
example is related to forcing from land-use and land cover changes
(Section 11.1.6). Climate models often either overestimate or
underestimate observed changes in annual maximum daily maximum
temperature, depending on the region and considered models (Donat
et al., 2017; Vautard et al., 2020). Part of the discrepancies may be
due to the lack of representation of some land forcings, in particular
crop intensification and irrigation (N.D. Mueller et al., 2016; Findell
et al,, 2017; Thiery et al., 2017, 2020). Since these local forcings are
not represented, and their future changes are difficult to project,
these can be important caveats when using GWL scaling to project
future changes for these regions. However, these caveats also apply
to the use of scenario-based projections.

The SR1.5 (Chapter 3) assessed different climate responses at
+1.5°C of global warming, including transient climate responses,
short-term stabilization responses, and long-term equilibrium
stabilization responses, and their implications for future projections
of different extremes. Indeed, the temporal dimension — that
is, when the given GWL occurs — also matters for projections, in
particular beyond the 21st century, and for some climate variables
related to components of the climate system associated with large
inertia (e.g., sea level rise and associated extremes). Nonetheless,
for assessments focused on conditions within the next decades,
and for the main extremes considered in this chapter, derived
projections are relatively insensitive to details of climate scenarios
and can be well-estimated based on transient simulations (Cross-
Chapter Box 11.1; see also SR1.5).

An important question is the identification of the GWL at which
a given change in a climate extreme can begin to emerge from
climate noise. Figure 11.8 displays analyses of the GWLs at which
emergence in hot extremes — annual maximum daily temperature
represented by TXx and heavy precipitation represented by Rx1day
is identified in ARG regions for the whole CMIP5 and CMIP6
ensembles. Overall, signals for extremes emerge very early for
TXx, already below 0.2°C in many regions (Figure 11.8a,b), and at
around 0.5°C in most regions. This is consistent with conclusions
from the SR1.5 Chapter 3 for less-rare temperature extremes (TXx
on the yearly time scale), which shows that a difference as small as
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(b) Annual maximum daily precipitation (Rx1day)
CMIP6 03 04 04 08 07 14 10 08 1.7 09 13 08 12 12 08 10 12 |20
CMIP5 03 04 04 07 07 14 10 08 15 1.9 08 1.1 09 09 13 09 10 12
glob. oc. land GIC NEC CNA ENA NWN WNA NCA SCA CAR NWS SAM SSA SWS SES NSA NES NEU CEU EEU MED
CMIP6 09 15 11 08 (19 12 06 09 09 1.0 09 13 1.0 1.1 09 08 1.7 0.6 09
CMIP5 1.3 13 08 17 13 07 08 10 09 11 18 1.0 09 11 08 1.9 1.9 1.9 0.7 1.0
WAF SAH NEAF CEAF SWAF SEAF CAF RAR RFE ESB WSB WCA TB EAS ARP SAS SEA NAU CAU SAU NZ EAN WAN
I I I I I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Global warming level of emergence (°C)

Figure 11.8 | Global and regional-scale emergence of changes in temperature (a) and precipitation (b) extremes for the globe (glob.), global oceans (oc.),
global lands (land), and the ARG6 regions. Colours indicate the multi-model mean global warming level at which the difference in 20-year means of the annual maximum
daily maximum temperature (TXx) and the annual maximum daily precipitation (Rx1day) become significantly different from their respective mean values during the 1850-1900
base period. Results are based on simulations from the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5 and CMIP6) multi-model ensembles. See Atlas.1.3.2 for
the definition of regions. Adapted from Seneviratne and Hauser (2020) under the terms of the Creative Commons Attribution licence.

0.5°C of global warming — for example, between +1.5°C and +2°C
of global warming — leads to detectable differences in temperature
extremes in TXx in most WGI AR6 regions in CMIP5 projections
(e.g., Wartenburger et al., 2017; Seneviratne et al., 2018b). The GWL
emergence for Rx1day is also largely consistent with analyses for
less-extreme heavy precipitation events (Rx5day on the yearly time
scale) in SR1.5 (see Chapter 3).

To some extent, analyses as functions of GWLs replace the time axis
with a global surface temperature axis. Nonetheless, information on
the timing of given changes in extremes is obviously also relevant.
(For information on the time frame at which given GWLs are reached,
see Cross-Chapter Box 11.1 and Section 4.6). Figure 11.5 provides
a synthesis of attributed and projected changes in extremes as function
of GWLs (see also Figures. 11.3, 11.6 and 11.7 for regional analyses).

Cross-Chapter Box 11.1 | Translating Between Regional Information at Global Warming Levels

Versus Scenarios for End Users

Contributors: Erich Fischer (Switzerland), Mathias Hauser (Switzerland), Sonia . Seneviratne (Switzerland), Richard Betts (United Kingdom),
José M. Gutiérrez (Spain), Richard G. Jones (United Kingdom), June-Yi Lee (Republic of Korea), Malte Meinshausen (Australia/Germany),
Friederike Otto (United Kingdom/Germany), Izidine Pinto (Mozambique), Roshanka Ranasinghe (The Netherlands/Sri Lanka/Australia),
Joeri Rogelj (Germany/Belgium), Bjern Samset (Norway), Claudia Tebaldi (United States of America), Laurent Terray (France)

Background

Traditionally, projections of climate variables are summarized and communicated as function of time and emissions scenarios. Recently,
quantifying global and regional climate at specific global warming levels (GWLs) has become widespread, motivated by the inclusion of
explicit GWLs in the long-term temperature goal of the Paris Agreement (Section 1.6.2). GWLs, expressed as changes in global surface
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Cross-Chapter Box 11.1 (continued)

: regional physical and temperature relative to the 1850—1900 period (see Cross-Chapter
emissions > dimate global mean cimate >  societal : :
forcing response response impacs Box 2.3), are used in SR1.5 and in the assessment of Reasons for
Global warming Concerns in the WGII reports (see also Cross-Chapter Box 12.1).
levels (GWLs) Cross-Chapter Box 11.1, Figure 1 illustrates how the assessment
3.0°C of the climate response at GWLs relates to the uncertainty in
B scenarios regarding the timing of the respective GWLs, as well as
> 20°C to the uncertainty in the associated regional climate responses,

15°C including extremes and other climatic impact-drivers (CIDs).

For many (but not all) climate variables and CIDs, the response

gggss%lggs (;umeps%%ts pattern for a given GWL is consistent across different scenarios
(Chapters 1, 4,9, 11 and Atlas). GWLs are defined as long-term

means (e.g., 20-year averages) compared to the pre-industrial

Cross-Chapter Box 11.1, Figure 1 | Schematic representation of  period, are commonly used in the literature, and were also

relationship between emissions scenarios, global warming levels underlying main assessments of SR1.5 (Chapter 3).
(GWLs), regional climate responses, and impacts. The illustration shows

the implied uncertainty problem associated with differentiating between 1.5°C, N tudies h d th ional t
2°C, and other GWLs. Focusing on GWLs raises questions associated with LALLM el LG elloi Ul o Ll U

emissions pathways to get to these temperatures (scenarios), as well as regional  anthropogenic forcing at GWLs in annual and seasonal mean
climate responses and the associated impacts at the corresponding GWL (the  values and extremes of different climate and impact variables

impacts question). Adapted from James et al. (2017) and Rogelj (2013) under  across different multi-model ensembles and/or different
the terms of the Creative Commons Attribution licence. scenarios (e.g., Frieler et al., 2012; Schewe et al., 2014; Herger

et al., 2015; Schleussner et al., 2016; Seneviratne et al., 2016;
Wartenburger et al., 2017; Betts et al., 2018; Dosio and Fischer, 2018; Samset et al., 2019; Tebaldi et al., 2020; see Sections 4.6.1, 8.5.3,
9.3.1,9.5,9.6.3, 10.4.3 and 11.2.4 for further details). The regional response patterns at given GWLs have been found to be consistent
across different scenarios for many climate variables (Cross-Chapter Box 11.1 Figure 2; Pendergrass et al., 2015; Seneviratne et al.,
2016; Wartenburger et al.,, 2017; Seneviratne and Hauser, 2020). The consistency tends to be higher for temperature-related variables
than for variables in the hydrological cycle or variables characterizing atmospheric dynamics, and for intermediate to high-emissions
scenarios than for low-emissions scenarios (e.g., for mean precipitation in the Representative Concentration Pathway (RCP) 2.6
scenario: Pendergrass et al., 2015; Wartenburger et al., 2017). Nonetheless, Cross-Chapter Box 11.1 Figure 2 illustrates that, even for
mean precipitation, which is known to be forcing dependent (Sections 4.6.1 and 8.5.3), scenario differences in the response pattern at
a given GWL are smaller than model uncertainty and internal variability in many regions (Herger et al., 2015). The response pattern is
further found to be broadly consistent between models that reach a GWL relatively early, and those that reach it later under a given
Shared Socio-economic Pathway (SSP; see Cross-Chapter Box 11.1, Figure 2g,h).

In contrast to linear pattern scaling (Mitchell, 2003; Collins et al., 2013), the use of GWLs as a dimension of integration does not
require linearity in the response of a climate variable. It is therefore useful even for metrics that do not show a linear response, such
as the frequency of heat extremes over land and oceans (Fischer and Knutti, 2015; Frélicher et al., 2018; Kharin et al., 2018; Perkins-
Kirkpatrick and Gibson, 2017) if the relationship of the variable of interest to the GWL is scenario independent. The latter means that
the response is independent of the pathway and relative contribution of various radiative forcings. For some more complex indices like
warm-spell duration, or for regions with strong aerosol changes, discrepancies can be larger (Z. Wang et al., 2017b; King et al., 2018;
Tebaldi et al., 2020). (See also the subsection below on GWLs vs scenarios for further caveats.)

The limited scenario dependence of the GWL-based response for many variables implies that the regional response to emissions
scenarios can be split in almost independent contributions of: (i) the transient global warming response to scenarios (see Chapter 4);
and (ji) the regional response as function of a given GWL, which has also been referred to as ‘regional climate sensitivity’ (Seneviratne
and Hauser, 2020). This property has also been used to develop regionally resolved emulators for global climate models, using global
surface temperature as input (Beusch et al., 2020; Tebaldi et al., 2020). Analyses of the CMIP6 and CMIP5 multi-model ensembles
shows that the GWL-based responses are very similar for temperature and precipitation extremes across the ensembles (Seneviratne
and Hauser, 2020; Wehner, 2020; Li et al., 2021). This is despite their difference in global warming response (Chapter 4), confirming
a substantial decoupling between the two responses (global warming vs GWL-based regional response) for these variables. Thus, the
GWL approach isolates the uncertainty in the regional climate response from the global warming uncertainty induced by scenario,
global mean model response and internal variability (Cross-Chapter Box, Figure 1).
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Cross-Chapter Box 11.1 (continued)

Annual mean precipitation response at 2°C

@SSP1-2.6 (b)SSP2-4.5 (©)SSP5-8.5

-40 -30 -20

Annual mean temperature response at 2°C
(d) SSP1-2.6 (¢) SSP2-4.5 (f) SSP5-8.5

5 -4 -3-25-2-150 15 2 25 3 4 5

Cross-Chapter Box 11.1, Figure 2 | (a—c) Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model mean precipitation change at 2°C
global warming level (GWL) (20-year mean) in three different Shared Socio-economic Pathway (SSP) scenarios relative to 1850—1900. All models
reaching the corresponding GWL in the corresponding scenario are averaged. The number of models averaged across is shown at the top right of the panel. The maps
for the other two SSP scenarios SSP1-1.9 (five models only) and SSP3-7.0 (not shown) are consistent. (d—f) Same as (a—c) but for annual mean temperature. (g)
Annual mean temperature change at 2°C in CMIP6 models with high warming rate reaching the GWL in the corresponding scenario before the earliest year of the
assessed very likely range (Section 4.3.4). (h) Climate response at 2°C GWL across all SSP1-1.9, SSP2-2.6, SSP2-4.5. SSP3-7.0 and SSP5-8.5 in all other models not
shown in (g). The close agreement of (g) and (h) demonstrates that the mean temperature response at 2°C is not sensitive to the rate of warming, and thereby the
global mean surface air temperature (GSAT) warming of the respective models in 2081-2100. Uncertainty is represented using the advanced approach: No overlay
indicates regions with robust signal, where =66% of models show change greater than the variability threshold and =80% of all models agree on the sign of change;
diagonal lines indicate regions with no change or no robust signal, where <66% of models show a change greater than the variability threshold; crossed lines indicate
regions with conflicting signal, where >66% of models show change greater than the variability threshold and <80% of all models agree on the sign of change. For
more information on the advanced approach, please refer to the Cross-Chapter Box Atlas. 1.

Mapping between GWL- and scenario-based responses in model analyses

To map scenario-based climate projections into changes at specific GWLs, first, all individual Earth system model (ESM) simulations
that reach a certain GWL are identified. Second, the climate response patterns at the respective GWL are calculated using an approach
termed here ‘GWL-sampling’ — sometimes also referred to as epoch analysis, time shift, or time sampling approach — taking into
account all models and scenarios (Cross-Chapter Box, Figure 3). Note that the range of years when a given GWL is reached in the
CMIP6 ensemble is different from the AR6 assessed range of projected global surface temperature (Section 4.3.4; Table 4.5). The latter
further takes into account different lines of evidence, including the assessed observed warming between pre-industrial and present
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Cross-Chapter Box 11.1 (continued)
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The best estimate and likely range when a
GWL is crossed is not based on CMIP6 only
but on the GSAT assessment in section 4.3.4.
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Cross-Chapter Box11.1, Figure 3 | lllustration of the AR6 global warming level (GWL) sampling approach to derive the timing and the response
at a given GWL for the case of Coupled Model Intercomparison Project Phase 6 (CMIP6) data. For the mapping of scenarios/time slices into GWLs for
CMIPS, please refer to Table 4.2. Respective numbers for the CMIP5 multi-model experiment are provided in Chapter 11 Supplementary Material (11.SM.1). Note that
the time frames used to derive the GWL time slices can also include a different number of years (e.g., 30 years for some analyses).

day, information from observational constraints on CMIP6, and emulators using the assessed transient climate response (TCR)
and equilibrium climate sensitivity (ECS) ranges (Section 4.3.4). Hence the Chapter 4 assessed range (Table 4.5) is the reference to
determine when a given GWL is likely reached under given scenarios, while the mapping between scenarios/time frames and GWLs is
used to assess the respective regional responses happening at these time frames (which also allows accounting for the global surface
temperature assessment, rather than using scenarios analyses directly from CMIP6 output).

In the model-based asssessment of Chapters 4, 8, 10, 11, 12 and the Atlas, the estimation of changes at GWLs are generally defined as
the 20-year time period in which the mean global surface air temperature (GSAT; Cross-Chapter Box 2.3) first exceeds a certain anomaly
relative to 1850-1900 — for simulations that start after 1850, relative to all years up to 1900 (Cross-Chapter Box Figure 3). The years
when each individual model reaches a given GWL for CMIP6 and CMIP5 can be found in Hauser et al. (2021). The changes at given GWLs
are identified for each ensemble member (for all scenarios) individually. Thereby, a given GWL is potentially reached a few years earlier
or later in different realizations of the same model due to internal variability, but the temperature averaged across the 20-year period
analysed in any simulation is consistent with the GWL. Instead of blending the information from the different scenarios, the Interactive
Atlas can be used to compare the GWL spatial patterns and timings across the different scenarios (see Section Atlas 1.3.1).
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Cross-Chapter Box 11.1 (continued)

Mapping between GWL- and scenario-based responses for literature

A large fraction of the literature considers scenario-based analyses for given time slices. When GWL-based information is required
instead, an approximated mapping of the multi-model mean can be derived based on the known GWL in the given experiments for
a particular time period. As a rough approximation, CMIP6 multi-model mean projections for the near-term (2021-2040) correspond
to changes at about 1.5°C, and projections for the high-end scenario (SSP5-8.5) for the long-term (2081-2100) correspond to about
4°C-5°C of global warming (see Table 4.2 for changes in the CMIP6 ensemble and the Chapter 11 Supplementary Material (11.SM.1)
and Hauser (2021) for details on other time periods and CMIP5). These approximated changes are used for some of the GWL-based
assessments provided in the Chapter 11 regional tables (Section 11.9 and Table 11.3) when literature based on scenario projections is
used to assess estimated changes at given GWLs.

GWLs versus scenarios

The use of scenarios remains a key element to inform mitigation decisions (Cross-Chapter Box 1.4), to assess which emissions pathways
are consistent with a certain GWL (Cross-Chapter Box 1.4, Figure 1), to estimate when certain GWLs are reached (Section 4.3.4), and
to assess for which variables it is meaningful to use GWLs as a dimension of integration. The use of scenarios is also essential for
variables whose climate response strongly depends on the contribution of radiative forcing (e.g., aerosols) or land-use and land
management changes, are time and warming rate dependent (e.g., sea level rise), or differ between transient and quasi-equilibrium
states. Furthermore, the use of concentration or emission-driven scenario simulations is required if regional climate assessments need
to account for the uncertainty in GSAT changes or climate-carbon feedbacks.

Forcing dependence of the GWL response is found for global mean precipitation (Section 8.4.3), but less for regional patterns of mean
precipitation changes (Cross-Chapter Box 11.1, Figure 2). Limited dependence is found for extremes, as highlighted above. In the
cryosphere, elements that are quick to respond to warming like sea ice area, permafrost and snow, show little scenario dependence
(Sections 9.3.1.1, 9.5.2.3 and 9.5.3.3), whereas slow-responding variables such as ice volumes of glaciers and ice sheets respond with
a substantial delay and, due to their inertia, the response depends on when a certain GWL is reached. This also applies to some extent
for sea level rise where, for example, the contributions of melting glaciers and ice sheets depend on the pathway followed to reach
a given GWL (Section 9.6.3.4).

In addition to the lagged effect, the climate response at a given GWL may differ before and after a period of overshoot, for example
in the Atlantic Meridional Overturning Circulation (e.g., Palter et al. 2018). Finally, as assessed in IPCC SR1.5, there is a difference in
the response even for temperature-related variables if a GWL is reached in a rapidly warming transient state or in an equilibrium state
when the land—sea warming contrast is less pronounced (e.g., King et al. 2020). However, in this Report, GWLs are used in the context
of projections for the 21st century when the climate response is mostly not in equilibrium and where projections for many variables
are less dependent on the pathway than for projections beyond 2100 (Section 9.6.3.4).

Key conclusions on assessments based on GWLs

GWL-based projections can inform society and policymakers on how climate would change under GWLs consistent with the aims
of the Paris Agreement (stabilization at 1.5°C/well below 2°C), as well as on the consequences of missing these aims and reaching
GWLs of 3°C or 4°C by the end of the century. The AR6 assessment shows that every bit of global warming matters and that changes
in global warming of 0.5°C lead to statistically significant changes in mean climate and climate extremes on global scale and for
large regions (Sections 4.6.2, 11.2.4, 11.3, 11.4, 11.6 and 11.9, Figures 11.8 and 11.9, Atlas and Interactive Atlas), as also assessed
in IPCC SR1.5.

11.3  Temperature Extremes 11.3.1  Mechanisms and Drivers

This section assesses changes in temperature extremes at global,
continental and regional scales. The main focus is on the changes in the
magnitude and frequency of moderate extreme temperatures (those
that occur several times a year) to very extreme temperatures
(those that occur once in 10 or more years) of time scales from a day
to a season, though there is a strong emphasis on the daily scale
where literature is most concentrated.
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The SREX (IPCC, 2012) and AR5 (IPCC, 2014) concluded that
greenhouse gas forcing is the dominant factor for the increases in the
intensity, frequency, and duration of warm extremes and the decrease
in those of cold extremes. This general global-scale warming is
modulated by large-scale atmospheric circulation patterns, as well as
by feedbacks such as soil moisture-evapotranspiration—temperature
and snowl/ice-albedo—temperature feedbacks, and local forcings
such as land-use change or changes in aerosol concentrations at the
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regional and local scales (Sections 11.1.5 and 11.1.6, and Box 11.1).
Therefore, changes in temperature extremes at regional and local
scales can have heterogeneous spatial distributions. Changes in
the magnitudes (or intensities) of extreme temperatures are often
larger than changes in global surface temperature, because of larger
warming on land than on the ocean surface (Section 2.3.1.1), and
because of feedbacks, though they are of similar magnitude to
changes in the local mean temperature (Figure 11.2).

Extreme temperature events are associated with large-scale
meteorological patterns (Grotjahn et al., 2016). Quasi-stationary
anticyclonic circulation anomalies or atmospheric blocking events are
linked to temperature extremes in many regions, such as in Australia
(Parker et al., 2014; Perkins-Kirkpatrick et al., 2016), Europe (Brunner
et al., 2017, 2018; Schaller et al., 2018), Eurasia (Yao et al., 2017),
Asia (Chen et al., 2016; Ratnam et al., 2016; Rohini et al., 2016),
and North America (Yu et al,, 2018, 2019; Zhang and Luo, 2019).
Mid-latitude planetary wave modulations affect short-duration
temperature extremes such as heatwaves (Perkins, 2015; Kornhuber
et al., 2020). The large-scale modes of variability (Annex IV) affect
the strength, frequency and persistence of these meteorological
patterns and, hence, temperature extremes. For example, cold
and warm extremes in the mid-latitudes are associated with
atmospheric circulation patterns such as the Pacific-North American
(PNA) pattern, as well as atmosphere—ocean coupled modes such
as Pacific Decadal Variability (PDV), the North Atlantic Oscillation
(NAO), and Atlantic Multi-decadal Variability (AMV) (Section 11.1.5;
Kamae et al., 2014; Johnson et al., 2018; Ruprich-Robert et al., 2018;
Yu et al,, 2018, 2020; Miiller et al., 2020; Qasmi et al., 2021). Changes
in the modes of variability in response to warming would therefore
affect temperature extremes (Clark and Brown, 2013; Horton
et al., 2015). The level of confidence in those changes varies, both
in the observations and in future projections, affecting the level of
confidence in changes in temperature extremes in different regions.
As highlighted in Chapters 2 to 4 of this Report, it is likely that
there have been observational changes in the extratropical jets and
mid-latitude jet meandering (Section 2.3.1.4.3 and Cross-Chapter
Box 10.1). There is low confidence in possible effects of Arctic
warming on mid-latitude temperature extremes (Cross-Chapter
Box 10.1). A large portion of the multi-decadal changes in extreme
temperature remains after the removal of the effect of these modes
of variability, and can be attributed to human influence (Kamae et al.,
2017b; Wan et al., 2019). Thus, global warming dominates changes in
temperature extremes at the regional scale and it is very unlikely that
dynamic responses to greenhouse-gas induced warming would alter
the direction of these changes.

Land-atmosphere feedbacks strongly modulate regional- and
local-scale changes in temperature extremes (high confidence)
(Section 11.1.6; Seneviratne et al., 2013; Lemordant et al., 2016; Donat
et al., 2017; Sillmann et al., 2017b; Hirsch et al., 2019). This effect is
particularly notable in mid-latitude regions where the drying of soil
moisture amplifies high temperatures, especially through increases
in sensible heat flux (Whan et al.,, 2015; Douville et al., 2016; Vogel
et al,, 2017). Land-atmosphere feedbacks amplifying temperature
extremes also include boundary-layer feedbacks and effects on
atmospheric circulation (Miralles et al., 2014a; Schumacher et al.,
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2019). Soil-moisture—temperature feedbacks affect past and present-
day heatwaves in observations and model simulations, both locally
(Miralles et al., 2014a; Cowan et al., 2016, 2020; Hauser et al., 2016;
Meehl et al., 2016; Wehrli et al., 2019) and beyond the regions of
feedback occurrence through changes in regional circulation patterns
(Stéfanon et al., 2014; Koster et al., 2016; Sato and Nakamura, 2019).
The uncertainty due to the representation of land—atmosphere
feedbacks in ESMs is a cause of discrepancy between observations
and simulations (Clark et al., 2006; Mueller and Seneviratne, 2014;
Meehl et al., 2016). The decrease of plant transpiration or the
increase of stomata resistance under enhanced CO, concentrations
is a direct CO, forcing of land temperatures (warming due to reduced
evaporative cooling), which contributes to higher warming on land
(Lemordant et al., 2016; Vicente-Serrano et al., 2020b). The snow/ice-
albedo feedback plays an important role in amplifying temperature
variability in the high latitudes (Diro et al., 2018) and can be the
largest contributor to the rapid warming of cold extremes in the mid-
and high latitudes of the Northern Hemisphere (Gross et al., 2020).

Regional external forcings, including land-use changes and
emissions of anthropogenic aerosols, play an important role in the
changes of temperature extremes in some regions (high confidence)
(Section 11.1.6). Deforestation may have contributed to about
one third of the warming of hot extremes in some mid-latitude
regions since the pre-industrial time (Lejeune et al., 2018). Aspects
of agricultural practice, including no-till farming, irrigation, and
overall cropland intensification, may cool hot temperature extremes
(Davin et al., 2014; N.D. Mueller et al., 2016). For instance, cropland
intensification has been suggested to be responsible for a cooling of
the highest temperature percentiles in Midwest USA (N.D. Mueller
et al, 2016). Irrigation has been shown to be responsible for
a cooling of hot temperature extremes of up to 1°C-2°C in many
mid-latitude regions in the present climate (Thiery et al.,, 2017, 2020),
a process not represented in most of state-of-the-art ESMs (CMIP5,
CMIP6). Double cropping may have led to increased hot extremes
in the inter-cropping season in part of China (Jeong et al., 2014).
Rapid increases in summer warming in western Europe and north-
east Asia since the 1980s are linked to a reduction in anthropogenic
aerosol precursor emissions over Europe (Nabat et al., 2014; Dong
etal,, 2016b, 2017), in addition to the effect of increased greenhouse
gas forcing (see also Section 10.1.3.1). This effect of aerosols on
temperature-related extremes is also noted for declines in short-lived
anthropogenic aerosol emissions over North America (Mascioli et al.,
2016). On the local scale, the urban heat island (UHI) effect results
in higher temperatures in urban areas than in their surrounding
regions, and contributes to warming in regions of rapid urbanization,
in particular for nighttime temperature extremes (Box 10.3; Phelan
etal., 2015; Chapman et al,, 2017; Y. Sun et al., 2019). But these local
and regional forcings are generally not or not well represented in the
CMIP5 and CMIP6 simulations (see also Section 11.3.3), contributing
to uncertainty in model simulated changes.

In summary, greenhouse gas forcing is the dominant driver leading
to the warming of temperature extremes. At regional scales, changes
in temperature extremes are modulated by changes in large-scale
patterns and modes of variability, feedbacks including soil-moisture—
evapotranspiration—temperature or snow/ice—albedo—temperature
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feedbacks, and local and regional forcings such as land-use and land-
cover changes, or aerosol concentrations, and decadal and multi-
decadal natural variability. This leads to heterogeneity in regional
changes and their associated uncertainties (high confidence).
Changes in anthropogenic aerosol concentrations have likely affected
trends in hot extremes in some regions. Irrigation and crop expansion
have attenuated increases in summer hot extremes in some regions,
such as the Midwestern USA (medium confidence). Urbanization has
likely exacerbated the effects of global warming in cities, in particular
for nighttime temperature extremes.

11.3.2  Observed Trends

The SREX (IPCC, 2012) reported a very likely decrease in the number
of cold days and nights and increase in the number of warm days
and nights at the global scale. Confidence in trends was assessed as
regionally variable (low to medium confidence) due to either a lack
of observations or varying signals in sub-regions.

Since SREX (IPCC, 2012) and AR5 (IPCC, 2014), many regional-
scale studies have examined trends in temperature extremes using
different metrics that are based on daily temperatures, such as the
Commission for Climatology/World Climate Research Program/
Commission for Oceanography and Marine Meteorology joint Expert
Team on Climate Change Detection and Indices (ETCCDI) indices
(Dunn et al., 2020). The additional observational records, along with
a stronger warming signal, show very clearly that changes observed
at the time of AR5 (IPCC, 2014) continued, providing strengthened
evidence of an increase in the intensity and frequency of hot extremes
and decrease in the intensity and frequency of cold extremes. While
the magnitude of the observed trends in temperature-related
extremes varies depending on the region, spatial and temporal
scales, and metric assessed, evidence of a warming effect is
overwhelming, robust, and consistent. In particular, an increase
in the intensity and frequency of hot extremes is almost always
associated with an increase in the hottest temperatures and in the
number of heatwave days. It is also the case for changes (decreases)
in cold extremes. For this reason, and to simplify the presentation,
the phrase ‘increase in the intensity and frequency of hot extremes'
is used to represent, collectively, an increase in the magnitude of
extreme day and/or night temperatures, in the number of warm days
and/or nights, and in the number of heatwave days. Changes in cold
extremes are assessed similarly.

On the global scale, evidence of an increase in the number of
warm days and nights and a decrease in the number of cold days
and nights, and an increase in the coldest and hottest extreme
temperatures is very robust and consistent among all variables.
Figure 11.2 displays time series of globally averaged TXx and TNn on
land. Warming of land mean TXx is similar to the mean temperature
warming on land, which is about 45% higher than global warming
(Section 2.3.1). Warming of land mean TNn is even higher, with about
3°C of warming since 1960 (Figure 11.2). Figure 11.9 shows maps
of linear trends over 19602018 in TXx, TNn, and frequency of warm
days (TX90p). The maps for TXx and TNn show trends consistent
with overall warming in most regions, with a particularly high
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warming of TXx in Europe and north-western South America, and
a particularly high warming of TNn in the Arctic. Consistent with the
observed warming in global surface temperature (Section 2.3.1.2)
and the observed trends in TXx and TNn, the frequency of TX90p
has increased, while that of cold nights (TN10p) has decreased since
the 1950s: Nearly all land regions showed statistically significant
decreases in TN10p (Alexander, 2016; Dunn et al., 2020), though
trends in TX90p are variable with some decreases in Southern South
America, mainly during austral summer (Rusticucci et al., 2017).
A decrease in the number of cold spell days is also observed over
nearly all land surface areas (Easterling et al., 2016) and in the
northern mid-latitudes in particular (van Oldenborgh et al., 2019).
These observed changes are also consistent when a new global
land surface daily air temperature dataset is analysed (P. Zhang
et al., 2019). Warming trends in temperature extremes globally,
and in most land areas, over the path century are also found to
be consistent in a range of observation-based datasets (Fischer
and Knutti, 2014; Donat et al., 2016a; Dunn et al., 2020), with the
extremes related to daily minimum temperatures changing faster
than those related to daily maximum temperatures (Dunn et al.,
2020; see Figure 11.2). Seasonal variations in trends in temperature-
related extremes have been demonstrated. A warming in warm-
season temperature extremes is detected, even during the ‘slower
surface global warming’ period from the late 1990s to early 2010s
(Cross-Chapter Box 3.1; Kamae et al., 2014; Seneviratne et al., 2014;
Imada et al.,, 2017). Many studies of past changes in temperature
extremes for particular regions or countries show trends consistent
with this global picture, as summarized below and in Tables 11.4,
11.7,11.10,11.13, 11.16 and 11.19.

In Africa (Table 11.4), while it is difficult to assess changes in
temperature extremes in parts of the continent because of a lack
of data, evidence of an increase in the intensity and frequency of
hot extremes and decrease in the intensity and frequency of cold
extremes is clear and robust in regions where data are available.
These include an increase in the frequency of warm days and nights
and a decrease in the frequency of cold days and nights with high
confidence (Donat et al., 2013a, 2014b; Kruger and Sekele, 2013;
Chaney et al., 2014; Filahi et al., 2016; Moron et al.,, 2016; Ringard
et al,, 2016; Barry et al., 2018; Gebrechorkos et al., 2018) and an
increase in heatwaves (Russo et al., 2016; Ceccherini et al., 2017). The
increase in TNn is more notable than in TXx (Figure 11.9). Cold spells
occasionally strike subtropical areas, but are likely to have decreased
in frequency (Barry et al., 2018).The frequency of cold events has likely
decreased in South Africa (Song et al., 2014; Kruger and Nxumalo,
2017), North Africa (Filahi et al., 2016; Driouech et al., 2021), and
the Sahara (Donat et al., 2016a). Over the whole continent, there
is medium confidence in an increase in the intensity and frequency
of hot extremes and decrease in the intensity and frequency of cold
extremes; it is likely that similar changes have also occurred in areas
with poor data coverage, as warming is widespread and as projected
future changes are similar over all regions (Section 11.3.5).

In Asia (Table 11.7), there is very robust evidence for a very likely
increase in the intensity and frequency of hot extremes and decrease
in the intensity and frequency of cold extremes in recent decades.
This is clear in global studies (e.g., Alexander, 2016; Dunn et al.,
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Observed linear trends over 1960-2018

(a) Annual hottest temperature (TXx)

(b) Annual coldest temperature (TNn) (c)
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Figure 11.9 | Linear trends over 1960-2018 for three temperature extreme indices: (a) the annual maximum daily maximum temperature (TXx), (b) the annual
minimum daily minimum temperature (TNn), and (c) the annual number of days when daily maximum temperature exceeds its 90th percentile from a base period of 1961-1990
(TX90p); based on the HadEX3 dataset (Dunn et al., 2020). Linear trends are calculated only for grid points with at least 66% of the annual values over the period and which
extend to at least 2009. Areas without sufficient data are shown in grey. No overlay indicates regions where the trends are significant at the p = 0.1 level. Crosses indicate
regions where trends are not significant. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).

2020), as well as in numerous regional studies (Table 11.7). The area
fraction with extreme warmth in Asia increased during 1951-2016
(Imada et al., 2018). The frequency of warm extremes increased and
the frequency of cold extremes decreased in East Asia (B. Zhou et al.,
2016; Chen and Zhai, 2017; Yin et al., 2017; W. Lee et al., 2018; Qian
et al, 2019) and west Asia (Acar Deniz and Gonencgil, 2015; Erlat
and Tiirkes, 2016; Rahimi and Hejabi, 2018; Rahimi et al., 2018) with
high confidence. The duration of heat extremes has also lengthened
in some regions, for example, in southern China (Luo and Lau,
2016), but there is medium confidence of heat extremes increasing
in frequency in South Asia (AlSarmi and Washington, 2014; Sheikh
et al.,, 2015; Mazdiyasni et al., 2017; Zahid et al., 2017; Nasim et al.,
2018; Khan et al.,, 2019; Sen Roy, 2019). Warming trends in daily
temperature extremes indices have also been observed in central
Asia (Hu et al,, 2016; Feng et al., 2018), the Hindu Kush Himalaya (Sun
et al., 2017), and South East Asia (Supari et al., 2017; Cheong et al.,
2018). The intensity and frequency of cold spells in all Asian regions
have been decreasing since the beginning of the 20th century (high
confidence) (Sheikh et al., 2015; Donat et al., 2016a; Dong et al.,
2018; van Oldenborgh et al., 2019).

In Australasia (Table 11.10), there is very robust evidence for very
likely increases in the number of warm days and warm nights and
decreases in the number of cold days and cold nights since 1950
(Lewis and King, 2015; Jakob and Walland, 2016; Alexander and
Arblaster, 2017). The increase in extreme minimum temperatures
occurs in all seasons over most of Australia and typically exceeds the
increase in extreme maximum temperatures (X.L. Wang et al., 2013b;
Jakob and Walland, 2016). However, some parts of Southern Australia
have shown stable or increased numbers of frost days since the
1980s (Dittus et al., 2014) (see also Section 11.3.4). Similar positive
trends in extreme minimum and maximum temperatures have been
observed in New Zealand, in particular in the autumn and winter
seasons, although they generally show higher spatial variability
(Caloiero, 2017). In the tropical Western Pacific region, spatially
coherent warming trends in maximum and minimum temperature

extremes have been reported for the period 1951-2011 (Whan et al.,
2014; McGree et al., 2019).

In Central and South America (Table 11.13), there is high confidence
that observed hot extremes (TN90p, TX90p) have increased, and
cold extremes (TN10p, TX10p) have decreased over recent decades,
though trends vary among different extremes types, datasets, and
regions (Skansi et al., 2013; Dittus et al., 2016; Rusticucci et al., 2017;
Meseguer-Ruiz et al., 2018; Salvador and de Brito, 2018; Dereczynski
et al., 2020; Dunn et al., 2020; Olmo et al., 2020). An increase in
the intensity and frequency of heatwave events was also observed
between 1961 and 2014 in an area covering most of South America
(Ceccherini et al., 2016; Geirinhas et al., 2018). However, there
is medium confidence that warm extremes (TXx and TX90p) have
decreased in the last decades over the central region of South-Eastern
South America (SES) during austral summer (Tencer and Rusticucci,
2012; Skansi et al., 2013; Rusticucci et al., 2017; Wu and Polvani,
2017). There is medium confidence that TNn extremes are warming
faster than TXx extremes, with the largest warming rates observed
over North-East Brazil (NEB) and Northern South America (NSA) for
cold nights (Skansi et al., 2013).

In Europe (Table 11.16), there is very robust evidence for a very
likely increase in maximum temperatures and the frequency of
heatwaves. The increase in the magnitude and frequency of high
maximum temperatures has been observed consistently across
regions, including in central Europe (Twardosz and Kossowska-Cezak,
2013; Christidis et al., 2015; Lorenz et al., 2019) and southern Europe
(Croitoru and Piticar, 2013; El Kenawy et al., 2013; Christidis et al.,
2015; Nastos and Kapsomenakis, 2015; Fioravanti et al., 2016; Ruml
et al.,, 2017). In Northern Europe, a strong increase in extreme winter
warming events has been observed (Matthes et al., 2015; Vikhamar-
Schuler et al.,, 2016). Temperature observations for winter cold spells
show a long-term decreasing frequency in Europe (Brunner et al,,
2018; van Oldenborgh et al., 2019), and typical cold spells, such
as that observed during the 2009-2010 winter, had an occurrence
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probability two times smaller currently than if climate change had
not occurred (Christiansen et al., 2018).

In North America (Table 11.19), there is very robust evidence for
a very likely increase in the intensity and frequency of hot extremes
and decrease in the intensity and frequency of cold extremes for the
whole continent, though there are substantial spatial and seasonal
variations in the trends. Minimum temperatures display warming
consistently across the continent, while there are more contrasting
trends in the annual maximum daily temperatures in parts of the
USA (Figure 11.9; Lee et al,, 2014; van Oldenborgh et al., 2019; Dunn
et al, 2020). In Canada, there is a clear increase in the intensity
and frequency of hot extremes and decrease in the intensity and
frequency of cold extremes (Vincent et al., 2018). In Mexico, a clear
warming trend in TNn was found, particularly in the northern arid
region (Montero-Martinez et al., 2018). The number of warm days has
increased and the number of cold days has decreased (Garcia-Cueto
et al., 2019). Cold spells have undergone a reduction in magnitude
and intensity in all regions of North America (Bennett and Walsh,
2015; Donat et al., 2016a; Grotjahn et al., 2016; Vose et al., 2017;
Garcia-Cueto et al,, 2019; van Oldenborgh et al., 2019).

Extreme heat events have increased around the Arctic since 1979,
particularly over Arctic North America and Greenland (Matthes
et al., 2015; Dobricic et al., 2020), which is consistent with summer
melt (Section 9.4.1). Observations north of 60°N show increases in
winter warm days and nights over 1979-2015, while cold days and
nights declined (Sui et al., 2017). Extreme heat days are particularly
strong in winter, with observations showing the warmest mid-winter
temperatures at the North Pole rising at twice the rate of mean
temperature (Moore, 2016), as well as increases in Arctic winter
warm days (Vikhamar-Schuler et al., 2016; Graham et al., 2017).
Arctic annual minimum temperatures have increased at about three
times the rate of global surface temperature since the 1960s (Figures
11.2 and 11.9), consistent with the observed mean cold season
(October—May) warming of 3.1°C in the region (Atlas 11.2).

Trends in some measures of heatwaves are also observed at the
global scale. Globally averaged heatwave intensity, heatwave
duration, and the number of heatwave days have significantly
increased from 1950-2011 (Perkins, 2015). There are some regional
differences in trends in characteristics of heatwaves, with significant
increases reported in Europe (Russo et al., 2015; Forzieri et al., 2016;
Sanchez-Benitez et al., 2020) and Australia (CSIRO and BOM,
2016; Alexander and Arblaster, 2017). In Africa, there is medium
confidence that heatwaves, regardless of the definition, have been
becoming more frequent, longer-lasting, and hotter over more
than three decades (Fontaine et al., 2013; Mouhamed et al.,, 2013;
Ceccherini et al., 2016, 2017; Forzieri et al., 2016; Moron et al., 2016;
Russo et al., 2016). The majority of heatwave characteristics examined
in China between 1961 and 2014 show increases in heatwave days,
consistent with warming (You et al., 2017; Xie et al., 2020). Increases
in the frequency and duration of heatwaves are also observed in
Mongolia (Erdenebat and Sato, 2016) and India (Ratnam et al., 2016;
Rohini et al., 2016). In the UK, the lengths of short heatwaves have
increased since the 1970s, while the lengths of long heatwaves (more
than 10 days) have decreased over some stations in the south-east
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of England (M. Sanderson et al., 2017). In Central and South America,
there are increases in the frequency of heatwaves (Barros et al.,
2015; Bitencourt et al., 2016; Ceccherini et al., 2016; Piticar, 2018),
although decreases in Excess Heat Factor (EHF), which is a metric for
heatwave intensity, are observed in South America in data derived
from HadGHCND (Cavanaugh and Shen, 2015).

In summary, it is virtually certain that there has been an increase in
the number of warm days and nights and a decrease in the number of
cold days and nights on the global scale since 1950. Both the coldest
extremes and hottest extremes display increasing temperatures. It is
very likely that these changes have also occurred at the regional
scale in Europe, Australasia, Asia, and North America. It is virtually
certain that there has been increases in the intensity and duration
of heatwaves and in the number of heatwave days at the global
scale. These trends likely occur in Europe, Asia, and Australia. There
is medium confidence in similar changes in temperature extremes in
Africa and high confidence in South America; the lower confidence is
due to reduced data availability and fewer studies. Annual minimum
temperatures on land have increased about three times more than
global surface temperature since the 1960s, with particularly strong
warming in the Arctic (high confidence).

11.3.3  Model Evaluation

The AR5 assessed that CMIP3 and CMIP5 models generally captured
the observed spatial distributions of the mean state and that the
inter-model range of simulated temperature extremes was similar
to the spread estimated from different observational datasets;
the models generally captured trends in the second half of the
20th century for indices of extreme temperature, although they
tended to overestimate trends in hot extremes and underestimate
trends in cold extremes (Flato et al., 2013). Post-AR5 studies on
the CMIP5 models’ performance in simulating mean and changes
in temperature extremes continue to support the AR5 assessment
(Fischer and Knutti, 2014; Sillmann et al., 2014; Ringard et al., 2016;
Borodina et al., 2017b; Donat et al., 2017; Di Luca et al., 2020b). Over
Africa, the observed warming in temperature extremes is captured by
CMIP5 models, although it is underestimated in Western and Central
Africa (Sherwood et al., 2014; Diedhiou et al., 2018). Over East Asia,
the CMIP5 ensemble performs well in reproducing the observed
trend in temperature extremes averaged over China (Dong et al.,
2015). Over Australia, the multi-model mean performs better than
individual models in capturing observed trends in gridded station-
based ETCCDI temperature indices (Alexander and Arblaster, 2017).

Initial analyses of CMIP6 simulations (H. Chen et al., 2020; Di Luca
et al., 2020a; Kim et al., 2020; Thorarinsdottir et al., 2020; Wehner
et al., 2020; Li et al,, 2021) indicate that the CMIP6 models perform
similarly to the CMIP5 models regarding biases in hot and cold
extremes. In general, CMIP5 and CMIP6 historical simulations are
similar in their performance in simulating the observed climatology
of extreme temperatures (high confidence). The general warm bias
in hot extremes and cold bias in cold extremes reported for CMIP5
models (Kharin et al., 2013; Sillmann et al., 2013a) remain in CMIP6
models (Di Luca et al., 2020a). However, there is some evidence that
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Multi model mean bias in temperature extremes

(a) Bias in annual hottest temperature (TXx) (b) Bias in annual coldest temperature (TNn)
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Figure 11.10 | Multi-model mean bias in temperature extremes (°C) for the period 1979-2014, calculated as the difference between the Coupled Model
Intercomparison Project Phase 6 (CMIP6) multi-model mean and the average of observations from the values available in HadEX3. (a) The annual hottest
temperature (TXx); and (b) the annual coldest temperature (TNn). Areas without sufficient data are shown in grey. Adapted from Wehner et al. (2020) under the terms of the
Creative Commons Attribution licence. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).

CMIP6 models better represent some of the underlying processes
leading to extreme temperatures, such as seasonal and diurnal
variability and synoptic-scale variability (Di Luca et al., 2020a). Whether
these improvements are sufficient to enhance our understanding of
past changes, or to reduce uncertainties in future projections, remains
unclear. The relative error estimates in the simulation of various indices
of temperature extremes in the available CMIP6 models show that
no single model performs the best on all indices, and the multi-model
ensemble seems to outperform any individual model due to its reduction
in systematic bias (Kim et al., 2020). Figure 11.10 show errors in the
1979-2014 average annual TXx and annual TNn simulated by available
CMIP6 models in comparison with HadEX3 and ERA5 (Kim et al., 2020;
Wehner et al., 2020; Li et al., 2021). While the magnitude of the model
error depends on the reference dataset, the model evaluations drawn
from different reference datasets are quite similar. In general, models
reproduce the spatial patterns and magnitudes of both cold and hot
temperature extremes quite well. There are also systematic biases.
Hot extremes tend to be too cool in mountainous and high-latitude
regions, but too warm in the eastern USA and South America. For cold
extremes, CMIP6 models are too cool, except in north-eastern Eurasia
and the southern mid-latitudes. Errors in seasonal mean temperatures
are uncorrelated with errors in extreme temperatures and are often of
opposite sign (Wehner et al., 2020).

Atmospheric Model Intercomparison Project (AMIP) simulations
are often used in event attribution studies to assess the influence
of global warming on observed temperature-related extremes. These
simulations typically capture the observed trends in temperature
extremes, though some regional features, such as the lack of warming
in daytime warm temperature extremes over South America and
parts of North America, are not reproduced in the model simulations
(Dittus et al., 2018), possibly due to internal variability, deficiencies
in local surface processes, or forcings that are not represented in
the sea surface temperatures (SSTs). Additionally, the AMIP models
assessed tend to produce overly persistent heatwave events. This bias

in the duration of the events does not impact on the reliability of the
models’ positive trends (Freychet et al., 2018).

Several regional climate models (RCMs) have also been evaluated in
terms of their performance in simulating the climatology of extremes
in various regions of the Coordinated Regional Downscaling
Experiment (CORDEX) (Giorgi et al., 2009), especially in East Asia
(Ji and Kang, 2015; Yu et al., 2015; Park et al., 2016; Bucchignani
et al,, 2017; Gao et al,, 2017a; Niu et al., 2018; Y. Sun et al., 2018b;
Wang et al., 2019), Europe (Vautard et al, 2013, 2021; Smiatek
et al., 2016; Gaertner et al., 2018; Cardoso et al., 2019; Lorenz et al.,
2019; Jacob et al., 2020; Kim et al., 2020), and Africa (J. Kim et al.,
2014; Diallo et al., 2015; Dosio, 2017; Samouly et al., 2018; Mostafa
et al., 2019). Compared to GCMs, RCM simulations show an added
value in simulating temperature-related extremes, though this
depends on topographical complexity and the parameters employed
(see Section 10.3.3). The improvement with resolution is noted in
East Asia (Park et al., 2016; W. Zhou et al., 2016; Shi et al., 2017; Hui
et al., 2018). However, in the European CORDEX ensemble, different
aerosol climatologies with various degrees of complexity were used
in projections (Bartok et al., 2017; Lorenz et al., 2019) and the land
surface models used in the RCMs do not account for physiological CO,
effects on photosynthesis leading to enhanced water-use efficiency
and decreased evapotranspiration (Schwingshackl et al., 2019),
which could lead to biases in the representation of temperature
extremes in these projections (Boé et al., 2020). In addition, there
are key cold biases in temperature extremes over areas with complex
topography (Niu et al., 2018). Over North America, 12 RCMs were
evaluated over the ARCTIC-CORDEX region (Diaconescu et al., 2018).
Models performed well at simulating climate indices related to mean
air temperature and hot extremes over most of the Canadian Arctic,
with the exception of the Yukon region where models displayed
the largest biases related to topographic effects. Two RCMs were
evaluated against observed extremes indices over North America
over the period 1989-2009, with a cool bias in minimum temperature
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extremes shown in both RCMs (Whan and Zwiers, 2016). The most
significant biases are found in TXx and TNn, with fewer differences
in the simulation of annual minimum daily maximum temperature
(TXn) and annual maximum daily minimum temperature (TNx)
in Central and Western North America. Over Central and South
America, maximum temperatures from the Eta RCM are generally
underestimated, although hot days, warm nights, and heatwaves are
increasing in the period 1961-1990, in agreement with observations
(Chou et al., 2014b; Tencer et al., 2016; Bozkurt et al., 2019).

Some land forcings are not well represented in climate models.
As highlighted in the Special Report on Climate Change and Land
(SRCCL) Chapter2, there is high agreement that temperate deforestation
leads to summer warming and winter cooling (Anderson et al., 2011;
Galos et al.,, 2011, 2013; Anderson-Teixeira et al., 2012; Chen et al.,
2012; Wickham et al., 2013; Zhao and Jackson, 2014; Ahlswede and
Thomas, 2017; Bright et al., 2017; Strandberg and Kjellstrom, 2019),
which has substantially contributed to the warming of hot extremes in
the northern mid-latitudes over the course of the 20th century (Lejeune
et al, 2018) and in recent years (Strandberg and Kjellstrom, 2019).
However, observed forest effects on the seasonal and diurnal cycle of
temperature are not well-captured in several ESMs: while observations
show a cooling effect of forest cover compared to non-forest vegetation
during daytime (Li et al., 2015), in particular in arid, temperate, and
tropical regions (Alkama and Cescatti, 2016), several ESMs simulate
a warming of daytime temperatures for regions with forest versus non-
forest cover (Lejeune et al., 2017). Also irrigation effects, which can
lead to regional cooling of temperature extremes, are generally not
integrated in current generations of ESMs (Section 11.3.1).

In summary, there is high confidence that climate models can
reproduce the mean state and overall warming of temperature
extremes observed globally and in most regions, although the
magnitude of the trends may differ. The ability of models to capture
observed trends in temperature-related extremes depends on the
metric evaluated, the way indices are calculated, and the time
periods and spatial scales considered. Regional climate models add
value in simulating temperature-related extremes over GCMs in some
regions. Some land forcings on temperature extremes are not well-
captured (effects of deforestation) or generally not representated
(irrigation) in ESMs.

11.3.4  Detection and Attribution, Event Attribution

The SREX (IPCC, 2012) assessed that it is likely anthropogenic
influences have led to the warming of extreme daily minimum and
maximum temperatures at the global scale. The AR5 concluded that
human influence has very likely contributed to the observed changes
in the intensity and frequency of daily temperature extremes on the
global scale in the second half of the 20th century (IPCC, 2014).
With regard to individual, or regionally or locally specific events, AR5
concluded that it is /ikely human influence has substantially increased
the probability of occurrence of heatwaves in some locations.

Studies since AR5 continue to attribute the observed increase in the
frequency or intensity of hot extremes and the observed decrease
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in the frequency or intensity of cold extremes to human influence,
dominated by anthropogenic greenhouse gas emissions, on global
and continental scales, and for many ARG regions. These include
attribution of changes in the magnitude of annual TXx, TNx, TXn, and
TNn, based on different observational datasets including, HadEX2
and HadEX3, CMIP5 and CMIP6 simulations, and different statistical
methods (Kim et al., 2016; Z. Wang et al., 2017a; Seong et al., 2021).
As is the case for an increase in mean temperature (Section 3.3.1),
an increase in extreme temperature is mostly due to greenhouse gas
forcing, offset by aerosol forcing. The aerosols’ cooling effect is clearly
detectable over Europe and Asia (Seong et al., 2021). As much as 75%
of the moderate daily hot extremes (above 99.9th percentile) over
land are due to anthropogenic warming (Fischer and Knutti, 2015).
New results are found to be more robust due to the extended period
that improves the signal-to-noise ratio. The effect of anthropogenic
forcing is clearly detectable and attributable in the observed changes
in these indicators of temperature extremes, even at country and
sub-country scales, such as in Canada (Wan et al., 2019). Changes in
the number of warm nights, warm days, cold nights, and cold days,
and other indicators such as the Warm Spell Duration Index (WSDI),
are also attributed to anthropogenic influence (Christidis and Stott,
2016; Hu et al., 2020).

Regional studies, including for Asia (Dong et al., 2018; Lu et al., 2018),
Australia (Alexander and Arblaster, 2017), and Europe (Christidis and
Stott, 2016), found similar results. A clear anthropogenic signal is
also found in the trends in the Combined Extreme Index (CEl) for
North America, Asia, Australia, and Europe (Dittus et al., 2016). While
various studies have described increasing trends in several heatwave
metrics (heatwave duration, the number of heatwave days, etc.) in
different regions (e.g., Cowan et al., 2014; Bandyopadhyay et al.,
2016; M. Sanderson et al., 2017), few recent studies have explicitly
attributed these changes to causes; most of them stated that observed
trends are consistent with anthropogenic warming. The detected
anthropogenic signals are clearly separable from the response to
natural forcing, and the results are generally insensitive to the use
of different model samples, as well as different data availability,
indicating robust attribution. Studies of monthly, seasonal, and
annual records in various regions (Kendon, 2014; Lewis and King,
2015; Bador et al., 2016; Meehl et al., 2016; C. Zhou et al., 2019) and
globally (King, 2017) show an increase in the breaking of hot records
and a decrease in the breaking of cold records (King, 2017). Changes
in anthropogenically attributable record-breaking rates are noted to
be largest over the Northern Hemisphere land areas (Shiogama et al.,
2016). Yin and Sun (2018) found clear evidence of an anthropogenic
signal in the changes in the number of frost and ice days, when
multiple model simulations were used. In some key wheat-producing
regions of Southern Australia, increases in frost days or frost season
length have been reported (Dittus et al., 2014; Crimp et al., 2016);
these changes are linked to decreases in rainfall, cloud-cover, and
subtropical ridge strength, despite an overall increase in regional
mean temperatures (Dittus et al., 2014; Pepler et al., 2018).

A significant advance since AR5 has been a large number of studies
focusing on extreme temperature events at monthly and seasonal
scales, using various extreme event attribution methods. Diffenbaugh
et al. (2017) found that anthropogenic warming has increased the
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severity and probability of the hottest month by more than 80% of
the available observational area on the global scale. Christidis and
Stott (2014) provide clear evidence that warm events have become
more probable because of anthropogenic forcings. Sun et al. (2014)
found that human influence has caused a more than 60-fold increase
in the probability of the extreme warm 2013 summer in eastern
China since the 1950s. Human influence is found to have increased
the probability of the historically hottest summers in many regions of
the world, both in terms of mean temperature (B. Mueller et al., 2016)
and wet bulb globe temperature (WBGT; C. Li et al., 2017). In most
regions of the Northern Hemisphere, changes in the probability of
extreme summer average WBGT were found to be about an order
of magnitude larger than changes in the probability of extreme hot
summers estimated by surface air temperature (C. Li et al., 2017).
In addition to these generalized, global-scale approaches, extreme
event studies have found an attributable increase in the probability
of hot annual and seasonal temperatures in many locations,
including Australia (Knutson et al., 2014b; Lewis and Karoly, 2014),
China (Sun et al., 2014; Sparrow et al., 2018; Zhou et al., 2020), Korea
(Y.-H. Kim et al., 2018) and Europe (King et al., 2015b).

There have also been many extreme event attribution studies that
examined short-duration temperature extremes, including daily
temperatures, temperature indices, and heatwave metrics. Examples
of these events from different regions are summarized in various
annual Explaining Extreme Events supplements of the Bulletin of
the American Meteorological Society (Peterson et al., 2012, 2013a;
Herring et al., 2014, 2015, 2016, 2018, 2019, 2020), including
a number of approaches to examine extreme events (described in
Easterling et al., 2016; Stott et al., 2016; Otto, 2017). Several studies
of recent events from 2016 onwards have determined an infinite
risk ratio (a fraction of attributable risk, or FAR, of 1), indicating that
the occurrence probability for such events is close to zero in model
simulations without anthropogenic influences (see Herring et al,,
2018, 2019, 2020; Imada et al., 2019; Vogel et al., 2019). Though it
is difficult to accurately estimate the lower bound of the uncertainty
range of the FAR in these cases (Paciorek et al.,, 2018), the fact that
those events are so far outside the envelop of the models with only
natural forcing indicates that it is extremely unlikely for those events
to occur without human influence.

Studies that focused on the attributable signal in observed cold extreme
events show human influence reducing the probability of those events.
Individual attribution studies on the extremely cold winter of 2011 in
Europe (Peterson et al., 2012), in the eastern USA during 2014 and
2015 (Trenary et al, 2015, 2016; Wolter et al., 2015; Bellprat et al.,
2016), in the cold spring of 2013 in the United Kingdom (Christidis
et al., 2014), and of 2016 in eastern China (Qian et al., 2018; Y. Sun
et al.,, 2018b) all showed a reduced probability due to human influence
on the climate. An exception is the study of Grose et al. (2018), which
found an increase in the probability of the severe western Australian
frost of 2016 due to anthropogenically-driven changes in circulation
patterns that drive cold outbreaks and frost probability.

Different event attribution studies can produce a wide range of
changes in the probability of event occurrence because of different
framing. The temperature event definition itself plays a crucial role in
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the attributable signal (Fischer and Knutti, 2015; Kirchmeier-Young
etal,, 2019). Large-scale, longer-duration events tend to have notably
larger attributable risk ratios (Angélil et al., 2014, 2018; Uhe et al.,
2016; Harrington, 2017; Kirchmeier-Young et al., 2019), as natural
variability is smaller. While uncertainty in the best estimates of the
risk ratios may be large, their lower bounds can be quite insensitive to
uncertainties in observations or model descriptions, thus increasing
confidence in conservative attribution statements (Jeon et al., 2016).

The relative strength of anthropogenic influences on temperature
extremes is regionally variable, in part due to differences in changes
in atmospheric circulation, land-surface feedbacks, and other
external drivers such as aerosols. For example, in the Mediterranean
and over western Europe, risk ratios on the order of 100 have been
found (Kew et al., 2019; Vautard et al., 2020), whereas in the USA,
changes are much less pronounced. This is probably a reflection of
the land-surface feedback enhanced extreme 1930s temperatures
that reduce the rarity of recent extremes, in addition to the definition
of the events and framing of attribution analyses (e.g., spatial and
temporal scales considered). Local forcing may mask or enhance
the warming effect of greenhouse gases. In India, short-lived
aerosols or an increase in irrigation may be masking the warming
effect of greenhouse gases (Wehner et al., 2018c). Irrigation and
crop intensification have been shown to lead to a cooling in some
regions, in particular in North America, Europe, and India (high
confidence) (N.D. Mueller et al., 2016; Thiery et al., 2017, 2020; Chen
and Dirmeyer, 2019). Deforestation has contributed about one third
of the total warming of hot extremes in some mid-latitude regions
since pre-industrial times (Lejeune et al., 2018). Despite all of these
differences, and larger uncertainties at the regional scale, nearly
all studies demonstrated that human influence has contributed
to an increase in the frequency or intensity of hot extremes and to
a decrease in the frequency or intensity of cold extremes.

In summary, long-term changes in various aspects of long- and
short-duration extreme temperatures, including intensity, frequency,
and duration have been detected in observations and attributed to
human influence at global and continental scales. It is extremely
likely that human influence is the main contributor to the observed
increase in the intensity and frequency of hot extremes and the
observed decrease in the intensity and frequency of cold extremes
on the global scale. It is very likely that this applies on continental
scales as well. Some specific recent hot extreme events would have
been extremely unlikely to occur without human influence on the
climate system. Changes in aerosol concentrations have affected
trends in hot extremes in some regions, with the presence of aerosols
leading to attenuated warming, in particular from 1950 to 1980.
Crop intensification, irrigation and no-till farming have attenuated
increases in summer hot extremes in some regions, such as Central
North America (medium confidence).

11.3.5 Projections

The AR5 (Chapter12, Collins et al., 2013) concluded that it is virtually

certain there will be more frequent hot extremes and fewer cold
extremes at the global scale and over most land areas in a future
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Figure 11.11 | Projected changes in (a—c) annual maximum temperature (TXx) and (d—f) annual minimum temperature (TNn) at 1.5°C, 2°C, and 4°C of
global warming compared to the 1850-1900 baseline. Results are based on simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model
ensemble under the Shared Socio-economic Pathways (SSPs) SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers in the top right indicate the number
of simulations included. Uncertainty is represented using the simple approach: no overlay indicates regions with high model agreement, where =80% of models agree on the
sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on the sign of change. For more information on the simple approach,
please refer to the Cross-Chapter Box Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in TXx and TNn are also displayed in the Interactive

Atlas. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).

warmer climate, and it is very likely that heatwaves will occur
with a higher frequency and longer duration.The SR1.5 (Chapter 3,
Hoegh-Guldberg et al., 2018) assessment on projected changes in
hot extremes at 1.5°C and 2°C global warming is consistent with the
AR5 assessment, concluding that it is very likely a global warming
of 2°C, when compared with a 1.5°C warming, would lead to more
frequent and more intense hot extremes on land, as well as to longer
warm spells, affecting many densely inhabited regions. The SR1.5
also assessed it is very likely that the strongest increases in the
frequency of hot extremes are projected for the rarest events, while
cold extremes will become less intense and less frequent, and cold
spells will be shorter.

New studies since AR5 and SR1.5 confirm these assessments. New
literature since AR5 includes projections of temperature-related
extremes in relation to changes in mean temperatures, projections
based on CMIP6 simulations, projections based on stabilized global
warming levels, and the use of new metrics. Constraints for the
projected changes in hot extremes were also provided (Borodina
et al, 2017b; Sippel et al., 2017b; Vogel et al, 2017). Overall,
projected changes in the magnitude of extreme temperatures over
land are larger than changes in global mean temperature, over mid-
latitude land regions in particular (Figures 11.3, 11.11; Fischer et al,,
2014; Seneviratne et al., 2016; B.M. Sanderson et al., 2017; Wehner
et al., 2018b; Di Luca et al., 2020b). Large warming in hot and cold
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extremes will occur, even at the 1.5°C GWL (Figure 11.11). At this
level, widespread significant changes at the grid-box level occur for
different temperature indices (Aerenson et al., 2018). In agreement
with CMIP5 projections, CMIP6 simulations show that a 0.5°C
increment in global warming will significantly increase the intensity
and frequency of hot extremes, and decrease the intensity and
frequency of cold extremes on the global scale (Figures 11.6, 11.8
and 11.12). It takes less than half of a degree for the changes in TXx
to emerge above the level of natural variability (Figure 11.8) and the
66% ranges of the land medians of the 10-year or 50-year TXx events
do not overlap between 1.0°C and 1.5°C in the CMIP6 multi-model
ensemble simulations (Figure 11.6, Li et al., 2021).

Projected warming is larger for TNn and exhibits strong equator-to-
pole amplification, similar to the warming of boreal winter mean
temperatures. The warming of TXx is more uniform over land and
does not exhibit this behaviour (Figure 11.11). The warming of
temperature extremes on global and regional scales tends to scale
linearly with global warming (Section 11.1.4; Fischer et al., 2014;
Seneviratne et al., 2016; Wartenburger et al., 2017; Li et al., 2021;
see also SR1.5, Chapter 3). In the mid-latitudes, the rate of warming
of hot extremes can be as large as twice the rate of global
warming (Figure 11.11). In the Arctic winter, the rate of warming of
the temperature of the coldest nights is about three times the rate
of global warming (Appendix, Figure 11.A.1). Projected changes
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Figure 11.12 | Projected changes in the intensity of extreme temperature
events under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative
to the 1850-1900 baseline. Extreme temperature events are defined as the
daily maximum temperatures (TXx) that were exceeded on average once during
a 10-year period (10-year event, blue) and once during a 50-year period (50-year
event, orange) during the 1850—1900 base period. Results are shown for the global
land. For each box plot, the horizontal line and the box represent the median and
central 66% uncertainty range, respectively, of the intensity changes across the
multi-model ensemble, and the ‘whiskers’ extend to the 90% uncertainty range.
The results are based on the multi-model ensemble from simulations of global climate
models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6)
under different Shared Socio-economic Pathway forcing scenarios. Adapted from
Li et al. (2021). Further details on data sources and processing are available in the
chapter data table (Table 11.SM.9).

in temperature extremes can deviate from projected changes in
annual mean warming in the same regions (Figures 11.3, 11.A.1 and
11.A.2; Di Luca et al., 2020b; Wehner, 2020) due to the additional
processes that control the response of regional extremes, including,
in particular, soil moisture—evapotranspiration—temperature
feedbacks for hot extremes in the mid-latitudes and subtropical
regions, and snow/ice-albedo—temperature feedbacks in high-
latitude regions.

The probability of exceeding a certain hot extreme threshold will
increase, while those for cold extreme will decrease with global
warming (B. Mueller et al, 2016; Lewis et al., 2017b; Suarez-
Gutierrez et al., 2020b). The changes tend to scale nonlinearly with
the level of global warming, with larger changes for more rare
events (Section 11.2.4; Cross-Chapter Box 11.11; Figures 11.6 and
11.12; Fischer and Knutti, 2015; Kharin et al., 2018; Li et al,, 2021).
For example, the CMIP5 ensemble projects the frequency of the
present-day climate 20-year hottest daily temperature to increase
by 80% at the 1.5°C GWL and by 180% at the 2.0°C GWL, and
the frequency of the present-day climate 100-year hottest daily
temperature to increase by 200% and more than 700% at the 1.5°C
and 2.0°C warming levels, respectively (Kharin et al., 2018). CMIP6
simulations project similar changes (Li et al., 2021).

Tebaldi and Wehner (2018) showed that, at the middle of
the 21st century, 66% of the land surface area would experience
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the present-day 20-year return values of TXx and the running three-
day average of the daily maximum temperature every other year, on
average, under the Representative Concentration Pathway 8.5 (RCP8.5)
scenario, as opposed to only 34% under RCP4.5. By the end of the
century, these area fractions increase to 92% and 62%, respectively.
Such nonlinearities in the characteristics of future regional extremes are
shown, for instance, for Europe (Dosio and Fischer, 2018; Spinoni et al.,
2018b; Lionello and Scarascia, 2020), Asia (Guo et al., 2017; Harrington
and Otto, 2018b; King et al., 2018), and Australia (Lewis et al., 2017a)
under various global warming thresholds. The nonlinear increase in
fixed-threshold indices (e.g., based on a percentile for a given reference
period, or on an absolute threshold) as a function of global warming
is consistent with a linear warming of the absolute temperature of
the temperature extremes (e.g., Whan et al., 2015). Compared to the
historical climate, warming will result in strong increases in heatwave
area, duration and magnitude (Vogel et al., 2020b). These changes are
mostly due to the increase in mean seasonal temperature, rather than
changes in temperature variability, though the latter can have an effect
in some regions (Brown, 2020; Di Luca et al., 2020b; Suarez-Gutierrez
et al., 2020a).

Projections of temperature-related extremes in RCMs in the CORDEX
regions demonstrate robust increases under future scenarios and can
provide information on finer spatial scales than GCMs (e.g., Coppola
et al., 2021b). Five RCMs in the CORDEX—East Asia region project
increases in the 20-year return values of temperature extremes
(summer maxima), with models that exhibit warm biases projecting
stronger warming (Park and Min, 2019). Similarly, in the African
domain, future increases in TX90p and TN90p are projected (Dosio,
2017; Mostafa et al., 2019). This regional-scale analysis provides
fine-scale information, such as distinguishing the increase in TX90p
over sub-equatorial Africa (Democratic Republic of the Congo,
Angola, and Zambia) with values over the Gulf of Guinea, Central
African Republic, South Sudan, and Ethiopia. Empirical statistical
downscaling has also been used to produce more robust estimates
for future heatwaves compared to RCMs based on large multi-model
ensembles (Furrer et al., 2010; Keellings and Waylen, 2014; Wang
et al,, 2015; Benestad et al., 2018).

In all continental regions, including Africa (Table 11.4), Asia
(Table 11.7), Australasia (Table 11.10), Central and South America
(Table 11.13), Europe (Table 11.16), North America (Table 11.19) and
atthe continental scale, it is very likely that the intensity and frequency
of hot extremes will increase and the intensity and frequency of cold
extremes will decrease compared with the 1995-2014 baseline, even
under 1.5°C global warming. Those changes are virtually certain
to occur under 4°C global warming. At the regional scale, and for
almost all ARG regions, it is likely that the intensity and frequency of
hot extremes will increase and the intensity and frequency of cold
extremes will decrease compared with the 1995-2014 baseline,
even under 1.5°C global warming. Those changes are virtually
certain to occur under 4°C global warming. Exceptions include lower
confidence in the projected decrease in the intensity and frequency of
cold extremes compared with the 1995-2014 baseline under 1.5°C
of global warming (medium confidence) and 4°C of global warming
(very likely) in Northern Central America, Central North America, and
Western North America.
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In Africa (Table 11.4), evidence includes increases in the intensity
and frequency of hot extremes, such as warm days, warm nights,
and heatwaves, and decreases in the intensity and frequency of cold
extremes, such as cold days and cold nights over the continent, as
projected by CMIP5, CMIP6, and CORDEX simulations (Giorgi et al.,
2014; Engelbrecht et al,, 2015; Lelieveld et al., 2016; Russo et al.,
2016; Dosio, 2017; Bathiany et al., 2018; Mba et al., 2018; Nangombe
et al., 2018; Weber et al., 2018; Kruger et al., 2019; Coppola et al.,
2021b; Li et al., 2021). Cold spells are projected to decrease under
all RCPs, and even at low warming levels in Western and Central
Africa (Diedhiou et al., 2018). The number of cold days is projected to
decrease in East Africa (Ongoma et al.,, 2018b).

In Asia (Table 11.7), evidence includes increases in the intensity
and frequency of hot extremes, such as warm days, warm nights, and
heatwaves, and decreases in the intensity and frequency of cold
extremes, such as cold days and cold nights over the continent, as
projected by CMIP5, CMIP6, and CORDEX simulations (Sillmann
et al., 2013b; Zhou et al., 2014; R. Zhang et al., 2015; Zhao et al,,
2015; Pal and Eltahir, 2016; Singh and Goyal, 2016; Xu et al., 2017;
Gao et al.,, 2018; Han et al., 2018; Shin et al., 2018; Sui et al., 2018;
L. Li et al., 2019; Zhu et al., 2020). More intense heatwaves of longer
durations and occurring at a higher frequency are projected over
India (Murari et al., 2015; Mishra et al., 2017) and Pakistan (Nasim
et al., 2018). Future mid-latitude warm extremes, similar to those
experienced during the 2010 event, are projected to become more
extreme, with temperature extremes increasing potentially by 8.4°C
(RCP8.5) over north-west Asia (van der Schrier et al., 2018). Over
West and East Siberia, and Russian Far East, an increase in extreme
heat durations is expected in all scenarios (Sillmann et al., 2013b;
Kattsov et al., 2017; Reyer et al., 2017). In the MENA regions (Arabian
Peninsula and Western Central Asia), extreme temperatures could
increase by almost 7°C by 2100 under RCP8.5 (Lelieveld et al., 2016).

In Australasia (Table 11.10), evidence includes increases in the
intensity and frequency of hot extremes, such as warm days, warm
nights, and heatwaves, and decreases in the intensity and frequency
of cold extremes, such as cold days and cold nights over the
continent, as projected by CMIP5, CMIP6, and CORDEX simulations
(CSIRO and BOM, 2015; Alexander and Arblaster, 2017; Lewis et al.,
2017a; Herold et al., 2018; Coppola et al., 2021b; Evans et al., 2021).
Over most of Australia, increases in the intensity and frequency of
hot extremes are projected to be predominantly driven by the long-
term increase in mean temperatures (Di Luca et al., 2020b). Future
projections indicate a decrease in the number of frost days regardless
of the region and season considered (Alexander and Arblaster, 2017;
Herold et al., 2018).

In Central and South America (Table 11.13), evidence includes
increases in the intensity and frequency of hot extremes, such as warm
days, warm nights, and heatwaves, and decreases in the intensity and
frequency of cold extremes, such as cold days and cold nights over the
continent, as projected by CMIP5, CMIP6, and CORDEX simulations
(Chou et al., 2014a; Cabré et al., 2016; Lopez-Franca et al., 2016;
Stennett-Brown et al.,, 2017; Coppola et al., 2021b; Li et al,, 2021;
Vichot-Llano et al., 2021). Over South-Eastern South America during
the austral summer, the increase in the frequency of TN90p is larger

1556

Weather and Climate Extreme Events in a Changing Climate

than that projected for TX90p, consistent with observed past changes
(Lopez-Franca et al., 2016). Under RCP8.5, the number of heatwave
days are projected to increase for the intra-Americas region for the
end of the 21st century (Angeles-Malaspina et al., 2018). A general
decrease in the frequency of cold spells and frost days is projected, as
indicated by several indices based on minimum temperature (Lopez-
Franca et al., 2016).

In Europe (Table 11.16), evidence includes increases in the intensity
and frequency of hot extremes, such as warm days, warm nights,
and heatwaves, and decreases in the intensity and frequency of cold
extremes, such as cold days and cold nights over the continent, as
projected by CMIP5, CMIP6, and CORDEX simulations (Lau and Nath,
2014; Ozturk et al., 2015; Russo et al., 2015; Schoetter et al., 2015;
Vogel et al.,, 2017; Winter et al., 2017; Jacob et al.,, 2018; Lhotka et al.,
2018; Rasmijn et al., 2018; Suarez-Gutierrez et al., 2018; Cardoso
etal., 2019; Lionello and Scarascia, 2020; Molina et al., 2020; Coppola
et al., 2021b; Li et al., 2021). Increases in heatwaves are greater over
the southern Mediterranean and Scandinavia (Forzieri et al., 2016;
Abaurrea et al., 2018; Dosio and Fischer, 2018; Rohat et al., 2019).
The biggest increases in the number of heatwave days are expected
for southern European cities (Guerreiro et al., 2018a; Junk et al.,
2019), and Central European cities will see the biggest increases in
maximum heatwave temperatures (Guerreiro et al., 2018a).

In North America (Table 11.19), evidence includes increases in the
intensity and frequency of hot extremes, such as warm days, warm
nights, and heatwaves, and decreases in the intensity and frequency
of cold extremes, such as cold days and cold nights over the
continent, as projected by CMIP5, CMIP6, and CORDEX simulations
(Grotjahn et al., 2016; Vose et al., 2017; Alexandru, 2018; C. Li et al.,
2018, 2021; C. Yang et al.,, 2018; X. Zhang et al., 2019; Coppola
et al.,, 2021b). Projections of temperature extremes for the end of
the 21st century show that warm days and nights are very likely to
increase, and cold days and nights are very likely to decrease in all
regions. There is medium confidence in large increases in warm days
and warm nights in summer, particularly over the USA, and in large
decreases in cold days in Canada in autumn and winter (Grotjahn
etal., 2016; Vose et al., 2017; Alexandru, 2018; C. Li et al., 2018, 2021;
C. Yang et al,, 2018; X. Zhang et al., 2019; Coppola et al., 2021b).
Minimum winter temperatures are projected to rise faster than mean
winter temperatures (Underwood et al., 2017). Projections for the
end of the century under RCP8.5 showed the four-day cold spell that
happens on average once every five years is projected to warm by
more than 10°C. CMIP5 models do not project current 1-in-20-year
annual minimum temperature extremes to recur over much of the
continent (Wuebbles et al., 2014).

In summary, it is virtually certain that further increases in the intensity
and frequency of hot extremes, and decreases in the intensity and
frequency of cold extremes, will occur throughout the 21st century
and around the world. It is virtually certain that the number of hot
days and hot nights and the length, frequency, and/or intensity of
warm spells or heatwaves compared to 1995-2014 will increase
over most land areas. In most regions, changes in the magnitude
of temperature extremes are proportional to global warming levels
(high confidence). The highest increase of temperature of hottest
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days is projected in some mid-latitude and semi-arid regions,
at about 1.5 times to twice the rate of global warming (high
confidence). The highest increase of temperature of coldest days is
projected in Arctic regions, at about three times the rate of global
warming (high confidence). The probability of temperature extremes
generally increases nonlinearly with increasing global warming
levels (high confidence). Confidence in assessments depends on the
spatial and temporal scales of the extreme in question, with high
confidence in projections of temperature-related extremes at global
and continental scales for daily to seasonal scales. There is high
confidence that, on land, the magnitude of temperature extremes
increases more strongly than global mean temperature.

11.4  Heavy Precipitation

This section assesses changes in heavy precipitation at global and
regional scales. The main focus is on extreme precipitation at a daily
scale where literature is most concentrated, though extremes of
shorter (sub-daily) and longer (five-day or more) durations are also
assessed to the extent the literature allows.

11.4.1  Mechanisms and Drivers

The SREX (Chapter 3, Seneviratne et al., 2012) assessed changes in
heavy precipitation in the context of the effects of thermodynamic
and dynamic changes. Box 11.1 assesses thermodynamic and
dynamic changes in a warming world to aid the understanding
of changes in observations and projections in some extremes and
the sources of uncertainties (see also Section 8.2.3.2). In general,
warming increases the atmospheric water-holding capacity following
the Clausius—Clapeyron (C-C) relation. This thermodynamic effect
results in an increase in extreme precipitation at a similar rate at the
global scale. On a regional scale, changes in extreme precipitation
are further modulated by dynamic changes (Box 11.1).

Large-scale modes of variability, such as the North Atlantic Oscillation
(NAO), El Nino—Southern Oscillation (ENSO), Atlantic Multi-decadal
Variability (AMV), and Pacific Decadal Variability (PDV) (Annex IV),
modulate precipitation extremes through changes in environmental
conditions or embedded storms (Section 8.3.2). Latent heating can
invigorate these storms (Nie et al., 2018; Z. Zhang et al., 2019a);
changes in dynamics can increase precipitation intensity above
that expected from the C-C scaling rate (Sections 8.2.3.2 and 11.7;
Box 11.1). Additionally, the efficiency of converting atmospheric
moisture into precipitation can change as a result of cloud
microphysical adjustment to warming, resulting in changes in the
characteristics of extreme precipitation; but changes in precipitation
efficiency in a warming world are highly uncertain (Sui et al., 2020).

It is difficult to separate the effect of global warming from internal
variability in the observed changes in the modes of variability
(Section 2.4). Future projections of modes of variability are highly
uncertain (Section 4.3.3), resulting in uncertainty in regional
projections of extreme precipitation. Future warming may amplify
monsoonal extreme precipitation. Changes in extreme storms,
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including tropical/extratropical cyclones and severe convective
storms, result in changes in extreme precipitation (Section 11.7).
Also, changes in sea surface temperatures (SSTs) alter land—sea
contrast, leading to changes in precipitation extremes near coastal
regions. For example, the projected larger SST increase near the
coasts of East Asia and India can result in heavier rainfall near these
coastal areas from tropical cyclones (Mei and Xie, 2016) or torrential
rains (Manda et al., 2014). The warming in the western Indian Ocean
is associated with increases in moisture surges on the low-level
monsoon westerlies towards the Indian subcontinent, which may
lead to an increase in the occurrence of precipitation extremes over
central India (Krishnan et al., 2016; Roxy et al., 2017).

Decreases in atmospheric aerosols results in warming and thus an
increase in extreme precipitation (Samset et al., 2018; Sillmann
et al., 2019). Changes in atmospheric aerosols also result in dynamic
changes such as in tropical cyclones (Takahashi et al., 2017; Strong
et al, 2018). Uncertainty in the projections of future aerosol
emissions results in additional uncertainty in the heavy precipitation
projections of the 21st century (Lin et al., 2016).

There has been new evidence of the effect of local land-use and
land-cover change on heavy precipitation. There is a growing set of
literature linking increases in heavy precipitation in urban centres
to urbanization (Argiieso et al, 2016; Y. Zhang et al, 2019b).
Urbanization intensifies extreme precipitation, especially in the
afternoon and early evening, over the urban area and its downwind
region (medium confidence) (Box 10.3). There are four possible
mechanisms: (i) increases in atmospheric moisture due to horizontal
convergence of air associated with the urban heat island effect (Shastri
et al., 2015; Argiieso et al., 2016); (ii) increases in condensation due
to urban aerosol emissions (Han et al., 2011; Sarangi et al., 2017);
(iii) aerosol pollution that impacts cloud microphysics (Box 8.1;
Schmid and Niyogi, 2017); and (iv) urban structures that impede
atmospheric motion (Shepherd, 2013; Ganeshan and Murtugudde,
2015; Paul et al., 2018). Other local forcing, including reservoirs
(Woldemichael et al., 2012), irrigation (Devanand et al., 2019), or
large-scale land-use and land-cover change (Odoulami et al., 2019),
can also affect local extreme precipitation.

In summary, precipitation extremes are controlled by both
thermodynamic and dynamic  processes. Warming-induced
thermodynamic change results in an increase in extreme precipitation,
at a rate that closely follows the C-C relationship at the global
scale (high confidence). The effects of warming-induced changes
in dynamic drivers on extreme precipitation are more complicated,
difficult to quantify, and are an uncertain aspect of projections.
Precipitation extremes are also affected by forcings other than
changes in greenhouse gases, including changes in aerosols, land-
use and land-cover change, and urbanization (medium confidence).

11.4.2 Observed Trends

Both SREX (Chapter 3, Seneviratne et al., 2012) and AR5 (IPCC,

2014 Chapter 2) concluded it was likely that the number of heavy
precipitation events over land had increased in more regions than
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it had decreased, though there were wide regional and seasonal
variations, and trends in many locations were not statistically
significant. This assessment has been strengthened with multiple
studies finding robust evidence of the intensification of extreme
precipitation at global and continental scales, regardless of spatial
and temporal coverage of observations and the methods of data
processing and analysis.

The average annual maximum precipitation amount in a day
(Rx1day) has significantly increased since the mid-20th century over
land (Du et al., 2019; Dunn et al,, 2020) and in the humid and dry
regions of the globe (Dunn et al., 2020). The percentage of observing
stations with statistically significant increases in Rx1day is larger
than expected by chance, while the percentage of stations with
statistically significant decreases is smaller than expected by chance,
over the global land as a whole and over North America, Europe,
and Asia (Figure 11.13; Sun et al., 2021) and over global monsoon
regions (Zhang and Zhou, 2019) where data coverage is relatively
good. The addition of the past decade of observational data shows
a more robust increase in Rx1day over the global land region (Sun
et al., 2021). Light, moderate, and heavy daily precipitation has all
intensified in a gridded daily precipitation dataset (Contractor et al.,
2020a). Daily mean precipitation intensities have increased since
the mid-20th century in a majority of land regions (high confidence)
(Section 8.3.1.3). The probability of precipitation exceeding 50 mm/
day increased during 1961-2018 (Benestad et al., 2019). The globally
averaged annual fraction of precipitation from days in the top 5%
(R95pTOT) has also significantly increased (Dunn et al., 2020). The
increase in the magnitude of Rx1day in the 20th century is estimated
to be at a rate consistent with C-C scaling with respect to global
mean temperature (Fischer and Knutti, 2016; Sun et al., 2021). Studies
on past changes in extreme precipitation of durations longer than
a day are more limited, though there are some studies examining
long-term trends in annual maximum five-day precipitation (Rx5day).
On global and continental scales, long-term changes in Rx5day are
similar to those of Rx1day in many aspects (Zhang and Zhou 2019;
Sun et al,, 2021). As discussed below, at the regional scale, changes in
Rx5day are also similar to those of Rx1day where there are analyses
of changes in both Rx1day and Rx5day.

Overall, there is a lack of systematic analysis of long-term trends in
sub-daily extreme precipitation at the global scale. Often, sub-daily
precipitation data have only sporadic spatial coverage and are of
limited length. Additionally, the available data records are far shorter
than needed for a robust quantification of past changes in sub-daily
extreme precipitation (C. Li et al., 2019a). Despite these limitations,
there are studies in regions of almost all continents that generally
indicate intensification of sub-daily extreme precipitation, although
there remains low confidence in an overall increase at the global
scale. Studies include an increase in extreme sub-daily rainfall in
summer over South Africa (Sen Roy and Rouault, 2013), annually
in Australia (Guerreiro et al., 2018b), over 23 urban locations in
India (Ali and Mishra, 2018), in Peninsular Malaysia (Syafrina et al.,
2015), and in eastern China in the summer season during 1971-2013
(Xiao et al., 2016). In some regions in ltaly (Arnone et al., 2013;
Libertino et al., 2019) and in the USA during 1950-2011 (Barbero
et al., 2017), there is also an increase. In general, an increase in sub-
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daily heavy precipitation results in an increase in pluvial floods over
smaller watersheds (Ghausi and Ghosh, 2020).

There is a considerable body of literature examining scaling of
sub-daily precipitation extremes, conditional on day-to-day air or
dew-point temperatures (Westra et al., 2014; Fowler et al.,, 2021).
This scaling, also termed ‘apparent scaling” (Fowler et al., 2021), is
robust when different methodologies are used in different regions,
ranging between the C-C and two-times the C-C rate (e.g., Formayer
and Fritz, 2017; Lenderink et al., 2017; Burdanowitz et al., 2019).
This is confirmed when sub-daily precipitation data collected from
multiple continents (Lewis et al., 2019) are analysed in a consistent
manner using different methods (Ali et al, 2021). It has been
hoped that apparent scaling might be used to help understand past
and future changes in extreme sub-daily precipitation. However,
apparent scaling samples multiple synoptic weather states, mixing
thermodynamic and dynamic factors that are not directly relevant for
climate change responses (Section 8.2.3.2; Prein et al., 2016b; Bao
et al, 2017; X. Zhang et al., 2017; Drobinski et al., 2018; Sun et al.,
2020). The spatial pattern of apparent scaling is different from those
of projected changes over Australia (Bao et al., 2017) and North
America (Sun et al., 2020) in regional climate model simulations.
It thus remains difficult to use the knowledge about apparent scaling
to infer past and future changes in extreme sub-daily precipitation
according to observed and projected changes in local temperature.

In Africa (Table 11.5), evidence shows an increase in extreme daily
precipitation for the late half of the 20th century over the continent
where data are available; there is a larger percentage of stations
showing significant increases in extreme daily precipitation than
decreases (Sun et al., 2021). There are increases in different metrics
relevant to extreme precipitation in various regions of the continent
(Chaney et al., 2014; Harrison et al., 2019; Dunn et al., 2020; Sun
et al., 2021). There is an increase in extreme precipitation events in
Southern Africa (Weldon and Reason, 2014; Kruger et al., 2019) and
a general increase in heavy precipitation over East Africa, the Greater
Horn of Africa (Omondi et al., 2014). Over sub-Saharan Africa,
increases in the frequency and intensity of extreme precipitation
have been observed over the well-gauged areas during 1950-2013;
however, this covers only 15% of the total area of sub-Saharan Africa
(Harrison et al., 2019). There is medium confidence about the increase
in extreme precipitation for some regions where observations are
more abundant, but for Africa as whole, there is low confidence
because of a general lack of continent-wide systematic analysis, the
sporadic nature of available precipitation data over the continent,
and spatially non-homogenous trends in places where data are
available (Donat et al., 2014a; Mathbout et al., 2018b; Alexander
et al,, 2019; Funk et al., 2020).

InAsia (Table 11.8), there is robust evidence that extreme precipitation
has increased since the 1950s (high confidence), however, this
is dominated by high spatial variability. Increases in Rx1day and
Rx5day during 1950-2018 are found over two-thirds of stations.
The percentage of stations with statistically significant trends is
larger than can be expected by chance (Figure 11.13; Sun et al.,
2021). An increase in extreme precipitation has also been observed
in various regional studies based on different metrics of extreme
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precipitation and spatial and temporal coverage of the data. These
include an increase in daily precipitation extremes over central Asia
(Hu et al., 2016), most of South Asia (Zahid and Rasul, 2012; Pai et al.,
2015; Sheikh et al., 2015; Adnan et al., 2016; Malik et al., 2016; Dimri
et al, 2017; Priya et al., 2017; Roxy et al., 2017; Hunt et al., 2018;
Kim et al., 2019; Wester et al., 2019), the Arabian Peninsula (Rahimi
and Fatemi, 2019; Almazroui and Saeed, 2020; Atif et al., 2020),
South East Asia (Siswanto et al., 2015; Supari et al., 2017; Cheong
et al., 2018); the north-west Himalaya (Malik et al., 2016), parts of
East Asia (Baek et al., 2017; Nayak et al., 2017; Ye and Li, 2017), the
western Himalayas since the 1950s (Ridley et al., 2013; Dimri et al.,
2015; Madhura et al.,, 2015), West and East Siberia, and Russian Far
East (Donat et al., 2016a). A decrease was found over the eastern
Himalayas (Sheikh et al., 2015; Talchabhadel et al., 2018). Increases
have been observed over Jakarta (Siswanto et al., 2015), but Rx1day
over most parts of the Maritime Continent has decreased (Villafuerte
and Matsumoto, 2015). Trends in extreme precipitation over China
are mixed with increases and decreases (G. Fu et al., 2013; Jiang
et al., 2013; Ma et al., 2015; Yin et al., 2015; Xiao et al., 2016) and
are not significant over China as whole (Jiang et al., 2013; Hu et al,,
2016; Ge et al., 2017; Deng et al., 2018; He and Zhai, 2018; W. Li et al.,
2018a; Tao et al., 2018; M. Liu et al., 2019b; Chen et al., 2021). With
few exceptions, most South East Asian countries have experienced an
increase in rainfall intensity, but with a reduced number of wet days
(Donat et al., 2016a; Cheong et al., 2018; Naveendrakumar et al.,
2019), though large differences in trends exists if the trends are
estimated from different datasets, including gauge-based, remotely
sensed, and reanalysis data, over a relatively short period (Kim et al.,
2019). There is a significant increase in heavy rainfall (>100 mm day~
') and a significant decrease in moderate rainfall (5-100 mm day™")
in central India during the South Asian monsoon season (Deshpande
et al, 2016; Roxy et al., 2017).

In Australasia (Table 11.11), available evidence has not shown
an increase or a decrease in heavy precipitation over Australasia
as a whole (medium confidence), but heavy precipitation tends
to increase over Northern Australia (particularly the north-west)
and decrease over the eastern and southern regions (e.g., Jakob and
Walland, 2016; Guerreiro et al., 2018b; Dey et al, 2019b; Dunn
et al, 2020; Sun et al., 2021). Available studies that used long-
term observations since the mid-20th century showed nearly as
many stations with an increase as those with a decrease in heavy
precipitation (Jakob and Walland, 2016) or slightly more stations
with a decrease than with an increase in Rx1day and Rx5day (Sun
et al., 2021), or strong differences in Rx1day trends with increases
over Northern Australia and Central Australia in general, but mostly
decreases over Southern Australia and Eastern Australia (Dunn et al.,
2020). Over New Zealand, decreases are observed for moderate—
heavy precipitation events, but there are no significant trends for very
heavy events (more than 64 mm in a day) for the period 1951-2012.
The number of stations with an increase in very wet days is similar
to that with a decrease during 1960-2019 (MfE and Stats NZ, 2020).
Overall, there is low confidence in trends in the frequency of heavy
rain days, with mostly decreases over New Zealand (Harrington and
Renwick, 2014; Caloiero, 2015).
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In Central and South America (Table 11.14), evidence shows an
increase in extreme precipitation, but in general there is low
confidence; while continent-wide analyses produced wetting trends
are not robust. Rx1day increased at more stations than it decreased
in South America between 1950 and 2018 (Sun et al., 2021). Over
the period 1950-2010, both Rx5day and R99p increased over large
regions of South America, including North-Western South America,
Northern South America, and South-Eastern South America (Skansi
et al., 2013). There are large regional differences. A decrease in daily
extreme precipitation is observed in north-eastern Brazil (Skansi
et al., 2013; Bezerra et al., 2018; Dereczynski et al., 2020). Trends
in extreme precipitation indices were not statistically significant
over the period 1947-2012 within the Sao Francisco River basin in
the Brazilian semi-arid region (Bezerra et al., 2018). An increase in
extreme rainfall is observed in the Amazon with medium confidence
(Skansi et al., 2013) and in South-Eastern South America with
high confidence (Skansi et al., 2013; Valverde and Marengo, 2014;
Barros et al., 2015; Avila et al., 2016; Wu and Polvani, 2017; Lovino
et al., 2018; Dereczynski et al., 2020). Among all sub-regions, South-
Eastern South America shows the highest rate of increase for rainfall
extremes, followed by the Amazon (Skansi et al., 2013). Increases
in the intensity of heavy daily rainfall events have been observed in
the southern Pacific and in the Titicaca basin (Skansi et al., 2013;
Huerta and Lavado-Casimiro, 2021). In Southern Central America,
trends in annual precipitation are generally not significant, although
small (but significant) increases are found in Guatemala, El Salvador,
and Panama (Hidalgo et al., 2017). Small positive trends were found
in multiple extreme precipitation indices over the Caribbean region
over a short time period (1986-2010) (Stephenson et al., 2014;
McLean et al., 2015).

In Europe (Table 11.17), there is robust evidence that the magnitude
and intensity of extreme precipitation has very likely increased since
the 1950s. There is a significant increase in Rx1day and Rx5day
during 1950-2018 in Europe as a whole (Sun et al., 2021, also
Figure 11.13). The number of stations with increases far exceeds
those with decreases in the frequency of daily rainfall exceeding its
90th or 95th percentile in century-long series (Cioffi et al., 2015). The
five-, 10-, and 20-year events of one-day and five-day precipitation
during 1951-1960 became more common since the 1950s (van
den Besselaar et al., 2013). There can be large discrepancies among
studies and regions and seasons (Croitoru et al., 2013; Willems,
2013; Casanueva et al., 2014; Roth et al., 2014; Fischer et al., 2015);
evidence for increasing extreme precipitation is more frequently
observed for summer and winter, but not in other seasons (Madsen
et al., 2014; Helama et al., 2018). An increase is observed in central
Europe (Volosciuk et al., 2016; Zeder and Fischer, 2020), and in
Romania (Croitoru et al., 2016). Trends in the Mediterranean region
are in general not spatially consistent (Reale and Lionello, 2013), with
decreases in the western Mediterranean and some increases in the
eastern Mediterranean (Rajczak et al., 2013; Casanueva et al.,, 2014;
de Lima et al., 2015; Gaji¢-Capka et al., 2015; Sunyer et al., 2015;
Pedron et al., 2017; Serrano-Notivoli et al., 2018; Ribes et al., 2019).
In the Netherlands, the total precipitation contributed from extremes
higher than the 99th percentile doubles per 1°C increase in warming
(Myhre et al., 2019), though extreme rainfall trends in Northern
Europe may differ in different seasons (Irannezhad et al., 2017).
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Observed trends in annual maximum daily precipitation (Rx1day)

(a) Percentage of stations with significant positive or negative trends
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Figure 11.13 | Signs and significance of the observed trends in annual maximum daily precipitation (Rx1day) during 1950-2018 at 8345 stations with
sufficient data. (a) Percentage of stations with statistically significant trends in Rx1day; green dots show positive trends and brown dots negative trends. Box and ‘whisker’
plots indicate the expected percentage of stations with significant trends due to chance estimated from 1000 bootstrap realizations under a no-trend null hypothesis. The boxes
mark the median, 25th percentile, and 75th percentile. The upper and lower whiskers show the 97.5th and the 2.5th percentiles, respectively. Maps of stations with positive
(b) and negative (c) trends. The light colour indicates stations with non-significant trends, and the dark colour stations with significant trends. Significance is determined by
a two-tailed test conducted at the 5% level. Adapted from Sun et al. (2021). Figure copyright © American Meteorological Society (used with permission). Further details on data

sources and processing are available in the chapter data table (Table 11.5M.9).

In North America (Table 11.20), there is robust evidence that the
magnitude and intensity of extreme precipitation has very likely
increased since the 1950s. Both Rx1day and Rx5day have significantly
increased in North America during 1950-2018 (Sun et al., 2021, also
Figure 11.13). There is, however, regional diversity. In Canada, there
is a lack of detectable trends in observed annual maximum daily
(or shorter duration) precipitation (Shephard et al., 2014; Mekis et al.,
2015; Vincent et al., 2018). In the USA, there is an overall increase in
one-day heavy precipitation, both in terms of intensity and frequency
(Villarini et al., 2012; Donat et al., 2013b; Wu, 2015; Easterling et al.,
2017; H. Huang et al., 2017; Howarth et al., 2019; Sun et al., 2021),
except for the southern USA (Hoerling et al., 2016) where internal
variability may have played a substantial role in the lack of observed
increases. In Mexico, increases are observed in R10mm and R95p
(Donat et al., 2016a), very wet days over the cities (Garcia-Cueto
et al., 2019) and in total precipitation (PRCPTOT) and Rx1day (Donat
et al.,, 2016b).
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In Small Islands, there is a lack of evidence showing changes in heavy
precipitation overall. There were increases in extreme precipitation
in Tobago from 1985-2015 (Stephenson et al., 2014; Dookie et al.,
2019) and decreases in south-western French Polynesia and the
southern subtropics (low confidence) (Table 11.5; Atlas.10). Extreme
precipitation leading to flooding in the Small Islands has been
attributed in part to tropical cyclones, as well as being influenced by
ENSO (Box 11.5; Khouakhi et al., 2016; Hoegh-Guldberg et al., 2018).

In summary, the frequency and intensity of heavy precipitation have
likely increased at the global scale over a majority of land regions
with good observational coverage. Since 1950, the annual maximum
amount of precipitation falling in a day, or over five consecutive days,
has likely increased over land regions with sufficient observational
coverage for assessment, with increases in more regions than
there are decreases. Heavy precipitation has likely increased on the
continental scale over three continents (North America, Europe, and
Asia) where observational data are more abundant. There is very low
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confidence about changes in sub-daily extreme precipitation due to
the limited number of studies and available data.

11.4.3  Model Evaluation

Evaluating climate model competence in simulating heavy
precipitation extremes is challenging due to a number of factors,
including the lack of reliable observations and the spatial scale
mismatch between simulated and observed data (Avila et al., 2015;
Alexander et al, 2019). Simulated precipitation represents areal
means, but station-based observations are conducted at point
locations and are often sparse. The areal-reduction factor, the ratio
between pointwise station estimates of extreme precipitation and
extremes of the areal mean, can be as large as 130% at CMIP6
resolutions (about 100 km) (Gervais et al., 2014). Hence, the order in
which gridded station based extreme values are constructed (i.e., if
the extreme values are extracted at the station first and then gridded,
or if the daily station values are gridded and then the extreme values
are extracted) represents different spatial scales of extreme
precipitation and needs to be taken into account in model evaluation
(Wehner et al. 2020). This aspect has been considered in some studies.
Reanalysis products are used in place of station observations for their
spatial completeness as well as spatial-scale comparability (Sillmann
et al., 2013a; Kim et al., 2020; Li et al., 2021). However, reanalyses
share similar parametrizations to the models themselves, reducing
the objectivity of the comparison.

Different generations of CMIP models have improved over time,
though quite modestly (Flato et al., 2013; Watterson et al., 2014).
Improvements in the representation of the magnitude of the Expert
Team on Climate Change Detection and Indices (ETCCDI) in CMIP5
over CMIP3 (Sillmann et al., 2013a; Chen and Sun, 2015a) have
been attributed to higher resolution, as higher-resolution models
represent smaller areas at individual grid boxes. Additionally, the
spatial distribution of extreme rainfall simulated by high-resolution
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models is generally more comparable to observations (Sillmann
et al., 2013b; Kusunoki, 2017, 2018b; Scher et al., 2017) as these
models tend to produce more realistic storms compared to coarser
models (Section 11.7.2). Higher horizontal resolution alone improves
simulation of extreme precipitation in some models (Wehner et al.,
2014; Kusunoki, 2017, 2018b), but this is insufficient in other models
(Bador et al., 2020) as parametrization also plays a significant role
(M. Wu et al., 2020). A simple comparison of climatology may not
fully reflect the improvements of the new models that have more
comprehensive process formulations (Di Luca et al., 2015). Dittus et al.
(2016) found that many of the eight CMIP5 models they evaluated
reproduced the observed increase in the difference between areas
experiencing an extreme high (90%) and an extreme low (10%)
proportion of the annual total precipitation from heavy precipitation
(R95p/PRCPTOT) for Northern Hemisphere regions. Additionally,
CMIP5 models reproduced the relation between changes in extreme
and non-extreme precipitation: an increase in extreme precipitation
is at the cost of a decrease in non-extreme precipitation (Thackeray
et al, 2018), a characteristic found in the observational record
(Gu and Adler, 2018).

The CMIP6 models perform reasonably well in capturing large-scale
features of precipitation extremes, including intense precipitation
extremes in the intertropical convergence zone (ITCZ), and weak
precipitation extremes in dry areas in the tropical regions (Li et al.,
2021) but a double-ITCZ bias over the equatorial central and eastern
Pacific that appeared in CMIP5 models remains (Section 3.3.2.3).There
are also regional biases in the magnitude of precipitation extremes
(Kim et al., 2020). The models also have difficulties in reproducing
detailed regional patterns of extreme precipitation, such as over the
north-east USA (Agel and Barlow, 2020), though they performed
better for summer extremes over the USA (Akinsanola et al., 2020). The
comparison between climatologies in the observations and in model
simulations shows that the CMIP6 and CMIP5 models that have similar
horizontal resolutions also have similar model evaluation scores,
and their error patterns are highly correlated (Wehner et al., 2020).

Multi model mean bias in annual maximum daily rainfall (Rx1day)
HadEx3

(c)

-40 -30 -20
too dry

-10 0 10 20

Precipitation bias (%)

40
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Figure 11.14 | Multi-model mean bias in annual maximum daily precipitation (Rx1day, %) for the period 1979-2014. Calculated as the difference between the
Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model mean and the average of available observational or reanalysis products including (a) ERA5, (b) HadEX3,
and (c) REGEN. Bias is expressed as the percent error relative to the long-term mean of the respective observational data products. Brown indicates that models are too dry,
while green indicates that they are too wet. Areas without sufficient observational data are shown in grey. Adapted from Wehner et al. (2020) under the terms of the Creative
Commons Attribution licence. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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In general, extreme precipitation in CMIP6 models tends to be
somewhat larger than in CMIP5 models (Li et al., 2021), reflecting
smaller spatial scales of extreme precipitation represented by slightly
higher-resolution models (Gervais et al., 2014). This is confirmed by
Kim et al. (2020), who showed that Rx1day and Rx5day simulated
by CMIP6 models tend to be closer to point estimates of HadEX3
data (Dunn et al., 2020) than those simulated by CMIP5. Figure 11.14
shows the multi-model ensemble bias in mean Rx1day over the
period 1979-2014 from 21 available CMIP6 models when compared
with observations and reanalyses. Measured by global land root-
mean-square error, the model performance is generally consistent
across different observed/reanalysis data products for the extreme
precipitation metric (Figure 11.14). The magnitude of extreme area
mean precipitation simulated by the CMIP6 models is consistently
smaller than the point estimates of HadEX3, but the model values
are more comparable to those of areal-mean values (Figure 11.14)
of the ERA5 reanalysis or REGEN (Contractor et al., 2020b). Taylor-
plot-based performance metrics reveal strong similarities in the
patterns of extreme precipitation errors over land regions between
CMIP5 and CMIP6 (Srivastava et al., 2020; Wehner et al., 2020) and
between annual mean precipitation errors and Rx1day errors for both
generations of models (Wehner et al., 2020).

In general, there is high confidence that historical simulations
by CMIP5 and CMIP6 models of similar horizontal resolutions are
interchangeable in their performance in simulating the observed
climatology of extreme precipitation.

Studies using regional climate models (RCMs), for example, CORDEX
(Giorgi et al., 2009) over Africa (Dosio et al., 2015; Klutse et al., 2016;
Pinto et al., 2016; Gibba et al., 2019), Australia, East Asia (Park et al.,
2016), Europe (Prein et al., 2016a; Fantini et al., 2018), and parts
of North America (Diaconescu et al., 2018) suggest that extreme
rainfall events are better captured in RCMs compared to their host
GCMs due to their ability to address regional characteristics, for
example, topography and coastlines. However, CORDEX simulations
do not show good skill over South Asia for heavy precipitation, and
do not add value with respect to their GCM source of boundary
conditions (Mishra et al., 2014b; S. Singh et al., 2017). The evaluation
of models in simulating regional processes is discussed in detail in
Section 10.3.3.4. The high-resolution simulation of mid-latitude
winter extreme precipitation over land is of similar magnitude to
point observations. Simulation of summer extreme precipitation has
a large bias when compared with observations at the same spatial
scale. Simulated extreme precipitation in the tropics also appears to
be too large, indicating possible deficiencies in the parametrization
of cumulus convection at this resolution. Indeed, precipitation
distributions at both daily and sub-daily time scales are much
improved with a convection-permitting model (Belusi¢ et al., 2020)
over Western Africa (Berthou et al., 2019b), East Africa (Finney et al.,
2019), North America and Canada (Cannon and Innocenti, 2019;
Innocenti et al., 2019) and over Belgium in Europe (Vanden Broucke
etal, 2019).

In summary, there is high confidence in the ability of models to

capture the large-scale spatial distribution of precipitation extremes
over land. The magnitude and frequency of extreme precipitation
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simulated by CMIP6 models are similar to those simulated by CMIP5
models (high confidence).

11.4.4  Detection and Attribution, Event Attribution

Both SREX (Chapter 3, Seneviratne et al., 2012) and AR5 (Chapter 10,
IPCC, 2014) concluded with medium confidence that anthropogenic
forcing has contributed to a global-scale intensification of heavy
precipitation over the second half of the 20th century. These
assessments were based on the evidence of anthropogenic influence
on aspects of the global hydrological cycle, in particular, the human
contribution to the warming-induced observed increase in atmospheric
moisture that leads to an increase in heavy precipitation, and /imited
evidence of anthropogenic influence on extreme precipitation of
durations of one and five days.

Since AR5 there has been new and robust evidence and improved
understanding of human influence on extreme precipitation. In
particular, detection and attribution analyses have provided consistent
and robust evidence of human influence on extreme precipitation
of one- and five-day durations at global to continental scales.
The observed increases in Rx1day and Rx5day over the Northern
Hemisphere land area during 1951-2005 can be attributed to the
effect of combined anthropogenic forcing, including greenhouse
gases and anthropogenic aerosols, as simulated by CMIP5 models
and the rate of intensification with regard to warming is consistent
with C-C scaling (Zhang et al., 2013). This is confirmed to be robust
when an additional nine years of observational data and the CMIP6
model simulations were used (Cross-Chapter Box 3.2, Figure 1; Paik
et al., 2020). The influence of greenhouse gases is attributed as the
dominant contributor to the observed intensification. The global
average of Rx1day in the observations is consistent with simulations
by both CMIP5 and CMIP6 models under anthropogenic forcing,
but not under natural forcing (Cross-Chapter Box 3.2, Figure 1). The
observed increase in the fraction of annual total precipitation falling
into the top fifth or top first percentiles of daily precipitation can
also be attributed to human influence at the global scale (Dong
et al,, 2021). The CMIP5 models were able to capture the fraction
of land experiencing a strong intensification of heavy precipitation
during 1960-2010 under anthropogenic forcing, but not in unforced
simulations (Fischer et al., 2014). But the models underestimated
the observed trends (Borodina et al., 2017a). Human influence also
significantly contributed to the historical changes in record-breaking
one-day precipitation (Shiogama et al., 2016). There is also limited
evidence of the influences of natural forcing. Substantial reductions in
Rx5day and Simple Daily Intensity Index (SDII) for daily precipitation
intensity over the global summer monsoon regions occurred during
1957-2000 after explosive volcanic eruptions (Paik and Min, 2018).
The reduction in post-volcanic eruption extreme precipitation in the
simulations is closely linked to the decrease in mean precipitation, for
which both thermodynamic effects (moisture reduction due to surface
cooling) and dynamic effects (monsoon circulation weakening) play
important roles.

There has been new evidence of human influence on extreme
precipitation at continental scales, including the detection of
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the combined effect of greenhouse gases and aerosol forcing on
Rx1day and Rx5day over North America, Eurasia, and mid-latitude
land regions (Zhang et al., 2013) and of greenhouse gas forcing
in Rx1day and Rx5day in the mid-to-high latitudes, western and
eastern Eurasia, and the global dry regions (Paik et al., 2020). These
findings are corroborated by the detection of human influence in the
fraction of extreme precipitation in the total precipitation over Asia,
Europe, and North America (Dong et al., 2021). Human influence
was found to have contributed to the increase in frequency and
intensity of regional precipitation extremes in North America during
1961-2010, based on optimal fingerprinting and event attribution
approaches (Kirchmeier-Young and Zhang, 2020). Tabari et al. (2020)
found the observed latitudinal increase in extreme precipitation
over Europe to be consistent with model-simulated responses to
anthropogenic forcing.

Evidence of human influence on extreme precipitation at regional
scales is more limited and less robust. In north-west Australia, the
increase in extreme rainfall since 1950 can be related to increased
monsoonal flow due to increased aerosol emissions, but cannot be
attributed to an increase in greenhouse gases (Dey et al., 2019a).
Anthropogenic influence on extreme precipitation in China was
detected in one study (H. Li et al., 2017), but not in another using
different detection and data-processing procedures (W. Li et al,
2018a), indicating the lack of robustness in the detection results.
A still weak signal-to-noise ratio seems to be the main cause for the
lack of robustness, as detection would become robust 20 years in
the future (W. Li et al., 2018a). Krishnan et al. (2016) attributed the
observed increase in heavy rain events (intensity >100 mm day™')
in the post-1950s over central India to the combined effects of
greenhouse gases, aerosols, land-use and land-cover changes, and
rapid warming of the equatorial Indian Ocean SSTs. Roxy et al. (2017)
and Devanand et al. (2019) showed that the increase in widespread
extremes over the South Asian Monsoon during 1950-2015 is due
to the combined impacts of the warming of the Western Indian
Ocean (Arabian Sea) and the intensification of irrigation water
management over India.

Anthropogenic influence may have affected the large-scale
meteorological processes necessary for extreme precipitation
and the localized thermodynamic and dynamic processes, both
contributing to changes in extreme precipitation events. Several new
methods have been proposed to disentangle these effects by either
conditioning on the circulation state or attributing analogues. In
particular, the extremely wet winter of 2013-2014 in the UK can be
attributed, approximately to the same degree, to both temperature-
induced increases in saturation vapour pressure and changes in the
large-scale circulation (Vautard et al., 2016; Yiou et al., 2017). There
are multiple cases indicating that very extreme precipitation may
increase at a rate more than the C-C rate (7% per 1°C of warming)
(Pall et al., 2017; Risser and Wehner, 2017; van der Wiel et al., 2017;
van Oldenborgh et al., 2017; S.-Y.S. Wang et al., 2018).

Event attribution studies found an influence of anthropogenic
activities on the probability or magnitude of observed extreme
precipitation events, including European winters (Schaller et al., 2016;
Otto et al., 2018b), extreme 2014 precipitation over the northern
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Mediterranean (Vautard et al., 2015), parts of the USA for individual
events (Knutson et al., 2014a; Szeto et al., 2015; Eden et al.,, 2016;
van Oldenborgh et al., 2017), extreme rainfall in 2014 over Northland,
New Zealand (Rosier et al., 2015) or China (Burke et al., 2016; Sun
and Miao, 2018; Yuan et al., 2018b; Zhou et al., 2018). However,
for other heavy rainfall events, studies identified a lack of evidence
about anthropogenic influences (Imada et al., 2013; Schaller et al,,
2014; Otto et al., 2015¢; Siswanto et al., 2015). There are also studies
where results are inconclusive because of limited reliable simulations
(Christidis et al., 2013b; Angélil et al., 2016). Overall, both the spatial
and temporal scales on which extreme precipitation events are
defined are important for attribution; events defined on larger scales
have larger signal-to-noise ratios and thus the signal is more readily
detectable. At the current level of global warming, there is a strong
enough signal to be detectable for large-scale extreme precipitation
events, but the chance of detecting such signals for smaller-scale
events decreases (Kirchmeier-Young et al., 2019).

In summary, most of the observed intensification of heavy precipitation
over land regions is likely due to anthropogenic influence, for which
greenhouse gases emissions are the main contributor. New and
robust evidence since AR5 includes attribution to human influence
of the observed increases in annual maximum one-day and five-
day precipitation and in the fraction of annual precipitation falling
in heavy events. The evidence since AR5 also includes a larger
fraction of land showing enhanced extreme precipitation and
a larger probability of record-breaking one-day precipitation than
expected by chance, both of which can only be explained when
anthropogenic greenhouse gas forcing is considered. Human
influence has contributed to the intensification of heavy precipitation
in three continents where observational data are more abundant
(high confidence) (North America, Europe and Asia). On the spatial
scale of ARG regions, there is /imited evidence of human influence on
extreme precipitation, but new evidence is emerging; in particular,
studies attributing individual heavy precipitation events found
that human influence was a significant driver of the events,
particularly in the winter season.

11.4.5 Projections

The AR5 concluded it is very likely that extreme precipitation events
will be more frequent and more intense over most of the mid-
latitude land masses and wet tropics in a warmer world (Collins
et al, 2013). Post-AR5 studies provide more and robust evidence
to support the previous assessments. These include an observed
increase in extreme precipitation (Section 11.4.3) and human causes
of past changes (Section 11.4.4), as well as projections based on
either GCM and/or RCM simulations. The CMIP5 models project
that the rate of increase in Rx1day with warming is independent
of the forcing scenario (Section 8.5.3.1; Pendergrass et al., 2015)
or forcing mechanism (Sillmann et al., 2017a). This is confirmed
in CMIP6 simulations (Sillmann et al., 2019; Li et al, 2021). In
particular, for extreme precipitation that occurs once a year or less
frequently, the magnitudes of the rates of change per 1°C change
in global mean temperature are similar, regardless of whether the
temperature change is caused by increases in carbon dioxide (CO,),
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Figure 11.15 | Projected changes in the intensity of extreme precipitation
events under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative
to the 1850-1900 baseline. Extreme precipitation events are defined as the annual
maximum daily maximum precipitation (Rx1day) that was exceeded on average once
during a 10-year period (10-year event, blue) and once during a 50-year period
(50-year event, orange) during the 1850—1900 base period. Results are shown for the
global land. For each box plot, the horizontal line and the box represent the median
and central 66% uncertainty range, respectively, of the intensity changes across
the multi-model median, and the ‘whiskers’ extend to the 90% uncertainty range. The
results are based on the multi-model ensemble estimated from simulations of global
climate models contributing to the Coupled Model Intercomparison Project Phase
6 (CMIP6) under different Shared Socio-economic Pathway forcing scenarios. Based
on Li et al. (2021). Further details on data sources and processing are available in the
chapter data table (Table 11.SM.9).

methane (CH,), solar forcing, or sulphate (SO) (Sillmann et al., 2019).
In some models — CESM1 in particular — the extreme precipitation
response to warming may follow a quadratic relation (Pendergrass
et al,, 2019). Figure 11.15 shows changes in the 10- and 50-year
return values of Rx1day at different warming levels as simulated by
the CMIP6 models. The median value of the scaling over land, across
all Shared Socio-economic Pathway (SSP) scenarios and all models,
is close to 7% per 1°C of warming for the 50-year return value of
Rx1day. It is just slightly smaller for the 10- and 50-year return
values of Rx5day (Li et al., 2021). The 90% ranges of the multimodel
ensemble changes across all land grid boxes in the 50-year return
values for Rx1day and Rx5day do not overlap between 1.5°C and
2°C warming levels (Li et al., 2021), indicating that a small increment
such as 0.5°C in global warming can result in a significant increase
in extreme precipitation. Projected long-period Rx1day return value
changes are larger than changes in mean Rx1day and with larger
relative changes for more rare events (Pendergrass, 2018; Mizuta and
Endo, 2020; Wehner, 2020). The rate of change of moderate extreme
precipitation may depend more on the forcing agent, similar to the
mean precipitation response to warming (Lin et al., 2016, 2018).
Thus, there is high confidence that extreme precipitation that occurs
once a year or less frequently increases proportionally to the amount
of surface warming, and the rate of change in precipitation is not
dependent on the underlying forcing agents of warming.

The spatial patterns of the projected changes across different
warming levels are quite similar, as shown in Figure 11.16, and
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confirmed by near-linear scaling between extreme precipitation and
global warming levels at regional scales (Seneviratne and Hauser,
2020). Internal variability modulates changes in heavy rainfall (Wood
and Ludwig, 2020), resulting in different changes in different regions
(Seneviratne and Hauser, 2020). Extreme precipitation nearly always
increases across land areas with larger increases at higher global
warming levels, except in very few regions, such as Southern Europe
around the Mediterranean Basin at low warming levels (Table 11.17).
The very likely ranges of the multi-model ensemble changes across
all land grid boxes in the 50-year return values for Rx1day and
Rx5day between 1.5°C and 1°C warming levels are above zero for
all continents except Europe, with the lower bound of the likely
range above zero over Europe (Li et al., 2021). Decreases in extreme
precipitation are confined mostly to subtropical ocean areas and are
highly correlated to decreases in mean precipitation due to storm
track shifts. These subtropical decreases can extend to nearby land
areas in individual realizations.

Projected increases in the probability of extreme precipitation of
fixed magnitudes are nonlinear and show larger increases for more
rare events (Figures 11.7 and 11.15; Fischer and Knutti, 2015; Kharin
et al, 2018; Li et al,, 2021). The CMIP5 model projected increases
in the probability of high (99th and 99.9th) percentile precipitation
between 1.5°C and 2°C warming scenarios are consistent with what
can be expected based on observed changes (Fischer and Knutti,
2015), providing confidence in the projections. The CMIP5 model
simulations show that the frequency for present-day climate 20-year
extreme precipitation is projected to increase by 10% at the 1.5°C
global warming level, and by 22% at the 2.0°C global warming
level, while the increase in the frequency for present-day climate
100-year extreme precipitation is projected to increase by 20% and
more than 45% at the 1.5°C and 2.0°C warming levels, respectively
(Kharin et al., 2018). CMIP6 simulations with SSP scenarios show that
the frequency of 10-year and 50-year events will be approximately
doubled and tripled, respectively, at a very high warming level of 4°C
(Figure 11.7; Li et al., 2021).

There is a limited number of studies on the projections of extreme
hourly precipitation. The ability of GCMs to simulate hourly
precipitation extremes is limited (Morrison et al., 2019) and very
few modelling centres archive sub-daily and hourly precipitation
prior to CMIP6 experiments. RCM simulations project an increase in
extreme sub-daily precipitation in North America (C. Li et al., 2019b)
and Sweden (Olsson and Foster, 2013), but these models still do not
explicitly resolve convective processes that are important for properly
simulating extreme sub-daily precipitation. Simulations by RCMs
that explicitly resolve convective processes (convection-permitting
models) are limited in length and only available in a few regions
because of high computing costs. Yet, a majority of the available
convection-permitting simulations project increases in the intensities
of extreme sub-daily precipitation events, with the amount similar to
or higher than the C-C scaling rate (Kendon et al., 2014, 2019; Ban
etal., 2015; Prein et al., 2016b; Helsen et al., 2020; Fowler et al., 2021).
An increase is projected in extreme sub-daily precipitation over Africa
(Kendon et al., 2019); East Africa (Finney et al., 2020) and Western
Africa (Berthou et al., 2019a; Fitzpatrick et al., 2020), even for areas
where parametrized RCMs project a decrease; in Europe (Hodnebrog
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et al,, 2019; Chan et al., 2020); as well as in the continental USA
(Prein et al., 2016b). Overall, while limited, the available evidence
points to an increase in extreme sub-daily precipitation in the future.
Studies on future changes in extreme precipitation for a month or
longer are limited. One study projects an increase in extreme monthly
precipitation in Japan under 4°C global warming for around 80% of
stations in the summer (Hatsuzuka and Sato, 2019).

In Africa (Table 11.5), extreme precipitation will /ikely increase under
warming levels of 2°C or below (compared to pre-industrial values)
and very likely increase at higher warming levels. Simulations by
CMIP5, CMIP6 and CORDEX regional models project an increase
in daily extreme precipitation between 1.5°C and 2.0°C warming
levels. The pattern of change in heavy precipitation under different
scenarios or warming levels is similar with larger increases for
higher warming levels (e.g., Nikulin et al., 2018; Li et al., 2021). With
increases in warming, extreme precipitation is projected to increase
in the majority of land regions in Africa (Mtongori et al., 2016; Pfahl
et al.,, 2017; Diedhiou et al., 2018; Dunning et al., 2018; Akinyemi
and Abiodun, 2019; Giorgi et al., 2019). Over Southern Africa, heavy
precipitation will /likely increase by the end of the 21st century under
RCP 8.5 (Dosio, 2016; Pinto et al., 2016; Abiodun et al., 2017; Dosio
et al, 2019). However, heavy rainfall amounts are projected to
decrease over western South Africa (Pinto et al., 2018) as a result
of a projected decrease in the frequency of the prevailing westerly
winds south of the continent that translates into fewer cold fronts
and closed mid-latitudes cyclones (Engelbrecht et al., 2009; Pinto
et al., 2018). Heavy precipitation will /ikely increase by the end of the
century under RCP8.5 in West Africa (Diallo et al., 2016; Dosio, 2016;
Sylla et al., 2016; Abiodun et al., 2017; Akinsanola and Zhou, 2019;
Dosio et al, 2019) and is projected to increase (high confidence)
in Central Africa (Fotso-Nguemo et al., 2018, 2019; Sonkoué et al.,
2019) and eastern Africa (Thiery et al., 2016; Ongoma et al., 2018a).
In north-east and central east Africa, extreme precipitation intensity
is projected to increase across CMIP5, CMIP6 and CORDEX-CORE
(high confidence) in most areas annually (Coppola et al., 2021a),
but the trends differ from season to season in all future scenarios
(Dosio et al., 2019). In northern Africa, there is low confidence in
the projected changes in heavy precipitation, either due to a lack of
agreement among studies on the sign of changes (Sillmann et al,,
2013a; Giorgi et al., 2014) or due to insufficient evidence.

InAsia (Table 11.8), extreme precipitation will /ikely increase at global
warming levels of 2°C and below, but very likely increase at higher
warming levels for the region as whole. The CMIP6 multi-model
median projects an increase in the 10- and 50-year return values
of Rx1day and Rx5day over more than 95% of regions, even at the
2°C warming level, with larger increases at higher warming levels,
independent of emissions scenarios (Li et al., 2021, also Figure 11.7).
The CMIP5 models produced similar projections. Both heavy rainfall
and rainfall intensity are projected to increase (Zhou et al., 2014; Guo
etal., 2016,2018;Y.Xu etal., 2016; Endo et al., 2017; Han et al., 2018;
G.Kim et al.,, 2018). A half-degree difference in warming between the
1.5°C and 2.0°C warming levels can result in a detectable increase
in extreme precipitation over the region (Li et al, 2021), in the
Asian—Australian monsoon region (Chevuturi et al., 2018), and over
South Asia and China (D. Lee et al., 2018; W. Li et al., 2018b). While
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there are regional differences, extreme precipitation is projected
to increase in almost all sub-regions, though there can be spatial
heterogeneity within sub-regions, such as in India (Shashikanth et al.,
2018) and South East Asia (Ohba and Sugimoto, 2019). In East and
South East Asia, there is high confidence that extreme precipitation
is projected to intensify (Seo et al., 2014; Zhou et al., 2014; Y. Xu
et al., 2016; Nayak et al., 2017; X. Wang et al., 2017; Y. Wang et al.,
2017; Guo et al,, 2018; D. Li et al., 2018; Sui et al., 2018). Extreme
daily precipitation is also projected to increase in South Asia (Xu
et al., 2017; Han et al., 2018; Shashikanth et al., 2018). The extreme
precipitation indices, including Rx5day, R95p, and days of heavy
precipitation (i.e., R10mm), are all projected to increase under the
RCP4.5 and RCP8.5 scenarios in central and northern Asia (Xu et al.,
2017; Han et al., 2018). A general wetting across the whole Tibetan
Plateau and the Himalayas is projected, with increases in heavy
precipitation in the 21st century (Palazzi et al., 2013; Zhou et al.,
2014; Rajbhandari et al., 2015; R. Zhang et al., 2015; Wu et al., 2017;
Gao et al., 2018; Paltan et al., 2018). Agreement in projected changes
by different models is low in regions of complex topography such
as Hindu-Kush Himalayas (Roy et al., 2019), but CMIP5, CMIP6 and
CORDEX-CORE simulations consistently project an increase in heavy
precipitation in higher latitude areas, such as West and East Siberia,
and Russian Far East (high confidence) (Coppola et al., 2021a).

In Australasia (Table 11.11), most CMIP5 models project an
increase in Rx1day under RCP4.5 and RCP8.5 scenarios for the late
21st century (CSIRO and BOM, 2015; Alexander and Arblaster, 2017;
Grose et al., 2020) and the CMIP6 multi-model median projects an
increase in the 10- and 50-year return values of Rx1day and Rx5day
at a rate between 5% and 6% per 1°C of near-surface global mean
warming (Figure 11.7; Li et al., 2021). Yet, there is large uncertainty
in the increase because projected changes in dynamic processes
lead to a decrease in Rx1day that can offset the thermodynamic
increase over a large portion of the region (Box 11.1, Figure 1; Pfahl
et al,, 2017). Projected changes in moderate extreme precipitation
(the 99th percentile of daily precipitation) by RCMs under RCP8.5
for 2070-2099 are mixed, with more regions showing decreases
than increases (Evans et al., 2021). It is likely that daily rainfall
extremes such as Rx1day will increase at the continental scale for
global warming levels at or above 3°C. Daily rainfall extremes are
projected to increase at the 2.0°C global warming level (medium
confidence), and there is low confidence in changes at the 1.5°C.
Projected changes show important regional differences with very
likely increases over Northern Australia (Alexander and Arblaster,
2017; Herold et al., 2018; Grose et al., 2020) and New Zealand (MfE,
2018) where projected dynamic contributions are small (Box 11.1
Figure 1; Pfahl et al., 2017) and medium confidence on increases over
central, eastern, and Southern Australia where dynamic contributions
are substantial and can affect local phenomena (CSIRO and BOM,
2015; Pepler et al.,, 2016; Bell et al., 2019; Dowdy et al., 2019).

In Central and South America (Table 11.14), extreme precipitation
will likely increase at global warming levels of 2°C and below, but
very likely increase at higher warming levels for the region as whole.
A larger increase in global surface temperature leads to a larger
increase in extreme precipitation, independent of emissions scenarios
(Li et al., 2021). But there are regional differences in the projection,
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Figure 11.16 | Projected changes in annual maximum daily precipitation at (a) 1.5°C, (b) 2°C, and (c) 4°C of global warming compared to the 1850-1900
baseline. Results are based on simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model ensemble under the Shared Socio-economic
Pathway (SSP), SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers on the top right indicate the number of simulations included. Uncertainty is
represented using the simple approach: no overlay indicates regions with high model agreement, where =80% of models agree on the sign of change; diagonal lines indicate
regions with low model agreement, where <80% of models agree on the sign of change. For more information on the simple approach, please refer to the Cross-Chapter Box
Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in Rx1day are also displayed in the Interactive Atlas. Further details on data sources and

processing are available in the chapter data table (Table 11.5M.9).

and projected changes for more moderate extreme precipitation
are also more uncertain. Extreme precipitation, represented by
the number of days with daily precipitation exceeding 50 mm and the
annual fraction of precipitation falling during days with the top 10%
daily precipitation amount, is projected to increase on the eastern
coast of Southern Central America, but to decrease along the Pacific
coasts of El Salvador and Guatemala (Imbach et al., 2018). Chou et al.
(2014b) and Giorgi et al. (2014) projected an increase in extreme
precipitation over South-Eastern South America and the Amazon.
Projected changes in moderate extreme precipitation represented
by the 99th percentile of daily precipitation by different models
under different emissions scenarios, even at high warming levels,
are mixed: increases are projected for all regions by the CORDEX-
CORE and CMIP5 simulations, while increases for some regions and
decreases for other regions are projected by CMIP6 simulations
(Coppola et al., 2021a). Extreme precipitation is projected to increase
in the La Plata basin (Cavalcanti et al., 2015; Carril et al., 2016). Taylor
et al. (2018) projected a decrease in days with intense rainfall in the
Caribbean under 2°C global warming by the 2050s under RCP4.5
relative to 1971-2000.

In Europe (Table 11.17), extreme precipitation will /ikely increase at
global warming levels of 2°C and below, but very likely increase for
higher warming levels for the region as whole. The CMIP6 multi-
model median projects an increase in the 10- and 50-year return
values of Rx1day and Rx5day over a majority of the region at the 2°C
global warming level, with more than 95% of the region showing
an increase at higher warming levels (Figure 11.7; C. Li et al., 2021).
The most intense precipitation events observed today in Europe are
projected to almost double in occurrence for each 1°C of further global
warming (Myhre et al., 2019). Extreme precipitation is projected to
increase in both boreal winter and summer over Europe (Madsen
et al.,, 2014; Christensen et al., 2015; Nissen and Ulbrich, 2017). There
are regional differences, with decreases or no change for the southern
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part of Europe, such as the southern Mediterranean (Tramblay and
Somot, 2018; Lionello and Scarascia, 2020; Coppola et al., 2021a),
uncertain changes over central Europe (Argiieso et al., 2012; Croitoru
et al., 2013; Rajczak et al.,, 2013; Casanueva et al., 2014; Patarci¢
et al., 2014; Paxian et al., 2014; Roth et al., 2014; Fischer and Knutti,
2015; Monjo et al., 2016) and a strong increase in the remaining
parts, including the Alps region (Gobiet et al., 2014; Donnelly et al.,
2017), particularly in winter (Fischer et al., 2015), and in northern
Europe. In a 3°C warmer world, there will be a robust increase in
extreme rainfall over 80% of land areas in northern Europe (Madsen
et al, 2014; Donnelly et al., 2017; Cardell et al., 2020).

In North America (Table 11.20), the intensity and frequency of extreme
precipitation will likely increase at the global warming levels of
2°C and below, and very likely increase at higher warming levels.
An increase is projected by CMIP6 model simulations (Li et al.,
2021) and by previous model generations (Wu, 2015; Easterling
et al,, 2017; Innocenti et al,, 2019), as well as by RCMs (Coppola
et al., 2021a). Projections of extreme precipitation over the southern
portion of the continent and over Mexico are more uncertain, with
decreases possible (Sillmann et al., 2013b; Alexandru, 2018; Coppola
etal, 2021a).

In summary, heavy precipitation will generally become more frequent
and more intense with additional global warming. At global warming
levels of 4°C relative to the pre-industrial, very rare (e.g., one in
10 or more years) heavy precipitation events would become more
frequent and more intense than in the recent past, on the global
scale (virtually certain), and in all continents and AR6 regions: The
increase in frequency and intensity is extremely likely for most
continents and very likely for most AR6 regions. The likelihood
is lower at lower global warming levels and for less-rare heavy
precipitation events. At the global scale, the intensification of
heavy precipitation will follow the rate of increase in the maximum
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amount of moisture that the atmosphere can hold as it warms (high
confidence), of about 7% per 1°C of global warming. The increase in
the frequency of heavy precipitation events will be non-linear with
more warming and will be higher for rarer events (high confidence),
with 10- and 50-year events to be approximately double and triple,
respectively, at the 4°C warming level. Increases in the intensity of
extreme precipitation events at regional scales will depend on the
amount of regional warming as well as changes in atmospheric
circulation and storm dynamics leading to regional differences
in the rate of heavy precipitation changes (high confidence).

11.5 Floods

Floods are the inundation of normally dry land, and are classified
into types (e.g., pluvial floods, flash floods, river floods, groundwater
floods, surge floods, coastal floods) depending on the space and time
scales and the major factors and processes involved (Section 8.2.3.2;
Nied et al., 2014; Aerts et al., 2018). Flooded area is difficult to
measure or quantify and, for this reason, many of the existing studies
on changes in floods focus on streamflow. Thus, this section assesses
changes in flow as a proxy for river floods, in addition to some types
of flash floods. Pluvial and urban floods — types of flash floods
resulting from the precipitation intensity exceeding the capacity of
natural and artificial drainage systems — are directly linked to extreme
precipitation. Because of this link, changes in extreme precipitation
are the main proxy for inferring changes in pluvial and urban floods
(see also Section 12.4), assuming there is no additional change
in the surface condition. Changes in these types of floods are not
assessed in this section, but can be inferred from the assessment of
changes in heavy precipitation in Section 11.4. Coastal floods due to
extreme sea levels and flood changes at regional scales are assessed
in Section 12.4.

11.5.1  Mechanisms and Drivers

Since AR5, the number of studies on understanding how floods
may have changed, and will change in the future, has substantially
increased. Floods are a complex interplay of hydrology, climate, and
human management, and the relative importance of these factors
varies for different flood types and regions.

In addition to the amount and intensity of precipitation, the main
factors for river floods include antecedent soil moisture (Paschalis
et al., 2014; Berghuijs et al., 2016; Grillakis et al., 2016; Woldemeskel
and Sharma, 2016) and snow water-equivalent in cold regions
(Sikorska et al., 2015; Berghuijs et al., 2016). Other factors are also
important, including stream morphology (Borga et al., 2014; Slater
et al., 2015), river and catchment engineering (Pisaniello et al., 2012;
Nakayama and Shankman, 2013; Kim and Sanders, 2016), land-use
and land-cover characteristics (Aich et al., 2016; Rogger et al., 2017)
and changes (Knighton et al., 2019), and feedbacks between climate,
soil, snow, vegetation, etc. (Hall et al., 2014; Ortega et al., 2014;
Berghuijs et al., 2016; Buttle et al., 2016; Teufel et al., 2019). Water
regulation and management have, in general, increased resilience to
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flooding (Formetta and Feyen, 2019), masking effects of an increase
in extreme precipitation on flood probability in some regions, even
though they do not eliminate very extreme floods (Vicente-Serrano
et al, 2017). This means that an increase in precipitation extremes
may not always result in an increase in river floods (Sharma et al.,
2018; Do et al., 2020). Yet, as very extreme precipitation can become
a dominant factor for river floods, there can be some correspondence
in the changes in very extreme precipitation and river floods (lvancic
and Shaw, 2015; Wasko and Sharma, 2017; Wasko and Nathan, 2019).
This has been observed in the western Mediterranean (Llasat et al.,
2016), in China (Q. Zhang et al., 2015a) and in the USA (Peterson
et al., 2013b; Berghuijs et al., 2016; Slater and Villarini, 2016).

In regions with a seasonal snow cover, snowmelt is the main cause
of extreme river flooding over large areas (Pall et al., 2019). Extensive
snowmelt combined with heavy and/or long-duration precipitation
can cause significant floods (D. Li et al.,, 2019; Krug et al., 2020).
Changes in floods in these regions can be uncertain because of
the compounding and competing effects of the responses of snow
and rain to warming that affect snowpack size: warming results
in an increase in precipitation, but also a reduction in the time
period of snowfall accumulation (Teufel et al., 2019). An increase in
atmospheric CO, enhances water-use efficiency by plants (Roderick
et al, 2015; Milly and Dunne, 2016; Swann et al, 2016; Swann,
2018); this could reduce evapotranspiration and contribute to the
maintenance of soil moisture and streamflow levels under enhanced
atmospheric CO, concentrations (Yang et al., 2019). This mechanism
would suggest an increase in the magnitude of some floods in the
future (Kooperman et al., 2018). But this effect is uncertain as an
increase in leaf area index, and vegetation coverage could also result
in overall larger water consumption (Matyas and Sun, 2014; Mankin
et al,, 2019; Teuling et al., 2019), and there are also other CO,-related
mechanisms that come into play (Cross-Chapter Box 5.1).

Various factors, such as extreme precipitation (Cho et al., 2016; Archer
and Fowler, 2018), glacier lake outbursts (Schneider et al., 2014;
Schwanghart et al., 2016), or dam breaks (Biscarini et al., 2016) can
cause flash floods. Very intense rainfall, along with a high fraction
of impervious surfaces can result in flash floods in urban areas
(Hettiarachchi et al., 2018). Because of this direct connection, changes
in very intense precipitation can translate to changes in urban flood
potential (Rosenzweig et al., 2018), though there can be a spectrum
of urban flood responses to this flood potential (Smith et al., 2013),
as many factors, such as the overland flow rate and the design of
urban (Falconer et al., 2009) and storm water drainage systems
(Maksimovic et al., 2009), can play an important role. Nevertheless,
changes in extreme precipitation are the main proxy for inferring
changes in some types of flash floods, (which are addressed in
Section 12.4), given the relation between extreme precipitation and
pluvial floods, the very limited literature on urban and pluvial floods
(e.g., Skougaard Kaspersen et al., 2017), and limitations of existing
methodologies for assessing changes in floods (Archer et al., 2016).

In summary, there is not always a one-to-one correspondence
between an extreme precipitation event and a flood event, or between
changes in extreme precipitation and changes in floods, because
floods are affected by many factors in addition to heavy precipitation
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(high confidence). Changes in extreme precipitation may be used as
a proxy to infer changes in some types of flash floods that are more
directly related to extreme precipitation (high confidence).

11.5.2  Observed Trends

The SREX (Seneviratne et al., 2012) assessed low confidence for
observed changes in the magnitude or frequency of floods at the
global scale. This assessment was confirmed by AR5 (Hartmann et al.,
2013). The SR1.5 (Hoegh-Guldberg et al., 2018) found increases
in flood frequency and extreme streamflow in some regions, but
decreases in other regions. While the number of studies on flood
trends has increased since AR5, and there were also new analyses
after the release of SR1.5 (Berghuijs et al., 2017; Bloschl et al., 2019;
Gudmundsson et al.,, 2019), hydrological literature on observed
flood changes is heterogeneous, focusing at regional and sub-
regional basin scales, making it difficult to synthesize at the global
and sometimes regional scales. The vast majority of studies focus on
river floods using streamflow as a proxy, with limited attention to
urban floods. Streamflow measurements are not evenly distributed
over space, with gaps in spatial coverage, and their coverage in many
regions of Africa, South America, and parts of Asia is poor (e.g., Do
et al., 2017), leading to difficulties in detecting long-term changes in
floods (Slater and Villarini, 2017). See also Section 8.3.1.5.

Peak flow trends are characterized by high regional variability and
lack overall statistical significance of a decrease or an increase over
the globe as a whole. Of more than 3500 streamflow stations in
the USA, central and Northern Europe, Africa, Brazil, and Australia,
7.1% stations showed a significant increase, and 11.9% stations
showed a significant decrease in annual maximum peak flow during
1961-2005 (Do et al., 2017). This is in direct contrast to the global
and continental scale intensification of short-duration extreme
precipitation (Section 11.4.2). There may be some consistency over
large regions (see Gudmundsson et al., 2019), in high streamflows
(>90th percentile), including a decrease in some regions (e.g., in the
Mediterranean) and an increase in others (e.g., northern Asia), but
gauge coverage is often limited. On a continental scale, a decrease
seems to dominate in Africa (Tramblay et al., 2020) and Australia
(Ishak et al., 2013; Wasko and Nathan, 2019), an increase in the
Amazon (Barichivich et al., 2018), and trends are spatially variable
in other continents (Q. Zhang et al., 2015b; Bai et al., 2016; Do et al.,
2017; Hodgkins et al., 2017). In Europe, flow trends have large spatial
differences (Hall et al., 2014; Mediero et al., 2015; Kundzewicz et al.,
2018; Mangini et al., 2018), but there appears to be a pattern of
increase in north-western Europe, and a decrease in southern and
eastern Europe in annual peak flow during 1960-2000 (Bl6schl et al.,
2019). In North America, peak flow has increased in north-east USA
and decreased in south-west USA (Peterson et al., 2013b; Armstrong
et al., 2014; Mallakpour and Villarini, 2015; Archfield et al., 2016; Burn
and Whitfield, 2016; Wehner et al., 2017; Neri et al., 2019). There are
important changes in the seasonality of peak flows in regions where
snowmelt dominates, such as northern North America (Burn and
Whitfield, 2016; Dudley et al., 2017) and Northern Europe (Bléschl
et al., 2017), corresponding to strong winter and spring warming.
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In summary, the seasonality of floods has changed in cold regions
where snowmelt dominates the flow regime in response to warming
(high confidence).There is low confidence about peak flow trends over
past decades on the global scale, but there are regions experiencing
increases, including parts of Asia, Southern South America, north-
east USA, north-western Europe, and the Amazon, and regions
experiencing decreases, including parts of the Mediterranean,
Australia, Africa, and south-western USA.

11.5.3  Model Evaluation

Hydrological models used to simulate floods are structurally diverse
(Dankers et al., 2014; Mateo et al., 2017; Sen, 2018), often requiring
extensive calibration since sub-grid processes and land-surface
properties need to be parametrized, irrespective of the spatial
resolutions (Doll et al., 2016; Krysanova et al., 2017). The data used
to drive and calibrate the models are usually of coarse resolution,
necessitating the use of a wide variety of downscaling techniques
(Muerth et al., 2013). This adds uncertainty not only to the models
but also to the reliability of the calibrations. The quality of the flood
simulations also depends on the spatial scale, as flood processes
are different for catchments of different sizes. It is more difficult to
replicate flood processes for large basins, as water management and
water use are often more complex for these basins.

Studies that use different regional hydrological models show a large
spread in flood simulations (Dankers et al., 2014; Roudier et al,,
2016; Trigg et al., 2016; Krysanova et al., 2017). Regional models
reproduce moderate and high flows reasonably well (0.02-0.1 flow
annual exceedance probabilities), but there are large biases for the
most extreme flows (0-0.02 annual flow exceedance probability),
independent of the climatic and physiographic characteristics of the
basins (S. Huang et al., 2017a). Global-scale hydrological models have
even more challenges, as they struggle to reproduce the magnitude
of the flood hazard (Trigg et al., 2016). Also, the ensemble mean of
multiple models does not perform better than individual models
(Zaherpour et al., 2018).

The use of hydrological models for assessing changes in floods,
especially for future projections, adds another dimension of
uncertainty on top of uncertainty in the driving climate projections,
including emissions scenarios, and in the driving climate models
(both RCMs and GCMs) (Arnell and Gosling, 2016; Hundecha
et al.,, 2016; Krysanova et al., 2017). The differences in hydrological
models (Roudier et al., 2016; Thober et al., 2018), as well as post-
processing of climate model output for the hydrological models
(Muerth et al., 2013; Maier et al., 2018), add to uncertainty for
flood projections.

In summary, there is medium confidence that simulations for the most
extreme flows by regional hydrological models can have large biases.
Global-scale hydrological models still struggle with reproducing the
magnitude of floods. Projections of future floods are hampered by
these difficulties and cascading uncertainties, including uncertainties
in emissions scenarios and the climate models that generate inputs.
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11.5.4  Detection and Attribution, Event Attribution
There are very few studies focused on the attribution of long-term
changes in floods, but there are studies on changes in flood events.
Most of the studies focus on flash floods and urban floods, which
are closely related to intense precipitation events (Hannaford, 2015).
In other cases, event attribution focused on runoff using hydrological
models, and examples include river basins in the UK (Section 11.4.4;
Schaller et al., 2016; Kay et al., 2018), the Okavango River in Africa
(Wolski et al., 2014), and the Brahmaputra River in Bangladesh (Philip
et al.,, 2019). Findings about anthropogenic influences vary between
different regions and basins. For some flood events, the probability of
high floods in the current climate is lower than in a climate without
an anthropogenic influence (Wolski et al., 2014), while in other
cases anthropogenic influence leads to more intense floods (Cho
et al,, 2016; Pall et al., 2017; van der Wiel et al., 2017; Philip et al,,
2018a; Teufel et al.,, 2019). Factors such as land-cover change and
river management can also increase the probability of high floods
(Ji et al,, 2020). These, along with model uncertainties and the lack
of studies overall, suggest a low confidence in general statements to
attribute changes in flood events to anthropogenic climate change.
A few individual regions have been well studied, which allows for
high confidence in the attribution of increased flooding in these
cases. For example, flooding in the UK following increased winter
precipitation (Schaller et al., 2016; Kay et al., 2018) can be attributed
to anthropogenic climate change (Schaller et al., 2016; Vautard et al.,
2016; Yiou et al., 2017; Otto et al., 2018b).

Attributing changes in heavy precipitation to anthropogenic activities
(Section 11.4.4) cannot be readily translated to attributing changes
in floods to human activities, because precipitation is only one of
the multiple factors, albeit an important one, that affect floods. For
example, Teufel et al. (2017) showed that, while human influence
increased the odds of the flood-producing rainfall for the 2013
Alberta flood in Canada, it was not detected to have influenced
the probability of the flood itself. Schaller et al. (2016) showed
that human influence on the increase in the probability of heavy
precipitation translated linearly into an increase in the resulting river
flow of the Thames in the UK in winter 2014, but its contribution to
the inundation was inconclusive.

Gudmundsson etal.(2021) compared the spatial pattern of the observed
regional trends in high river flows (>90th percentile) over 1971-2010
with that simulated by global hydrological models. The hydrological
models were driven by outputs of climate model simulations under
all historical forcing and pre-industrial forcing conditions. They found
complex spatial patterns of extreme river flow trends. They also found
the observed spatial patterns of trends can be reproduced only if
anthropogenic climate change is considered, and that simulated effects
of water and land management cannot reproduce the observed spatial
pattern of trends. As there is only one study and multiple caveats
associated with the study, including relatively poor observational
data coverage, there is fow confidence about human influence on the
changes in high river flows on the global scale.

In summary there is low confidence in the human influence on
the changes in high river flows on the global scale. In general,
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there is low confidence in attributing changes in the probability or
magnitude of flood events to human influence because of a limited
number of studies, differences in the results of these studies and
large modelling uncertainties.

11.5.5  Future Projections

The SREX (Chapter 3, Seneviratne et al., 2012) stressed the low
availability of studies on flood projections under different emissions
scenarios, and concluded that there was low confidence in
projections of flood events given the complexity of the mechanisms
driving floods at the regional scale. The AR5 WGlII report (Chapter 3,
Jimenez Cisneros et al., 2014) assessed with medium confidence the
pattern of future flood changes, including flood hazards increasing
over about half of the globe (parts of southern and South East Asia,
tropical Africa, north-east Eurasia, and South America) and flood
hazards decreasing in other parts of the world, despite uncertainties
in GCMs and their coupling to hydrological models. The SR1.5
(Chapter 3, Hoegh-Guldberg et al., 2018) assessed with medium
confidence that global warming of 2°C would lead to an expansion
of the fraction of global area affected by flood hazards, compared to
conditions at 1.5°C of global warming, as a consequence of changes
in heavy precipitation.

The majority of new studies that produce future flood projections
based on hydrological models do not typically consider aspects
that are also important to actual flood severity or damages, such
as flood prevention measures (Neumann et al., 2015; Sen, 2018),
flood control policies (Barraqué, 2017), and future changes in land
cover (see also Section 8.4.1.5). At the global scale, Alfieri et al.
(2017) used downscaled projections from seven GCMs as input to
drive a hydrodynamic model. They found successive increases in the
frequency of high floods in all continents except Europe, associated
with increasing levels of global warming (1.5°C, 2°C, 4°C). These
results are supported by Paltan et al. (2018), who applied a simplified
runoff aggregation model forced by outputs from four GCMs. S. Huang
etal. (2018) used three hydrological models forced with bias-adjusted
outputs from four GCMs to produce projections for four river basins
including the Rhine, Upper Mississippi, Upper Yellow, and Upper
Niger under 1.5°C, 2°C, and 3°C global warming. This study found
diverse projections for different basins, including a shift towards
earlier flooding for the Rhine and the Upper Mississippi, a substantial
increase in flood frequency in the Rhine only under the 1.5°C and 2°C
scenarios, and a decrease in flood frequency in the Upper Mississippi
under all scenarios.

At the continental and regional scales, the projected changes in
floods are uneven in different parts of the world, but there is a larger
fraction of regions with an increase than with a decrease over the
21st century (Hirabayashi et al., 2013; Dankers et al., 2014; Arnell
and Gosling, 2016; Doll et al., 2018). These results suggest medium
confidence in flood trends at the global scale, but low confidence in
projected regional changes. Increases in flood frequency or magnitude
are identified for south-eastern and northern Asia and India (high
agreement across studies), eastern and tropical Africa, and the high
latitudes of North America (medium agreement), while decreasing
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frequency or magnitude is found for central and eastern Europe and
the Mediterranean (high confidence), and parts of South America,
southern and central North America, and south-west Africa (low
confidence) (Hirabayashi et al., 2013; Dankers et al., 2014; Arnell and
Gosling, 2016; Doll et al., 2018). Over South America, most studies
based on global and regional hydrological models show an increase
in the magnitude and frequency of high flows in the western Amazon
(Guimberteau et al., 2013; Langerwisch et al., 2013; Sorribas et al.,
2016; Zulkafli et al., 2016) and the Andes (Hirabayashi et al., 2013;
Bozkurt et al., 2018). Section 12.4 provides a detailed assessment of
regional flood projections.

In summary, global hydrological models project a larger fraction
of land areas to be affected by an increase in river floods than by
a decrease in river floods (medium confidence). There is medium
confidence that river floods will increase in the western Amazon,
the Andes, and south-eastern and northern Asia. Regional changes
in river floods are more uncertain than changes in pluvial floods
because complex hydrological processes and forcings are involved,
including land cover change and human water management.

11.6  Droughts

Droughts refer to periods of time with substantially below-
average moisture conditions, usually covering large areas, during
which limitations in water availability result in negative impacts
for various components of natural systems and economic sectors
(Wilhite and Pulwarty, 2017; Ault, 2020). Depending on the
variables used to characterize it and the systems or sectors being
impacted, drought may be classified in different types (Figure 8.6
and Appendix Table 11.A.1) such as meteorological (precipitation
deficits), agricultural (e.g., crop yield reductions or failure, often
related to soil moisture deficits), ecological (related to plant water
stress that causes e.g., tree mortality), or hydrological droughts
(e.g., water shortage in streams or storages such as reservoirs,
lakes, lagoons, and groundwater; see Glossary). The distinction of
drought types is not absolute, as drought can affect different sub-
domains of the Earth system concomitantly, but sometimes also
asynchronously, including propagation from one drought type to
another (Brunner and Tallaksen, 2019). Because of this, drought
cannot be characterized using a single universal definition (Lloyd-
Hughes, 2014) or directly measured based on a single variable
(SREX Chapter 3; Wilhite and Pulwarty, 2017). Drought can
happen on a wide range of timescales — from ‘flash droughts’ on
a scale of weeks, and characterized by a sudden onset and rapid
intensification of drought conditions (Hunt et al., 2014; Otkin et al.,
2018; Pendergrass et al., 2020) to multi-year or decadal rainfall
deficits — sometimes termed ‘megadroughts’ (see Glossary; Ault
et al,, 2014; Cook et al,, 2016b; Garreaud et al., 2017). Droughts
are often analysed using indices that are measures of drought
severity, duration and frequency (Sections 8.3.1.6, 8.4.1.6, 12.3.2.6
and 12.3.2.7, and Table 11.A.1). There are many drought indices
published in the scientific literature, as also highlighted in SREX
(SREX Chapter 3).These can range from anomalies in single variables
(e.g., precipitation, soil moisture, runoff, evapotranspiration) to
indices combining different atmospheric variables.
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This assessment is focused on changes in physical conditions and
metrics of direct relevance to droughts: (i) precipitation deficits;
(ii) excess of atmospheric evaporative demand (AED); (iii) soil
moisture deficits; (iv) hydrological deficits; and e) atmospheric-
based indices combining precipitation and AED (Table 11.A.1). In the
regional tables (Section 11.9), the assessment is structured by drought
types, addressing: (i) meteorological, (i) agricultural and ecological,
and (iii) hydrological droughts. Note that the latter two assessments
directly inform the Chapter 12 assessment on projected regional
changes in these climatic impact-drivers (Section 12.4). The text
refers to AR6 region acronyms (Section 11.9, and see Section 1.4.5).

11.6.1  Mechanisms and Drivers

Similar to many other extreme events, droughts occur as
a combination of thermodynamic and dynamic processes (Box 11.1).
Thermodynamic processes contributing to drought, which are
modified by greenhouse gas forcing both at global and regional
scales, are mostly related to heat and moisture exchanges, and are
also partly modulated by plant coverage and physiology. They affect,
for instance, atmospheric humidity, temperature, and radiation,
which in turn affect precipitation and/or evapotranspiration in some
regions and time frames. However, dynamic processes are particularly
important to explain drought variability on different time scales,
from a few weeks (flash droughts) to multiannual (megadroughts).
There is low confidence in the effects of greenhouse gas forcing
on changes in atmospheric dynamic (Section 2.4; Section 4.3.3),
and on associated changes in drought occurrence. Thermodynamic
processes are thus the main driver of drought changes in a warming
climate (high confidence).

11.6.1.1  Precipitation Deficits

Lack of precipitation is generally the main factor controlling drought
onset. There is high confidence that atmospheric dynamics, which
vary on interannual, decadal and longer time scales, is the dominant
contributor to variations in precipitation deficits in the majority of
world regions (Dai, 2013; Miralles et al., 2014b; Seager and Hoerling,
2014; Burgman and Jang, 2015; Dong and Dai, 2015; Schubert et al.,
2016; Raymond et al., 2018; Baek et al., 2019; Drumond et al., 2019;
Herrera-Estrada et al., 2019; Gimeno et al., 2020; Mishra, 2020).
Precipitation deficits are driven by dynamic mechanisms taking
place on different spatial scales, including synoptic processes —
atmospheric rivers and extratropical cyclones, blocking and ridges
(Section 11.7; Sousa et al., 2017), dominant large-scale circulation
patterns (Kingston et al, 2015), and global ocean—atmosphere
coupled patterns such as inter-decadal Pacific Oscillation (IPO),
Atlantic Multi-decadal Oscillation (AMO) and El Nifio—Southern
Oscillation (ENSO; Dai and Zhao, 2017). These various mechanisms
occur on different scales, are not independent, and substantially
interact with one another. Also regional moisture recycling and land-
atmosphere feedbacks play an important role for some precipitation
anomalies (see below).

There is high confidence that land—atmosphere feedbacks play
a substantial or dominant role in affecting precipitation deficits in
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some regions (SREX, Chapter 3; Koster et al., 2011; Gimeno et al,,
2012; Taylor et al., 2012; Guillod et al., 2015; Tuttle and Salvucci,
2016; Santanello Jr. et al, 2018; Haslinger et al., 2019; Herrera-
Estrada et al., 2019). The sign of the feedbacks can be either positive
or negative, as well as local or non-local (Taylor et al., 2012; Guillod
et al,, 2015; Tuttle and Salvucci, 2016). Earth system models (ESMs)
tend to underestimate non-local negative soil-moisture—precipitation
feedbacks (Taylor et al., 2012) and also show high variations in their
representation in some regions (Berg et al., 2017b). Soil-moisture—
precipitation feedbacks contribute to changes in precipitation
in climate model projections in some regions, but ESMs display
substantial uncertainties in their representation, and there is thus
only low confidence in these contributions (Berg et al., 2017b; Vogel
etal, 2017, 2018).

11.6.1.2  Atmospheric Evaporative Demand

Atmospheric evaporative demand (AED) quantifies the maximum
amount of actual evapotranspiration (ET) that can happen from land
surfaces if they are not limited by water availability (Table 11.A.1).
AED is affected by radiative and aerodynamic components. For this
reason, the atmospheric dryness, often quantified with the relative
humidity or the vapour pressure deficit (VPD), is not equivalent to
the AED, as other variables are also highly relevant, including solar
radiation and wind speed (Hobbins et al., 2012; McVicar et al., 2012a;
Sheffield et al., 2012). AED can be estimated using different methods
(McMahon et al., 2013), and those solely based on air temperature
(e.g., Hargreaves, Thornthwaite) usually overestimate it in terms of
magnitude and temporal trends (Sheffield et al., 2012), in particular,
in the context of substantial background warming. Physically-based
combination methods such as the Penman-Monteith equation are
more adequate and recommended since 1998 by the United Nations
Food and Agriculture Oganization (Pereira et al., 2015). For this reason,
the assessment of this Chapter, when considering atmospheric-
based drought indices, only includes AED estimates using the latter
(see also Section 11.9). AED is generally higher than ET, since AED
represents an upper bound for ET. Hence, an AED increase does not
necessarily lead to increased ET (Milly and Dunne, 2016), in particular
under drought conditions given soil moisture limitation (Bonan et al.,
2014; Berg et al., 2016; Konings et al., 2017; Stocker et al., 2018).
In general, AED is highest in regions where ET is lowest (e.g., desert
areas), further illustrating the decoupling between the two variables
under limited soil moisture.

The influence of AED on drought depends on the drought type,
background climate, the environmental conditions and the moisture
availability (Hobbins et al., 2016, 2017; Vicente-Serrano et al,,
2020a). This influence also includes effects not related to increased
ET. Under low soil moisture conditions, increased AED increases
plant stress, enhancing the severity of agricultural and ecological
droughts (Williams et al., 2013; Allen et al., 2015; McDowell et al.,
2016; Grossiord et al., 2020). Moreover, high VPD impacts overall
plant physiology; it affects the leaf and xylem safety margins, and
decreases the sap velocity and plant hydraulic conductance (Fontes
et al., 2018). VPD also affects the plant metabolism of carbon and,
if prolonged, it may cause plant mortality via carbon starvation
(Breshears et al., 2013; Hartmann, 2015). Drought projections based
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exclusively on AED metrics overestimate changes in soil moisture and
runoff deficits. Nevertheless, AED also directly impacts hydrological
drought, as ET from surface waters is not limited (Wurbs and Ayala,
2014; Friedrich etal., 2018; Hogeboom et al., 2018; K. Xiao et al., 2018),
and this effect increases under climate change projections (W. Wang
et al., 2018; Althoff et al., 2020). In addition, high AED increases crop
water consumptions in irrigated lands (Garcia-Garizabal et al., 2014),
contributing to intensifying hydrological droughts downstream (Fazel
et al., 2017; Vicente-Serrano et al., 2017).

On subseasonal to decadal scales, temporal variations in AED are
strongly controlled by circulation variability (Williams et al., 2014;
Chai et al., 2018; Martens et al., 2018), but thermodynamic processes
also play a fundamental role and, under human-induced climate
change, dominate the changes in AED. Atmospheric warming due
to increased atmospheric CO, concentrations increases AED by
means of enhanced VPD in the absence of other influences (Scheff
and Frierson, 2015). Because of the greater warming over land than
over oceans (Sections 2.3.1.1 and 11.3), the saturation pressure of
water vapour increases more over land than over oceans; oceanic
air masses advected over land thus contain insufficient water vapour
to keep pace with the greater increase in saturation vapour pressure
over land (Sherwood and Fu, 2014; Byrne and O'Gorman, 2018;
Findell et al., 2019). Land—atmosphere feedbacks are also important
in affecting atmospheric moisture content and temperature, with
resulting effects on relative humidity and VPD (Box 11.1; Berg et al.,
2016; Haslinger et al., 2019; S. Zhou et al., 2019).

11.6.1.3  Soil Moisture Deficits

Soil moisture shows an important correlation with precipitation
variability (Khong et al,, 2015; Seager et al., 2019), but ET also plays
a substantial role in further depleting moisture from soils, in particular
in humid regions during periods of precipitation deficits (Teuling
et al, 2013; Padron et al,, 2020). In addition, soil moisture plays
a role in drought self-intensification under dry conditions in which ET
is decreased and leads to higher AED (Miralles et al., 2019), an effect
that can also contribute to triggering flash droughts (Otkin et al.,
2016, 2018; DeAngelis et al., 2020; Pendergrass et al., 2020). If soil
moisture becomes limited, ET is reduced, which may decrease the
rate of soil drying, but can also lead to further atmospheric dryness
through various feedback loops (Seneviratne et al., 2010; Miralles
et al,, 20143, 2019; Teuling, 2018; Vogel et al., 2018; S. Zhou et al,,
2019; Liu et al., 2020). The process is complex since vegetation cover
plays a role in modulating albedo and in providing access to deeper
stores of water (both in the soil and groundwater). Also, changes in
land cover and in plant phenology may alter ET (Sterling et al., 2013;
Woodward et al., 2014; Frank et al., 2015; Doll et al., 2016; Ukkola
et al., 2016; Trancoso et al., 2017; Hao et al., 2019; Lian et al., 2020).
Snow depth has strong and direct impacts on soil moisture in many
systems (Gergel et al., 2017; Williams et al., 2020).

Soil moisture directly affects plant water stress and ET. Soil moisture
is the primary factor that controls xylem hydraulic conductance —
that is, water uptake in plants (Sperry et al., 2016; Hayat et al., 2019;
X. Chen et al., 2020). For this reason, soil moisture deficits are the
main driver of xylem embolism, the primary cause of plant mortality
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(Anderegg et al., 2012, 2016; Rowland et al., 2015). Also carbon
assimilation by plants strongly depends on soil moisture (Hartzell
et al, 2017), with implications for carbon starvation and plant
dying if soil moisture deficits are prolonged (Sevanto et al., 2014).
These mechanisms explain that soil moisture deficits are usually
more relevant than AED excess to explain gross primary production
anomalies and vegetation stress, mostly in sub-humid and semi-arid
regions (Stocker et al., 2018; Liu et al., 2020). High CO, concentrations
are shown to potentially decrease plant ET and increase plant water-
use efficiency, affecting soil moisture levels, but this effect interacts
with other CO, physiological and radiative effects (Section 11.6.5.2
and Cross-Chapter Box 5.1), and has less relevance under low soil
moisture (Morgan et al., 2011; Z. Xu et al., 2016; Nackley et al., 2018;
Diksaityté et al., 2019). ESMs represent both surface (around 10cm)
and total column soil moisture, whereby total soil moisture is of more
direct relevance for root water uptake, in particular by trees. There is
evidence that surface soil moisture projections are substantially drier
than total soil moisture projections, and may overestimate drying of
relevance for most vegetation (Berg et al., 2017a).

11.6.1.4  Hydrological Deficits

Drivers of streamflow and surface water deficits are complex
and strongly depend on the hydrological system analysed
(e.g., streamflows in the headwaters, medium course of the rivers,
groundwater, highly regulated hydrological basins). Soil hydrological
processes, which control the propagation of meteorological droughts
throughout different parts of the hydrological cycle (Van Loon and
Van Lanen, 2012), are spatially and temporally complex (Herrera-
Estrada et al,, 2017; S. Huang et al., 2017b) and difficult to quantify
(Van Lanen et al., 2016; Apurv et al.,, 2017; Caillouet et al., 2017;
Konapala and Mishra, 2017; Hasan et al., 2019). The physiographic
characteristics of the basins also affect how droughts propagate
throughout the hydrological cycle (Van Loon and Van Lanen, 2012;
Van Lanen et al., 2013; Van Loon, 2015; Konapala and Mishra, 2020;
Veettil and Mishra, 2020). In addition, the assessment of groundwater
deficits is very difficult given the complexity of processes that
involve natural and human-driven feedbacks and interactions with
the climate system (Taylor et al., 2013). Streamflow and surface
water deficits are affected by land cover, groundwater and soil
characteristics (Van Lanen et al., 2013; Van Loon and Laaha, 2015;
Barker et al., 2016; Tijdeman et al., 2018), as well as human activities
(water management and demand, damming) and land-use changes
(Section 11.6.4.3; Van Loon et al., 2016; He et al., 2017; Veldkamp
et al, 2017; J. Wu et al., 2018; Y. Xu et al., 2019; Jehanzaib et al.,
2020). Finally, snow and glaciers are relevant for water resources
in some regions. For instance, warming affects snowpack levels
(Dierauer et al., 2019; Huning and AghaKouchak, 2020), as well as
the timing of snow melt, thus potentially affecting the seasonality
and magnitude of low flows (Barnhart et al., 2016).

11.6.1.5  Atmospheric-based Drought Indices
Given the difficulties of drought quantification and data constraints,
atmospheric-based drought indices combining both precipitation

and AED have been developed, as they can be derived from
meteorological data that is available in most regions (with few
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exceptions). These demand/supply indices are not intended to be
metrics of soil moisture, streamflow or vegetation water stress.
Because of their reliance on precipitation and AED, they are mostly
related to the actual water balance in humid regions, in which ET is
not limited by soil moisture and tends towards AED. In water-limited
regions and in dry periods everywhere, they constitute an upper
bound for overall water-balance deficits (e.g., of surface waters)
but are also related to conditions conducive to vegetation stress,
particularly under soil moisture limitation (Section 11.6.1.2).

Although there are many atmospheric-based drought indices, two are
assessed in this chapter: the Palmer Drought Severity Index (PDSI) and
the Standardized Precipitation Evapotranspiration Index (SPEI). The
PDSI has been widely used to monitor and quantify drought severity
(Dai et al.,, 2018), but is affected by some constraints (SREX Chapter 3;
Mukherjee et al., 2018a). Although the calculation of the PDSI is based
on a soil water budget, the PDSI is essentially a climate drought index
that mostly responds to the precipitation and the AED (van der Schrier
et al., 2013; Vicente-Serrano et al., 2015; Dai et al., 2018). The SPEl also
combines precipitation and AED, being equally sensitive to these two
variables (Vicente-Serrano et al., 2015). The SPEI is more sensitive to
AED than the PDSI (Cook et al., 2014a; Vicente-Serrano et al., 2015),
although under humid and normal precipitation conditions, the effects
of AED on the SPEI are small (Tomas-Burguera et al., 2020). Given
the limitations associated with temperature-based AED estimates
(Section 11.6.1.2), only studies using the Penman-Monteith-based
SPEI and PDSI (hereafter SPEI-PM and PDSI-PM) are considered in this
assessment and in the regional tables in Section 11.9.

11.6.1.6 Relation of Assessed Variables and Metrics
for Changes in Different Drought Types

This Chapter assesses changes in meteorological drought,
agricultural and ecological droughts, and hydrological droughts.
Precipitation-based indices are used for the estimation of changes
in meteorological droughts, such as the Standardized Precipitation
Index (SPI) and the number of consecutive dry days (CDD). Changes
in total soil moisture and soil moisture-based drought events are
used for the estimation of changes in agricultural and ecological
droughts, complemented by changes in surface soil moisture, water-
balance estimates (precipitation minus ET), and SPEI-PM and PDSI-
PM. For hydrological droughts, changes in low flows are assessed,
sometimes complemented by changes in mean streamflow.

In summary, different drought types exist and they are associated
with different impacts and respond differently to increasing
greenhouse gas concentrations. Precipitation deficits and changes in
evapotranspiration govern net water availability. A lack of sufficient
soil moisture, sometimes amplified by increased atmospheric
evaporative demand, resultin agricultural and ecological drought. Lack
of runoff and surface water result in hydrological drought. Drought
events are the result of dynamic and/or thermodynamic processes,
with thermodynamic processes being the main driver of drought
changes under human-induced climate change (high confidence).
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11.6.2  Observed Trends

Evidence on observed drought trends was limited at the time of SREX
(Chapter 3) and AR5 (Chapter 2). The SREX concluded: ‘There is medium
confidence that since the 1950s some regions of the world have
experienced a trend to more intense and longer droughts, in particular
in southern Europe and west Africa, but in some regions droughts have
become less frequent, less intense, or shorter, for example, in Central
North America and north-western Australia.” The assessment at the
time did not distinguish between different drought types. This Chapter
includes numerous updates on observed drought trends, associated
with extensive new literature and longer datasets since AR5.

11.6.2.1  Precipitation Deficits

Strong precipitation deficits have been recorded in recent decades
in the Amazon (2005, 2010), south-western China (2009-2010),
south-western North America (2011-2014), Australia (1997-2009),
California (2014), the middle East (2012-2016), Chile (2010-2015),
the Great Horn of Africa (2011), among others (van Dijk et al., 2013;
Mann and Gleick, 2015; Rowell et al., 2015; Marengo and Espinoza,
2016; Dai and Zhao, 2017; Garreaud et al., 2017, 2020; Marengo
et al., 2017; Brito et al., 2018; Cook et al., 2018). Global studies
generally show no significant trends in SPI time series (Orlowsky
and Seneviratne, 2013; Spinoni et al., 2014), and in derived drought
frequency and severity data (Spinoni et al., 2019), with very few
regional exceptions (Section 11.9 and Figure 11.17). Long-term
decreases in precipitation are found in some AR6 regions in Africa
(Central Africa and East Southern Africa), and several regions in South
America (North-Eastern South America, South American Monsoon,
South-Western South America, and Southern South America)
(Section 11.9). Evidence of precipitation-based drying trends is also
found in Western Africa, consistent with studies based on CDD trends
(Figure 11.17; Chaney et al., 2014; Donat et al., 2014b; Barry et al.,
2018; Dunn et al., 2020), however, there is a partial recovery of the
rainfall trends since the 1980s in this region (Section 10.4.2.1).
Some AR6 regions show a decrease in meteorological drought,
including Northern Australia, Central Australia, Northern Europe
and Central North America (Section 11.9). Other regions either do
not show substantial trends in long-term meteorological drought, or
they display mixed signals depending on the considered time frame
and sub-regions, such as in Southern Australia (Gallant et al., 2013;
Delworth and Zeng, 2014; Alexander and Arblaster, 2017; Spinoni
et al, 2019; Dunn et al., 2020; Rauniyar and Power, 2020) and the
Mediterranean (Camuffo et al., 2013; Gudmundsson and Seneviratne,
2016; Spinoni et al., 2017; Stagge et al., 2017; Caloiero et al., 2018;
Pefia-Angulo et al., 2020b; see also Section 11.9 and Atlas.8.2).

11.6.2.2  Atmospheric Evaporative Demand

In several regions, AED increases have intensified recent drought
events (Williams et al, 2014, 2020; Seager et al., 2015b; Basara
et al., 2019; Garcia-Herrera et al.,, 2019), enhanced vegetation stress
(Allen et al., 2015; Sanginés de Carcer et al., 2018; Yuan et al., 2019),
or contributed to the depletion of soil moisture or runoff through
enhanced ET (high confidence) (Teuling etal.,2013; Padrénetal., 2020).
Trends in pan evaporation measurements and Penman-Monteith AED
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estimates provide an indication of possible trends in the influence of
AED on drought. Given the observed global temperature increases
(Sections 2.3.1.1 and 11.3) and dominant decrease in relative
humidity over land areas (Simmons et al., 2010; Willett et al., 2014),
VPD has increased globally (Barkhordarian et al., 2019; Yuan et al.,
2019). Pan evaporation has increased as a consequence of VPD
changes in several ARG regions, such as East Asia (Li et al., 2013;
Z. Sun et al., 2018; M.-Z. Yang et al., 2018), Western and Central
Europe (Mozny et al., 2020), the Mediterranean, (Azorin-Molina et al.,
2015) and Central and Southern Australia (Stephens et al., 2018).
Nevertheless, there is an important regional variability in observed
trends, and in other AR6 regions pan evaporation has decreased —
for example, in North Central America (Brefia-Naranjo et al., 2017)
and in the Tibetan Plateau (C. Zhang et al., 2018)). Physical models
also show an important regional diversity, with an increase in New
Zealand (Salinger and Porteous, 2014) and the Mediterranean (Gocic
and Trajkovic, 2014; Azorin-Molina et al., 2015; Piticar et al., 2016),
a decrease in South Asia (Jhajharia et al., 2015), and strong spatial
variability in North America (Seager et al., 2015b). This variability is
driven by the role of other meteorological variables affecting AED.
Changes in solar radiation as a consequence of solar dimming and
brightening may affect trends (Section 7.2.2.2; Kambezidis et al.,
2012; Wang and Yang, 2014; Sanchez-Lorenzo et al., 2015). Wind
speed is also relevant (McVicar et al., 2012b), and studies suggest
a reduction of the wind speed in some regions (Z. Zhang et al., 2019b)
that could compensate the role of the VPD increase. Nevertheless, the
VPD trend seems to dominate the overall AED trends, compared to
the effects of trends in wind speed and solar radiation (Wang et al.,
2012; Park Williams et al., 2017; Vicente-Serrano et al., 2020a).

11.6.2.3  Soil Moisture Deficits

There are limited long-term measurements of soil moisture from
ground observations (Dorigo et al., 2011; Qiu et al., 2016; Quiring
et al.,, 2016), which impedes their use in the analysis of trends. Among
the few existing observational studies covering at least two decades,
several studies have investigated trends in ground soil moisture in
East Asia (Section 11.9; Chen and Sun, 2015b; Liu et al., 2015; Qiu
et al., 2016). Alternatively, microwave-based satellite measurements
of surface soil moisture have also been used to analyse trends (Dorigo
et al., 2012; Jia et al., 2018). Although there is regional evidence that
microwave-based soil moisture estimates can capture well drying
trends in comparison with ground soil moisture observations (Jia
et al.,, 2018), there is only medium confidence in the derived trends,
since satellite soil moisture data are affected by inhomogeneities
(Dorigo et al.,, 2015; Rodell et al., 2018; Preimesberger et al., 2021).
Furthermore, microwave-based satellites only sense surface soil
moisture, which differs from root-zone soil moisture (Berg et al,,
2017a), although relationships can be derived between the two
(Brocca et al,, 2011). Several studies have also analysed long-term
soil moisture time series from observation-driven land-surface
or hydrological models, including land-based reanalysis products
(Albergel et al., 2013; Jia et al., 2018; Gu et al., 2019b; Markonis
et al., 2021). Such models have also been used to assess changes in
land water availability, estimated as precipitation minus ET, which
is equal to the sum of soil moisture and runoff (Greve et al., 2014;
Padron et al., 2020).
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Overall, evidence from global studies suggests that several land
regions have been affected by increased soil moisture drying or water
balance drying in past decades, despite some spread among products
(Albergel et al., 2013; Greve et al,, 2014; Gu et al., 2019b; Padrén
et al,, 2020). Drying has not only occurred in dry regions but also in
humid regions (Greve et al., 2014). Some studies have specifically
addressed changes in soil moisture at regional scale (Section 11.9).
For ARG regions, several studies suggest an increase in the frequency
and areal extent of soil moisture deficits, with examples in East Asia
(Cheng et al., 2015; Y. Qin et al., 2015; Jia et al., 2018), Western and
Central Europe (Trnka et al., 2015b), and the Mediterranean (Hanel
etal., 2018; Moravec et al., 2019; Markonis et al., 2021). Nonetheless,
some analyses also show no long-term trends in soil drying in some
ARG regions — for example, in Eastern North America (Park Williams
et al., 2017) and Central North America (Seager et al.,, 2019), as well
as in North Eastern Africa (Kew et al., 2021). The soil moisture drying
trends identified in both global and regional studies are generally
related to increases in ET (associated with higher AED) rather than
decreases in precipitation, as identified on global land for trends in
water balance in the dry season (Padron et al., 2020), as well as for
some regions (Teuling et al., 2013; Cheng et al., 2015; Trnka et al.,
2015a; van Der Linden et al., 2019; X. Li et al., 2020).

Evidence from observed or observations-derived trends in soil
moisture and precipitation minus ET, are combined with evidence
from SPEI and PDSI-PM studies to derive regional assessments of
changes in agricultural and ecological droughts (Section 11.9). This
assessment is summarized in Section 11.6.2.6.

11.6.2.4  Hydrological Deficits

There is evidence based on streamflow records of increased
hydrological droughts in East Asia (D. Zhang et al, 2018) and
southern Africa (Gudmundsson et al, 2019). In areas of Western
and Central Europe and Northern Europe, there is no evidence of
changes in the severity of hydrological droughts since 1950 based on

(@) Consecutive dry days (CDD) (b)

Standardized Precipitation (c)
Index (SPI-12)
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flow reconstructions (Caillouet et al., 2017; Barker et al., 2019) and
observations (Vicente-Serrano et al., 2019). In the Mediterranean
region, there is high confidence in hydrological drought intensification
(Section 11.9; Giuntoli et al., 2013; Lorenzo-Lacruz et al., 2013;
Gudmundsson et al., 2019). In south-eastern South America there
is a decrease in the severity of hydrological droughts (Rivera and
Penalba, 2018). In North America, depending on the methods, datasets
and study periods, there are differences between studies that suggest
an increase (Shukla et al., 2015; Udall and Overpeck, 2017) versus
a decrease in hydrological drought frequency (Mo and Lettenmaier,
2018), but in general there is strong spatial variability (Poshtiri and
Pal, 2016). Streamflow observation reference networks of near-natural
catchments have also been used to isolate the effect of climate trends
on hydrological drought trends in a few regions, but these show limited
trends in Northern Europe and Western and Central Europe (Stahl et al.,
2010; Bard et al., 2015; Harrigan et al., 2018), North America (Dudley
et al.,, 2020) and most of Australia, with the exception of Eastern and
Southern Australia (X.S. Zhang et al., 2016). Given the low availability
of observations, there are few studies analysing trends of drought
severity in the groundwater. Nevertheless, some studies suggest
a noticeable response of groundwater droughts to climate variability
(Lorenzo-Lacruz et al.,, 2017) and increased drought frequency and
severity associated with warming, probably as a consequence of
enhanced ET induced by higher AED (Maxwell and Condon, 2016). This
is supported by studies in Northern Europe (Bloomfield et al., 2019)
and North America (Condon et al., 2020).

11.6.2.5 Atmospheric-based Drought Indices

Globally, trends in SPEI-PM and PDSI-PM suggest slightly higher
increases of drought frequency and severity in regions affected by
drying over the last decades in comparison to the SPI (Dai and Zhao,
2017; Spinoni et al., 2019; Song et al., 2020), mainly in regions of
Western and Southern Africa, the Mediterranean and East Asia
(Figure 11.17), which is consistent with observed soil moisture trends
(Section 11.6.2.3). These indices suggest that AED has contributed to

Standardized Precipitation-
Evapotranspiration Index (SPEI-12)

TR oo Siifcan vends
8-4-2-10 1 2 4 8

(days / 10 year) No data

Non-significant trends

Severity (o / 10 years)

Figure 11.17 | Observed linear trend for (a) consecutive dry days (CDD) during 1960-2018, (b) standardized precipitation index (SPI) and (c) standardized
precipitation-evapotranspiration index (SPEI) during 1951-2016. CDD data are from the HadEx3 dataset (Dunn et al., 2020), trend calculation of CDD as in Figure 11.9.
Drought severity is estimated using 12-month SPI (SPI-12) and 12-month SPEI (SPEI-12). SPI and SPEI datasets are from Spinoni et al. (2019). The threshold to identify drought
episodes was set at -1 SPI/SPEI units. Areas without sufficient data are shown in grey. No overlay indicates regions where the trends are significant at the p = 0.1 level. Crosses
indicate regions where trends are not significant. For details on the methods see Supplementary Material 11.SM.2. Further details on data sources and processing are available
in the chapter data table (Table 11.SM.9).
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increase the severity of agricultural and ecological droughts compared
to meteorological droughts (Garcia-Herrera et al., 2019; Williams et al.,
2020), reduce soil moisture during the dry season (Padron et al., 2020),
increase plant water stress (Allen et al., 2015; Grossiord et al., 2020;
Solander et al., 2020) and trigger more severe forest fires (Abatzoglou
and Williams, 2016; Turco et al., 2019; Nolan et al., 2020). A number
of regional studies based on these drought indices have also shown
stronger drying trends in comparison to trends in precipitation-based
indices in the following AR6 regions (see also Section 11.9): NSA
(R. Fu et al., 2013; Marengo and Espinoza, 2016), SCA (Hidalgo et al.,
2017), WCA (Tabari and Aghajanloo, 2013; Sharafati et al., 2020), SAS
(Niranjan Kumar et al., 2013), NEAF (Zeleke et al., 2017), WSAF (Edossa
etal., 2016), NWN and NEN (Bonsal et al., 2013), EAS (Yu et al., 2014;
Chen and Sun, 2015b; L. Li et al., 2020; Liang et al., 2020; Z. Wu et al.,
2020) and MED (Kelley et al., 2015; Stagge et al, 2017; Gonzalez-
Hidalgo et al.,, 2018; Mathbout et al., 2018a).

11.6.2.6  Synthesis for Different Drought Types

Few ARG regions show observed increases in meteorological drought
(Section 11.9), mostly in Africa and South America (NES: high
confidence; WAF, CAF, ESAF, SAM, SWS, SSA, SAS: medium confidence);
a few others show a decrease (WSB, ESB, NAU, CAU, NEU, CNA:
medium confidence). There are stronger signals indicating observed
increases in agricultural and ecological drought (Section 11.9), which
highlights the role of increased ET, driven by increased AED, for these
trends (Sections 11.6.2.3 and11.6.2.5). Past increases in agricultural
and ecological droughts are found on all continents and several
regions (WAF, CAF, WSAF, ESAF, WCA, ECA, EAS, SAU, MED, WCE,
NES: medium confidence), while decreases are found only in one
ARG region (NAU: medium confidence). The more limited availability
of datasets makes it more difficult to assess historical trends in
hydrological drought at regional scale (Section 11.9). Increasing
(MED: high confidence; WAF, EAS, SAU: medium confidence) and
decreasing (NEU, SES: medium confidence) trends in hydrological
droughts have only been observed in a few regions.

In summary, there is high confidence that AED has increased on
average on continents, contributing to increased ET and resulting
water stress during periods with precipitation deficits, in particular
during dry seasons. There is medium confidence in increases in
precipitation deficits in a few regions of Africa and South America.
Based on multiple evidence, there is medium confidence that
agricultural and ecological droughts have increased in several
regions on all continents (WAF, CAF, WSAF, ESAF, WCA, ECA, EAS,
SAU, MED, WCE, NES: medium confidence), while there is only
medium confidence in decreases in one AR6 region (NAU). More
severe hydrological droughts are found in fewer regions (MED: high
confidence; WAF, EAS, SAU: medium confidence).

11.6.3 Model Evaluation

11.6.3.1  Precipitation Deficits

ESMs generally show limited performance and large spread
in identifying precipitation deficits and associated long-term
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trends in comparison with observations (Nasrollahi et al., 2015).
Meteorological drought trends in the CMIP5 ensemble showed
substantial disagreements compared with observations (Orlowsky
and Seneviratne, 2013; Knutson and Zeng, 2018) including
a tendency to overestimate drying, in particular in mid- to high
latitudes (Knutson and Zeng, 2018). The CMIP6 models display
a better performance in reproducing long-term precipitation trends
or seasonal dynamics in some studies in Southern South America
(Rivera and Arnould, 2020), East Asia (Xin et al., 2020), southern
Asia (Gusain et al., 2020), and south-western Europe (Pefia-Angulo
et al., 2020b), but there is still too /imited evidence to allow for
an assessment of possible differences in performance between
CMIP5 and CMIP6. Furthermore, ESMs are generally found to
underestimate the severity of precipitation deficits and the dry day
frequencies in comparison to observations (Fantini et al., 2018;
Ukkola et al., 2018). This is probably related to shortcomings in
the simulation of persistent weather events in the mid-latitudes
(Section 10.3.3.3). ESMs also show a tendency to underestimate
precipitation-based drought persistence at monthly to decadal
time scales (Ault et al., 2014; Moon et al., 2018). The overall inter-
model spread in the projected frequency of precipitation deficits is
also substantial (Touma et al., 2015; Zhao et al., 2016; Engstrém
and Keellings, 2018). Moreover, there are spatial differences in the
spread, which is higher in the regions where enhanced drought
conditions are projected and under high-emissions scenarios
(Orlowsky and Seneviratne, 2013). Nonetheless, some event
attribution studies have concluded that droughts at regional scales
can be adequately simulated by some climate models (Schaller
et al., 2016; Otto et al., 2018c).

11.6.3.2  Atmospheric Evaporative Demand

There is only limited evidence on the evaluation of AED in state-
of-the-art ESMs, which is performed on externally computed AED,
based on model output (Scheff and Frierson, 2015; Liu and Sun,
2016, 2017). An evaluation of average AED in 17 CMIP5 ESMs for
1981-1999 based on potential evaporation show that the models’
spatial patterns resemble the observations, but the magnitude of
potential evaporation displays strong divergence among models
globally and regionally (Scheff and Frierson, 2015). The evaluation
of AED in 12 CMIP5 ESMs with pan evaporation observations in
East Asia for 1961-2000 (Liu and Sun, 2016, 2017) show that
the ESMs capture seasonal cycles well, but that regional AED
averages are underestimated due to biases in the meteorological
variables controlling the aerodynamic and radiative components
of AED. The CMIP5 ESMs also show a strong underestimation of
atmospheric drying trends compared to reanalysis data (Douville and
Plazzotta, 2017).

11.6.3.3  Soil Moisture Deficits

The performance of climate models for representing soil moisture
deficits shows more uncertainty than for precipitation deficits since,
in addition to the uncertainties related to cloud and precipitation
processes, there is uncertainty related to the representation of
complex soil hydrological and boundary-layer processes (van den
Hurk et al, 2011; Lu et al, 2019; Quintana-Segui et al., 2020).
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Another limitation is the lack of observations, particularly for soil
moisture, in most regions (Section 11.6.2.3) and the paucity of
land surface property data to parametrize land surface models, in
particular soil types, soil properties and depth (Xia et al., 2015). The
spatial resolution of models is an additional limitation since the
representation of some land—atmosphere feedbacks and topographic
effects requires detailed resolution (Nicolai-Shaw et al., 2015; Van
Der Linden et al., 2019). In addition to climate models, land surface
and hydrological models are also used to derive historical and
projected trends in soil moisture and related land water variables
(Albergel et al., 2013; Cheng et al,, 2015; Gu et al., 2019b; Padrén
et al., 2020; Markonis et al., 2021; Pokhrel et al., 2021).

Overall, there are contrasting results on the performance of land
surface models and climate models in representing soil moisture.
Some studies suggest that soil moisture anomalies are well captured
by land surface models driven with observation-based forcing
(Dirmeyer et al., 2006; Albergel et al., 2013; Xia et al., 2014; Balsamo
et al., 2015; Reichle et al., 2017; Spennemann et al., 2020), but other
studies report limited agreement in the representation of interannual
soil moisture variability (Stillman et al., 2016; Yuan and Quiring, 2017;
Ford and Quiring, 2019) and noticeable seasonal differences in model
skill in some regions (Xia et al., 2014, 2015). Models with good skill
can nonetheless display biases in absolute soil moisture (Xia et al.,
2014; Gu et al,, 2019a), but these are not necessarily of relevance
for the simulation of surface water fluxes and drought anomalies
(Koster et al., 2009). There is also substantial inter-model spread
(Albergel et al., 2013), particularly for the root-zone soil moisture
(Berg et al,, 2017a).

Regarding the performance of regional and global climate models, an
evaluation of an ensemble of RCM simulations for Europe (Stegehuis
et al., 2013) shows that these models display overly strong drying
in early summer, resulting in an excessive decrease of latent heat
fluxes, with potential implications for more severe droughts in dry
environments (Teuling, 2018; van Der Linden et al., 2019). Compared
with a range of observational ET estimates, CMIP5 models show an
overestimation of ET on annual scale, but an ET underestimation in
boreal summer in many Northern Hemisphere mid-latitude regions,
also suggesting a tendency towards excessive soil drying (Mueller
and Seneviratne, 2014), consistent with identified biases in soil-
moisture-temperature coupling (Donat et al., 2018; Vogel et al,
2018; Selten et al., 2020). Land surface models used in ESMs display
a bias in their representation of the sensitivity of interannual land
carbon uptake to soil moisture conditions, which appears related to
a limited range of soil moisture variations compared to observations
(Humphrey et al., 2018).

For future projections, the spread of soil moisture outputs among
different ESMs is more important than internal variability and
scenario uncertainty, and the bias is strongly related to the sign of
the projected change (Ukkola et al., 2018; Lu et al., 2019; Selten et al.,
2020).The CMIP5 ESMs that project more drying and warming in mid-
latitude regions show a substantial bias in soil-moisture—temperature
coupling (Donat et al., 2018; Vogel et al., 2018). Although CMIP6 and
CMIP5 simulations for soil moisture changes are similar overall, some
differences are found in projections in a few regions (Section 11.9;
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Cook et al., 2020). There is still limited evidence to assess whether
there are substantial differences in model performance in the two
ensembles, but improvements in modelling aspects relevant for soil
moisture have been reported for precipitation (Section 11.6.3.2), and
a better performance has been found in CMIP6 for the representation
of long-term trends in soil moisture in continental USA (Yuan et al,,
2021). Despite the mentioned model limitations, the representation
of soil moisture processes in ESMs uses physical and biological
understanding of the underlying processes, which can well represent
the temporal anomalies associated with temporal variability and
trends in climate. In summary, there is medium confidence in the
representation of soil moisture deficits in ESMs and related land
surface and hydrological models.

11.6.3.4  Hydrological Deficits

Streamflow and groundwater are not directly simulated by ESMs,
which only simulate runoff, but they are generally represented in
hydrological models (Prudhomme et al., 2014; Giuntoli et al., 2015),
which are typically driven in a stand-alone manner by observed or
simulated climate forcing. The simulation of hydrological deficits is
much more problematic than the simulation of mean streamflow or
peak flows (Fundel et al., 2013; Stoelzle et al., 2013; Velazquez et al.,
2013; Staudinger et al., 2015), since models tend to be too responsive
to the climate forcing and do not satisfactorily capture low flows
(Tallaksen and Stahl, 2014). Simulations of hydrological drought
metrics show uncertainties related to the contribution of both GCMs
and hydrological models (Bosshard et al., 2013; Giuntoli et al., 2015;
Samaniego et al., 2017; Vetter et al., 2017), but hydrological models
forced by the same climate input data also show a large spread
(van Huijgevoort et al., 2013; Ukkola et al., 2018). At the catchment
scale, the hydrological model uncertainty is higher than both GCM
and downscaling uncertainty (Vidal et al., 2016), and the hydrological
models show issues in representing drought propagation throughout
the hydrological cycle (Barella-Ortiz and Quintana Segui, 2019).
A study on the evaluation of streamflow droughts in seven global
(hydrological and land surface) models compared with observations
in near-natural catchments of Europe showed a substantial spread
among models, an overestimation of the number of drought events,
and an underestimation of drought duration and drought-affected
area (Tallaksen and Stahl, 2014).

11.6.3.5 Atmospheric-based Drought Indices

A number of studies have analysed the ability of models to capture
drought severity and trends based on climatic drought indices. Given
the limitations of ESMs in reproducing the dynamic of precipitation
deficits and AED (11.6.3.1, 11.6.3.2), atmospheric-based drought
indices derived from ESM data for these two variables are also
affected by uncertainties and biases. A comparison of historical
trends in PDSI-PM for 1950-2014 derived from CMIP3 and CMIP5,
with respective estimates derived from observations (Dai and
Zhao, 2017) show a similar behaviour at global scale (long-term
decrease), but low spatial agreement in the trends except in a few
regions (Mediterranean, South Asia, north-western USA). In future
projections, there is an important spread in PDSI-PM and SPEI-PM
among different models (Cook et al., 2014a).
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11.6.3.6  Synthesis for Different Drought Types

The performance of ESMs used to assessed changes in variables
related to meteorological droughts, agricultural and ecological
droughts, and hydrological droughts, shows the presence of biases
and uncertainties compared to observations, but there is medium
confidence in their overall performance for assessing drought
projections given process understanding. Given the substantial inter-
model spread documented for all related variables, the consideration
of multi-model projections increases the confidence of model-based
assessments, with only low confidence in assessments based on
single models.

In summary, the evaluation of ESMs, land surface and hydrological
models for the simulation of droughts is complex, due to the regional
scale of drought trends, their overall low signal-to-noise ratio, and the
lack of observations in several regions, in particular for soil moisture
and streamflow. There is medium confidence in the ability of ESMs
to simulate trends and anomalies in precipitation deficits and AED,
and also medium confidence in the ability of ESMs and hydrological
models to simulate trends and anomalies in soil moisture and
streamflow deficits, on global and regional scales.

11.6.4 Detection and Attribution, Event Attribution

11.6.4.1 Precipitation Deficits

There are only two ARG regions where there is at least medium
confidence that human-induced climate change has contributed
to changes in meteorological droughts (Section 11.9). In South-
Western South America, there is medium confidence that human-
induced climate change has contributed to an increase in
meteorological droughts (Boisier et al., 2016; Garreaud et al., 2020),
while in Northern Europe, there is medium confidence that it has
contributed to a decrease in meteorological droughts (Section 11.9;
Gudmundsson and Seneviratne, 2016). In other ARG regions, there
is inconclusive evidence in the attribution of long-term trends, but
a human contribution to single meteorological events or sub-regional
trends has been identified in some instances (Section 11.9; see also
below). In the Mediterranean region, some studies have identified
a precipitation decline or increase in meteorological drought
probability for time frames since the early or mid 20th century, and
a possible human contribution to these trends (Hoerling et al., 2012;
Gudmundsson and Seneviratne, 2016; Knutson and Zeng, 2018), also
on sub-regional scale in Syria from 1930 to 2010 (Kelley et al., 2015).
On the contrary, other studies have not identified precipitation and
meteorological drought trends in the region for the long term (Camuffo
et al., 2013; Paulo et al., 2016; Vicente-Serrano et al., 2021) and also
from the mid 20th century (Norrant and Douguédroit, 2006; Stagge
et al., 2017). There is evidence of substantial internal variability in
long-term precipitation trends in the region (Section 11.6.2.1), which
limits the attribution of human influence on variability and trends
of meteorological droughts from observational records (Kelley et al.,
2012; Pefia-Angulo et al., 2020b). In addition, there are important
sub-regional trends showing mixed signals (Section 11.9; MedECC,
2020). The evidence thus leads to an assessment of low confidence
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in the attribution of observed short-term changes in meteorological
droughts in the region (Section 11.9). In North America, the human
influence on precipitation deficits is complex (Wehner et al., 2017),
with low confidence in the attribution of long-term changes in
meteorological drought in AR6 regions (Section 11.9; Lehner et al.,
2018). In Africa there is low confidence that human influence has
contributed to the observed long-term meteorological drought
increase in Western Africa (Sections 11.9 and 10.6.2). There is low
confidence in the attribution of the observed increasing trends in
meteorological drought in East Southern Africa, but evidence that
human-induced climate change has affected recent meteorological
drought events in the region (Section 11.9).

Attribution studies for recent meteorological drought events are
available for various regions. In Western and Central Europe, a multi-
method and multi-model attribution study on the 2015 Central
European drought did not find conclusive evidence for whether
human-induced climate change was a driver of the rainfall deficit,
as the results depended on model and method used (Hauser et al.,
2017). In the Mediterranean region, a human contribution was found
in the case of the 2014 meteorological drought in the southern Levant
based on a single-model study (Bergaoui et al., 2015). In Africa, there
is some evidence of a contribution of human emissions to single
meteorological drought events, such as the 2015-2017 southern
African drought (Funk et al., 2018a; Yuan et al., 2018a; Pascale et al.,
2020), and the three-year (2015-2017) drought in the western Cape
Town region of South Africa (Otto et al., 2018c). An attributable
signal was not found in droughts that occurred in different years
with different spatial extents in the last decade in North and South
Eastern Africa (Marthews et al., 2015; Uhe et al., 2017; Otto et al.,
2018a; Philip et al., 2018b; Kew et al., 2021). However, an attributable
increase in 2011 long rain failure was identified (Lott et al., 2013).
Further studies have attributed some African meteorological drought
events to large-scale modes of variability, such as the strong 2015
El Nifio (Box 11.4; Philip et al., 2018b) and increased SSTs overall
(Funk et al., 2015a, 2018b). Natural variability was dominant in
the California droughts of 2011-2012 to 2013-2014 (Seager et al.,
2015a). In Asia, no climate change signal was found in the record dry
spell over Singapore and Malaysia in 2014 (Mcbride et al., 2015) or
the drought in central south-west Asia in 2013-2014 (Barlow and
Hoell, 2015). Nevertheless, the South East Asia drought of 2015 has
been attributed to anthropogenic warming effects (Shiogama et al.,
2020). Recent droughts occurring in South America, specifically in
the southern Amazon region in 2010 (Shiogama et al., 2013) and
in north-east South America in 2014 (Otto et al., 2015b) and 2016
(Martins et al., 2018) were not attributed to anthropogenic climate
change. Nevertheless, the central Chile drought between 2010
and 2018 has been suggested to be partly associated to global
warming (Boisier et al., 2016; Garreaud et al., 2020). The 2013 New
Zealand meteorological drought was attributed to human influence
by Harrington et al. (2014, 2016) based on fully coupled CMIP5
models, but no corresponding change in the dry end of simulated
precipitation from a stand-alone atmospheric model was found by
Angélil et al. 2017).

Event attribution studies also highlight a complex interplay of
anthropogenic and non-anthropogenic climatological factors for
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some events. For example, anthropogenic warming contributed to
the 2014 drought in North Eastern Africa by increasing east African
and west Pacific temperatures, and increasing the gradient between
standardized western and central Pacific SSTs, causing reduced
rainfall (Funk et al, 2015a). As different methodologies, models
and data sources have been used for the attribution of precipitation
deficits, Angélil et al. (2017) re-examined several events using
a single analytical approach and climate model and observational
datasets. Their results showed a disagreement in the original
anthropogenic attribution in a number of precipitation deficit events,
which increased uncertainty in the attribution of meteorological
droughts events.

11.6.4.2  Soil Moisture Deficits

There is a growing number of studies on the detection and
attribution of long-term changes in soil moisture deficits. Mueller
and Zhang (2016) concluded that anthropogenic forcing contributed
significantly to soil moisture drying in the warm season in the
Northern Hemisphere from 1951 to 2005 and also led to an increase
in the land surface area affected by soil moisture deficits, which can
be reproduced by CMIP5 models only if anthropogenic forcings are
involved. Gu et al. (2019b) similarly identified a global-scale soil
moisture drying tendency in land surface model data from the Global
Land Data Assimilation System 2 over the time frame 1948-2005,
which was attributed to anthropogenic forcing based on evaluation
with CMIP5 models using optimal fingerprinting. Padron et al. (2019)
analysed long-term reconstructed and CMIP5 simulated dry season
water availability, defined as precipitation minus ET (i.e., equivalent
to soil moisture and runoff availability), also related to agricultural
and ecological droughts. They found an intensification of dry-season
precipitation minus evapotranspiration deficits over a predominant
fraction of the land area in the last three decades, which can only be
explained by anthropogenic forcing and is mostly related to increases
in ET. Similarly, Williams et al. (2020) concluded that human-
induced climate change contributed to the strong soil moisture
deficits recorded in the last two decades in Western North America
through VPD increases associated with higher air temperatures and
lower air humidity. There are few studies analysing the attribution
of particular episodes of soil moisture deficits to anthropogenic
influence. Nevertheless, the available modelling studies coincide
in supporting an anthropogenic attribution associated with more
extreme temperatures, exacerbating AED and increasing ET, and
thus depleting soil moisture, as observed in southern Europe in 2017
(Garcia-Herrera et al., 2019) and in Australia in 2018 (Lewis et al.,
2020) and 2019 (van Oldenborgh et al., 2021), the latter event having
strong implications in the propagation of widespread megafires
(Nolan et al., 2020).

11.6.4.3 Hydrological Deficits

It is often difficult to separate the role of climate trends from
changes in land use, water management and demand for changes
in hydrological deficits, especially on a regional scale. However,
a global study based on a recent multi-model experiment with global
hydrological models and covering several AR6 regions suggests
a dominant role of anthropogenic radiative forcing for trends in
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low, mean and high flows, while simulated effects of water and land
management do not suffice to reproduce the observed spatial pattern
of trends (Gudmundsson et al., 2021). Regional studies also suggest
that climate trends have been dominant compared to land use and
human water management for explaining trends in hydrological
droughts in some regions, for instance in Ethiopia (Fenta et al., 2017),
China (Xie et al., 2015), and North America for the Missouri and
Colorado basins, as well as in California (Shukla et al., 2015; Udall
and Overpeck, 2017; Ficklin et al., 2018; K. Xiao et al., 2018; Glas
et al, 2019; Martin et al., 2020; Milly and Dunne, 2020).

In other regions, the influence of human water uses can be more
important to explain hydrological drought trends (Y. Liu et al., 2016;
Mohammed and Scholz, 2016). There is medium confidence that
human-induced climate change has contributed to an increase of
hydrological droughts in the Mediterranean (Giuntoli et al., 2013;
Vicente-Serrano et al., 2014; Gudmundsson et al., 2017), but also
medium confidence that changes in land use and terrestrial water
management contributed to these trends (Section 11.9; Teuling et al.,
2019; Vicente-Serrano et al., 2019). A global study with a single
hydrological model estimated that human water consumption has
intensified the magnitude of hydrological droughts by 20-40%
over the last 50 years, and that the human water use contribution
to hydrological droughts was more important than climatic factors
in the Mediterranean, and central USA, as well as in parts of Brazil
(Wada et al., 2013). However, Gudmundsson et al. (2021) concluded
that the contribution of human water use is smaller than that of
anthropogenic climate change to explain spatial differences in the
trends of low flows based on a multi-model analysis. There is still
limited evidence and thus low confidence in assessing these trends at
the scale of single regions, with few exceptions (Section 11.9).

11.6.4.4  Atmospheric-based Drought Indices

Different studies using atmospheric-based drought indices suggest
an attributable anthropogenic signal, characterized by the increased
frequency and severity of droughts (Cook et al., 2018), associated to
increased AED (Section 11.6.4.2). The majority of studies are based on
the PDSI-PM. Williams et al. (2015) and Griffin and Anchukaitis (2014)
concluded that increased AED has had an increased contribution to
drought severity over the last decades, and played a dominant role in
the intensification of the 2012-2014 drought in California. The same
temporal pattern and physical mechanism was stressed by Z. Li et al.
(2017) in central Asia. Marvel et al. (2019) compared tree ring-based
reconstructions of the PDSI-PM over the past millennium with PDSI-
PM estimates based on output from CMIP5 models. The comparisons
suggested a contribution of greenhouse gas forcing to the changes
since the beginning of the 20th century, although characterized with
temporal differences that could be driven by temporal variations
in the aerosol forcing. This was in agreement with the dominant
external forcings of aridification at global scale between 1950 and
2014 (Bonfils et al., 2020). In the Mediterranean region, there is
medium confidence of drying attributable to antropogenic forcing
as a consequence of the strong AED increase (Gocic and Trajkovic,
2014; Azorin-Molina et al., 2015; Liuzzo et al., 2016; Macek et al.,
2018), which has enhanced the severity of drought events (Vicente-
Serrano et al., 2014; Stagge et al., 2017; Gonzalez-Hidalgo et al,,
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2018). In particular, this effect was identified to be the main driver of
the intensification of the 2017 drought that affected south-western
Europe, and was attributed to the human forcing (Garcia-Herrera
et al, 2019). Nangombe et al. (2020) and L. Zhang et al. (2020)
concluded from differences between precipitation and AED that
anthropogenic forcing contributed to the 2018 droughts that affected
southern Africa and south-eastern China, respectively, principally as
consequence of the high AED that characterized these two events.

11.6.4.5 Synthesis for Different Drought Types

The regional evidence on attribution for single AR6 regions generally
shows low confidence for a human contribution to observed trends
in meteorological droughts at regional scale, with few exceptions
(Section 11.9). There is medium confidence that human influence has
contributed to increases in agricultural and ecological droughts in
the dry season in some regions and has led to an overall increase in the
affected land area. At regional scales, there is medium confidence
in a contribution of human-induced climate change to increases
in agricultural and ecological droughts in the Mediterranean and
Western North America (Section 11.9). There is medium confidence
that human-induced climate change has contributed to an increase
in hydrological droughts in the Mediterranean region, but also
medium confidence in contributions from other human influences,
including water management and land use (Section 11.9). Several
meteorological and agricultural and ecological drought events have
been attributed to human-induced climate change, even in regions
where no long-term changes are detected (medium confidence).
However, a lack of attribution to human-induced climate change has
also been shown for some events (medium confidence).

In summary, human influence has contributed to increases in
agricultural and ecological droughts in the dry season in some
regions due to increases in evapotranspiration (medium confidence).
The increases in evapotranspiration have been driven by increases in
atmospheric evaporative demand induced by increased temperature,
decreased relative humidity and increased net radiation over affected
land areas (high confidence). There is low confidence that human
influence has affected trends in meteorological droughts in most
regions, but medium confidence that they have contributed to the
severity of some single events. There is medium confidence that
human-induced climate change has contributed to increasing trends
in the probability or intensity of recent agricultural and ecological
droughts, leading to an increase of the affected land area. Human-
induced climate change has contributed to global-scale change in
low flow, but human water management and land-use changes are
also important drivers (medium confidence).

11.6.5 Projections

The SREX (Chapter 3) asssessed with medium confidence projections
of increased drought severity in some regions, including southern
Europe and the Mediterranean, central Europe, central America and
Mexico, north-east Brazil, and southern Africa, and low confidence
elsewhere given large inter-model spread. The AR5 (Chapters 11 and
12) also assessed large uncertainties in drought projections at the
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regional and global scales. The assessment of drought mechanisms
under future climate change scenarios depends on the model used
(Section 11.6.3). Moreover, uncertainties in drought projections are
affected by the consideration of plant physiological responses to
increasing atmospheric CO, (Cross-Chapter Box 5.1; Milly and Dunne,
2016; Greve et al., 2019; Mankin et al.,, 2019; Yang et al., 2020), the
role of soil-moisture—atmosphere feedbacks for changes in water
balance and aridity (Berg et al., 2016; Zhou et al., 2021), and statistical
issues related to considered drought time scales (Vicente-Serrano
et al,, 2020c). Nonetheless, the extensive literature available since AR5
allows a substantially more robust assessment of projected changes in
droughts, also subdivided in different drought types (meteorological
drought, agricultural and ecological drought, and hydrological drought).
This includes assessments of projected changes in droughts, including
changes at 1.5°C, 2°C and 4°C of global warming, for all AR6 regions
(Section 11.9). Projected changes show increases in drought frequency
and intensity in several regions as function of global warming (high
confidence). There are also substantial increases in drought hazard
probability from 1.5°C to 2°C global warming and for further additional
increments of global warming (high confidence) (Figures 11.18 and
11.19). These findings are based on both CMIP5 and CMIP6 analyses
(Section 11.9; Wartenburger et al., 2017; Greve et al., 2018; L. Xu et al,,
2019), and strengthen the conclusions of SR1.5 Chapter 3.

11.6.5.1 Precipitation Deficits

Studies based on CMIP5, CMIP6 and Coordinated Regional
Climate Downscaling Experiment (CORDEX) projections show
a consistent signal in the sign and spatial pattern of projections of
precipitation deficits. Global studies based on these multi-model
ensemble projections (Orlowsky and Seneviratne, 2013; Martin,
2018; Spinoni et al, 2020; Ukkola et al., 2020; Coppola et al,
2021b) show particularly strong signal-to-noise ratios for increasing
meteorological droughts in the following AR6 regions: MED, ESAF,
WSAF, SAU, CAU, NCA, SCA, NSA and NES (Section 11.9). There is also
substantial evidence of changes in meteorological droughts at 1.5°C
versus 2°C of global warming from global studies (Wartenburger
et al,, 2017; L. Xu et al,, 2019). The patterns of projected changes
in mean precipitation are consistent with the changes in the
drought duration, but they are not consistent with the changes in
drought intensity (Ukkola et al., 2020). In general, CMIP6 projections
suggest a stronger increase of the probability of precipitation deficits
than CMIP5 projections (Cook et al., 2020; Ukkola et al., 2020).
Projections for the number of CDDs in CMIP6 (Figure 11.19) for
different levels of global warming relative to 1850—1900 show similar
spatial patterns as projected precipitation deficits. The robustness of
the patterns in projected precipitation deficits identified in the global
studies is also consistent with results from regional studies (Giorgi
et al,, 2014; Marengo and Espinoza, 2016; Pinto et al., 2016; J. Huang
et al., 2018; Madre et al., 2018; Nangombe et al., 2018; Tabari and
Willems, 2018; Abiodun et al., 2019; Dosio et al., 2019).

In Africa, a strong increase in the length of dry spells (CDD) is
projected for 4°C of global warming over most of the continent, with
the exception of central and eastern Africa (Section 11.9; Sillmann
et al., 2013a; Giorgi et al., 2014; Han et al,, 2019). In West Africa,
a strong reduction of precipitation is projected (Sillmann et al., 2013a;
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Diallo et al., 2016; Akinsanola and Zhou, 2019; Han et al., 2019; Todzo
et al., 2020) at 4°C of global warming, and CDD would increase with
stronger global warming levels (Klutse et al., 2018). The regions most
strongly affected are southern Africa (ESAF, WSAF) (Nangombe et al.,
2018; Abiodun et al., 2019) and northern Africa (part of the MED
region), with increases in meteorological droughts already at 1.5°C
of global warming, and further increases with increasing global
warming (Section 11.9). CDD is projected to increase more in the
southern Mediterranean (northern Africa) than in the northern part of
the Mediterranean region (Lionello and Scarascia, 2020).

In Asia, most ARG regions show low confidence in projected changes
in meteorological droughts at 1.5°C and 2°C of global warming, with
a few regions displaying a decrease in meteorological droughts at
4°C of global warming (RAR, ESB, RFE, ECA; medium confidence),
although there is a projected increase in meteorological droughts
in South East Asia at 4°C (medium confidence) (Section 11.9). In
South East Asia, an increasing frequency of precipitation deficits is
projected as a consequence of an increasing frequency of extreme
El Nifo (Cai et al.,, 2014b, 2015, 2018).

In Central America, projections suggest an increase in mid-summer
meteorological drought (Imbach et al.,, 2018) and increased CDD
(Chou et al., 2014a; Giorgi et al., 2014; Nakaegawa et al., 2014). In
the Amazon, there is also a projected increase in dryness (Marengo
and Espinoza, 2016), which is the combination of a projected increase
in the frequency and geographic extent of meteorological drought in
the eastern Amazon, and an opposite trend in the west (Duffy et al.,
2015). In South-Western South America, there is a projected increase
of CDD (Chou et al., 2014a; Giorgi et al., 2014) and in Chile, drying
is projected to prevail (Boisier et al.,, 2018). In the South America
monsoon region, an increase in CDD is projected (Chou et al., 2014a;
Giorgi et al., 2014), but a decrease is projected in South-Eastern and
Southern South America (Giorgi et al., 2014). In Central America,
mid-summer meteorological drought is projected to intensify during
2071-2095 for the RCP8.5 scenario (Corrales-Suastegui et al., 2020).

An increase in the frequency, duration and intensity of meteorological
droughts is projected in south-west, south and east Australia (Kirono
etal., 2020; Shi et al., 2020). In Canada and most of the USA, based on
the SPI, Swain and Hayhoe (2015) identified drier summer conditions
in projections over most of the region, and there is a consistent signal
toward an increase in duration and intensity of droughts in southern
North America (Pascale et al., 2016; Escalante-Sandoval and Nufiez-
Garcia, 2017). In California, more precipitation variability is projected,
characterized by increased frequency of consecutive drought and
humid periods (Swain et al., 2018).

Substantial increases in meteorological drought are projected in
Europe, in particular in the Mediterranean region, already at 1.5°C of
global warming (Section 11.9). In southern Europe, model projections
display a consistent drying among models (Russo et al., 2013; Hertig
and Tramblay, 2017; Guerreiro et al., 2018a; Raymond et al., 2019). In
Western and Central Europe there is some spread in CMIP5 projections,
with some models projecting very strong drying, and others close to
no trend (Vogel et al., 2018), although CDD is projected to increase
in CMIP5 projections under the RCP 8.5 scenario (Hari et al., 2020).
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The overall evidence suggests an increase in meteorological drought
at 4°C in the WCE region (medium confidence) (Section 11.9).

Overall, based on global and regional studies, several hot spot
regions are identified, displaying more frequent and severe
meteorological droughts with increasing global warming, including
several AR6 regions at 1.5°C (WSAF, ESAF, SAU, MED, NES) and
2°C of global warming (WSAF, ESAF, EAU, SAU, MED, NCA, SCA,
NSA, NES) (Section 11.9). At 4°C of global warming, there is also
confidence in increases in meteorological droughts in further regions
(WAF, WCE, ENA, CAR, NWS, SAM, SWS, SSA; Section 11.9), showing
a geographical expansion of meteorological drought with increasing
global warming. Only few regions are projected to have less intense
or frequent meteorological droughts (Section 11.9).

11.6.5.2  Atmospheric Evaporative Demand

Effects of AED on droughts in future projections is under debate.
The CMIP5 models project an increase in AED over the majority of
the world with increasing global warming, mostly as a consequence
of strong VPD increases (Scheff and Frierson, 2015; Vicente-Serrano
et al., 2020a). However, ET is projected to increase less than AED in
many regions due to plant physiological responses related to: i) CO,
effects on plant photosynthesis; and ii) soil moisture control on ET.

Several studies suggest that increasing atmospheric CO, could
lead to reduced leaf stomatal conductance, which would increase
water-use efficiency and reduce plant water needs, thus limiting ET
(Cross-Chapter Box 5.1; Roderick et al., 2015; Milly and Dunne, 2016;
Swann et al., 2016; Greve et al., 2017; Scheff et al., 2017; Lemordant
et al.,, 2018; Swann, 2018). The implemention of a CO,-dependent
land resistance parameter has been suggested for the estimation
of AED (Yang et al,, 2019). Nevertheless, there are other relevant
mechanisms, as soil moisture deficits and VPD also play an important
role in the control of the leaf stomatal conductance (Z. Xu et al., 2016;
Menezes-Silva et al., 2019; Grossiord et al., 2020), and a number
of ecophysiological and anatomical processes affect the response
of plant physiology under higher atmospheric CO, concentrations
(Cross-Chapter Box 5.1; Mankin et al., 2019; Menezes-Silva et al.,
2019). The benefits of the atmospheric CO, for plant stress and
agricultural and ecological droughts would be minimal precisely
during dry periods given stomatal closure in response to limited
soil moisture (Allen et al., 2015; Z. Xu et al., 2016). In addition, CO,
effects on plant stomatal conductance could not entirely compensate
for the increased demand associated with warming (Liu and Sun,
2017); in large tropical and subtropical regions (e.g., southern Africa,
the Amazon, the Mediterranean and southern North America), AED
is projected to increase, even considering the possible CO, effects
on land resistance (Vicente-Serrano et al., 2020a). Moreover, these
CO, effects would not affect the direct evaporation from soil and
water bodies, which is very relevant in the reservoirs of warm areas
(Friedrich et al., 2018). Because of these uncertainties, there is low
confidence whether increased CO-induced water-use efficiency
in vegetation will substantially reduce global plant transpiration
and will diminish the frequency and severity of soil moisture and
streamflow deficits associated with the radiative effect of higher CO,
concentrations (Cross-Chapter Box 5.1).
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Another mechanism reducing the ET response to increased AED in
projections is the control of soil moisture limitations on ET, which
leads to reduced stomatal conductance under water stress (Berg and
Sheffield, 2018; Stocker et al., 2018; Zhou et al., 2021). This response
may be further amplified through VPD-induced decreases in stomatal
conductance (Anderegg et al, 2020). However, the decreased
stomatal conductance in response to soil moisture limitation and
enhanced CO, would further enhance AED (Sherwood and Fu, 2014;
Berg et al., 2016; Teuling, 2018; Miralles et al., 2019), whereby the
overall effects on AED in ESMs are found to be of similar magnitude
for soil moisture limitation and CO, physiological effects on stomatal
conductance (Berg et al., 2016). Increased AED is thus both a driver
and a feedback with respect to changes in ET, complicating the
interpretation of its role on drought changes with increasing CO,
concentrations and global warming.

11.6.5.3 Soil Moisture Deficits

Areas with projected soil moisture decreases do not fully coincide
with areas that have projected precipitation decreases, although
there is substantial consistency in the respective patterns (Dirmeyer
et al, 2013; Berg and Sheffield, 2018). However, there are more
regions affected by increased soil moisture deficits (Figure 11.19) than
precipitation deficits (Figures 2a,b,c and Cross-Chapter Box 11.1)
as a consequence of enhanced AED and the associated increased
ET, as highlighted by some studies (Orlowsky and Seneviratne, 2013;
Dai et al., 2018; Section 8.2.2.1). Moisture in the top soil layer is
projected to decrease more than precipitation at all warming levels
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(Lu et al., 2019), extending the regions affected by severe soil
moisture deficits over most of south and central Europe (Lehner
et al,, 2017; Ruosteenoja et al., 2018; Samaniego et al., 2018; van Der
Linden et al., 2019), southern North America (Cook et al., 2019), South
America (Orlowsky and Seneviratne, 2013), southern Africa (Lu et al.,
2019), East Africa (Rowell et al., 2015), Southern Australia (Kirono
et al., 2020), India (Mishra et al., 2014a) and East Asia (Figure 11.19;
Cheng et al., 2015). Projected changes in total soil moisture display
less widespread drying than those for surface soil moisture (Berg
et al,, 2017a), but still more than for precipitation (Cross-Chapter
Box 11.1, Figures 2a,b,c). The severity of droughts based on surface
soil moisture in future projections is stronger than projections
based on precipitation and runoff (Dai et al., 2018; Vicente-Serrano
et al., 2020c). Nevertheless, in many parts of the world where soil
moisture is projected to decrease, the signal-to-noise ratio among
models is low; only the projections in the Mediterranean, Europe,
the south-western USA, and southern Africa show a high signal-
to-noise ratio in soil moisture projections (Figure 11.19; Lu et al.,
2019). Increases in soil moisture deficits are found to be statistically
signicant at regional scale in the Mediterranean region, southern
Africa and western South America for changes as small as 0.5°C in
global warming, based on differences between +1.5°C and +2°C of
global warming (Wartenburger et al., 2017). Several other regions
are affected when considering changes in droughts for higher
changes in global warming (Section 11.9 and Figure 11.19). Seasonal
projections of drought frequency for boreal winter (December—
January—February) and summer (June-July—August), from CMIP6
multi-model ensemble for 1.5°C, 2°C and 4°C global warming

Changes in 10-year soil moisture drought in drying regions
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Figure 11.18 | Projected changes in (a) the intensity and (b) the frequency of drought under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative
to the 1850-1900 baseline. (c) Summaries are computed for the ARG regions in which there is at least medium confidence in an increase in agriculture/ecological drought
at the 2°C global warming level (‘drying regions’), including Western North America, Central North America, North Central America, Southern Central America, Northern South
America, North-Eastern South America, South American Monsoon, South-Western South America, Southern South America, West and Central Europe, Mediterranean, West
Southern Africa, East Southern Africa, Madagascar, Eastern Australia, Southern Australia. Caribbean is not included in the calculation because the number of land grid points
was too small. A drought event is defined as a 10-year drought event whose annual mean soil moisture was below its 10th percentile from the 1850—-1900 base period. For
each box plot, the horizontal line and the box represent the median and central 66% uncertainty range, respectively, of the frequency or the intensity changes across the multi-
model ensemble, and the ‘whiskers’ extend to the 90% uncertainty range. The line of zero in (a) indicates no change in intensity, while the line of one in (b) indicates no change
in frequency. The results are based on the multi-model ensemble estimated from simulations of global climate models contributing to the Coupled Model Intercomparison
Project Phase 6 (CMIP6) under different Shared Socio-economic Pathway (SSP) forcing scenarios. Intensity changes in (a) are expressed as standard deviations of the interannual
variability in the period 1850—1900 of the corresponding model. For details on the methods see Supplementary Material 11.SM.2. Further details on data sources and processing
are available in the chapter data table (Table 11.SM.9).
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levels, show contrasting trends (Figure 11.19). In the boreal winter
in the Northern Hemisphere, the areas affected by drying show high
agreement with those characterized by an increase in meteorological
drought projections (Figures 8.14 and 12.4). On the contrary, in the
boreal summer, the drought frequency increases worldwide in
comparison to meteorological drought projections, with large areas
of the Northern Hemisphere displaying a high signal-to-noise ratio
(low spead between models). This stresses the dominant influence
of ET (as a result of increased AED) in intensifying agricultural and
ecological droughts in the warm season in many locations, including
mid- to high latitudes.

Increased soil moisture limitation and associated changes in droughts
are projected to lead to increased vegetation stress affecting the
global land carbon sink in ESM projections (Green et al., 2019), with
implications for projected global warming (Cross-Chapter Box 5).
There is high confidence that the global land sink will become less
efficient due to soil moisture limitations and associated agricultural
and ecological drought conditions in some regions in higher-emissions
scenarios, specially under global warming levels above 4°C; however,
there is low confidence in how these water cycle feedbacks will play
out in lower-emissions scenarios (at 2°C global warming or lower;
Cross-Chapter Box 5.1).

11.6.5.4 Hydrological Deficits

Some studies support wetting tendencies as a response to a warmer
climate when considering globally averaged changes in runoff over
land (Roderick et al., 2015; Greve et al., 2017; Y. Yang et al., 2018),
and streamflow projections respond to enhanced CO, concentrations
in CMIP5 models (Yang et al., 2019). Nevertheless, when focusing
regionally on low-runoff periods, model projections also show an
increase of hydrological droughts in large world regions (Wanders
and Van Lanen, 2015; Dai et al., 2018; Vicente-Serrano et al., 2020c).
In general, the frequency of hydrological deficits is projected to
increase over most of the continents, although with regionally
and seasonally differentiated effects (Section 11.9), with medium
confidence of increase in the following ARG regions: WCE, MED,
SAU, WCA, WNA, SCA, NSA, SAM, SWS, SSA, WSAF, ESAF and MDG
(Section 11.9; Forzieri et al., 2014; Prudhomme et al., 2014; Giuntoli
etal., 2015; Wanders and Van Lanen, 2015; Roudier et al., 2016; Marx
et al., 2018; Cook et al., 2019; Zhao et al., 2020). However, there
are large uncertainties related to the hydrological/impact model used
(Prudhomme et al., 2014; Schewe et al., 2014; Gosling et al., 2017),
limited signal-to-noise ratio (due to model spread) in several regions
(Giuntolietal., 2015), and also uncertainties in the projection of future
human activities, including water demand and land cover changes,
which may represent more than 50% of the projected changes in
hydrological droughts in some regions (Wanders and Wada, 2015).

Regions dependent on mountainous snowpack as a temporary
reservoir may be affected by severe hydrological droughts in
a warmer world. In the southern European Alps, both winter and
summer low flows are projected to be more severe, with a 25%
decrease in the 2050s (Vidal et al., 2016). In western USA, a 22%
reduction in winter snow water equivalent is projected at around 2°C
of global warming, with a further decrease of a 70% reduction at
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4°C global warming (Rhoades et al., 2018). This decline would cause
less predictable hydrological droughts in snowmelt-dominated areas
of North America (Livneh and Badger, 2020). The exact magnitude
of the influence of higher temperatures on snow-related droughts
is, however, difficult to estimate (Mote et al., 2016), since the
streamflow changes could affect the timing of peak streamflows but
not necessarily their magnitude. In addition, projected changes in
hydrological droughts downstream of declining glaciers can be very
complex to assess (Chapter 9, see also SROCC).

11.6.5.5 Atmospheric-based Drought Indices

Studies show a stronger drying in projections based on atmospheric-
based drought indices compared to ESM projections of changes in
soil moisture (Berg and Sheffield, 2018) and runoff (Yang et al., 2019).
It has been suggested that this difference is due to physiological CO,
effects (Section 11.6.5.2; Roderick et al., 2015; Milly and Dunne,
2016; Swann et al, 2016; Lemordant et al, 2018; Scheff, 2018;
Swann, 2018; Greve et al,, 2019; Yang et al., 2020). Nonetheless, there
is evidence that differences in projections between atmospheric-
based drought indices and water-balance metrics from ESMs are not
alone due to CO,-plant effects (Berg et al., 2016; Scheff et al., 2021).
Differences can also be related to the fact that AED is an upper bound
for ET in dry regions and conditions (Section 11.6.1.2) and that soil
moisture stress limits increases in ET in projections (Section 11.6.5.2;
Berg et al., 2016; Zhou et al., 2021). In general, atmospheric-based
indices show more drying than total column soil moisture (Berg and
Sheffield, 2018; Cook et al., 2020; Scheff et al., 2021), but are more
consistent with projected increases in surface soil moisture deficits
(Dirmeyer et al., 2013; Dai et al,, 2018; Lu et al., 2019; Cook et al,,
2020; Vicente-Serrano et al., 2020c).

Atmospheric-based drought indices are not metrics of soil moisture
or runoff (Section 11.6.1.5) so their projections may not necessarily
reflect the same trend of online simulated soil moisture and runoff.
Independently of effects on the land water balance, atmospheric-
based drought indices will reflect the potential vegetation stress
resulting from deficits between available water and enhanced
AED, even in conditions with no or low ET. Under dry conditions,
the enhanced AED associated with human forcing would increase
plant water stress (Brodribb et al., 2020), with effects on widespread
forest dieback and mortality (Anderegg et al., 2013; Williams et al.,
2013; Allen et al., 2015; McDowell and Allen, 2015; McDowell et al.,
2016, 2020), and stronger risk of megafires (Flannigan et al., 2016;
Podschwit et al., 2018; Clarke and Evans, 2019; Varela et al., 2019).
For these reasons, there is high confidence that the future projections
of enhanced drought severity showed by the PDSI-PM and the SPEI-
PM are representative of more frequent and severe plant stress
episodes and more severe agricultural and ecological drought
impacts in some regions.

Global tendencies towards more severe and frequent agricultural and
ecological drought conditions are identified in future projections when
focusing on atmospheric-based drought indices such as the PDSI-PM
or the SPEI-PM. They expand the spatial extent of drought conditions
compared to meteorological drought to most of North America,
Europe, Africa, Central and East Asia and Southern Australia (Cook
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etal., 2014a; Chen and Sun, 2017a, b; Gao et al., 2017b; Lehner et al.,
2017; Zhao and Dai, 2017; Dai et al., 2018; Naumann et al., 2018;
Potopova et al, 2018; Gu et al, 2020; Vicente-Serrano et al.,
2020c; Dai, 2021). Projections in PDSI-PM and SPEI-PM are used to
complement total soil moisture projections in assessing projected
changes in agricultural and ecological drought (Section 11.9).

11.6.5.6 Synthesis for Different Drought Types

The tables in Section 11.9 provide assessed projected changes in
metorological drought, agricultural and ecological drought, and
hydrological droughts. The assessment shows that several regions will
be affected by more severe agricultural and ecological droughts even
if global warming is stabilized at 2°C, including MED, WSAF, SAM and
SSA (high confidence), and ESAF, MDG, EAU, SAU, SCA, CAR, NSA,
NES, SWS, WCE, NCA, WNA and CNA (medium confidence). Some
regions are also projected to be affected by more severe agricultural
and ecological droughts at 1.5°C (MED, WSAF, ESAF, SAU, NSA, SAM,
SSA, can; medium confidence) At 4°C of global warming, even more
regions would be affected by agricultural and ecological droughts
(WCE, MED, CAU, EAU, SAU, WCA, EAS, SCA, CAR, NSA, NES, SAM,
SWS, SSA, NCA, CNA, ENA, WNA, WSAF, ESAF and MDG). NEAF, SAS
are also projected to experience less agricultural and ecological
drought with global warming (medium confidence). Projected
changes in meteorological droughts are, overall, less extended but
also affect several AR6 regions, at 1.5°C and 2°C (MED, EAU, SAU,
SCA, NSA, NCA, WSAF, ESAF, MDG) and 4°C of global warming
(WCE, MED, EAU, SAU, SEA, SCA, CAR, NWS, NSA, NES, SAM, SWS,
SSA, NCA, ENA, WAF, WSAF, ESAF, MDG). Several regions are also
projected to be affected by more hydrological droughts at 1.5°C and
2°C (WCE, MED, WNA, WSAF, ESAF) and 4°C of global warming (NEU,
WCE, EEU, MED, SAU, WCA, SCA, NSA, SAM, SWS, SSA, WNA, WSAF,
ESAF, MDG). To illustrate the changes in both intensity and frequency
of drought in the regions where strongest changes are projected,
Figure 11.18 displays changes in the intensity and frequency of
soil moisture drought under different global warming levels (1.5°C,
2°C, 4°Q) relative to the 1851-1900 baseline based on CMIP6
simulations under different SSP forcing scenarios averaged over
“drying regions”, i.e. AR6 regions for which there is at least medium
confidence in increase in agricultural and ecological drought at 2°C
of global warming. The 90% uncertainty ranges for the projected
changes in both intensity and frequency are above zero, indicating
significant increase in both intensity and frequency of drought in
these regions as whole.

In summary, more regions are affected by increases in agricultural
and ecological droughts with increasing global warming (high
confidence). New evidence strengthens the SR1.5 conclusion that
even relatively small incremental increases in global warming
(+0.5°C) cause a worsening of droughts in some regions (high
confidence). Some regions are projected to be affected by more
severe agricultural and ecological droughts at 1.5°C of global
warming (MED, WSAF, ESAF, SAU, NSA, SAM, SSA, can; medium
confidence). A larger number of regions are projected to be affected
by more severe agricultural and ecological droughts at 2°C of global
warming, including MED, WSAF, SAM and SSA (high confidence),
and ESAF, MDG, EAU, SAU, SCA, CAR, NSA, NES, SWS, WCE, NCA,
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WNA and CNA (medium confidence). At 4°C of global warming,
even more regions would be affected by agricultural and ecological
droughts (WCE, MED, CAU, EAU, SAU, WCA, EAS, SCA, CAR, NSA,
NES, SAM, SWS, SSA, NCA, CNA, ENA, WNA, WSAF, ESAF and MDG).
Some regions are also projected to experience less agricultural
and ecological drought with global warming (medium confidence;
NEAF, SAS). There is high confidence that the projected increases in
agricultural and ecological droughts are strongly affected by AED
increases in a warming climate, although ET increases are projected
to be smaller than those in AED due to soil moisture limitations and
CO, effects on leaf stomatal conductance. Enhanced atmospheric
CO, concentrations lead to enhanced water-use efficiency in plants
(medium confidence), but there is low confidence that it can alleviate
agricultural and ecological droughts, or hydrological droughts, at
higher global warming levels characterized by limited soil moisture
and enhanced AED.

Projected changes in meteorological droughts are overall less
extended than for agricultural and ecological droughts, but also
affect several ARG regions, even at 1.5°C and 2°C of global warming.
Several regions are also projected to be more strongly affected by
hydrological droughts with increasing global warming (NEU, WCE,
EEU, MED, SAU, WCA, SCA, NSA, SAM, SWS, SSA, WNA, WSAF, ESAF,
MDG). Increased soil moisture limitation and associated changes in
droughts are projected to lead to increased vegetation stress in many
regions, with implications for the global land carbon sink (Cross-
Chapter Box 5). There is high confidence that the global land carbon
sink will become less efficient due to soil moisture limitations and
associated drought conditions in some regions in higher-emissions
scenarios, especially under global warming levels above 4°C;
however, there is low confidence on how these water cycle feedbacks
will play out in lower-emissions scenarios (at 2°C global warming or
lower; Cross-Chapter Box5.1).

11.7  Extreme Storms

Extreme storms, such as tropical cyclones (TCs), extratropical cyclones
(ETCs), and severe convective storms often have substantial societal
impacts. Quantifying the effect of climate change on extreme storms
is challenging, partly because extreme storms are rare, short-lived,
and local, and individual events are largely influenced by stochastic
variability. The high degree of random variability makes detection and
attribution of extreme storm trends more uncertain than detection
and attribution of trends in other aspects of the environment in
which the storms evolve (e.g., larger-scale temperature trends).
Projecting changes in extreme storms is also challenging because of
constraints in the models’ ability to accurately represent the small-
scale physical processes that can drive these changes. Despite the
challenges, progress has been made since AR5.

The SREX (Chapter 3) concluded that there is low confidence in observed
long-term (40 years or more) trends in TC intensity, frequency, and
duration, and any observed trends in phenomena such as tornadoes
and hail; it is likely that extratropical storm tracks have shifted
poleward in both the Northern and Southern Hemispheres, and that
heavy rainfalls and mean maximum wind speeds associated with TCs
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Figure 11.19 | Projected changes in (a—c) the number of consecutive dry days (CDD), (d—f) annual mean soil moisture over the total column, and (g-1) the
frequency and intensity of 1-in-10-year soil moisture drought for the June-to-August and December-to-February seasons at 1.5°C, 2°C, and 4°C of global
warming compared to the 1850-1900 baseline. The unit for soil moisture change is the standard deviation of interannual variability in soil moisture during 1850—1900.
Standard deviation is a widely used metric in characterizing drought severity. A projected reduction in mean soil moisture by one standard deviation corresponds to soil moisture
conditions typical of about 1-in-6-year droughts during 1850—-1900 becoming the norm in the future. Results are based on simulations from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) multi-model ensemble under the Shared Socio-economic Pathway (SSP), SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers
in the top right indicate the number of simulations included. Uncertainty is represented using the simple approach: no overlay indicates regions with high model agreement,
where =80% of models agree on the sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on the sign of change. For more
information on the simple approach, please refer to the Cross-Chapter Box Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in CDDs are also
displayed in the Interactive Atlas. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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will increase with continued greenhouse gas warming; it is likely that
the global frequency of TCs will either decrease or remain essentially
unchanged, while it is more likely than not that the frequency of the
most intense storms will increase substantially in some ocean basins;
there is low confidence in projections of small-scale phenomena such
as tornadoes and hail storms; and there is medium confidence that
there will be a reduced frequency and a poleward shift of mid-latitude
cyclones due to future anthropogenic climate change.

Since SREX, several IPCC Reports also assessed storms. The AR5
(Chapter 2, Hartmann et al., 2013) assessment observed with
low confidence long-term trends in TC metrics, but revised the
statement from SREX to state that it is virtually certain that there
are increasing trends in North Atlantic TC activity since the 1970s,
with medium confidence that anthropogenic aerosol forcing has
contributed to these trends. The AR5 concluded that it is likely that
TC precipitation and mean intensity will increase and more likely
than not that the frequency of the strongest storms will increase
with continued greenhouse gas warming. Confidence in projected
trends in overall TC frequency remained low. Confidence in observed
and projected trends in hail storm and tornado events also remained
low. The SROCC (Chapter 6, Collins et al., 2019) assessed past and
projected TCs and ETCs, supporting the AR5 conclusions with some
additional detail. Literature subsequent to AR5 adds support to the
likelihood of increasing trends in TC intensity, precipitation, and
frequency of the most intense storms, while some newer studies
have added uncertainty to projected trends in overall frequency.
A growing body of literature since AR5 on the poleward migration
of TCs led to a new assessment in SROCC of low confidence that
the migration in the western North Pacific represents a detectable
climate change contribution from anthropogenic forcing. The SR1.5
(Chapter 3, Hoegh-Guldberg et al., 2018) essentially confirmed the
AR5 assessment of TCs and ETCs, adding that heavy precipitation
associated with TCs is projected to be higher at 2°C compared to
1.5°C global warming (medium confidence).

The SREX, AR5, SROCC, and SR1.5, do not provide assessments of
the atmospheric rivers, and SROCC and SR1.5 do not assess severe
convective storms and extreme winds. This section assesses the state
of knowledge on the four phenomena of TCs, ETCs, severe convective
storms, and extreme winds. Atmospheric rivers are addressed
in Chapter 8. In this respect, this assessment closely mirrors the
SROCC assessment of TCs and ETCs, while updating SREX and AR5
assessments of severe convective storms and extreme winds.

11.7.1  Tropical Cyclones

11.7.1.1  Mechanisms and Drivers

The genesis, development, and tracks of TCs depend on conditions
of the largerscale circulations of the atmosphere and ocean
(Christensen et al., 2013). Large-scale atmospheric circulations, such
as the Hadley and Walker circulations and the monsoon circulations
can significantly affect TCs, as can internal variability acting on various
time scales (Annex IV), from intra-seasonal (e.g., the Madden—Julian
and Boreal Summer Intraseasonal oscillations and equatorial waves)
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and interannual (e.g., the El Niflo—Southern Oscillation and Pacific
and Atlantic Meridional Modes), to inter-decadal (e.g., Atlantic
Multidecadal Variability and Pacific Decadal Variability). This broad
range of natural variability makes detection of anthropogenic
effects difficult, and uncertainties in the projected changes of these
modes of variability increase uncertainty in the projected changes
in TC activity. Aerosol forcing also affects sea surface temperature
(SST) patterns and cloud microphysics, and it is /ikely that observed
changes in TC activity are partly caused by changes in aerosol forcing
(Evanetal.,, 2011;Ting et al., 2015; Sobel et al., 2016, 2019; Takahashi
et al,, 2017; Zhao et al., 2018; Reed et al,, 2019). Among possible
changes from these drivers, there is medium confidence that the
Hadley cell has widened and will continue to widen in the future
(Sections 2.3, 3.3 and 4.5). This likely causes latitudinal shifts of TC
tracks (Sharmila and Walsh, 2018). Regional TC activity changes are
also strongly affected by projected changes in SST warming patterns
(Yoshida et al., 2017), which are highly uncertain (Chapters 4 and 9).

11.7.1.2 Observed Trends

Identifying past trends in TC metrics remains a challenge due to the
heterogeneous character of the historical instrumental data, which
are known as ‘best-track’ data (Schreck et al., 2014). There is low
confidence in most reported long-term (multi-decadal to centennial)
trends in TC frequency- or intensity-based metrics due to changes in
the technology used to collect the best-track data. This should not be
interpreted as implying that no physical (real) trends exist, but rather
as indicating that either the quality or the temporal length of the
data is not adequate to provide robust trend detection statements,
particularly in the presence of multi-decadal variability.

There are previous and ongoing efforts to homogenize the best-track
data (Elsner et al., 2008; Kossin et al., 2013, 2020; Choy et al., 2015;
Landsea, 2015; Emanuel et al., 2018) and there is substantial literature
that finds positive trends in intensity-related metrics in the best-track
during the ‘satellite period’, which is generally limited to around the
past 40 years (Kang and Elsner, 2012; Kishtawal et al., 2012; Kossin
et al., 2013, 2020; Mei and Xie, 2016; Zhao et al., 2018; Tauvale and
Tsuboki, 2019). When best-track trends are tested using homogenized
data, the intensity trends generally remain positive, but are smaller in
amplitude (Kossin et al., 2013; Holland and Bruyére, 2014). Kossin et al.
(2020) extended the homogenized TC intensity record to the period
1979-2017 and identified significant global increases in major TC
exceedance probability of about 6% per decade. In addition to trends
in TC intensity, there is evidence that TC intensification rates and the
frequency of rapid intensification events have increased within the
satellite era (Kishtawal et al., 2012; Balaguru et al., 2018; Bhatia et al.,
2018). The increase in intensification rates is found in the best-track
and the homogenized intensity data.

A subset of the best-track data corresponding to hurricanes that have
directly impacted the USA since 1900 is considered to be reliable, and
shows no trend in the frequency of USA landfall events (Knutson et al.,
2019). However, an increasing trend in normalized USA hurricane
damage, which accounts for temporal changes in exposed wealth
(Grinsted et al,, 2019), and a decreasing trend in TC translation
speed over the USA (Kossin, 2019) have also been identified in this
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period. A similarly reliable subset of the data representing TC landfall
frequency over Australia shows a decreasing trend in Eastern Australia
since the 1800s (Callaghan and Power, 2011), as well as in other parts
of Australia since 1982 (Chand et al., 2019; Knutson et al., 2019).
A paleoclimate proxy reconstruction shows that recent levels of TC
interactions along parts of the Australian coastline are the lowest
in the past 550-1500 years (Haig et al., 2014). Existing TC datasets
show substantial inter-decadal variations in basin-wide TC frequency
and intensity in the western North Pacific, but a statistically significant
north-westward shift in the western North Pacific TC tracks since the
1980s (T.-C. Lee et al., 2020). In the case of the North Indian Ocean,
analyses of trends are highly dependent on the details of each analysis
(e.g., pre- and/or post-monsoon season period, or Bay of Bengal and/
or Arabian Sea region). The most consistent trends are an increase in
the occurrence of the most intense TCs, and a decrease in the overall
TC frequency, in particular in the Bay of Bengal (Sahoo and Bhaskaran,
2016; Balaji et al., 2018; Singh et al., 2019; Baburaj et al., 2020). In
the South Indian Ocean (SI0), an increase in the occurrence of the
most intense TCs has been noted; however, there are well-known
data quality issues there (Kuleshov et al., 2010; Fitchett, 2018). When
the SIO data are homogenized, a significant increase is found in the
fractional proportion of global Category 3-5 TC instances (6-hourly
intensity estimates during the lifetime of each TC) to all Category 1-5
instances (Kossin et al., 2020).

As with all confined regional analyses of TC frequency, it is generally
unclear whether any identified changes are due to a basin-wide

Weather and Climate Extreme Events in a Changing Climate

change in TC frequency, or to systematic track shifts (or both).
From an impacts perspective, however, these changes over land are
highly relevant and emphasize that large-scale modifications in TC
behaviour can have a broad spectrum of impacts on a regional scale.

Subsequent to AR5, two metrics have been analysed that are argued
to be comparatively less sensitive to data issues than frequency- and
intensity-based metrics. Trends in these metrics have been identified
over the past 70 years or more (Knutson et al., 2019). The first metric —
the mean latitude where TCs reach their peak intensity — exhibits
a global and regional poleward migration during the satellite period
(Kossin et al., 2014). The poleward migration can influence TC hazard
exposure and risk (Kossin et al., 2016a) and is consistent with the
independently observed expansion of the tropics (Lucas et al., 2014).
The migration has been linked to changes in the Hadley circulation
(Altman et al., 2018; Sharmila and Walsh, 2018; Studholme and
Gulev, 2018). The migration is also apparent in the mean locations
where TCs exhibit eyes (Knapp et al., 2018), which is when TCs are
most intense. Part of the Northern Hemisphere poleward migration
is due to basin-wide changes in TC frequency (Kossin et al., 2014,
2016b; Moon et al., 2015, 2016) and the trends, as expected, can
be sensitive to the time period chosen (Tennille and Ellis, 2017;
Kossin, 2018; Song and Klotzbach, 2018) and to subsetting of the
data by intensity (Zhan and Wang, 2017). The poleward migration is
particularly pronounced and well-documented in the western North
Pacific basin (Kossin et al., 2016a; Oey and Chou, 2016; Liang et al.,
2017; Nakamura et al., 2017; Altman et al., 2018; Daloz and Camargo,

( Changes in storms with increasing global warming )

L( Global )

Tropical cyclones
Extratropical cyclones
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¢ Tropical cyclones
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Figure 11.20 | Summary schematic of past and projected changes in tropical cyclone (TC), extratropical cyclone (ETC), atmospheric river (AR), and severe
convective storm (SCS) behaviour. Global changes (blue shading) from top to bottom: (i) Increased mean and maximum rain rates in TCs, ETCs, and ARs [past (fow
confidence due to lack of reliable data) and projected (high confidence)]; (ii) Increased proportion of stronger TCs [past (medium confidence) and projected (high confidence)];
(iiii) Decrease or no change in global frequency of TC genesis [past (low confidence due to lack of reliable data) and projected (medium confidence)]; and (iv) Increased and
decreased ETC wind speed, depending on the region, as storm tracks change [past (low confidence due to lack of reliable data) and projected (medium confidence)]. Regional
changes, from left to right: (i) Poleward TC migration in the western North Pacific and subsequent changes in TC exposure [past (medium confidence) and projected (medium
confidence)]; (ii) Slowdown of TC forward translation speed over the contiguous USA and subsequent increase in TC rainfall [past (medium confidence) and projected (Jow
confidence due to lack of directed studies)]; and (iii) Increase in mean and maximum SCS rain rate and increase in spring SCS frequency and season length over the contiguous
USA [past (low confidence due to lack of reliable data) and projected (medium confidence)].
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2018; J. Sun et al,, 2019; T.-C. Lee et al., 2020; Yamaguchi and Maeda,
2020a; Kubota et al., 2021).

A second metric that is argued to be comparatively less sensitive
to data issues than frequency- and intensity-based metrics is TC
translation speed (Kossin, 2018), which exhibits a global slowdown
in the best-track data over the period 1949-2016. TC translation
speed is a measure of the speed at which TCs move across the
Earth's surface, and is very closely related to local rainfall amounts
(ie., a slower translation speed causes greater local rainfall). TC
translation speed also affects structural wind damage and coastal
storm surge by changing the hazard event duration. The slowdown is
observed in the best-track data from all basins except the Northern
Indian Ocean, and is also found in a number of regions where TCs
interact directly with land. The slowing trends identified in the best-
track data by Kossin (2018) have been argued to be largely due to
data heterogeneity. Moon et al. (2019) and Lanzante (2019) provide
evidence that meridional TC track shifts project onto the slowing
trends, and argue that these shifts are due to the introduction of
satellite data. Kossin (2019) provides evidence that the slowing trend
is real by focusing on Atlantic TC track data over the contiguous USA
in the 118-year period 1900-2017, which are generally considered
reliable. In this period, mean TC translation speed has decreased by
17%. The slowing TC translation speed is expected to increase local
rainfall amounts, which would increase coastal and inland flooding.
In combination with slowing translation speed, abrupt TC track
direction changes — that can be associated with track ‘meanders’
or ‘stalls’ — have become increasingly common along the North
American coast since the mid-20th century, leading to more rainfall
in the region (Hall and Kossin, 2019).

In summary, there is mounting evidence that a variety of TC
characteristics have changed over various time periods. It is likely that
the global proportion of Category 3-5 tropical cyclone instances and
the frequency of rapid intensification events have increased globally
over the past 40 years. It is very likely that the average location
where TCs reach their peak wind intensity has migrated poleward in
the western North Pacific Ocean since the 1940s. It is likely that TC
translation speed has slowed over the USA since 1900.

11.7.1.3 Model Evaluation

Accurate projections of future TC activity have two principal
requirements: accurate representation of changes in the relevant
environmental factors (e.g., SSTs) that can affect TC activity, and
accurate representation of actual TC activity in given environmental
conditions. In particular, models’ capacity to reproduce historical trends
or interannual variabilities of TC activity is relevant to the confidence in
future projections. One test of the models is to evaluate their ability to
reproduce the dependency of the TC statistics in the different basins in
the real world, in addition to their capability of reproducing atmospheric
and ocean environmental conditions. For the evaluation of projections
of TC-relevant environmental variables, AR5 confidence statements
were based on global surface temperature and moisture, but not on
the detailed regional structure of SST and atmospheric circulation
changes such as steering flows and vertical shear, which affect
characteristics of TCs (genesis, intensity, tracks, etc.). Various aspects of
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TC metrics are used to evaluate how capable models are of simulating
present-day TC climatologies and variability (e.g., TC frequency, wind
intensity, precipitation, size, tracks, and their seasonal and interannual
changes) (Walsh et al., 2015; Camargo and Wing, 2016; Knutson et al.,
2019, 2020). Other examples of TC climatology/variability metrics are
spatial distributions of TC occurrence and genesis (Walsh et al., 2015),
seasonal cycles and interannual variability of basin-wide activity (Zhao
et al., 2009; Shaevitz et al., 2014; Kodama et al., 2015; Murakami et al.,
2015; Yamada et al., 2017) or landfalling activity (Lok and Chan, 2018),
as well as newly developed process-diagnostics designed specifically
for TCs in climate models (D. Kim et al, 2018; Wing et al, 2019;
Moon et al., 2020).

Confidence in the projection of intense TCs, such as those of
Category 4-5, generally becomes higher as the resolution of the
models becomes higher. The Coupled Model Intercomparison Project
Phases 5 and 6 (CMIP5/6) class climate models (around 100-200 km
grid spacing) cannot simulate TCs of Category 4-5 intensity. They do
simulate storms of relatively high vorticity that are at best described
as 'TC-like’, but metrics such as storm counts are highly dependent
on tracking algorithms (Camargo, 2013; Wehner et al., 2015; Zarzycki
and Ullrich, 2017; Roberts et al., 2020a). High-resolution GCMs
(around 10-60 km grid spacing), as used in HighResMIP (Haarsma
et al., 2016; Roberts et al., 2020a), begin to capture some structures
of TCs more realistically, as well as produce intense TCs of Category
4-5 despite the effects of parametrized deep cumulus convection
processes (Murakami et al., 2015; Wehner et al., 2015; Yamada
et al., 2017; Roberts et al., 2018; Moon et al., 2020). Convection-
permitting models (around 1-10 km grid-spacing), such as used
in some dynamical downscaling studies, provide further realism
with capturing TC eye-wall structures (Tsuboki et al., 2015). Model
characteristics besides resolution, especially details of convective
parametrization, can influence a model’s ability to simulate intense
TCs (Reed and Jablonowski, 2011; Zhao et al., 2012; He and Posselt,
2015; D. Kim et al., 2018; Zhang and Wang, 2018; Camargo et al,,
2020). However, models’ dynamical cores and other physics also
affect simulated TC properties (Reed et al., 2015; Vidale et al., 2021).
Both wide-area regional and global convection-permitting models
without the need for parameterized convection are becoming more
useful for TC regional model projection studies (Tsuboki et al., 2015;
Kanada et al., 2017a; Gutmann et al, 2018) and global model
projection studies (Satoh et al., 2015, 2017; Yamada et al., 2017),
as they capture more realistic TC eye wall structures (Kinter Il et al.,
2013) and are becoming more useful for investigating changes in TC
structures (Kanada et al., 2013; Yamada et al., 2017). Large ensemble
simulations of GCMs with 60 km grid spacing provide TC statistics
that allow more reliable detection of changes in the projections,
which are not well captured in any single experiment (Yoshida et al.,
2017; Yamaguchi et al., 2020). Variable resolution global models offer
an alternative to regional models for individual TC or basin-wide
simulations (Yanase et al., 2012; Zarzycki et al., 2014; Harris et al.,
2016; Reed et al., 2020; Stansfield et al., 2020). Computationally less
intense than equivalent uniform resolution global models, they also
do not require lateral boundary conditions, thus reducing this source
of error (Hashimoto et al., 2016). Confidence in the projection of TC
statistics and properties is increased by the use of higher-resolution
models with more realistic simulations.
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Operational forecasting models also reproduce TCs, and their use for
climate projection studies shows promise. However, there is limited
application for future projections as they are specifically developed
for operational purposes, and TC climatology is not necessarily well
evaluated. Intercomparison of operational models indicates that
enhancement of horizontal resolution can provide more credible
projections of TCs (Nakano et al., 2017). Likewise, high-resolution
climate models show promise as TC forecast tools (Zarzycki and
Jablonowski, 2015; Reed et al, 2020), further narrowing the
continuum of weather and climate models, and increasing confidence
in projections of future TC behaviour. However, higher horizontal
resolution does not necessarily lead to an improved TC climatology
(Camargo et al., 2020).

Atmosphere—ocean interaction is an important process in TC
evolution. Atmosphere—ocean coupled models are generally better
than atmosphere-only models at capturing realistic processes related
to TCs (Murakami et al., 2015; Ogata et al., 2015, 2016; Zarzycki, 2016;
Kanada et al., 2017b; Scoccimarro et al., 2017). However, the basin-
scale SST biases commonly found in atmosphere—ocean models can
introduce substantial errors in the simulated TC number (Hsu et al.,
2019). Higher-resolution ocean models improve the simulation of TCs
by reducing the SST climatology bias (Li and Sriver, 2018; Roberts
et al., 2020a). Coarse resolution atmospheric models may degrade
coupled model performance as well. For example, in a case study
of Hurricane Harvey, Trenberth et al. (2018) suggested that the lack
of realistic hurricane frequency and intensity within coupled climate
models hampers the models” ability to simulate SST and ocean heat
content and their changes.

Even with higher-resolution atmosphere—ocean coupled models, TC
projection studies still rely on assumptions in experimental design
that introduce uncertainties. Computational constraints often limit
the number of simulations, resulting in relatively small ensemble
sizes and incomplete analyses of possible future SST magnitude
and pattern changes (Zhao and Held, 2011; Knutson et al., 2013).
Uncertainties in aerosol forcing also are reflected in TC projection
uncertainty (Wang et al., 2014).

Regional climate models (RCM) with grid spacing around 15-50 km
can be used to study the projection of TCs. RCMs are run with
lateral and surface boundary conditions, which are specified by the
atmospheric state and SSTs simulated by GCMs. Various combinations
of the lateral and surface boundary conditions can be chosen for RCM
studies, and uncertainties in the projection can be further examined
in general. They are used for studying changes in TC characteristics
in a specific area, such as Vietnam (Redmond et al., 2015) and the
Philippines (Gallo et al., 2019).

Less computationally expensive downscaling approaches that allow
larger ensembles and long-term studies are also used in the projection
of TCs (Emanuel et al., 2006; C.Y. Lee et al., 2018). A statistical—
dynamical TC downscaling method requires assumptions of the
rate of seeding of random initial disturbances, which are generally
assumed to not change with climate change (Emanuel et al., 2008;
Emanuel, 2013). The results with the downscaling approach might
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depend on the assumptions, which are required for the simplification
of the methods.

In summary, various types of models are useful to study how TCs
change in response to climate changes, and there is no unique
solution for choosing a model type. However, higher-resolution models
generally capture TC properties more realistically (high confidence).
In particular, models with horizontal resolutions of 10-60 km are
capable of reproducing strong TCs with Category 4-5 and those of
1-10 km are capable of the eye wall structure of TCs. Uncertainties in
TC simulations come from details of the model configuration of both
dynamical and physical processes. Models with realistic atmosphere—
ocean interactions are generally better than atmosphere-only models
at reproducing realistic TC evolutions (high confidence).

11.7.1.4 Detection and Attribution, Event Attribution

There is general agreement in the literature that anthropogenic
greenhouse gases and aerosols have measurably affected observed
oceanic and atmospheric variability in TC-prone regions (see
Chapter 3). This underpinned the SROCC assessment of medium
confidence that humans have contributed to the observed increase in
Atlantic hurricane activity since the 1970s (Chapter 5, Bindoff et al.,
2013). Literature subsequent to AR5 lends further support to this
statement (Knutson et al., 2019). However, there is still no consensus
on the relative magnitude of human and natural influences on past
changes in Atlantic hurricane activity, and particularly on which
factor has dominated the observed increase (Ting et al., 2015) and
it remains uncertain whether past changes in Atlantic TC activity
are outside the range of natural variability. A recent result using
high-resolution dynamical model experiments suggested that the
observed spatial contrast in TC trends cannot be explained only by
multi-decadal natural variability, and that external forcing plays an
important role (Murakami et al., 2020). Observational evidence for
significant global increases in the proportion of major TC intensities
(Kossin et al., 2020) is consistent with both theory and numerical
modelling simulations, which generally indicate an increase in mean
TC peak intensity and the proportion of very intense TCs in a warming
world (Knutson et al., 2015, 2020; Walsh et al., 2015, 2016). In
addition, high-resolution coupled model simulations provide support
that natural variability alone is unlikely to explain the magnitude
of the observed increase in TC intensification rates and upward TC
intensity trend in the Atlantic basin since the early 1980s (Bhatia
et al., 2019; Murakami et al., 2020).

The cause of the observed slowdown in TC translation speed is not
yet clear. Yamaguchi et al. (2020) used large ensemble simulations
to argue that part of the slowdown is due to actual latitudinal shifts
of TC tracks, rather than data artefacts, in addition to atmospheric
circulation changes. G. Zhang et al. (2020) used large ensemble
simulations to show that anthropogenic forcing can lead to a robust
slowdown, particularly outside of the tropics at higher latitudes.
Yamaguchi and Maeda (2020b) found a significant slowdown in
the western North Pacific over the past 40 years and attributed the
slowdown to a combination of natural variability and global warming.
The slowing trend since 1900 over the USA is robust and significant
after removing multi-decadal variability from the time series
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(Kossin, 2019). Among the hypotheses discussed is the physical
linkage between warming and slowing circulation (Held and
Soden, 2006; see also Section 8.2.2.2), with expectations of Arctic
amplification and weakening circulation patterns through weakening
meridional temperature gradients (Coumou et al., 2018; see also
Cross-Chapter Box 10.1), or through changes in planetary wave
dynamics (Mann et al., 2017). The tropics expansion and the poleward
shift of the mid-latitude westerlies associated with warming is also
suggested as the reason of the slowdown (G. Zhang et al., 2020).
However, the connection of these mechanisms to the slowdown has
not been robustly shown. Furthermore, slowing trends have not been
unambiguously observed in circulation patterns that steer TCs, such
as the Walker and Hadley circulations (Section 2.3.1.4), although
these circulations generally slow down in numerical simulations
under global warming (Sections 4.5.1.6 and 8.4.2.2).

The observed poleward trend in western North Pacific TCs remains
significant after accounting for the known modes of dominant
interannual to decadal variability in the region (Kossin et al., 2016a),
and is also found in CMIP5 model-simulated TCs (in the recent
historical period 1980-2005), although it is weaker than observed
and is not statistically significant (Kossin et al., 2016a). However,
the trend is significant in 21st-century CMIP5 projections under the
RCP8.5 scenario, with a similar spatial pattern and magnitude to the
past observed changes in that basin over the period 1945-2016,
supporting a possible anthropogenic greenhouse gas contribution to
the observed trends (Kossin et al., 2016a; Knutson et al., 2019).

The recent active TC seasons in some basins have been studied to
determine whether there is anthropogenic influence. For 2015,
Murakami et al. (2017b) explored the unusually high TC frequency
near Hawaii and in the eastern Pacific basin. W. Zhang et al. (2016b)
considered unusually high Accumulated Cyclone Energy (ACE) in the
western North Pacific; and S.-H. Yang et al. (2018) and Yamada et al.
(2019) looked at TC intensification in the western North Pacific. These
studies suggest that the anomalous TC activity in 2015 was not solely
explained by the effect of an extreme El Nifio (see Box 11.4) and
that there was also an anthropogenic contribution, mainly through
the effects of SSTs in subtropical regions. In the post-monsoon
seasons of 2014 and 2015, tropical storms with lifetime maximum
winds greater than 46 m s=' were first observed over the Arabian
Sea, and Murakami et al. (2017a) showed that the probability of late-
season severe tropical storms is increased by anthropogenic forcing
compared to the preindustrial era. Murakami et al. (2018) concluded
that the active 2017 Atlantic hurricane season was mainly caused
by pronounced SSTs in the tropical North Atlantic and that these
types of seasonal events will intensify with projected anthropogenic
forcing. The trans-basin SST change, which might be driven by
anthropogenic aerosol forcing, also affects TC activity. Takahashi
et al. (2017) suggested that a decrease in sulphate aerosol emissions
caused about half of the observed decreasing trends in TC genesis
frequency in the south-eastern region of the western North Pacific
during 1992-2011.

Event attribution is used in TC case studies to test whether the
severities of recent intense TCs are explained without anthropogenic
effects. In a case study of Hurricane Sandy (2012), Lackmann (2015)
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found no statistically significant impact of anthropogenic climate
change on storm intensity, while projections in a warmer world
showed significant strengthening. However, Magnusson et al. (2014)
found that, in European Centre for Medium-Range Weather Forecast
(ECMWF) simulations, the simulated cyclone depth and intensity,
as well as precipitation, were larger when the model was driven
by the warmer actual SSTs than the climatological average SSTs. In
Super Typhoon Haiyan, which struck the Philippines on 8 November
2013, Takayabu et al. (2015) took an event attribution approach
with cloud system-resolving (around 1 km) downscaling ensemble
experiments to evaluate the anthropogenic effect on typhoons, and
showed that the intensity of the simulated worst-case storm in the
actual conditions was stronger than that in a hypothetical condition
without historical anthropogenic forcing in the model. However,
in a similar approach with two coarser parametrized convection
models, Wehner et al. (2019) found conflicting human influences
on Haiyan's intensity. Patricola and Wehner (2018) found little
evidence of an attributable change in intensity of hurricanes Katrina
(2005), Irma (2017), and Maria (2017) using a regional climate
model configured between 3 km and 4.5 km resolution. They did,
however, find attributable increases in heavy precipitation totals.
These results imply that higher resolution, such as in a convective
permitting 5 km or less mesh model, is required to obtain a robust
anthropogenic intensification of a strong TC by simulating realistic
rapid intensification (Kanada and Wada, 2016; Kanada et al., 2017a),
and that whether the TC intensification can be attributed to the
recent warming depends on the case.

The dominant factor in the extreme rainfall amounts during Hurricane
Harvey's passage onto the USA in 2017 was its slow translation speed.
But studies published after the event have argued that anthropogenic
climate change contributed to an increase in rain rate, which
compounded the extreme local rainfall caused by the slow translation.
Emanuel (2017) used a large set of synthetically-generated storms
and concluded that the occurrence of extreme rainfall as observed
in Harvey was substantially enhanced by anthropogenic changes
to the larger-scale ocean and atmosphere characteristics; Trenberth
et al. (2018) linked Harvey's rainfall totals to the anomalously large
ocean heat content from the Gulf of Mexico; and van Oldenborgh
et al. (2017) and Risser and Wehner (2017) applied extreme value
analysis to extreme rainfall records in the Houston, Texas region, both
attributing large increases to climate change. Large precipitation
increases during Harvey due to global warming were also found
using climate models (van Oldenborgh et al., 2017; S.-Y.S.Wang et al.,
2018). Harvey precipitation totals were estimated in these papers to
be three to 10 times more probable due to climate change. A best
estimate from a regional climate and flood model is that urbanization
increased the risk of the Harvey flooding by a factor of 21 (W. Zhang
et al., 2018), using a regional climate and flood model, found that
surface roughness from urbanization increased the risk of the Harvey
flooding by a factor of 21. Anthropogenic effects on precipitation
increases were also predicted in advance from a forecast model for
Hurricane Florence in 2018 (Reed et al., 2020).

In summary, it is very likely that the recent active TC seasons in

the North Atlantic, the North Pacific, and Arabian basins cannot be
explained without an anthropogenic influence. The anthropogenic
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influence on these changes is principally associated to aerosol forcing,
with stronger contributions to the response in the North Atlantic. It
is more likely than not that the slowdown of TC translation speed
over the USA has contributions from anthropogenic forcing. It is
likely that the poleward migration of TCs in the western North Pacific
and the global increase in TC intensity rates cannot be explained
entirely by natural variability. Event attribution studies of specific
strong TCs provide /imited evidence for anthropogenic effects on TC
intensifications so far, but high confidence for increases in TC heavy
precipitation. There is high confidence that anthropogenic climate
change contributed to extreme rainfall amounts during Hurricane
Harvey (2017) and other intense TCs.

11.7.1.5  Projections

A summary of studies on TC projections for the late 21st century,
particularly studies since AR5, is given by Knutson et al. (2020), which
is an assessment report mandated by the World Meteorological
Organization (WMO). Studies subsequent to Knutson et al. (2020)
are generally consistent, and the confidence assessments here
closely follow theirs (Cha et al.,, 2020), although there are some
differences due to the varying confidence calibrations between the
IPCC and WMO reports.

There is not an established theory for the drivers of future changes
in the frequency of TCs. Most, but not all, high-resolution global
simulations project significant reductions in the total number of TCs,
with the bulk of the reduction at the weaker end of the intensity
spectrum as the climate warms (Knutson et al, 2020). Recent
exceptions based on high-resolution coupled model results are
noted in Bhatia et al. (2018) and Vecchi et al. (2019). Vecchi et al.
(2019) showed that the representation of synoptic-scale seeds for TC
genesis in their high-resolution model causes different projections of
global TC frequency, and there is evidence for a decrease in cyclone
seeds in some projected TC simulations (Sugi et al., 2020; Yamada
et al., 2011). However, other research indicates that TC seeds are not
an independent control on climatological TC frequency, rather the
seeds covary with the large-scale controls on TCs (Patricola et al.,
2018). While empirical genesis indices derived from observations and
reanalysis describe well the observed subseasonal and interannual
variability of current TC frequency (Camargo et al., 2007, 2009; Tippett
etal,, 2011; Menkes et al., 2012), they fail to predict the decreased TC
frequency found in most high-resolution model simulations (Zhang
et al,, 2010; Camargo, 2013; Wehner et al., 2015), as they generally
project an increase as the climate warms. This suggests a limitation
of the use of the empirical genesis indices for projections of TC
genesis, in particular due to their sensitivity to the humidity variable
considered in the genesis index for these projections (Camargo et al.,
2014). In a different approach, a statistical-dynamical downscaling
framework assuming a constant seeding rate with warming (Emanuel,
2013, 2021) exhibits increases in TC frequency consistent with
genesis indices-based projections, while downscaling with a different
model leads to two different scenarios depending on the humidity
variable considered (C.-Y. Lee et al., 2020). This disparity in the sign
of the projected change in global TC frequency, and the difficulty in
explaining the mechanisms behind the different signed responses,
further emphasize the lack of process understanding of future
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changes in tropical cyclogenesis (Walsh et al., 2015; Hoogewind
et al,, 2020). Even within a single model, uncertainty in the pattern of
future SST changes leads to large uncertainties (including the sign)
in the projected change in TC frequency in individual ocean basins,
although global TCs would appear to be less sensitive (Yoshida et al.,
2017; Bacmeister et al., 2018).

Changes in SST and atmospheric temperature and moisture play
a role in tropical cyclogenesis (Walsh et al., 2015). Reductions in
vertical convective mass flux due to increased tropical stability have
been associated with a reduction in cyclogenesis (Held and Zhao,
2011; Sugi et al., 2012). Satoh et al. (2015) further posit that the
robust simulated increase in the number of intense TCs, and hence
increased vertical mass flux associated with intense TCs, must lead
to a decrease in overall TC frequency because of this association. The
Genesis Potential Index can be modified to mimic the TC frequency
decreases of a model by altering the treatment of humidity (Camargo
et al., 2014). This supports the idea that increased mid-tropospheric
saturation deficit (Emanuel et al, 2008) controls TC frequency,
but the approach remains empirical. Other possible controlling
factors, such as a decline in the number of seeds (held constant
in Emanuel’s downscaling approach, or dependent on the genesis
index formulation in the approach proposed by C.-Y. Lee et al., 2020)
caused by increased atmospheric stability have been proposed,
but questioned as an important factor (Patricola et al., 2018). The
resolution of atmospheric models affects the number of seeds, hence
TC genesis frequency (Vecchi et al,, 2019; Sugi et al., 2020; Yamada
et al., 2021). The diverse and sometimes inconsistent projected
changes in global TC frequency by high-resolution models indicate
that better process understanding and improvement of the models
are needed to raise confidence in these changes.

Most TC-permitting model simulations (10-60 km or finer grid
spacing) are consistent in their projection of increases in the
proportion of intense TCs (Category 4-5), as well as an increase in
the intensity of the strongest TCs defined by maximum wind speed
or central pressure fall (Murakami et al., 2012; Tsuboki et al., 2015;
Wehner et al., 2018a; Knutson et al., 2020). The general reduction
in the total number of TCs, which is concentrated in storms weaker
than or equal to Category 1, contributes to this increase. The models
are somewhat less consistent in projecting an increase in the
frequency of Category 4-5 TCs (Wehner et al., 2018a; Knutson et al.,
2020). The projected increase in the intensity of the strongest TCs is
consistent with theoretical understanding (e.g., Emanuel, 1987) and
observations (e.g., Kossin et al., 2020). For a 2°C global warming,
the median proportion of Category 4-5 TCs increases by 13%,
while the median global TC frequency decreases by 14%, which
implies that the median of the global Category 4-5 TC frequency is
slightly reduced by 1% or almost unchanged (Knutson et al., 2020).
Murakami et al. (2020) projected a decrease in TC frequency over the
coming century in the North Atlantic due to greenhouse warming,
as consistent with Dunstone et al. (2013), and a reduction in TC
frequency almost everywhere in the tropics in response to +1%
CO, forcing. Exceptions include the central North Pacific (Hawaii
region), east of the Philippines in the North Pacific, and two relatively
small regions in the northern Arabian Sea and Bay of Bengal. These
projections can vary substantially between ocean basins, possibly
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due to differences in regional SST warming and warming patterns
(Sugi et al., 2017; Yoshida et al, 2017; Bacmeister et al., 2018).
A summary of projections of TC characteristics is schematically
shown by Figure 11.20.

The increase in global TC maximum surface wind speeds is about 5%
for a 2°C global warming across a number of high-resolution multi-
decadal studies (Knutson et al., 2020). This indicates the deepening
in global TC minimum surface pressure under the global warming
conditions. A regional cloud-permitting model study shows that the
strongest TC in the western North Pacific can be as strong as 857 hPa
in minimum surface pressure with a wind speed of 88 m s~ under
warming conditions in 2074-2087 (Tsuboki et al., 2015). TCs are
also measured by quantities such as ACE and the power dissipation
index (PDI), which conflate TC intensity, frequency, and duration
(Murakami et al., 2014). Several TC modelling studies (Yamada et al.,
2010; H.S. Kim et al., 2014; Knutson et al., 2015) project little change
or decreases in the globally accumulated value of PDI or ACE, which
is due to the decrease in the total number of TCs.

A projected increase in global average TC rain rates of about 12%
for a 2°C global warming is consistent with the Clausius—Clapeyron
scaling of saturation-specific humidity (Knutson et al, 2020).
Increases substantially greater than Clausius—Clapeyron scaling are
projected in some regions, which is caused by increased low-level
moisture convergence due to projected TC intensity increases in those
regions (Knutson et al., 2015; Phibbs and Toumi, 2016; Patricola and
Wehner, 2018; M. Liu et al., 2019a). Projections of TC precipitation
using large-ensemble experiments (Kitoh and Endo, 2019) show
that the annual maximum one-day precipitation total is projected
to increase, except for the western North Pacific where only a small
change (or even a reduction) is projected, mainly due to a projected
decrease of TC frequency. They also show that the 10-year return
value of extreme Rx1day associated with TCs will greatly increase
in a region extending from Hawaii to the south of Japan. TC tracks
and the location of topography relative to TCs significantly affect
precipitation, thus, in general, areas on the eastern and southern
faces of mountains have more impacts of TC precipitation changes
(Hatsuzuka et al., 2020). Projection studies using variable-resolution
models in the North Atlantic (Stansfield et al., 2020) indicate that TC-
related precipitation rates within North Atlantic TCs and the amount
of hourly precipitation due to TC are projected to increase by the end
of the century compared to a historical simulation. However, the
annual average TC-related Rx5day over the eastern USA is projected
to decrease because of a reduction in landfalling TCs. RCM studies
with around 25-50 km grid spacing are used to study projected
changes in TCs. The projected changes of TCs in South East Asia
simulated by RCMs are consistent with those of most GCMs, showing
a decrease in TC frequency and an increase in the amount of TC-
associated precipitation or an increase in the frequency of intense
TCs (Redmond et al., 2015; Gallo et al., 2019).

Projected changes in TC tracks or TC areas of occurrence in the
late 21st century vary considerably among available studies,
although there is better agreement in the western North Pacific.
Several studies project either poleward or eastward expansion
of TC occurrence over the western North Pacific region, and more
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TC occurrence in the central North Pacific (Yamada et al., 2017;
Yoshida et al., 2017; Wehner et al., 2018a; Roberts et al., 2020b).
The observed poleward expansion of the latitude of maximum TC
intensity in the western North Pacific is consistently reproduced
by the CMIP5 models and downscaled models, and these models
show further poleward expansion in the future; the projected mean
migration rate of the mean latitude where TCs reach their lifetime-
maximum intensity is 0.2+0.1° from CMIP5 model results, while it
is 0.1320.04° from downscaled models in the western North Pacific
(Kossin et al., 2014, 2016a). In the North Atlantic, while the location
of TC maximum intensity does not show clear poleward migration
observationally (Kossin et al., 2014), it tends to migrate poleward
in projections (Garner et al., 2017). The poleward migration is less
robust among models and observations in the Indian Ocean, eastern
North Pacific, and South Pacific (e.g., Tauvale and Tsuboki, 2019;
Ramsay et al. 2018; Cattiaux et al. 2020). There is presently no clear
consensus in projected changes in TC translation speed (Knutson
et al,, 2020), although recent studies suggest a slowdown outside
of the tropics (Kossin, 2019; Yamaguchi et al., 2020; G. Zhang et al.,
2020), but regionally there can even be an acceleration of the storms
(Hassanzadeh et al., 2020).

The spatial extent, or ‘size’, of the TC wind field is an important
determinant of storm surge and damage. No detectable anthropogenic
influences on TC size have been identified to date, because TCs in
observations vary in size substantially (Chan and Chan, 2015) and
there is no definite theory on what controls TC size, although this
is an area of active research (Chavas and Emanuel, 2014; Chan
and Chan, 2018). However, projections by high-resolution models
indicate future broadening of TC wind fields when compared to
TCs of the same categories (Yamada et al., 2017), while Knutson
et al. (2015) simulate a reasonable interbasin distribution of TC size
climatology, but project no statistically significant change in global
average TC size. A plausible mechanism is that, as the tropopause
height becomes higher with global warming, the eye wall areas
become wider because the eye walls are inclined outward with
height to the tropopause. This effect is only reproduced in high-
resolution convection-permitting models capturing eye walls, and
such modelling studies are not common. Moreover, the projected TC
size changes are generally on the order of 10% or less, and these size
changes are still highly variable between basins and studies. Thus, the
projected change in both magnitude and sign of TC size is uncertain.

The coastal effects of TCs depend on TC intensity, size, track, and
translation speed. Projected increases in sea level, average TC
intensity, and TC rainfall rates each generally act to further elevate
future storm surge and fresh-water flooding (see Section 9.6.4.2).
Changes in TC frequency could contribute toward increasing or
decreasing future storm surge risk, depending on the net effects of
changes in weaker vs stronger storms. Several studies (McInnes et al.,
2014, 2016; Little et al., 2015; Garner et al., 2017; Timmermans et al.,
2017, 2018) have explored future projections of storm surge in the
context of anthropogenic climate change with the influence of both
sea level rise and future TC changes. Garner et al. (2017) investigated
the near-future changes in the New York City coastal flood hazard,
and suggested a small change in storm-surge height because effects
of TC intensification are compensated by the offshore shifts in TC
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tracks, but concluded that the overall effect due to the rising sea
levels would increase the flood hazard. Future projection studies
of storm surge in East Asia, including China, Japan and Korea, also
indicate that storm surges due to TCs become more severe (J.A. Yang
et al., 2018; Mori et al., 2019, 2021; J. Chen et al., 2020b). For the
Pacific Islands, Mclnnes et al. (2014) found that the future projected
increase in storm surge in Fiji is dominated by sea level rise, and
projected TC changes make only a minor contribution. Among various
storm surge factors, there is high confidence that sea level rise will
lead to a higher possibility of extreme coastal water levels in most
regions, with all other factors assumed equal.

In the North Atlantic, vertical wind shear, which inhibits TC genesis
and intensification, varies in a quasi-dipole pattern, with one centre
of action in the tropics and another along the south-east USA
coast (Vimont and Kossin, 2007). This pattern of variability creates
a protective barrier of high shear along the USA coast during periods
of heightened TC activity in the tropics (Kossin, 2017), and appears
to be a natural part of the Atlantic ocean—atmosphere climate
system (Ting et al., 2019). Greenhouse gas forcing in CMIP5 and the
Community Earth System Model Large Ensemble (Kay et al., 2015)
simulations, however, erodes the pattern and degrades the natural
shear barrier along the USA coast. Following the RCP8.5 emissions
scenario, the magnitude of the erosion of the barrier equals the
amplitude of past natural variability (time of emergence) by the
mid-21st century (Ting et al., 2019). The projected reduction of shear
along the USA East Coast with warming is consistent among studies
(e.g., Vecchi and Soden, 2007).

In summary, average peak TC wind speeds and the proportion of
Category 4-5 TCs will very likely increase globally with warming.
It is likely that the frequency of Category 4-5 TCs will increase in
limited regions over the western North Pacific. It is very likely
that average TC rain rates will increase with warming, and /ikely that
the peak rain rates will increase at rate greater than the Clausius—
Clapeyron scaling rate of 7% per 1°C of warming in some regions
due to increased low-level moisture convergence caused by regional
increases in TC wind intensity. It is /ikely that the average location
where TCs reach their peak wind intensity will migrate poleward in
the western North Pacific Ocean as the tropics expand with warming,
and that the global frequency of TCs over all categories will decrease
or remain unchanged.

11.7.2  Extratropical Storms

This section focuses on extratropical cyclones (ETCs) that are either
classified as strong or extreme by using some measure of their
intensity, or by being associated with the occurrence of extremes
in variables such as precipitation or near-surface wind speed
(Seneviratne et al., 2012). Since AR5, the high relevance of ETCs for
extreme precipitation events has been well established (Pfahl and
Wernli, 2012; Catto and Pfahl, 2013; Utsumi et al., 2017), with 80%
or more of hourly and daily precipitation extremes being associated
with either ETCs or fronts over oceanic mid-latitude regions, and
somewhat smaller, but still very large, proportions of events over
mid-latitude land regions (Utsumi et al., 2017). The emphasis in this
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section is on individual ETCs that have been identified using some
detection and tracking algorithms. Mid-latitude atmospheric rivers
are assessed in Section 8.3.2.8.

11.7.2.1 Observed Trends

Section 2.3.1.4.3 concluded that there is overall low confidence in
recent changes in the total number of ETCs over both hemispheres,
and that there is medium confidence in a poleward shift of the storm
tracks over both hemispheres since the 1980s. Overall, there is also
low confidence in past-century trends in the number and intensity
of the strongest ETCs due to the large interannual and decadal
variability (Feser et al., 2015; Reboita et al., 2015; Wang et al., 2016;
Varino et al., 2019) and due to temporal and spatial heterogeneities
in the number and type of assimilated data in reanalyses, particularly
before the satellite era (Krueger et al., 2013; Tilinina et al., 2013;
Befort et al., 2016; Chang and Yau, 2016; Wang et al., 2016). There
is medium confidence that the agreement among reanalyses and
detection and tracking algorithms is higher when considering stronger
cyclones (Neu et al., 2013; Pepler et al., 2015; Wang et al., 2016).
Over the Southern Hemisphere, there is high confidence that the total
number of ETCs with low central pressures (<980 hPa) has increased
between 1979 and 2009, with all eight reanalyses considered by
Wang et al. (2016) showing positive trends, and five of them showing
statistically significant trends. Similar results were found by Reboita
et al. (2015) using a different detection and tracking algorithm and
a single reanalysis product. Over the Northern Hemisphere, there
is high agreement among reanalyses that the number of cyclones
with low central pressures (<970 hPa) has decreased in summer and
winter during the period 1979-2010 (Tilinina et al., 2013; Chang
et al,, 2016). However, changes exhibit substantial decadal variability
and do not show monotonic trends since the 1980s. For example,
over the Arctic and North Atlantic, Tilinina et al. (2013) showed that
the number of cyclones with very low central pressure (<960 hPa)
increased from 1979 to 1990 and then declined until 2010 in all five
reanalyses considered. Over the North Pacific, the number of cyclones
with very low central pressure reached a peak around 2000 and then
decreased until 2010 in the five reanalyses considered (Tilinina et al.,
2013). Overall, however, it should be noted that characterising trends
in the dynamical intensity of ETCs (e.g., wind speeds) using the
absolute central pressure is problematic because the central pressure
depends on the background mean sea level pressure, which varies
seasonally and regionally (e.g., Befort et al., 2016).

11.7.2.2 Model Evaluation

There is high confidence that coarse-resolution climate models
(e.g., CMIP5 and CMIP6) underestimate the dynamical intensity
of ETCs, including the strongest ETCs, as measured using a variety of
metrics, including mean pressure gradient, mean vorticity and near-
surface wind speeds, over most regions (Colle et al., 2013; Zappa
et al., 2013a; Govekar et al., 2014; Di Luca et al., 2016; Trzeciak
et al., 2016; Seiler et al., 2018; Priestley et al., 2020). There is also
high confidence that most current climate models underestimate
the number of explosive systems (i.e., systems showing a decrease
in mean sea level pressure of at least 24 hPa in 24 hours) over
both hemispheres (Seiler and Zwiers, 2016a; Gao et al., 2020;
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Priestley et al, 2020). There is high confidence that
the underestimation of the intensity of ETCs is associated with the
coarse horizontal resolution of climate models, with higher
horizontal resolution models, including HighResMIP and CORDEX,
usually showing better performance (Colle et al, 2013; Zappa
et al.,, 2013a; Di Luca et al., 2016; Trzeciak et al., 2016; Seiler et al.,
2018; Gao et al,, 2020; Priestley et al., 2020). The improvement by
higher-resolution models is found, even when comparing models
and reanalyses after post-processing data to a common resolution
(Zappa et al., 2013a; Di Luca et al., 2016; Priestley et al., 2020).
The systematic bias in the intensity of ETCs has also been linked to
the inability of current climate models to resolve diabatic processes,
particularly those related to the release of latent heat (Willison et al.,
2013; Trzeciak et al., 2016) and the formation of clouds (Govekar
et al, 2014). There is medium confidence that climate models
simulate well the spatial distribution of precipitation associated with
ETCs over the Northern Hemisphere, together with some of the main
features of the ETC life cycle, including the maximum in precipitation
occurring just before the peak in dynamical intensity (e.g., vorticity)
as observed in a reanalysis and observations (Hawcroft et al., 2018).
There is, however, large observational uncertainty in ETC-associated
precipitation (Hawcroft et al., 2018) and limitations in the simulation
of frontal precipitation, including overly low rainfall intensity over
mid-latitude oceanic areas in both hemispheres (Catto et al., 2015).

11.7.2.3 Detection and Attribution, Event Attribution

Section 3.3.3.3 concluded that there is fow confidence in the
attribution of observed changes in the number of ETCs in the Northern
Hemisphere and high confidence that the poleward shift of storm
tracks in the Southern Hemisphere is linked to human activity, mostly
due to emissions of ozone-depleting substances. Specific studies
attributing changes in the most extreme ETCs are not available.
The human influence on individual extreme ETC events has been
considered only a few times and there is overall low confidence in
the attribution of these changes (NASEM, 2016; Vautard et al., 2019).

11.7.2.4 Projections

The frequency of ETCs is expected to change, primarily following
a poleward shift of the storm tracks as discussed in Section 4.5.1.6
(see also Figure 4.31) and Section 8.4.2.8. There is medium
confidence that changes in the dynamical intensity (e.g., wind
speeds) of ETCs will be small, although changes in the location of
storm tracks can lead to substantial changes in local extreme wind
speeds (Zappa et al., 2013b; Chang, 2014; Li et al., 2014; Seiler and
Zwiers, 2016b; Yettella and Kay, 2017; Barcikowska et al., 2018; Kar-
Man Chang, 2018). Yettella and Kay (2017) detected and tracked
ETCs over both hemispheres in an ensemble of 30 Community Earth
System Model Large Ensemble simulations, differing only in their
initial conditions, and found that changes in mean wind speeds
around ETC centres are often negligible between present (1986—
2005) and future (2081-2100) periods. Using 19 CMIP5 models,
Zappa et al. (2013b) found an overall reduction in the number of
cyclones associated with low-troposphere (850-hPa) wind speeds
larger than 25 m s over the North Atlantic and Europe with the
number of the 10% strongest cyclones decreasing by about 8%
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and 6% in December—January—February and June-July—August
according to the RCP4.5 scenario (2070-2099 vs. 1976-2005). Over
the North Pacific, Chang (2014) showed that CMIP5 models project
a decrease in the frequency of ETCs, with the largest central pressure
perturbation (i.e., the depth, strongly related with low-level wind
speeds) by the end of the century according to simulations using
the RCP8.5 scenario. Using projections from CMIP5 GCMs under
the RCP8.5 scenario (1981-2000 to 2081-2100), Seiler and Zwiers
(2016b) projected a northward shift in the number of explosive
ETCs in the northern Pacific, with fewer and weaker events south,
and more frequent and stronger events north of 45°N. Using 19
CMIP5 GCMs under the RCP8.5 scenario, Kar-Man Chang (2018)
found a significant decrease in the number of ETCs associated with
extreme wind speeds (2081-2100 vs. 1980-99) over the Northern
Hemisphere (average decrease of 17%) and over some smaller
regions, including the Pacific and Atlantic regions.

Over the Southern Hemisphere, future changes (RCP8.5 scenario;
1980-1999 to 2081-2100) in extreme ETCs were studied by Chang
(2017) using 26 CMIP5 models, and a variety of intensity metrics
(850-hPa vorticity, 850-hPa wind speed, mean sea level pressure and
near-surface wind speed). They found that the number of extreme
cyclones is projected to increase by at least 20% and as much as
50%, depending on the specific metric used to define extreme ETCs.
Increases in the number of strong cyclones appear to be robust across
models and for most seasons, although they show strong regional
variations, with increases occurring mostly over the southern flank of
the storm track, consistent with a shift and intensification of the storm
track. Overall, there is medium confidence that projected changes
in the dynamical intensity of ETCs depend on the resolution and
formulation (e.g., explicit or implicit representation of convection)
of climate models (Booth et al., 2013; Michaelis et al., 2017; Zhang
and Colle, 2017).

As reported in AR5 and in Section 8.4.2.8, despite small changes in
the dynamical intensity of ETCs, there is high confidence that the
precipitation associated with ETCs will increase in the future (Zappa
etal., 2013b; Marciano et al., 2015; Pepler et al., 2016; Michaelis et al.,
2017; Yettella and Kay, 2017; Zhang and Colle, 2017; Barcikowska
et al,, 2018; Hawcroft et al., 2018; Zarzycki, 2018; Kodama et al.,
2019; Bevacqua et al., 2020a; Reboita et al., 2021). There is high
confidence that increases in precipitation will follow increases in
low-level water vapour (i.e., about 7% per 1°C of surface warming;
see Box 11.1) and will be larger for higher warming levels (Zhang
and Colle, 2017). There is medium confidence that precipitation
changes will show regional and seasonal differences due to distinct
changes in atmospheric humidity and dynamical conditions (Zappa
et al., 2015; Hawcroft et al., 2018), with decreases in some specific
regions such as the Mediterranean (Zappa et al., 2015; Barcikowska
et al, 2018). There is high confidence that snowfall associated
with winter ETCs will decrease in the future, because increases in
tropospheric temperatures lead to a lower proportion of precipitation
falling as snow (0'Gorman, 2014; Rhoades et al., 2018; Zarzycki,
2018). However, there is medium confidence that extreme snowfall
events associated with winter ETCs will change little in regions
where snowfall will be supported in the future (O'Gorman, 2014;
Zarzycki, 2018).
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In summary, there is low confidence in past changes in the dynamical
intensity (e.g., maximum wind speeds) of ETCs and medium confidence
that, in the future, these changes will be small, although changes in
the location of storm tracks could lead to substantial changes in local
extreme wind speeds. There is high confidence that average and
maximum ETC precipitation-rates will increase with warming, with the
magnitude of the increases associated with increases in atmospheric
water vapour. There is medium confidence that projected changes in
the intensity of ETCs, including wind speeds and precipitation, depend
on the resolution and formulation of climate models.

11.7.3  Severe Convective Storms

Severe convective storms are convective systems that are associated
with extreme phenomena such as tornadoes, hail, heavy precipitation
(rain or snow), strong winds, and lightning. The assessment of changes
in severe convective storms in SREX (Chapter 3, Seneviratne et al.,
2012) and AR5 (Chapter 12, Collins et al., 2013) is limited and focused
mainly on tornadoes and hail storms. The SREX assessed that there
is low confidence in observed trends in tornadoes and hail because
of data inhomogeneities and inadequacies in monitoring systems.
Subsequent literature assessed in the Climate Science Special Report
(Kossin et al., 2017) led to the assessment of the observed tornado
activity over the 2000s in the USA, with a decrease in the number
of days per year with tornadoes and an increase in the number of
tornadoes on these days (medium confidence). However, there
is low confidence in past trends for hail and severe thunderstorm
winds. Climate models consistently project environmental changes
that would support an increase in the frequency and intensity of
severe thunderstorms that combine tornadoes, hail, and winds
(high confidence), but there is low confidence in the details of the
projected increase. Regional aspects of severe convective storms and
details of the assessment of tornadoes and hail are also assessed in
Section 12.3.3.2 (tornadoes), Section 12.3.4.5 (hail), Section 12.4.5.3
(Europe), Section 12.4.6.3 (North America), and Section 12.7.2
(regional gaps and uncertainties).

11.7.3.1  Mechanisms and Drivers

Severe convective storms are sometimes embedded in synoptic-
scale weather systems, such as TCs, ETCs, and fronts (Kunkel et al,
2013). They are also generated as individual events as mesoscale
convective systems (MCSs) and mesoscale convective complexes
(MCGs, a special type of a large, organized and long-lived MCS),
without being clearly embedded within larger-scale weather systems.
In addition to the general vigorousness of precipitation, hail, and
winds associated with MCSs, characteristics of MCSs are viewed
in new perspectives in recent years, probably because of both the
development of dense mesoscale observing networks and advances in
high-resolution mesoscale modelling (Sections 11.7.3.2 and 11.7.3.3).
The horizontal scale of MCSs is discussed with their organization
of the convective structure, and it is examined with a concept of
‘convective aggregation’ in recent years (Holloway et al, 2017).
MCSs sometimes take a linear shape and stay almost stationary with
successive production of cumulonimbus on the upstream side (back-
building type convection), and cause heavy rainfall (Schumacher and
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Johnson, 2005). Many of the recent severe rainfall events in Japan
are associated with band-shaped precipitation systems (Kunii et al.,
2016; Oizumi et al.,, 2018; Tsuguti et al., 2018; Kato, 2020), suggesting
common characteristics of severe precipitation, at least in East Asia.
The convective modes of severe storms in the USA can be classified
into rotating or linear modes and preferable environmental conditions
for these modes, such as vertical shear, have been identified (Trapp
et al, 2005; Smith et al, 2013; Allen, 2018). Cloud microphysics
characteristics of MCSs were examined and the roles of warm rain
processes on extreme precipitation were emphasized recently (Sohn
et al, 2013; Hamada et al, 2015; Hamada and Takayabu, 2018).
Idealized studies also suggest the importance of ice and mixed-phase
processes of cloud microphysics on extreme precipitation (Sandvik
et al, 2018; Bao and Sherwood, 2019). However, it is unknown
whether the types of MCS are changing in recent periods or observed
ubiquitously all over the world.

Severe convective storms occur under conditions preferable for deep
convection, that is, conditionally unstable stratification, sufficient
moisture, both in lower and middle levels of the atmosphere, and
a strong vertical shear. These large-scale environmental conditions
are viewed as necessary conditions for the occurrence of severe
convective systems, or the resulting tornadoes and lightning, and
the relevance of these factors strongly depends on the region
(e.g., Antonescu et al., 2016a; Allen, 2018; Tochimoto and Niino,
2018). Frequently used metrics are atmospheric static stability,
moisture content, convective available potential energy (CAPE) and
convective inhibition, wind shear or helicity, including storm-relative
environmental helicity (Tochimoto and Niino, 2018; Elsner et al,,
2019). These metrics, largely controlled by large-scale atmospheric
circulations or synoptic weather systems, such as TCs and ETCs,
are then generally used to examine severe convective systems. In
particular, there is high confidence that CAPE in the tropics and the
subtropics increases in response to global warming (M.S. Singh et al.,
2017), as supported by theoretical studies (Singh and O'Gorman,
2013; Seeley and Romps, 2015; Romps, 2016; Agard and Emanuel,
2017). The uncertainty, however, arises from the balance between
factors affecting severe storm occurrence. For example, the warming
of mid-tropospheric temperatures leads to an increase in the freezing
level, which leads to increased melting of smaller hailstones, while
there may be some offset by stronger updrafts driven by increasing
CAPE, which would favour the growth of larger hailstones, leading to
less melting when falling (Allen, 2018; Mahoney, 2020).

There are few studies on relations between changes in severe
convective storms and those of the large-scale circulation patterns.
Tornado outbreaks in the USA are usually associated with ETCs with
their frontal systems and TCs (Fuhrmann et al., 2014; Tochimoto and
Niino, 2016). In early June to late July in East Asia, associated with
the Baiu/Changma/Mei-yu, severe precipitation events are frequently
caused by MCSs. Severe precipitation events are also caused by
remote effects of TCs, known as predecessor rain events (Galarneau
et al, 2010). Atmospheric rivers and other coherent types of
enhanced water vapour flux also have the potential to induce severe
convective systems (Kamae et al., 2017a; Waliser and Guan, 2017;
Ralph et al., 2018; see Section 8.3.2.8.2). Combined with the above
drivers, topographic effects also enhance the intensity and duration
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of severe convective systems and the associated precipitation
(Ducrocq et al., 2008; Piaget et al., 2015). However, the changes in
these drivers are not generally significant, so their relations to severe
convective storms are unclear.

In summary, severe convective storms are sometimes embedded
in synoptic-scale weather systems, such as TCs, ETCs and fronts,
and modulated by large-scale atmospheric circulation patterns.
The occurrence of severe convective storms and the associated
severe events, including tornadoes, hail, and lightning, is affected by
environmental conditions of the atmosphere, such as CAPE and vertical
shear. The uncertainty, however, arises from the balance between these
environmental factors affecting severe storm occurrence.

11.7.3.2 Observed Trends

Observed trends in severe convective storms or MCSs are not well
documented, but the climatology of MCSs has been analysed in
specific regions (North America, South America, Europe, Asia; regional
aspects of convective storms are separately assessed in Chapter 12).
As the definition of severe convective storms varies depending on
the literature, it is not straightforward to make a synthesizing view
of observed trends in severe convective storms in different regions.
However, analysis using satellite observations provides a global view
of MCSs (Kossin et al., 2017). The global distribution of thunderstorms
is captured (Zipser et al, 2006; Liu and Zipser, 2015) by using
the satellite precipitation measurements by the Tropical Rainfall
Measuring Mission (TRMM) and Global Precipitation Mission (GPM)
(Hou et al., 2014). The climatological characteristics of MCSs are
provided by satellite analyses in South America (Durkee and Mote,
2010; Rasmussen and Houze, 2011; Rehbein et al., 2018) and those of
MCCs in the Maritime Continent by Trismidianto and Satyawardhana
(2018). Analysis of the environmental conditions favourable for
severe convective events indirectly indicates the climatology and
trends of severe convective events (Allen et al., 2018; Taszarek et al.,
2018, 2019), though favourable conditions depend on the location,
such as the difference for tornadoes associated with ETCs between
the USA and Japan (Tochimoto and Niino, 2018).

Observed trends in severe convective storms are highly regionally
dependent. In the USA, it is indicated that there is no significant
increase in convective storms, and hail and severe thunderstorms
(Kunkel et al., 2013; Kossin et al., 2017). There is an upward trend
in the frequency and intensity of extreme precipitation events in the
USA (high confidence) (Kunkel et al., 2013; Easterling et al., 2017), and
MCSs have increased in occurrence and precipitation amounts since
1979 (limited evidence) (Feng et al., 2016). Significant interannual
variability of hailstone occurrences is found in the Southern Great
Plains of the USA (Jeong et al., 2020). The mean annual number
of tornadoes has remained relatively constant, but their variability
of occurrence has increased since the 1970s, particularly over the
2000s, with a decrease in the number of days per year, but an
increase in the number of tornadoes on these days (Brooks et al.,
2014; Elsner et al,, 2015, 2019; Kossin et al., 2017; Allen, 2018). There
has been a shift in the distribution of tornadoes, with increases in the
mid-south of the USA and decreases over the High Plains (Gensini
and Brooks, 2018). Trends in MCSs are relatively more visible for
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particular aspects of MCSs, such as lengthening of active seasons
and dependency on duration. MCSs have increased in occurrence
and precipitation amounts since 1979 (Easterling et al., 2017). Feng
et al. (2016) analysed that the observed increases in spring total and
extreme rainfall in the central USA are dominated by MCSs, with
increased frequency and intensity of long-lasting MCSs.

Studies on trends in severe convective storms and their ingredients
outside of the USA are limited. Westra et al. (2014) found that there
is an increase in the intensity of short-duration convective events
(minutes to hours) over many regions of the world, except eastern
China. In Europe, a climatology of tornadoes shows an increase in
detected tornadoes between 1800 and 2014, but this trend might be
affected by the density of observations (Antonescu et al., 20163, b).
An increase in the trend in extreme daily rainfall is found in south-
eastern France, where MCSs play a key role in this type of event
(Blanchet et al., 2018; Ribes et al., 2019). Trend analysis of the mean
annual number of days with thunderstorms since 1979 in Europe
indicates an increase over the Alps and central, south-eastern, and
eastern Europe, with a decrease over the south-west (Taszarek et al.,
2019). In the Sahelian region, Taylor et al. (2017) analysed MCSs
using satellite observations since 1982 and showed an increase in the
frequency of extreme storms. In Bangladesh, the annual number of
propagating MCSs decreased significantly during 1998-2015 based
on TRMM precipitation data (Habib et al., 2019). Prein and Holland
(2018) estimated the hail hazard from large-scale environmental
conditions using a statistical approach and showed increasing trends
in the USA, Europe, and Australia. However, trends in hail on regional
scales are difficult to validate because of an insufficient length of
observations and inhomogeneous records (Allen, 2018). The high
spatial variability of hail suggests it is reasonable that there would be
local signals of both positive and negative trends, and the trends that
are occurring in hail globally are uncertain. In China, the total number
of days that have either a thunderstorm or hail have decreased by
about 50% from 1961 to 2010, and the reduction in these severe
weather occurrences correlates strongly with the weakening of the
East Asian summer monsoon (Q. Zhang et al., 2017). More regional
aspects of severe convective storms are detailed in Chapter 12.

In summary, because the definition of severe convective storms varies
depending on the literature and the region, it is not straightforward
to make a synthesizing view of observed trends in severe convective
storms in different regions. In particular, observational trends in
tornadoes, hail, and lightning associated with severe convective
storms are not robustly detected due to insufficient coverage of the
long-term observations. There is medium confidence that the mean
annual number of tornadoes in the USA has remained relatively
constant, but their variability of occurrence has increased since the
1970s, particularly over the 2000s, with a decrease in the number of
days per year, and an increase in the number of tornadoes on these
days (high confidence). Detected tornadoes have also increased in
Europe, but the trend depends on the density of observations.

11.7.3.3 Model Evaluation

The explicit representation of severe convective storms requires non-
hydrostatic models with horizontal grid spacings finer than 4 km,
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denoted as convection-permitting models or storm-resolving models
(Section 10.3.1). Convection-permitting models are becoming
available to run over awide domain, such as a continental scale or even
over the global area, and show realistic climatological characteristics
of MCSs (Prein et al., 2015; Guichard and Couvreux, 2017; Satoh et al.,
2019). Such high-resolution simulations are computationally too
expensive to perform at the larger domain and for long periods, and
alternative methods by using an RCM with dynamical downscaling
are generally used (Section 10.3.1). Convection-permitting models
are used as the flagship project of CORDEX to particularly study
projections of thunderstorms (Section 10.3.3). Simulations of North
American MCSs by a convection-permitting model conducted by
Prein et al. (2020) were able to capture the main characteristics of
the observed MCSs, such as their size, precipitation rate, propagation
speed, and lifetime. Cloud-permitting model simulations in Europe
also showed sub-daily precipitation realistically (Ban et al., 2014;
Kendon et al., 2014). Evaluation of precipitation conducted using
convection-permitting simulations around Japan showed that finer
resolution improves intense precipitation (Murata et al., 2017). MCSs
over Africa simulated using convection-permitting models showed
better extreme rainfall (Kendon et al., 2019) and diurnal cycles and
convective rainfall over land than the coarser-resolution RCMs or
GCMs (Stratton et al., 2018; Crook et al., 2019).

The other modelling approach is the analysis of the environmental
conditions that control characteristics of severe convective storms
using the typical climate model results in CMIP5/6 (Allen, 2018).
Severe convective storms are generally formed in environments
with large CAPE and tornadic storms are, in particular, formed with
a combination of large CAPE and strong vertical wind shear. As
the processes associated with severe convective storms occur over
a wide range of spatial and temporal scales, some of which are
poorly understood and are inadequately sampled by observational
networks, the model calibration approaches are generally difficult
and insufficiently validated. Therefore, model simulations and their
interpretations should be done with much caution.

In summary, there are typically two kinds of modelling approaches
for studying changes in severe convective storms. One is to use
convection-permitting models in wider regions or the global domain
in time-sliced downscaling methods to directly simulate severe
convective storms. The other is the analysis of the environmental
conditions that control characteristics of severe convective
storms by using coarse-resolution GCMs. Even in finer-resolution
convection-permitting models, it is difficult to directly simulate
tornadoes, hail storms, and lightning, so modelling studies of these
changes are limited.

11.7.3.4 Detection and Attribution, Event Attribution

It is extremely difficult to detect differences in time and space of
severe convective storms (Kunkel et al, 2013). Although some
ingredients that are favourable for severe thunderstorms have
increased over the years, others have not; thus, overall, changes in
the frequency of environments favourable for severe thunderstorms
have not been statistically significant. Event attribution studies on
severe convective events have now been undertaken for some cases.
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For the case of the heavy rain event of July 2018 in Japan (Box 11.4),
Kawase et al. (2020) took a storyline approach to show that the
rainfall during this event in Japan was increased by approximately
7% due to recent rapid warming around Japan. For the case of the
December 2015 extreme rainfall event in Chennai, India, the extremity
of the event was equally caused by the warming trend in the Bay of
Bengal SSTs and the strong El Nifio conditions (van Oldenborgh et al.,
2016; Boyaj et al., 2018). For hailstorms, such as those that caused
disasters in the USA in 2018, detection of the role of climate change
in changing hail storms is more difficult, because hail storms are
not, in general, directly simulated by convection-permitting models
and not adequately represented by the environmental parameters of
coarse-resolution GCMs (Mahoney, 2020).

In summary, it is extremely difficult to detect and attribute changes
in severe convective storms. There is limited evidence that extreme
precipitation associated with severe convective storms has
increased in some cases.

11.7.3.5 Projections

Future projections of severe convective storms are usually studied
either by analysing the environmental conditions simulated by
climate models, or by a time-slice approach with higher-resolution
convection-permittingmodels by comparing simulations downscaled
with climate model results under historical conditions and those
under hypothesized future conditions (Kendon et al., 2017; Allen,
2018). Up to now, individual studies using convection-permitting
models gave projections of extreme events associated with severe
convective storms in local regions, and it is not generally possible
to obtain global or general views of projected changes of severe
convective storms. Prein et al. (2017) investigated future projections
of North American MCS simulations and showed an increase in
MCS frequency and an increase in total MCS precipitation volume
by the combined effect of increases in maximum precipitation
rates associated with MCSs and increases in their size. Rasmussen
et al. (2020) investigated future changes in the diurnal cycle of
precipitation by capturing organized and propagating convection
and showed that weak-to-moderate convection will decrease, and
strong convection will increase in frequency in the future. Ban et al.
(2015) found that the day-long and hour-long precipitation events
in summer intensify in the European region covering the Alps.
Kendon et al. (2019) showed future increases in extreme three-
hourly precipitation in Africa. Murata et al. (2015) investigated
future projections of precipitation around Japan and showed
a decrease in monthly mean precipitation in the eastern Japan Sea
region in December, suggesting that convective clouds become
shallower in the future in the winter over the Japan Sea.

The other approach is the projection of the environmental conditions
that control characteristics of severe convective storms by analysing
climate model results. There is high confidence that CAPE, particularly
summer mean CAPE and high percentiles of the CAPE in the tropics
and subtropics, increases in response to global warming in an
ensemble of climate models including those of CMIP5, mainly from
increased low-level specific humidity (Sobel and Camargo, 2011;
M.S. Singh et al., 2017; J. Chen et al., 2020a). Convective inhibition
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becomes stronger over most land areas under global warming,
resulting mainly from reduced low-level relative humidity over land
(). Chen et al., 2020a). However, there are large differences within
the CMIP5 ensemble for environmental conditions, which contribute
to some degree of uncertainty (Allen, 2018). Because the relation
between simulated environments in models and the occurrence of
severe convective storms are, in general, insufficiently validated, there
is generally low confidence in the projection of severe convective
storms with the approach of the environmental conditions.

In the USA, projected changes in the environmental conditions show
an increase in CAPE and no changes or decreases in the vertical
wind shear, suggesting favourable conditions for an increase in
severe convective storms in the future, but the interpretation of how
tornadoes or hail will change is an open question because of the
strong dependence on shear (Brooks, 2013). Diffenbaugh et al.
(2013) showed robust increases in the occurrence of the favourable
environments for severe convective storms with increased CAPE
and stronger low-level wind shear in response to future global
warming. A downscaling approach showed that the variability of the
occurrence of severe convective storms increases in spring in late
21st-century simulations (Gensini and Mote, 2015). Future changes in
hail occurrence in the USA examined through convection-permitting
dynamical downscaling suggested that the hail season may begin
earlier in the year and exhibit more interannual variability, with
increases in the frequency of large hail in broad areas over the USA
(Trapp et al., 2019). There is medium confidence that the frequency
and variability of the favourable environments for severe convective
storms will increase in spring, and low confidence for summer
and autumn (Diffenbaugh et al, 2013; Gensini and Mote, 2015;
Hoogewind et al., 2017). The occurrence of hail events in Colorado in
the USA was examined by comparing both present-day and projected
future climates using high-resolution model simulations capable of
resolving hailstorms (Mahoney et al., 2012), which showed that
hail is almost eliminated at the surface in the future in most of the
simulations, despite more intense future storms and significantly
larger amounts of hail generated in-cloud.

Future changes in severe convection environments show
enhancement of instability with less robust changes in the frequency
of strong vertical wind shear in Europe (Pucik et al, 2017) and
in Japan (Muramatsu et al, 2016). In Japan, the frequency of
conditions favourable for strong tornadoes increases in spring, and
partly in summer.

In summary, the average and maximum rain rates associated
with severe convective storms increase in a warming world in
some regions, including the USA (high confidence). There is high
confidence from climate models that CAPE increases in response
to global warming in the tropics and subtropics, suggesting more
favourable environments for severe convective storms. The frequency
of severe convective storms in spring is projected to increase in
the USA, leading to a lengthening of the severe convective storm
season (medium confidence); evidence in other regions is limited.
There is significant uncertainty about projected regional changes in
tornadoes, hail, and lightning due to limited analysis of simulations
using convection-permitting models (high confidence).
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11.7.4  Extreme Winds

Extreme winds are defined here in terms of the strongest near-
surface wind speeds that are generally associated with extreme
storms, such as TCs, ETCs, and severe convective storms. In previous
IPCC reports, near-surface wind speed (including extremes), has not
been assessed as a variable in its own right, but rather in the context
of other extreme atmospheric or oceanic phenomena. The exception
was the SREX report (Seneviratne et al., 2012), which specifically
examined past changes and projections of mean and extreme near-
surface wind speeds. A strong decline in extreme winds compared to
mean winds was reported for the continental northern mid-latitudes.
Due to the small number of studies and uncertainties in terrestrial-
based surface wind measurements, the findings were assigned low
confidence in SREX. The AR5 reported a weakening of mean and
maximum winds from the 1960s or 1970s to the early 2000s in the
tropics and mid-latitudes, and increases in high latitudes, but with
low confidence in changes in the observed surface winds over land
(Hartmann et al.,, 2013). Observed trends in mean wind speed over
land and the ocean are assessed in Section 2.3.1.4.4. Aspects of
climate impact-drivers for winds are addressed in Sections 12.3.3
and 12.5.2, and their regional changes are assessed in Section 12.4.

Observationally, although not specifically addressing extreme
wind speed changes, negative surface wind speed trends (stilling)
were found in the tropics and mid-latitudes of both hemispheres
of —=0.014 m s yr™', while positive trends were reported at high
latitudes poleward of 70 degrees, based on a review of 148 studies
(McVicar et al.,, 2012b). An earlier study attributed the stilling to
both changes in atmospheric circulation and an increase in surface
roughness due to an overall increase in vegetation cover (Vautard
et al., 2010). Since then, a number of studies have mostly confirmed
these general negative mean-wind trends based on anemometer
data for Spain (Azorin-Molina et al., 2017), Turkey, (Dadaser-Celik
and Cengiz, 2014), the Netherlands, (Wever, 2012), Saudi Arabia,
(Rehman, 2013), Romania, (Marin et al., 2014), and China (Chen
et al., 2013). Lin et al. (2013) note that wind speed variability over
China is greater at high-elevation locations compared to those
closer to mean sea level. Hande et al. (2012), using radiosonde
data, found an increase in surface wind speed on Macquarie
Island of Australia.

A number of new studies have examined surface wind speeds over
the ocean using ship-based measurements, satellite altimeters, and
Special Sensor Microwave/Imagers (Tokinaga and Xie, 2011; Zieger
et al, 2014). It has been noted that wind speed trends tend to be
stronger in altimeter measurements, although the spatial patterns
of change are qualitatively similar in both instruments (Zieger et al.,
2014). Q. Liu et al. (2016) found positive trends in surface wind
speeds over the Arctic Ocean in 20 years of satellite observations.
Small positive trends in mean wind speed were found in 33 years
of satellite data, together with larger trends in the 90th percentile
values over global oceans (Ribal and Young, 2019). These results
were consistent with an earlier study that found a positive trend in
1-in-100-year wind speeds (Young et al., 2012). A positive change
in mean wind speeds was found for the Arabian Sea and the Bay of
Bengal (Shanas and Kumar, 2015) and Zheng et al. (2017) found that
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positive wind speed trends over the ocean were larger during winter
seasons than summer seasons.

Changes in extreme winds are associated with changes in the
characteristics (locations, frequencies, and intensities) of extreme
storms, including TCs, ETCs, and severe convective storms. For TCs,
as assessed in Section 11.7.1.5, it is projected that the average
peak TC wind speeds will increase globally with warming, while the
global frequency of TCs over all categories will decrease or remain
unchanged; the average location where TCs reach their peak wind
intensity will migrate poleward in the western North Pacific Ocean
as the tropics expand with warming. Frequency, intensities, and
geographical distributions of extreme wind events associated with
TCs will change according to these TC changes. For ETCs, by the
end of the century, CMIP5 models show that the number of ETCs
associated with extreme winds will significantly decrease in the mid-
and high latitudes of the Northern Hemisphere in winter, with the
projected decrease being larger over the Atlantic (Kar-Man Chang,
2018), while it will significantly increase irrespective of the season
in the Southern Hemisphere (Section 11.7.2.4; Chang, 2017). Over
the ocean in the subtropics, a large ensemble of 60-km global model
simulations indicated that extreme winds associated with storm
surges will intensify over 15-35°N in the Northern Hemisphere
(Mori et al., 2019). However, extreme surface wind speeds will
mostly decrease due to decreases in the number and intensity of TCs
over most tropical areas of the Southern Hemisphere (Mori et al,,
2019). The projected changes in the frequency of extreme winds are
associated with the future changes in TCs and ETCs.

Extreme cyclonic windstorms that share some characteristics with
both TCs and ETCs occur regularly over the Mediterranean Sea and
are often referred to as ‘medicanes’ (Ragone et al., 2018; Miglietta
and Rotunno, 2019; Zhang et al., 2021). Medicanes pose substantial
threats to regional islands and coastal zones. A growing body
of literature consistently found that the frequency of medicanes
decreases under warming, while the strongest medicanes become
stronger (Gaertner et al., 2007; Romero and Emanuel, 2013, 2017;
Cavicchia et al., 2014; Tous et al, 2016; Romera et al., 2017;
Gonzélez-Aleman et al.,, 2019). This is also consistent with expected
global changes in TCs under warming (Section 11.7.1). Based on the
consistency of these studies, it is likely that medicanes will decrease
in frequency, while the strongest medicanes become stronger under
warming scenario projections (medium confidence).

In summary, the observed intensity of extreme winds is becoming
less severe in the low to mid-latitudes, while becoming more
severe in high latitudes poleward of 60 degrees (low confidence).
Projected changes in the frequency and intensity of extreme winds
are associated with projected changes in the frequency and intensity
of TCs and ETCs (medium confidence).

11.8  Compound Events

The SREX (SREX Chapter 3) first defined compound events as: (i) two

or more extreme events occurring simultaneously or successively,
(ii) combinations of extreme events with underlying conditions that
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amplify the impact of the events, or (iii) combinations of events that
are not themselves extremes but lead to an extreme event or impact
when combined.

Further definitions of compound events have emerged since SREX.
Zscheischler et al. (2018) defined compound events broadly as ‘the
combination of multiple drivers and/or hazards that contributes to
societal or environmental risk’. This definition is used in the present
assessment, because of its clear focus on the risk framework
established by the IPCC, and also highlighting that compound events
may not necessarily result from dependent drivers. Compound events
have been classified into: preconditioned events, where a weather-
driven or climate-driven precondition aggravates the impacts
of a climatic impact-driver; multivariate events, where multiple
drivers and/or climatic impact-drivers lead to an impact; temporally
compounding events, where a succession of hazards leads to an
impact; and spatially compounding events, where hazards in multiple
connected locations cause an aggregated impact (Zscheischler et al.,
2020). Drivers include processes, variables, and phenomena in the
climate and weather domain that may span over multiple spatial
and temporal scales. Hazards (such as floods, heatwaves, wildfires;
also termed ‘climatic impact-drivers” in this report, see Chapter 12)
are usually the immediate physical precursors to negative impacts,
but can occasionally have positive outcomes (Flach et al., 2018). The
present assessment focuses on the physical dimension of changes in
compound events, as it is part of the IPCC AR6 Working Group | Report.

11.8.1  Overview

The combination of two or more — not necessarily extreme — weather
or climate events that occur: i) at the same time; ii) in close succession;
or iii) concurrently in different regions, can lead to extreme impacts
that are much larger than the sum of the impacts due to the occurrence
of individual extremes alone. This is because multiple stressors can
exceed the coping capacity of a system more quickly. The contributing
events can be of similar types (clustered multiple events) or of
different types (Zscheischler et al., 2020). Many major weather- and
climate-related catastrophes are inherently of a compound nature
(Zscheischler et al., 2019). This has been highlighted for a broad
range of hazards, such as droughts, heatwaves, wildfires, coastal
extremes, and floods (Westra et al., 2016; AghaKouchak et al., 2020;
Ridder et al., 2020). Co-occurring extreme precipitation and extreme
winds can result in infrastructural damage (Martius et al., 2016); the
compounding of storm surge and precipitation extremes can cause
coastal floods (Wahl et al., 2015); the combination of drought and
heat can lead to tree mortality (Section 11.6; Allen et al., 2015); and
wildfires increase occurrences of hailstorms and lightning (Y. Zhang
et al, 2019a). Compound storm types consisting of co-located
cyclone, front and thunderstorm systems have a higher chance of
causing extreme rainfall and extreme winds than individual storm
types (Dowdy and Catto, 2017). Extremes may occur at similar times
at different locations (De Luca et al., 20204, b) but affect the same
system, for instance, spatially concurrent climate extremes affecting
crop yields and food prices (Singh et al., 2018; Anderson et al., 2019).
Studies also show an increasing likelihood for breadbasket regions to
be concurrently affected by climate extremes with increasing global

Downloaded from https://www.cambridge.org/core. IP address: 18.118.254.2, on 15 Jan 2025 at 14:30:23, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/9781009157896.013


https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Weather and Climate Extreme Events in a Changing Climate

warming, even between 1.5°C and 2°C of global warming (Box 11.2;
Gaupp et al,, 2019). Concomitant extreme conditions at different
locations become more probable as changes in climate extremes
are emerging over an increasing fraction of the land area (Sections
11.2.3,11.2.4,11.8.2 and 11.8.3, and Box 11.4).

Finally, impacts may occur because of large multivariate anomalies in
the climate drivers, if systems are adapted to historical multivariate
climate variability (Flach et al, 2017). For instance, ecosystems
are typically adapted to the local covariability of temperature and
precipitation such that a bivariate anomaly may have a large impact,
even though neither temperature nor precipitation may be extreme
based on a univariate assessment (Mahony and Cannon, 2018).
Given that almost all systems are affected by weather and climate
phenomena at multiple space-time scales (Raymond et al., 2020), it
is natural to consider extremes in a compound event framework.
It should be noted, however, that multi-hazard dependencies can also
decrease risk, for instance when hazards are negatively correlated
(Hillier et al., 2020). Despite this recognition, the literature on past
and future changes in compound events has been limited, but is
growing. This section assesses examples of types of compound
events in available literature.

In summary, compound events include the combination of two or
more — not necessarily extreme — weather or climate events that
occur (i) at the same time, (ii) in close succession, or (iii) concurrently
in different regions. The land area affected by concurrent extremes has
increased (high confidence). Concurrent extreme events at different
locations, but possibly affecting similar sectors (e.g., breadbaskets)
in different regions, will become more frequent with increasing
global warming, in particular above +2°C of global warming
(high confidence).

11.8.2  Concurrent Extremes in Coastal

and Estuarine Regions

Coastal and estuarine zones are prone to a number of meteorological
extreme events and also to concurrent extremes (see also
Section 6.8.2 in SROCC). Floods are a major climatic impact-driver in
coastal regions around the world (Chapter 12), and flood occurrence
may be influenced by the dependence between storm surge, extreme
rainfall, and river flow, but also by sea level rise, waves and tides, as
well as groundwater for estuaries. Floods with multiple drivers are
often referred to as ‘compound floods’ (Wahl et al., 2015; Moftakhari
et al, 2017; Bevacqua et al., 2020c).

At USA coasts, the probability of co-occurring storm surge and heavy
precipitation is higher for the Atlantic/Gulf coast relative to the Pacific
coast (Wahl et al., 2015). Furthermore, six studied locations on the
USA coast with long overlapping time series show an increase in the
dependence between heavy precipitation and storm surge over the
last century, leading to more frequent co-occurring storm surge and
heavy precipitation events at the present day (Wahl et al., 2015). Storm
surge and extreme rainfall are also dependent in most locations on the
Australian coasts (Zheng et al., 2013) and in Europe along the Dutch
coasts (Ridder et al., 2018), along the Mediterranean Sea, the Atlantic
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coast and the North Sea (Bevacqua et al., 2019). The probability of
flood occurrence can be assessed via the dependence between storm
surge and river flow (Bevacqua et al., 2020b, c). For instance, the
occurrence of a North Sea storm surge in close succession with an
extreme Rhine or Meuse river discharge is much more probable due
to their dependence, compared to if both events were independent
(Kew et al., 2013; Klerk et al., 2015). Significant dependence between
high sea levels and high river discharge are found for more than
half of the available station observations, which are mostly located
around the coasts of North America, Europe, Australia, and Japan
(Ward et al., 2018). Combining global river discharge with a global
storm surge model, hotspots of compound flooding have been
discovered that are not well covered by observations in some regions,
including Madagascar, Northern Morocco, Vietnam, and Taiwan of
China (Couasnon et al, 2020). In the Dutch Noorderzijlvest area,
there is more than a two-fold increase in the frequency of exceeding
the highest warning level compared to the case if storm surge and
heavy precipitation were independent (van den Hurk et al., 2015). In
other regions and seasons, the dependence can be insignificant (W.
Wu et al,, 2018) and there can be significant seasonal and regional
differences in the storm surge-heavy precipitation relationship.
Assessments of flood probabilities are often not based on actual flood
measurements; instead, they are estimated from its main drivers,
including astronomical tides, storm surge, heavy precipitation, and
high streamflow. Such single driver analyses might underestimate
flood probabilities if multiple correlated drivers contribute to flood
occurrence (e.g., van den Hurk et al., 2015).

Many coastal areas are also prone to the occurrence of compound
precipitation and wind extremes, which can cause damage, including
to infrastructure and natural environments. A high percentage of
co-occurring wind and precipitation extremes are found in coastal
regions and in areas with frequent tropical cyclones. Finally, the
combination of extreme wave height and duration is also shown to
influence coastal erosion processes (Corbella and Stretch, 2012).

Aspects of concurrent extremes in coastal and estuarine environments
have increased in frequency and/or magnitude over the last century in
some regions. These include an increase in the dependence between
heavy precipitation and storm surge over the last century, leading
to more frequent co-occurring storm surge and heavy precipitation
events in the present day along USA coastlines (Wahl et al., 2015). In
Europe, the probability of compound flooding occurrence increases
most strongly along the Atlantic coast and the North Sea under
strong warming. This increase is mostly driven by an intensification
of precipitation extremes and aggravated flooding probability due
to sea level rise (Bevacqua et al., 2019). At the global scale and
under a high-emissions scenario, the concurrence probability of
meteorological conditions driving compound flooding would increase
by more than 25%, on average, along coastlines worldwide by 2100,
compared to the present (Bevacqua et al., 2020c). Sea level extremes
and their physical impacts in the coastal zone arise from a complex
set of atmospheric, oceanic, and terrestrial processes that interact
on a range of spatial and temporal scales and will be modified by
a changing climate, including sea level rise (Mclnnes et al., 2016).
Interactions between sea level rise and storm surges (Little et al.,
2015), and sea level and fluvial flooding (Moftakhari et al., 2017) are
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projected to lead to more frequent and intense compound coastal
flooding events as sea levels continue to rise.

In summary, there is medium confidence that, over the last century,
the probability of compound flooding has increased in some locations,
including along the USA coastline. There is high confidence that the
occurrence and magnitude of compound flooding in coastal regions
will increase in the future due to both sea level rise and increases in
heavy precipitation.

11.8.3  Concurrent Droughts and Heatwaves

Concurrent droughts and heatwaves have a number of negative
impacts on human society and natural ecosystems. Studies since
SREX and AR5 show several occurrences of observed combinations
of drought and heatwaves in various regions.

Over most land regions, temperature and precipitation are strongly
negatively correlated during summer (Zscheischler and Seneviratne,
2017), mostly due to land—atmosphere feedbacks (Sections 11.1.6 and
11.3.2), but also because synoptic-scale weather systems favourable
for extreme heat are also unfavourable for rain (Berg et al., 2015).
This leads to a strong correlation between droughts and heatwaves
(Zscheischler and Seneviratne, 2017). Drought events characterized
by low precipitation and extreme high temperatures have occurred,
for example, in California (AghaKouchak et al., 2014), inland Eastern
Australia (King et al., 2014), and large parts of Europe (Orth et al.,
2016a). The 2018 growing season was both record-breaking dry and
hot in Germany (Zscheischler and Fischer, 2020).

The probability of co-occurring meteorological droughts and
heatwaves has increased in the observational period in many regions
and will continue to do so under unabated warming (Herrera-Estrada
and Sheffield, 2017; Zscheischler and Seneviratne, 2017; Hao et al.,
2018;Sarhadietal.,2018;Alizadeh etal.,2020;Wu et al.,2021). Overall,
projections of increases in co-occurring drought and heatwaves are
reported in northern Eurasia (Schubert et al., 2014), Europe (Orth
et al., 2016a; Sedimeier et al., 2018), south-east Australia (Kirono
et al,, 2017), multiple regions of the USA (Diffenbaugh et al., 2015;
Herrera-Estrada and Sheffield, 2017), north-west China (X. Li et al.,
2019; Kong et al., 2020) and India (Sharma and Mujumdar, 2017). The
dominant signal is related to the increase in heatwave occurrence,
which has been attributed to anthropogenic forcing (Section 11.3.4).
This means that, even if drought occurrence is unaffected, compound
hot and dry events will be more frequent (Sarhadi et al., 2018; Yu
and Zhai, 2020).

Drought and heatwaves are also associated with fire weather, related
through high temperatures, low soil moisture, and low humidity.
Fire weather refers to weather conditions conducive to triggering
and sustaining wildfires, which generally include temperature, soil
moisture, humidity, and wind (Chapter 12). Concurrent hot and dry
conditions amplify conditions that promote wildfires (Schubert et al.,
2014; Littell et al., 2016; Dowdy, 2018; Hope et al., 2019). Burnt area
extent in western USA forests (Abatzoglou and Williams, 2016) and
particularly in California (Williams et al., 2019) has been linked to

1600

Weather and Climate Extreme Events in a Changing Climate

anthropogenic climate change via a significant increase in vapour
pressure deficit, a primary driver of wildfires. A study of the western
USA examined the correlation between historical water-balance
deficits and annual area burned, across a range of vegetation types,
from temperate rainforest to desert (McKenzie and Littell, 2017).
The relationship between temperature and dryness, and wildfire,
varied with ecosystem type, and the fire—climate relationship was
nonstationary and vegetation-dependent. In many fire-prone regions,
such as the Mediterranean and China’s Daxing'anling region,
projections for increased severity of future drought and heatwaves
may lead to an increased frequency of wildfires relative to observed
climatology (Tian et al., 2017; Ruffault et al., 2018). Observations
show a long-term trend towards more dangerous weather conditions
for bushfires in many regions of Australia, which is attributable (at
least in part) to anthropogenic climate change (Dowdy, 2018). There
is emerging evidence that recent regional surges in wildland fires are
being driven by changing weather extremes (Cross-Chapter Box 3; Jia
et al., 2019; SRCCL Chapter 2). Between 1979 and 2013, the global
burnable area affected by long fire weather seasons doubled, and
the mean length of the fire weather season increased by 19% (Jolly
et al,, 2015). However, at the global scale, the total burned area has
been decreasing between 1998 and 2015 due to human activities
mostly related to changes in land use (Andela et al., 2017). Given
the projected high confidence increase in compound hot and dry
conditions, there is high confidence that fire weather conditions
will become more frequent at higher levels of global warming in
some regions. This assessment is also consistent with Chapter 12's
examination of regional projected changes in fire weather. The
SRCCL (Chapter 2) assessed with high confidence that future climate
variability is expected to enhance the risk and severity of wildfires in
many biomes such as tropical rainforests.

In summary, there is high confidence that concurrent heatwaves and
droughts have increased in frequency over the last century at the
global scale due to human influence. There is medium confidence
that weather conditions that promote wildfires (fire weather) have
become more probable in southern Europe, northern Eurasia, the
USA, and Australia over the last century. There is high confidence that
compound hot and dry conditions become more probable in nearly
all land regions as global mean temperature increases. There is high
confidence that fire weather conditions will become more frequent at
higher levels of global warming in some regions.
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Box 11.4 | Case Study: Global-scale Concurrent Climate Anomalies — the 2015-2016 Extreme

El Nino and 2018 Boreal Spring—Summer

Occurrence of concurrent or near-concurrent extremes in
different parts of a region, or in different locations around the
world, challenges adaptation and risk management capacity. This
can occur as a result of natural climate variability, as climates
in different parts of the world are interconnected through large-
scale atmospheric—oceanic teleconnections. In addition, in
a warming climate, the probability of having several locations
being affected simultaneously by, for example, hot extremes and
heatwaves increases strongly as a function of global warming,
with detectable changes even for changes as small as +0.5°C
of additional global warming (Sections 11.2.4 and 11.3, Cross-
chapter Box 11.1). Recent articles have highlighted the risks
associated with concurrent extremes over large spatial scales
(e.g., Lehner and Stocker, 2015; Boers et al, 2019; Gaupp
et al, 2019). There is evidence that such global-scale extremes
associated with hot temperature extremes are increasing in
occurrence (Sippel et al., 2015; Vogel et al., 2019). Hereafter, the
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Box 11.4, Figure 1 | Analysis of the percentage of land area affected
by temperature extremes larger than two (blue) or three (orange)
standard deviations in June—July—August (JJA) between 30°N and
80°N using a normalization. This figure shows a substantial increase in the
overall land area affected by very strong hot extremes since 1990. Adapted from

focus is on two case studies of recent global-scale events that
featured concurrent extremes in several regions across the world.
The first focuses on concurrent extremes driven by variability in
tropical Pacific sea surface temperatures (SSTs) associated with the 20152016 extreme El Nifio, while the second addresses the
impacts of global warming combined with abnormal atmospheric circulation patterns in the 2018 boreal spring/summer.

Sippel et al. (2015).

The extreme El Nifio in 2015-2016

El Nifo—Southern Oscillation (ENSO) is one of the phenomena that have the ability to bring multitudes of extremes in different
parts of the world, especially in extreme El Nifio (Annex 1V.2.3) cases. Additionally, the background climate warming associated with
greenhouse gas forcing can significantly exacerbate extremes in parts of the world, even under normal El Nifio conditions. The 2015—
2016 extreme El Nifo event was one of the three extreme El Nifio events since the 1980s and the availability of satellite rainfall
observations. According to some measures, it was the strongest El Nifio in the past 145 years (Barnard et al., 2017). The 2015-2016
warmth was unprecedented at the central equatorial Pacific (Nifio4: 5°N-5°S, 150°E-150°W), and this exceptional warmth was
unlikely to have occurred entirely naturally, appearing to reflect an anthropogenically forced trend (Newman et al., 2018). In particular,
its signal was seen in very high monthly global mean surface temperature (GMST) values in late 2015 and early 2016, contributing
to the highest record of GMST in 2016 (Section 2.3.1.1). Both the ENSO amplitude and the frequency of high-magnitude events since
1950 is higher than over the pre-industrial period (medium confidence) (Section 2.4.2), suggesting that global extremes similar to
those associated with the 2015-2016 extreme El Nifio would occur more frequently under further increases in global warming. A brief
summary of extreme events that happened in 2015-2016 is provided in Sections 6.2.2 and 6.5.1.1 of the Special Report on the Ocean
and Cryosphere in a Changing Climate (SROCC). We provide some highlights illustrating extremes that occurred in different parts of
the world during the 2015-2016 extreme El Nifio in Box 11.4, Table 1, as well as in the short summary that follows.

Several regions were strongly affected by droughts in 2015, including Indonesia, Australia, the Amazon region, Ethiopia, southern Africa,
and Europe. As a result, global measurements of land water anomalies were particularly low in that year (Humphrey et al., 2018). In 2015,
Indonesia experienced a severe drought and forest fire, causing pronounced impact on economy, ecology and human health due to haze
crisis (Field et al., 2016; Huijnen et al., 2016; Patra et al., 2017; Hartmann et al., 2018). The northern part of Australia experienced high
temperatures and low precipitation between late 2015 and early 2016, and the extensive mangrove trees were damaged along the
Gulf of Carpentaria in Northern Australia (Duke et al., 2017). The Amazon region experienced the most intense droughts of this century
in 2015-2016. This drought was more severe than the previous major droughts that occurred in the Amazon in 2005 and 2010 (Lewis
et al, 2011; Erfanian et al.,, 2017; Panisset et al., 2018). The 2015-2016 Amazon drought impacted the entirety of South America north
of 20°S during the austral spring and summer (Erfanian et al., 2017). It also increased forest fire incidence by 36% compared to the
preceding 12 years (Aragao et al., 2018) and, as a consequence, increased the biomass burning outbreaks and the carbon monoxide (CO)
concentration in the area, affecting air quality (Ribeiro et al., 2018). This out-of-season drought affected the water availability for human
consumption and agricultural irrigation. It also left rivers with very low water levels and large sandbanks, preventing ship transportation
of food, medicines, and fuels (INMET, 2017). Eastern African countries were impacted by drought in 2015. The drought in Ethiopia was the
worst in several decades and was associated with the 2015-2016 extreme El Nifio (Blunden and Arndt, 2016; Philip et al., 2018b). It was
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Box 11.4 (continued)

Box 11.4, Table 1 | List of events related to the 2015-2016 Extreme El Nifio in the literature.

Region Period Events References
Field et al. (2016); Huijnen et al. (2016);

Ind i July 2015 to June 2016 D hts, forest fi

ndonesta uy 0une rougnts, forest fire Patra et al. (2017); Hartmann et al. (2018)
Between late 2015

Northern A li High h Duk l. (2017

orthern Australia and early 2016 igh temperature and drought uke et al. (2017)

Jiménez-Munoz et al. (2016); Erfanian et al.
Amazon September 2015 to May 2016 Droughts, forest fire (2017); Aragéo et al. (2018); Panisset et al. (2018);
Ribeiro et al. (2018)

The entirety of South America Austral spring and

north of 20° 2015-2016 summer Droughts Erfanian et al. (2017)
Ethiopia February-September 2015 Droughts Blunden and Arndt (2016); Philip et al. (2018b)
Funk et al. (2016, 2018a); BI t al. (2018);
Southern Africa November 2015—-April 2016 Droughts unk etal.( a); Blamey et al { )
Yuan et al. (2018a)
Europe Boreal 2015-2016 winter Effects on circulation patterns Geng et al. (2017); Scaife et al. (2017)
India May 2016 High temperature van Oldenborgh et al. (2018)
India December 2015 Extreme rainfall van Oldenborgh et al. (2016); Boyaj et al. (2018)
Miao (2018); Y I. 2018b);
China June—July 2016 Extreme rainfall ;:2::fa|.lé%$s()) SEEMGEE A
Blunden and Arndt (2016); B. Mueller et al.
The | 13) of 4
Western North Pacific Boreal summer 2015 5 tioaircg:I :u:;::;( 3) of Category 4 and (2016); W. Zhang et al. (2016a); Hong et al.,
piealcy (2018); Yamada et al. (2019)
Eastern North Pacific Boreal summer 2015 A record-breaking number of tropical cyclones Collins et al. (2016); Murakami et al. (2017b)

High CO; release to the atmosphere
Global 2015-2016 El Nifio associated with droughts and fires Humphrey et al. (2018); Brando et al. (2019)
in several affected regions

suggested that anthropogenic warming contributed to the 2015 Ethiopian and southern African droughts by increasing SSTs and local
air temperatures (Funk et al., 2016, 2018b; Yuan et al., 2018a). It has also been suggested that the 2015-2016 extreme El Nifio affected
circulation patterns in Europe during the 2015-2016 winter (Geng et al., 2017; Scaife et al., 2017).

The atmospheric CO, growth rate was particularly high in 2015, possibly related to some of the mentioned droughts, in particular in
Indonesia and the Amazon region, leading to higher CO, release in combination with less CO, uptake from land areas (Humphrey et al.,
2018). The impact of the 2015-2016 extreme El Nifio on vegetation systems via drought was also shown from satellite data (Kogan
and Guo, 2017). Overall, tropical forests were a carbon source to the atmosphere during the 2015-2016 El Nifio-related drought, with
some estimates suggesting that up to 2.3 PgC were released (Brando et al., 2019).

The 2015-2016 extreme El Nifio has induced extreme precipitation in some regions. Severe rainfall events were observed in Chennai
city in India in Devember 2015, and the Yangtze river region in China in June—July 2016, and it was shown that these rainfall events
are partly attributed to the 2015-2016 extreme El Nifio (van Oldenborgh et al., 2016; Boyaj et al., 2018; Sun and Miao, 2018; Yuan
et al., 2018b; Zhou et al., 2018).

In 2015, tropical cyclone activity was notably high in the North Pacific (Blunden and Arndt, 2016). Over the western North Pacific, there
were 13 Category 4 and 5 tropical cyclones (TCs), more than twice the area’s typical annual value of 6.3 (W. Zhang et al., 2016b).
Similarly, a record-breaking number of TCs were observed in the eastern North Pacific, particularly in the western part of that domain
(Collins et al., 2016; Murakami et al., 2017b). These extraordinary TC activities were related to the average SST anomaly during that
year, which were associated with the 2015-2016 extreme El Nifio and the positive phase of the Pacific Meridional Mode (Murakami
etal, 2017b; Hong et al,, 2018; Yamada et al., 2019). However, it has been suggested that the intense TC activities in both the western
and the eastern North Pacific in 2015 were not only due to the El Nifio, but also to a contribution of anthropogenic forcing (Murakami
et al., 2017b; S.-H. Yang et al.,, 2018). The impact of the Indian Ocean SST was also suggested to contribute to the extreme TC activity
in the western North Pacific in 2015 (Zhan et al., 2018). In contrast, in Australia, it was the least active TC season since satellite records
began in 1969-1970 (Blunden and Arndt, 2017).
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Box 11.4 (continued)

Global-scale temperature extremes and concurrent precipitation extremes in boreal 2018 spring and summer

In the 2018 boreal spring-summer season (May—August), wide areas of the mid-latitudes in the Northern Hemisphere experienced
heat extremes and (in part) enhanced drought (Box 11.4, Figure 2; Kornhuber et al., 2019; Vogel et al., 2019). The reported impacts
included (Vogel et al., 2019): 90 deaths from heat strokes in Quebec (Canada); 1469 deaths from heat strokes in Japan (Shimpo et al.,
2019); 48 heat-related deaths in the Republic of Korea (Min et al., 2020); heat warnings affecting 90,000 students in the USA; fires
in numerous countries (Canada (British Columbia), USA (California), Finland (Lapland), Latvia); crop losses in the UK, Germany and
Switzerland (Vogel et al., 2019) and overall in central and Northern Europe (leading to yield reductions of up to 50% for the main
crops (Toreti et al., 2019); fish deaths in Switzerland; and melting of roads in the Netherlands and the UK, among others. In addition
to the numerous hot and dry extremes, an extremely heavy rainfall event occurred over wide areas of Japan from 28 June to 8 July
2018 (Tsuguti et al., 2018), which was followed by a heatwave (Shimpo et al., 2019). The heavy precipitation event caused more than
230 deaths in Japan, and was named ‘the Heavy Rain Event of July 2018".

The heavy precipitation event was characterized by unusually widespread and persistent rainfall and locally anomalous total
precipitation led by band-shaped precipitation systems, which are frequently associated with heavy precipitation events in East
Asia (Section 11.7.3; Kato, 2020). The extreme rainfall in Japan was caused by anomalous moisture transport with a combination
of abnormal jet condition (Takemi and Unuma, 2019; Takemura et al., 2019; Tsuji et al., 2020; Yokoyama et al., 2020), which can be
viewed as an atmospheric river (Sections 8.2.2.8 and 11.7.2; Yatagai et al., 2019) caused by intensified inflow velocity and high SST
around Japan (Sekizawa et al., 2019; Kawase et al., 2020).

This precipitation event and the subsequent heatwave are related to abnormal condition of the jet stream and North Pacific Subtropical
High in this month (Shimpo et al., 2019; Ren et al., 2020), which caused extreme conditions from Europe, Eurasia, and North America
(Box 11.4, Figure 2; Kornhuber et al., 2019). A combination of the positive anomaly of the North Atlantic Oscillation (NAO, Annex IV.2.1)
and the meandering jets is necessary to explain the pattern of the observed anomalies (Drouard et al., 2019). A role of Atlantic SST
anomaly on the meandering jets and the subtropical high have been suggested (B. Liu et al., 2019). These dynamic and thermodynamic
components generally have substantial influence on extreme rainfall in East Asia (Oh et al.,, 2018), but it is under investigation whether
these factors were due to anthropogenic forcing.

Regarding the hot extremes that occurred across the Northern Hemisphere in the 2018 boreal May—July period, Vogel et al. (2019)
found that the event was unprecedented in terms of the total area affected by hot extremes (on average, about 22% of populated
and agricultural areas in the Northern Hemisphere) for that period, but was consistent with a +1°C climate which was the estimated

July 2018
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Box 11.4, Figure 2 | Meteorological conditions in July 2018. The colour shading shows the monthly mean near-surface air temperature anomaly with respect
to 1981-2010. Contour lines indicate the geopotential height in m, highlighted are the isolines on 12,000 m and 12,300 m, which indicate the approximate positions
of the polar-front jet and subtropical jet, respectively. The light blue-green ellipse shows the approximate extent of the strong precipitation event that occurred at the
beginning of July in the region of Japan and Korea. All data is from the global European Centre for Medium-Range Weather Forecasts (ECMWEF) Reanalysis v5 (ERA5,
Hersbach et al., 2020).
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Box 11.4 (continued)

global mean temperature anomaly around that time (for 2017; SR1.5). This study also found that events similar to the 2018 May—July
temperature extremes would approximately occur two out of three years under +1.5°C of global warming, and every year under +2°C
of global warming. Imada et al. (2019) also suggest that the mean annual occurrence of extreme hot days in Japan will be expected to
increase by 1.8 times under a global warming level of 2°C above pre-industrial levels. Kawase et al. (2020) showed that the extreme
rainfall in Japan during this event was increased by approximately 7% due to recent rapid warming around Japan. Imada et al. (2020)
showed that the probability of the Heavy Rain Event of July 2018 in Japan was increased from 0.22% to 2.00% due to anthropogenic
warming. Hence, it is virtually certain that these 2018 concurrent events would not have occurred without human-induced global
warming. Concurrent events of this type are also projected to happen more frequently under higher levels of global warming. However,
there is currently low confidence in projected changes in the frequency or strength of the anomalous circulation patterns leading to
concurrent extremes (e.g., Cross-Chapter Box 10.1).

The case studies presented in this Box illustrate the current state of knowledge regarding the contribution of human-induced climate
change to recent concurrent extremes in the global domain. Recent years have seen a more frequent occurrence of such events.
The heatwave in Europe in the 2019 boreal summer and its coverage in the global domain is an additional example (Vautard et al.,
2020). However, very few studies investigate which types of concurrent extreme events could occur under increasing global warming.
It has been noted that such events could also be of particular risk for concurrent impacts in the world's breadbaskets (Zampieri et al.,
2017; Kornhuber et al., 2020; see also Section 11.8.1).

In summary, the 2015-2016 extreme El Nifio and the 2018 boreal spring/summer extremes were two examples of recent concurrent
extremes. The El Nifio event in 2015-2016 was one of the three extreme El Nifio events since the 1980s, and there are many extreme
events concurrently observed in this period including droughts, heavy precipitation, and more frequent intense tropical cyclones. Both
the ENSO amplitude and the frequency of high-magnitude events since 1950 is higher than over the pre-industrial period (medium
confidence), suggesting that global extremes similar to those associated with the 2015-2016 extreme El Nifio would occur more
frequently under further increases in global warming. The 2018 boreal spring/summer extremes were characterized by heat extremes
and enhanced droughts in wide areas of the mid-latitudes in the Northern Hemisphere and extremely heavy rainfall in East Asia. These
concurrent events were generally related to the abnormal condition of the jet and North Pacific Subtropical High, but also amplified
by background global warming. It is virtually certain that these 2018 concurrent extreme events would not have occurred without
human-induced global warming. Recent years have seen a more frequent occurrence of such concurrent events. However, it is still
unknown which types of concurrent extreme events could occur under increasing global warming.

11.9  Regional Information on Extremes 11.9.1  Overview

This section complements the assessments of changes in temperature
extremes (Section 11.3), heavy precipitation (Section 11.4), and
droughts (Section 11.6), by providing additional regional details.
Regional changes in floods are assessed in Chapter 12. Owing to
the large number of regions and space limitations, the regional
assessment for each of the ARG reference regions (see Section 1.5.2.2
for a description) is presented here in a set of tables. The tables
are organized according to types of extremes (temperature,
heavy precipitation, droughts) for Africa (Tables 11.4-11.6), Asia
(Tables 11.7-11.9), Australasia (Tables 11.10-11.12), Central and
South America (Tables 11.13-11.15), Europe (Tables 11.16-11.18),
and North America (Tables 11.19-11.21). Each table contains
regional assessments for observed changes, the human contribution
to the observed changes, and projections of changes in these
extremes at 1.5°C, 2°C and 4°C of global warming. A synthesis of
regional changes in hot extremes, heavy precipitation, agricultural
and ecological droughts, and hydrological droughts can be found in
the Chapter 11 Appendix in Table 11.A.2.

1604

Sections 11.9.2, 11.9.3 and 11.9.4 provide brief summaries of the
underlying evidence used to derive the regional assessments for
temperature extremes, heavy precipitation events, and droughts,
respectively. The assessments take into account evidence from
studies based on global datasets (global studies), as well as regional
studies. Global studies include analyses for all continents and AR6
regions with sufficient data coverage, and provide an important
basis for cross-region consistency, as the same data and methods
are used for all regions. However, individual regional studies may
include additional information that is missed in global studies, and
thus provide an important regional calibration for the assessment.

The assessments are presented using the calibrated confidence and
likelihood language (Box 1.1). Low confidence is assessed when
there is limited evidence, either because of a lack of available data
in the region and/or a lack of relevant studies. Low confidence is
also assessed when there is a lack of agreement on the evidence
of a change, which may be due to large variability or inconsistent
changes depending on the considered sub-regions, time frame,
models, assessed metrics, or studies. In cases when the evidence is
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strongly contradictory, for example, with substantial regional changes
of opposite sign, ‘mixed signal’ is indicated. With an assessment of
low confidence, the direction of change is not indicated in the tables.
A direction of change (increase or decrease) is provided with an
assessment of medium confidence, high confidence, likely, or higher
likelihood levels. Likelihood assessments are only provided in the
case of high confidence. In some cases, there may be confidence in
a small or no change.

For projections, changes are assessed at three global warming levels
(GWLs; Cross-Chapter Box 11.1):1.5°C, 2°C and 4°C. The assessments
use literature based both on GWL projections and scenario-based
projections. In the case of literature on scenario-based projections,
a mapping between scenarios/time frames and GWLs was performed,
as documented in Cross-Chapter Box 11.1. Projections of changes in
temperature and precipitation extremes are assessed relative to two
different baselines: the recent past (1995-2014) and pre-industrial
(1850-1900). With smaller changes relative to the variability, in
particular because droughts happen on longer timescales compared
to extremes of daily temperature and precipitation, it is more difficult
to distinguish changes in drought relative to the recent past. As such,
changes in droughts are assessed relative to the pre-industrial
baseline, unless indicated otherwise.

11.9.2 Temperature Extremes

Tables 11.4,11.7,11.10, 11.13, 11.16, and 11.19 include assessments
for past temperature extremes and their attribution, as well as future
projections. The evidence is mostly drawn from changes in metrics based
on daily maximum and minimum temperatures, similar to those used
in Section 11.3.The regional assessments start from global studies that
used consistent analyses for all regions globally with sufficient data.
This includes Dunn et al. (2020) for observed changes, and Li et al. (2021)
and the Chapter 11 Supplementary Material (11.SM) for projections
with the CMIP6 multi-model ensemble. Evidence from regional studies,
and those based on the CMIP5 multi-model ensemble or CORDEX
simulations, are then used to refine the confidence assessments.
For attribution, Seong et al. (2020) provide a consistent analysis for
ARG regions, and Z. Wang et al. (2017a) for SREX regions. Additional
regional studies, including event attribution analyses (Section 11.2),
are used when available. In some regions that were not analysed
in Seong et al. (2020), and those with no known event attribution
studies, medium confidence of a human contribution is assessed:
when there is strong evidence of changes from observations that are
in the direction of model-projected changes for the future; when the
magnitude of projected changes increases with global warming; and
where there is no other evidence to the contrary. This assessment is
further supported by an understanding of how temperature extremes
change with the mean temperature and overwhelming evidence of
a human contribution to the observed larger-scale changes in the
mean temperature and temperature extremes.
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11.9.3  Heavy Precipitation

Tables 11.5,11.8,11.11,11.14,11.17,and 11.20 include assessments
for past changes in heavy precipitation events and their attribution, as
well as future projections. The evidence is mostly drawn from changes
in metrics based on one-day or five-day precipitation amounts, as
addressed in Section 11.4. Similar to temperature extremes, the
assessment of changes in heavy precipitation uses global studies,
including Dunn et al. (2020) and Sun et al. (2021) for observed
changes, and Li et al. (2021) and the Chapter 11 Supplementary
Material (11.SM) for projected changes using the CMIP6 multi-model
ensemble. For attribution, Paik et al. (2020) provided continental
analyses where data coverage was sufficient, but no attribution
studies based on global data are available for the regional scale.
For each region, regional studies, and studies based on the CMIP5
multi-model ensemble or CORDEX simulations, are also considered in
the assessments for past changes, attribution, and projections.

11.9.4 Droughts

Tables 11.6, 11.9, 11.12, 11.15, 11.18, and 11.21 provide regional
assessments on past, attributed and projected changes in
droughts. The assessment is subdivided in three drought categories
corresponding to four drought types: i) meteorological droughts,
ii) agricultural and ecological droughts, and iii) hydrological
droughts (see Section 11.6). A list of metrics and global studies
used for the assessments is provided below. The evidence from
global studies is complemented in each continent with evidence
from regional studies. An overview of studies considered for the
assessments in projections is provided in Table 11.3.

Meteorological droughts are assessed based on observed and
projected changes in precipitation-only metrics such as the
Standardized Precipitation Index (SPI) and Consecutive Dry Days
(CDD). Observed changes are assessed based on two global
studies, Dunn et al. (2020) for CDD, and Spinoni et al. (2019) for SPI.
For projections, evidence for changes at 1.5°C and 2°C of global
warming is drawn from L. Xu et al. (2019) and Touma et al. (2015)
(based on RCP8.5 for 2010-2054 compared to 1961-2005) for SPI
(CMIP5) and the Chapter 11 Supplementary Material (11.SM) for
CDD (CMIP®). For projections at 4°C of global warming, evidence is
drawn from several sources, including Touma et al. (2015) and Spinoni
et al. (2020) for SPI (from CMIP5 and CORDEX, respectively), and
11.SM for CDD (CMIP6). No global-scale studies are available for the
attribution of meteorological drought, so this assessment is based on
regional detection and attribution or event attribution studies.

Agricultural and ecological droughts are primarily assessed based
on observed and projected changes in total column soil moisture,
complemented by evidence on changes in surface soil moisture,
water-balance (precipitation minus evapotranspiration (ET)) and
metrics driven by precipitation and atmospheric evaporative demand
(AED) such as the SPEI and PDSI (Section 11.6). In the latter, only
studies including estimates based on the Penman—Monteith equation
(SPEI-PM and PDSI-PM) are considered because of biases associated
with temperature-only approaches (Section 11.6). Medium to
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high confidence in drying was assigned in the assessment for arid
regions if a signal was also identifiable in total soil moisture in
addition to surface soil moisture or metrics that combine AED and
precipitation, which tend to dry more in these regions. For observed
changes, evidence is drawn from several sources: Padrén et al.
(2020) for changes in precipitation minus ET, as well as soil moisture
from the multi-model Land Surface Snow and Soil Moisture Model
Intercomparison Project within CMIP6 (11.SM; van Den Hurk et al,,
2016); Greve et al. (2014) for changes in precipitation minus ET, and
precipitation minus AED; Spinoni et al. (2019) for changes in SPEI-PM;
and Dai and Zhao (2017) for changes in PDSI-PM.

For projections at 1.5°C of global warming, evidence is drawn
from: L. Xu et al. (2019), based on CMIP5; 11.SM based on CMIP6
for changes in total column and surface soil moisture; and from
Naumann et al. (2018) for changes in SPEI-PM, based on EC-Earth
simulations driven with SSTs from seven CMIP5 Earth system models.
For projections at 2°C of global warming, evidence is drawn from
L. Xu et al. (2019) based on CMIP5, and Cook et al. (2020) (SSP1-2.6,
2071-2100 compared to pre-industrial) and the Chapter 11
Supplementary Material (11.SM) based on CMIP6, for changes in
total column and surface soil moisture; evidence is also drawn from
Naumann et al. (2018) for changes in SPEI-PM. For projections at 4°C

Weather and Climate Extreme Events in a Changing Climate

of global warming, evidence is mostly drawn from: Cook et al. (2020)
(SSP3-7.0, 2071-2100) and the Chapter 11 Supplementary Material
(11.SM) based on CMIP6 for changes in total column and surface
soil moisture; and from Vicente-Serrano et al. (2020c) for changes
in SPEI-PM based on CMIP5. No global-scale studies with regional-
scale information are available for the attribution of agricultural
and ecological droughts, so this assessment is based on regional
detection and attribution or event attribution studies.

Hydrological droughts are assessed based on observed and projected
changes in low flows, complemented by information on changes in
mean runoff. For observed changes, evidence is drawn from three
studies (Dai and Zhao, 2017; Gudmundsson et al., 2019, 2021). For
projected changes at 1.5°C of global warming, evidence is drawn from
Touma et al. (2015) based on analyses of the Standardized Runoff
Index (SRI) (CMIP5, based on 2010-2054 compared to 1961-2005),
complemented with regional studies when available. For projected
changes at 2°C of global warming, evidence is also drawn from Cook
et al. (2020) for changes in runoff in CMIP6 (Scenario SSP1-2.6, 2071—
2100), and from J. Zhai et al. (2020) for changes in low flows based
on simulations with a single model. For projected changes at 4°C of
global warming, evidence is drawn from: Touma et al. (2015) based on
CMIP5 analyses of SRI; Cook et al. (2020) for changes in surface and

Table 11.3 | Global analyses considered for the assessments of drought projections. MET refers to meteorological droughts, AGR/ECOL to agricultural and ecological
droughts, and HYDR to hydrological droughts.

Reference Model Data? Drought Type Projection Horizons Baseline
CDD, Soil moisti
11.5M CMIP6 off moisture MET 15°C, 2°C, 4°C 1850-1900
(total, surface)
i i 2071-2011, SSP1-2.6 (about 2°C,
Soil moisture AGRIECOL, Cross-Chapter Box 11.1; Table 4.2)
Cook et al. (2020) CMIP6 (total, surface), HYDR 1850-1900
runoff (total, surface) 2071-2011, SSP3-7-3 (about 4°C,
Cross-Chapter Box 11.1; Table 4.2)
L Xu et al. (2019) cMmIPS SPI, soil moisture (total, MET AGRIECOL | 1.5°C, 2°C 1971-2000
surface)
2010-2054, RCP8.5 (about 1.5°C;
Cross-Chapter Box 11.1 and 11.SM.1)
Touma et al. (2015) CMIP5 SPI, SRI MET, HYDR 1961-2005
2055-2099, RCP8.5 (about 3.5°C,
Cross-Chapter Box 11.1 and 11.5M.1)
2071-2100, RCP4.5 (about 2.5°C,
CORDEX (CMIP5 drivi GCM 1 Cross—Chapter Box 11.1 and 11SM1)
Spinoni et al. (2020) ¢ riving LS Pl MET 1981-2010
RCMs) 2071-2100, RCP8.5 (about 4.5°C,
Cross-Chapter Box 11.1 and 11.SM.1)
One GCM (EC-EARTH3-HR v3.1)
Naumann et al. (2018) driven with SST fields from seven SPEI-PM AGR/ECOL 1.5°C, 2°C, (3°Q) 0.6°C
CMIP5 GCMs
Vicente-Serrano et al. 2070-2100, RCP8.5 (about 4.5°C,
CMIPS SPEI-PM AGR/ECOL 1970-2000
(2020¢) Cross-Chapter Box 11.1 and 11.5M.1)
. ' ISI-MIP (six GHMs and five 2066-2099, RCP8-5 (about 4°C,
| l. (201 Low-fl HYDR 1972-2
ST e ) CMIP5 GCMs) FAEEBEE Cross-Chapter Box 11.1 and 11.SM.1) 2 005
i One GHM (VIC) driven by four o o
J. Zhai et al. (2020) CMIPS GCMs Extreme low runoff HYDR 1.5°C, 2°C 2006-2015

2 CMIP5 and CMIP6: Coupled Model Intercomparison Project Phases 5/6; CORDEX: Coordinated Regional Downscaling Experiment; GCMs: global climate models; RCMs:
regional climate models; SST: sea surface temperatures; ISI-MIP: Inter-Sectoral Impact Model Intercomparison Project; GHMs: Global Hydrological Models; CDD: consecutive
dry days index; SPI: Standardized Precipitation Index; SRI: Standardized Runoff Index; SPEI-PM: Penman—Monteith-based Standardized Precipitation Evapotranspiration Index.
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total runoff based on CMIP6; and Giuntoli et al. (2015) for changes in
low flows based on the Inter-Sectoral Impact Model Intercomparison
Project (ISI-MIP) based on six Global Hydrological Models (GHMs) and
five GCMs, including an analysis of inter-model signal-to-noise ratio.
One global-scale study with regional-scale information is available for
the attribution of hydrological droughts (Gudmundsson et al., 2021),
but only in a few AR6 regions. This information was complemented
with evidence from regional detection and attribution, and event
attribution studies when available.
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Frequently Asked Questions

FAQ 11.1 | How Do Changes In Climate Extremes Compare With Changes In
Climate Averages?

Human-caused climate change alters the frequency and intensity of climate variables (e.q., surface temperature)
and phenomena (e.qg., tropical cyclones) in a variety of ways. We now know that the ways in which average and
extreme conditions have changed (and will continue to change) depend on the variable and the phenomenon
being considered. Changes in local surface temperature extremes closely follow the corresponding changes in
local average surface temperatures. On the contrary, changes in precipitation extremes (heavy precipitation)
generally do not follow those in average precipitation, and can even move in the opposite direction (e.g., with
average precipitation decreasing but extreme precipitation increasing).

Climate change will manifest very differently depending on which region, season and variable we are interested
in. For example, over some parts of the Arctic, temperatures will warm at rates about three to four times higher
during winter compared to summer months. And in summer, most of northern Europe will experience larger
temperatures increases than most places in south-east South America and Australasia, with differences that can
be larger than 1°C, depending on the level of global warming. In general, differences across regions and seasons
arise because the underlying physical processes differ drastically across regions and seasons.

Climate change will also manifest differently for different weather regimes and can lead to contrasting changes
in average and extreme conditions. Observations of the recent past and climate model projections show that,
in most places, changes in daily temperatures are dominated by a general warming where the climatological
average and extreme values are shifted towards higher temperatures, making warm extremes more frequent and
cold extremes less frequent. The top panels in FAQ 11.1, Figure 1 show projected changes in surface temperature
for long-term average conditions (left) and for extreme hot days (right) during the warm season (summer in mid-
to high latitudes). Projected increases in long-term average temperature differ substantially between different
places, varying from less than 3°C in some places in central South Asia and southern South America to over 7°C
in some places in North America, North Africa and the Middle East. Changes in extreme hot days follow changes
in average conditions quite closely, although, in some places, the warming rates for extremes can be intensified
(e.g., southern Europe and the Amazon basin) or weakened (e.g., northern Asia and Greenland) compared to
average values.

Recent observations and global and regional climate model projections point to changes in precipitation
extremes (including both rainfall and snowfall extremes) differing drastically from those in average precipitation.
The bottom panels in FAQ 11.1, Figure 1 show projected changes in the long-term average precipitation (left)
and in heavy precipitation (right). Averaged precipitation changes show striking regional differences, with
substantial drying in places such as southern Europe and northern South America and wetting in places such as
the Middle East and southern South America. Changes in extreme precipitation are much more uniform, with
systematic increases over nearly all land regions. The physical reasons behind the different responses of averaged
and extreme precipitation are now well understood. The intensification of extreme precipitation is driven by
the increase in atmospheric water vapour (about 7% per 1°C of warming near the surface), although this is
modulated by various dynamical changes. In contrast, changes in average precipitation are driven not only by
moisture increases but also by slower processes that constrain future changes over the globe to only 2-3% per
1°C of warming near the surface.

In summary, the specific relationship between changes in average and extreme conditions strongly depends on
the variable or phenomenon being considered. At the local scale, average and extreme surface temperature
changes are strongly related, while average and extreme precipitation changes are often weakly related. For
both variables, the changes in average and extreme conditions vary strongly across different places due to the
effect of local and regional processes.
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FAQ 11.1 (continued)

FAQ 11.1: How will changes in climate extremes compare with changes in climate averages?
The direction and magnitude of future changes in climate extremes and averages depend on the variable considered.

Climate average Climate extreme

Future changes
in temperature
averages and
extremes will be
similar

0°C 2 4 6 8°C

Climate average Climate extreme

Future changes
in precipitation
averages and
extremes can be
very different

4 >
-40% -20 0% 20 40%
Drier Wetter

FAQ 11.1, Figure 1 | Global maps of future changes in surface temperature (top panels) and precipitation (bottom panels) for long-term
average (left) and extreme conditions (right). All changes were estimated using the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble
median for a scenario with a global warming of 4°C relative to 1850—1900 temperatures. Average surface temperatures refer to the warmest three-month season
(summer in mid- to high latitudes) and extreme temperatures refer to the hottest day in a year. Precipitation changes, which can include both rainfall and snowfall
changes, are normalized by 1850—1900 values and shown as a percentage; extreme precipitation refers to the largest daily precipitation in a year.
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Frequently Asked Questions

FAQ 11.2 | Will Unprecedented Extremes Occur As a Result Of Human-Induced Climate Change?

Climate change has already increased the magnitude and frequency of extreme hot events and decreased
the magnitude and frequency of extreme cold events, and, in some regions, intensified extreme precipitation
events. As the climate moves away from its past and current states, we will experience extreme events that
are unprecedented, either in magnitude, frequency, timing or location. The frequency of these unprecedented
extreme events will rise with increasing global warming. Additionally, the combined occurrence of multiple
unprecedented extremes may result in large and unprecedented impacts.

Human-induced climate change has already affected many aspects of the climate system. In addition to the increase
in global surface temperature, many types of weather and climate extremes have changed. In most regions, the
frequency and intensity of hot extremes have increased and those of cold extremes have decreased. The frequency
and intensity of heavy precipitation events have increased at the global scale and over a majority of land regions.
Although extreme events such as land and marine heatwaves, heavy precipitation, drought, tropical cyclones, and
associated wildfires and coastal flooding have occurred in the past and will continue to occur in the future, they
often come with different magnitudes or frequencies in a warmer world. For example, future heatwaves will last
longer and have higher temperatures, and future extreme precipitation events will be more intense in several
regions. Certain extremes, such as extreme cold, will be less intense and less frequent with increasing warming.

Unprecedented extremes — that is, events not experienced in the past — will occur in the future in five different ways
(FAQ 11.2, Figure 1). First, events that are considered to be extreme in the current climate will occur in the future
with unprecedented magnitudes. Second, future extreme events will also occur with unprecedented frequency.
Third, certain types of extremes may occur in regions that have not previously encountered those types of events.
For example, as the sea level rises, coastal flooding may occur in new locations, and wildfires are already occurring
in areas, such as parts of the Arctic, where the probability of such events was previously low. Fourth, extreme events
may also be unprecedented in their timing. For example, extremely hot temperatures may occur either earlier or
later in the year than they have in the past.

Finally, compound events — where multiple extreme
events of either different or similar