
I. Lahiri
Nagoya Math. J.
Vol. 161 (2001), 193–206

WEIGHTED SHARING AND UNIQUENESS OF

MEROMORPHIC FUNCTIONS

INDRAJIT LAHIRI

Abstract. Introducing the idea of weighted sharing of values we prove some
uniqueness theorems for meromorphic functions which improve some existing
results.

§1. Introduction and Definitions

Let f and g be two nonconstant meromorphic functions defined in the

open complex plane C. If for some a ∈ C ∪ {∞} the a-points of f and

g coincide in locations and multiplicities, we say that f and g share the

value a CM (counting multiplicities). On the other hand, if the a-points of

f and g coincide in locations only, we say that f and g share the value a

IM (ignoring multiplicities).

Though we do not explain the standard notations of the value distri-

bution theory because those are available in [2], we explain some notations

which will be needed in the sequel.

Definition 1. If s is a nonnegative integer, we denote by N(r, a; f |=

s) the counting function of those a-points of f whose multiplicity is s, where

each a-point is counted according to its multiplicity.

Definition 2. If s is a positive integer, we denote by N(r, a; f |≥ s)

the counting function of those a-points of f whose multiplicities are greater

than or equal to s, where each a-point is counted only once.

Definition 3. If s is a nonnegative integer, we denote by Ns(r, a; f)

the counting function of a-points of f where an a-point with multiplicity m

is counted m times if m ≤ s and s times if m > s. We put N∞(r, a; f) =

N(r, a; f).
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194 I. LAHIRI

Definition 4. Let f , g share a value a IM. We denote by N∗(r, a; f, g)

the counting function of those a-points of f whose multiplicities are different

from multiplicities of the corresponding a-points of g, where each a-point

is counted only once.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f).

Definition 5. Let f , g share a value a IM. We denote by N(r, a; f <

g) (N(r, a; f > g)) the counting function of those a-points of f whose mul-

tiplicities are less (greater) than the multiplicities of the corresponding a-

points of g, where each a-point is counted only once.

We denote by I a set of infinite linear measure not necessarily the same

in all its occurrences. Also T (r) denotes the maximum of T (r, f) and T (r, g).

M. Ozawa [4] proved the following result.

Theorem A. ([4]) Let f , g be entire functions of finite order such that

f and g share 0, 1 CM. If δ(0, f) > 1/2 then f.g ≡ 1 unless f ≡ g.

Removing the order restriction in the above result H. Ueda [6] proved

the following theorem.

Theorem B. ([6]) If f , g share 0, 1, ∞ CM and

lim sup
r→∞

N(r, 0; f) + N(r,∞, f)

T (r, f)
<

1

2

then either f ≡ g or f.g ≡ 1.

In this direction H. X. Yi proved the following two results.

Theorem C. ([7]) If f , g share 0, 1, ∞ CM and N(r, 0; f)+N (r,∞; f)

< {λ + o(1)}T (r, f) for r ∈ I and 0 < λ < 1/2, then f ≡ g or f.g ≡ 1.

Theorem D. ([9]) If f , g share 0, 1, ∞ CM and N(r, 0; f |= 1) +

N(r,∞; f |= 1) < {λ + o(1)}T (r) for r ∈ I and 0 < λ < 1/2 then either

f ≡ g or f.g ≡ 1.

Following examples show that in Theorem D the sharing of 0 can not

be relaxed from CM to IM.
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Example 1. Let f(z) =
(

1+ez

1−ez

)2
and g(z) = 1+ez

1−ez
. Then f , g share 0,

∞ IM and 1 CM. Also N(r, 0; f |= 1) ≡ N(r,∞; f |= 1) ≡ 0 but neither

f ≡ g nor f.g ≡ 1.

Example 2. Let f(z) = (ez −1)2 and g(z) = ez −1. Then f , g share 0

IM and 1, ∞ CM. Also N(r, 0; f |= 1) ≡ N(r,∞; f |= 1) ≡ N(r,∞; f) ≡ 0

but neither f ≡ g nor f.g ≡ 1.

Now one may ask: Is it possible to relax the nature of sharing of 0 in

the above results and if possible how far ?

The purpose of the paper is to discuss this problem. To this end we in-

troduce a gradation of sharing of values which we call the weight of sharing.

Definition 6. Let k be a nonnegative integer or infinity. For a ∈

C ∪{∞} we denote by Ek(a; f) the set of all a-points of f where an a-point

of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k.

Definition 7. Let k be a nonnegative integer or infinity. If for a ∈

C∪{∞}, Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight

k.

The definition implies that if f , g share a value a with weight k then

zo is a zero of f − a with multiplicity m (≤ k) if and only if it is a zero of

g − a with multiplicity m (≤ k) and zo is a zero of f − a with multiplicity

m (> k) if and only if it is a zero of g − a with multiplicity n (> k) where

m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with

weight k. Clearly if f , g share (a, k) then f , g share (a, p) for all integer p,

0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only if

f , g share (a, 0) or (a, ∞) respectively.

§2. Lemmas

In this section we present some lemmas which are necessary in the

sequel.

Lemma 1. If f , g share (a, 0), (b, 0), (∞, 0) where b 6= ∞ and a 6= b,∞

then T (r, f) ≤ 3T (r, g) + S(r, f) and T (r, g) ≤ 3T (r, f) + S(r, g).

Proof. The lemma follows as a direct consequence of the second fun-

damental theorem.
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196 I. LAHIRI

Lemma 2. Let c1f + c2g ≡ c3, where c1, c2, c3 are nonzero constants.

Then

(i) T (r, f) ≤ N(r, 0; f) + N(r, 0; g) + N(r,∞; f) + S(r, f),

(ii) T (r, g) ≤ N(r, 0; f) + N(r, 0; g) + N(r,∞; g) + S(r, g).

Proof. By the second fundamental theorem we get

T (r, f) ≤ N(r, 0; f) + N(r, c3/c1; f) + N(r,∞; f) + S(r, f)

= N(r, 0; f) + N(r, 0; g) + N(f,∞; f) + S(r, f).

In a similar manner we can prove (ii). This proves the lemma.

Lemma 3. Let f , g share (a, 0) and φ = f ′

f−b
− g′

g−b
where a 6= ∞,

b 6= a,∞. If N(r, a; f) 6= S(r, f) and φ ≡ 0 then f ≡ g.

Proof. Since φ ≡ 0, we get f − b = c(g − b), where c is a constant.

Since f , g share (a, 0) and N(r, a; f) 6= S(r, f), there exists z0 ∈ C such

that f(z0) = g(z0) = a. This shows that c = 1 because a 6= b. Therefore

f ≡ g. This proves the lemma.

Lemma 4. Let a 6= ∞, b 6= a,∞ be two complex numbers. If f, g share

(a, 1), (∞, 0), (b,∞) and f 6≡ g then

N(r, a; f |≥ 2) ≤ N∗(r,∞; f, g) + S(r, f),

N(r, a; g |≥ 2) ≤ N∗(r,∞; f, g) + S(r, f).

Proof. Since the lemma is obvious when N(r, a; f) = S(r, f), we sup-

pose that N(r, a; f) 6= S(r, f).

Let φ = f ′

f−b
− g′

g−b
. Since f , g share (a, 1) and f 6≡ g, by Lemma 3 it

follows that φ 6≡ 0. Since f , g share (a, 1), every multiple a-point of f is a

multiple a-point of g and so it is a zero of φ. Hence

N(r, a; f |≥ 2) ≤ N(r, 0;φ) ≤ T (r, φ) + O(1)

= N(r, φ) + m(r, φ) + O(1)

≤ N(r, φ) + m
(

r,
f ′

f − b

)

+ m
(

r,
g′

g − b

)

+ O(1)

= N(r, φ) + S(r, f) + S(r, g),

by Milloux theorem [2, p. 55].
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So by Lemma 1 we get

N(r, a; f |≥ 2) ≤ N(r, φ) + S(r, f).(1)

Since f , g share (a, 1), it follows that N(r, a; f |≥ 2) = N(r, a; g |≥ 2)

and so

N(r, a; g |≥ 2) ≤ N(r, φ) + S(r, f).(2)

Clearly the possible poles of φ occur at the b-points and poles of f , g.

Let z0 be a b-point of f with multiplicity m. Then f−b = (z−z0)
mα(z)

in some neighbourhood of z0, where α is analytic at z0 and α(z0) 6= 0. So
f ′

f−b
= α′

α
+ m

z−z0
in some neighbourhood of z0.

Since f , g share (b,∞), in a similar manner we get g′

g−b
= β′

β
+ m

z−z0
in

some neighbourhood of z0, where β is analytic at z0 and β(z0) 6= 0.

Hence in some neighbourhood of z0, φ = α′

α
− β′

β
so that z0 is not a pole

of φ.

Let z1 be a pole of f with multiplicity m and a pole of g with multiplicity

n. Then in some neighbourhood of z1 we get f − b = γ(z)/(z − z1)
m and

g−b = δ(z)/(z − z1)
n, where γ, δ are analytic at z1 and γ(z1) 6= 0, δ(z1) 6= 0.

So

f ′ =
γ′

(z − z1)m
−

mγ

(z − z1)m+1
and g′ =

δ′

(z − z1)n
−

nδ

(z − z1)n+1

in some neighbourhood of z1.

Hence φ = γ′

γ
− δ′

δ
− m−n

z−z1
in some neighbourhood of z1. This shows that

if m 6= n, z1 is a simple pole of φ and if m = n, z1 is not a pole of φ. Since

all the poles of φ are simple, we get

N(r, φ) = N(r, φ) ≤ N∗(r,∞; f, g).(3)

Now the lemma follows from (1), (2) and (3). This proves the lemma.

Lemma 5. Let a 6= ∞, b 6= a,∞ be two complex numbers. If f , g share

(a, 1), (b,∞), (∞, 0) and f 6≡ g then

N2(r, a; f) ≤ N(r, a; f |= 1) + 2N∗(r,∞; f, g) + S(r, f),

and

N2(r, a; g) ≤ N(r, a; f |= 1) + 2N∗(r,∞; f, g) + S(r, f).
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Proof. By Lemma 4 we get

N2(r, a; f) = N(r, a; f |= 1) + 2N(r, a; f |≥ 2)

≤ N(r, a; f |= 1) + 2N∗(r,∞; f, g) + S(r, f)

and

N2(r, a; g) = N(r, a; g |= 1) + 2N(r, a; g |≥ 2)

≤ N(r, a; f |= 1) + 2N∗(r,∞; f, g) + S(r, f).

This proves the lemma.

Lemma 6. Let a 6= ∞, b 6= a,∞ be two comlpex numbers. If f , g share

(a, 1), (b,∞), (∞, 1) and f 6≡ g then

(i) N(r,∞; f |≥ 2) ≤ N∗(r,∞; f, g) + S(r, f), and

(ii) N(r,∞; g |≥ 2) ≤ N∗(r,∞; f, g) + S(r, f).

Proof. Let F = a + (b−a)2

f−a
and G = a+ (b−a)2

g−a
. Then F , G share (a, 1),

(b,∞), (∞, 1). So by Lemma 4 we get

N(r, a;F |≥ 2) ≤ N∗(r,∞;F,G) + S(r, f)

i.e.,

N(r,∞; f |≥ 2) ≤ N∗(r, a; f, g) + S(r, f)(4)

≤ N(r, a; f |≥ 2) + S(r, f).

Again by Lemma 4 we get

N(r, a; f |≥ 2) ≤ N∗(r,∞; f, g) + S(r, f).(5)

Now (i) follows from (4) and (5). Since by Lemma 1 S(r,G) = S(r, g) =

S(r, f), we can prove (ii) in a similar manner. This proves the lemma.

Lemma 7. Let a 6= ∞, b 6= a,∞ be two complex numbers. If f , g share

(a, 1), (b,∞), (∞, 1) and f 6≡ g then

(i) N2(r,∞; f) ≤ N(r,∞; f |= 1) + 2N∗(r,∞; f, g) + S(r, f),

(ii) N2(r,∞; g) ≤ N(r,∞; f |= 1) + 2N∗(r,∞; f, g) + S(r, f).

https://doi.org/10.1017/S0027763000027215 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000027215


WEIGHTED SHARING AND MEROMORPHIC FUNCTIONS 199

Proof. By Lemma 6 we get

N2(r,∞; f) = N(r,∞; f |= 1) + 2N(r,∞; f |≥ 2)

≤ N(r,∞; f |= 1) + 2N∗(r,∞; f, g) + S(r, f)

and

N2(r,∞; g) = N(r,∞; g |= 1) + 2N(r,∞; f |≥ 2)

≤ N(r,∞; f |= 1) + 2N∗(r,∞; f, g) + S(r, f).

This proves the lemma.

Lemma 8. Let a 6= ∞, b 6= a,∞ be two complex numbers. If f , g share

(a, 1), (b,∞), (∞,∞) and f 6≡ g then

(i) N2(r, a; f) ≤ N(r, a; f |= 1) + S(r, f),

(ii) N2(r, a; g) ≤ N(r, a; f |= 1) + S(r, f),

(iii) N2(r,∞; f) ≤ N(r,∞; f |= 1) + S(r, f), and

(iv) N2(r,∞; g) ≤ N(r,∞; f |= 1) + S(r, f).

Proof. Since f , g share (∞,∞), N∗(r,∞; f, g) ≡ 0 and the lemma

follows from Lemma 5 and Lemma 7. This proves the lemma.

Lemma 9. ([3]) Let f1, f2, f3 be nonconstant meromorphic functions

such that f1 + f2 + f3 ≡ 1. If f1, f2, f3 are linearly independent then for

i = 1, 2, 3

T (r, fi) ≤
3

∑

j=1

N2(r, 0; fj) +
3

∑

j=1

N(r,∞; fj) +
3

∑

j=1

S(r, fj).

§3. Theorems

In this section we present the main results of the paper.

Theorem 1. Let f , g share (0, 1), (∞, 0), (1,∞). If

N(r, 0; f |= 1) + 4N(r,∞; f) < {λ + o(1)}T (r)(6)

for r ∈ I and 0 < λ < 1/2 then either f ≡ g or f.g ≡ 1.
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Theorem 2. Let f , g share (0, 1), (∞,∞), (1,∞). If

N(r, 0; f |= 1) + N(r,∞; f |= 1) < {λ + o(1)}T (r)(7)

for r ∈ I and 0 < λ < 1/2 then either f ≡ g or f.g ≡ 1.

Example 2 shows that in Theorem 1 and Theorem 2 sharing (0, 1) can

not be relaxed to sharing (0, 0). Also the following example shows that the

conditions (6) and (7) are sharp.

Example 3. Let f(z) = ez(1 − ez), g(z) = e−z(1 − e−z). Then f , g

share (0,∞), (∞,∞), (1,∞) and N(r, 0; f |= 1) ∼ 1
2T (r), N(r,∞; f |=

1) ≡ N(r,∞; f) ≡ 0. Also neither f ≡ g nor f.g ≡ 1.

Proof of Theorem 1. We suppose that f 6≡ g. Without loss of generality,

we suppose that there exists a set I of infinite linear measure such that

T (r, g) ≤ T (r, f) for r ∈ I, because otherwise we have only to interchange

f and g in our discussion, noting by Lemma 1 that S(r, f) = S(r, g). Let

h =
f − 1

g − 1
.(8)

Since f , g share (1,∞), (∞, 0) it follows that

N2(r, 0;h) ≤ 2N(r, 0;h) ≤ 2N(r,∞; f < g)

and

N2(r,∞;h) ≤ 2N(r,∞;h) ≤ 2N(r,∞; f > g).

Let f1 = f , f2 = −gh and f3 = h. Then by (8) it follows that

f1 + f2 + f3 ≡ 1.(9)

If possible, we suppose that f1, f2, f3 are linearly independnt. It is clear

that a zero of h is not a zero of f2 so that N2(r, 0; f2) ≤ N2(r, 0; g). Then

by Lemma 9, Lemma 5 and Lemma 1 we get

T (r, f) ≤

3
∑

j=1

N2(r, 0; fj) +

3
∑

j=1

N(r,∞; fj) + S(r, f)

≤ N2(r, 0; f) + N2(r, 0; g) + N2(r, 0;h) + N(r,∞; f)

+ N(r,∞; gh) + N(r,∞;h) + S(r, f)
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≤ 2N(r, 0; f |= 1) + 4N∗(r,∞; f, g) + 2N(r, 0;h) + N(r,∞; f)

+ N(r,∞;h(g − 1)) + N(r,∞;h) + S(r, f)

≤ 2N(r, 0; f |= 1) + 4N(r,∞; f) + 3N(r,∞; f)

+ {N(r, 0;h) + N(r,∞;h)} + S(r, f)

≤ 2N(r, 0; f |= 1) + 7N(r,∞; f)

+ {N(r,∞; f < g) + N(r,∞; f > g)} + S(r, f)

≤ 2N(r, 0; f |= 1) + 8N(r,∞; f) + S(r, f)

< {2λ + o(1)}T (r, f) for r ∈ I,

which is a contradiction.

Therefore f1, f2, f3 are linearly dependent and so there exist constants

c1, c2, c3, not all zero, such that

c1f1 + c2f2 + c3f3 ≡ 0.(10)

If c1 = 0, we get from (10) h(c3−c2g) ≡ 0, which is a contradiction because

f , g are nonconstant. So c1 6= 0 and eliminating f1 from (9) and (10) we

get

cf2 + df3 ≡ 1,(11)

where c = 1 − (c2/c1) and d = 1 − (c3/c1) and clearly |c| + |d| 6= 0.

Now we consider the following cases.

Case I. Let c.d 6= 0. Then from (11) and (8) we get

−cgh + dh ≡ 1,(12)

i.e., − c
(

1 +
f − 1

h

)

h + dh ≡ 1,

i.e., (d − c)h − cf ≡ 1 + c.

Since f is nonconstant, it follows that c 6= d. Let c 6= −1. Then by Lemma 2

and Lemma 5 we get

T (r, f) ≤ N(r, 0; f) + N(r, 0;h) + N(r,∞; f) + S(r, f)

≤ N(r, 0; f) + N(r,∞; f < g) + N(r,∞; f) + S(r, f)

≤ N(r, 0; f |= 1) + 2N∗(r,∞; f, g) + 2N(r,∞; f) + S(r, f)

≤ N(r, 0; f |= 1) + 4N(r,∞; f) + S(r, f)

< {λ + o(1)}T (r, f) for r ∈ I,
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which is a contradiction.

Let c = −1. Then d 6= −1 and from (12) we get

(d + 1)h + f ≡ 0,

i.e., (d + 1)
f − 1

g − 1
+ f ≡ 0,

i.e.,
d + 1

f
− g ≡ d.

So by Lemma 2, Lemma 5 and the first fundamental theorem we get

T
(

r,
1

f

)

≤ N
(

r, 0;
1

f

)

+ N(r, 0; g) + N
(

r,∞;
1

f

)

+ S(r, f)

i.e.,

T (r, f) ≤ 2N(r, 0; f) + N(r,∞; f) + S(r, f)

≤ 2N(r, 0; f |= 1) + 4N∗(r,∞; f, g) + N(r,∞; f) + S(r, f)

≤ 2N(r, 0; f |= 1) + 5N(r,∞; f) + S(r, f)

< {2λ + o(1)}T (r, f) for r ∈ I,

which is a contradiction. Therefore the case c.d 6= 0 does not arise.

Case II. Let c.d = 0.

Let c = 0. Then d 6= 0 and so from (11) we get df − g ≡ d − 1. Since

f 6≡ g, d 6= 1 and so by Lemma 2 and Lemma 5 we get

T (r, f) ≤ N(r, 0; f) + N(r, 0; g) + N(r,∞; f) + S(r, f)

≤ 2N(r, 0; f |= 1) + 4N∗(r,∞; f, g) + N(r,∞; f) + S(r, f)

≤ 2N(r, 0; f |= 1) + 5N(r,∞; f) + S(r, f)

< {2λ + o(1)}T (r, f) for r ∈ I,

which is a contradiction.

Therefore c 6= 0 and so d = 0. From (11) we get

− cf +
1

g
≡ 1 − c.(13)
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If c 6= 1, by Lemma 2 and Lemma 5 we get

T (r, f) ≤ N(r, 0; f) + N(r, 0; 1/g) + N(r,∞; f) + S(r, f)

≤ N(r, 0; f |= 1) + 2N∗(r,∞; f, g) + 2N(r,∞; f) + S(r, f)

≤ N(r, 0; f |= 1) + 4N(r,∞; f) + S(r, f)

< {λ + o(1)}T (r, f) for r ∈ I,

which is a contradiction.

So c = 1 and from (13) we get f.g ≡ 1. This proves the theorem.

Proof of Theorem 2. Using Lemma 8 the theorem can be proved in a

similar manner noting that N(r, 0;h) ≡ N(r,∞;h) ≡ 0 and N2(r, 0;h) ≤

2N(r, 0;h), N(r,∞; f) ≤ N2(r,∞; f).

§4. Consequences

In this section we discuss some consequences of Theorem 1 and Theo-

rem 2.

Definition 8. For S ⊂ C∪{∞} we denote by Ef (S) the set Ef (S) =
⋃

a∈S{z : f(z) − a = 0}, where an a-point of multiplicity m is counted m

times.

Definition 9. For S ⊂ C ∪ {∞} we define Ef (S, k) as Ef (S, k) =
⋃

a∈S Ek(a; f), where k is a nonnegative integer or infinity.

Clearly Ef (S) = Ef (S,∞).

Gross and Osgood [1] proved the following theorem.

Theorem E. ([1]) Let S1 = {−1, 1}, S2 = {0}. If f and g are entire

functions of finite order such that Ef (Sj) = Eg(Sj) for j = 1, 2 then f ≡ ±g

or f.g ≡ ±1

Extending this result Tohge [5] and Yi [8] proved the following two

theorems.

Theorem F. ([5]) Let S1 = {1, ω, ω2, . . . , ωn−1}, S2 = {0}, S3 = {∞}

where n is an integer (≥ 2) and ω = cos(2π/n) + i sin(2π/n). If Ef (Sj) =

Eg(Sj) for j = 1, 2, 3 then fn ≡ gn or fn.gn ≡ 1.
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Theorem G. ([8]) Let S1 = {a + b, a + bω, . . . , a + bωn−1}, S2 = {a},

S3 = {∞}, where n is an integer (≥ 2), a, b (b 6= 0) are constants and

ω = cos(2π/n)+i sin(2π/n). If Ef (Sj) = Eg(Sj) for j = 1, 2, 3 then f −a ≡

t(g − a) where tn = 1 or (f − a)(g − a) ≡ s where sn = b2n.

As an application of Theorem 2 we improve Theorem G.

Theorem 3. Let S1, S2, S3 be defined as in Theorem G. If Ef (S1,∞)

= Eg(S1,∞), Ef (S2, 1) = Eg(S2, 1) and Ef (S3,∞) = Eg(S3,∞) then f −

a ≡ t(g − a) where tn = 1 or (f − a)(g − a) ≡ s where sn = b2n.

Proof. Let F =
(

f−a
b

)n
, G =

(

g−a
b

)n
. Then F , G share (0, 1), (1,∞)

and (∞,∞). Since N(r, 0;F |= 1) ≡ N(r,∞;F |= 1) ≡ 0, it follows from

Theorem 2 that either F ≡ G or F.G ≡ 1 from which the theorem follows.

This proves the theorem.

Following are two simple consequences of Theorem 1 and Theorem 2.

Theorem 4. Let f , g share (0, 0), (1,∞) and (∞, 1). If

N(r,∞; f |= 1) + 4N(r, 0; f) < {λ + o(1)}T (r) for r ∈ I,

where 0 < λ < 1/2, then either f ≡ g or f.g ≡ 1.

Proof. Let F = 1/f and G = 1/g. Then F , G satisfy the conditions of

Theorem 1. So either F ≡ G or F.G ≡ 1, from which the theorem follows.

Theorem 5. Let f , g share (0,∞), (1,∞) and (∞, 1). If

N(r, 0; f |= 1) + N(r,∞; f |= 1) < {λ + o(1)}T (r) for r ∈ I,

where 0 < λ < 1/2 then either f ≡ g or f.g ≡ 1.

Proof. Let F = 1/f , G = 1/g. Then F , G satisfy the conditions of

Theorem 2. So either F ≡ G or F.G ≡ 1, from which the theorem follows.

Remark 1. If f has at least one zero or pole then the possibility f.g ≡ 1

does not arise in Theorems 1, 2, 4, 5.
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Definition 10. ([6]) Let {an}, {bn} and {pn} be three disjoint se-

quences with no finite limit point. If it is possible to construct a meromor-

phic function f in the plain C whose zeros, 1-points and poles are exactly

{an}, {bn} and {pn} respectively, where their multiplicities are taken into

consideration, then the given triad ({an}, {bn}, {pn}) is called a zero-one-

pole set. Further if there exists only one meromorphic function f whose

zero-one-pole set is just the given triad then the triad is called unique.

H. Ueda [6] proved the following result.

Theorem H. ([6]) If n(r, 0; f) + n(r,∞; f) 6≡ 0 and

lim sup
r→∞

N(r, 0; f) + N(r,∞; f)

T (r, f)
<

1

2

then the zero-one-pole set of f is unique.

As an application of Theorem 2 and Remark 1 we can improve Theo-

rem H.

Theorem 6. If n(r, 0; f) + n(r,∞; f) 6≡ 0 and

N(r, 0; f |= 1) + N(r,∞; f |= 1) < {λ + o(1)}T (r, f) for r ∈ I,

where 0 < λ < 1/2 then the zero-one-pole set of f is unique.

Corollary 1. If n(r, 0; f)+n(r,∞; f) 6≡ 0 and f has at most a finite

number of simple zeros and poles then zero-one-pole set of f is unique.

Proof. If f is transcendental, the corollary follows from Theorem 6.

Let f be rational and g have the same zero-one-pole set of f . Then g is also

rational and f = cg, where c is a constant. Since f is rational, there exists

a point z0 ∈ C such that f(z0) = 1 and so g(z0) = 1. This shows that c = 1

and hence f ≡ g. This proves the corollary.
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